WorldWideScience

Sample records for cells synthese caracterisation

  1. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells; Synthese, caracterisation et nanostructuration de derives du polythiophene pour des applications en cellules photovoltaiques organiques

    Energy Technology Data Exchange (ETDEWEB)

    Berson, S

    2007-10-15

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  2. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  3. Localization of ANP-synthesizing cells in rat stomach

    Institute of Scientific and Technical Information of China (English)

    Chun-Hui Li; Li-Hui Pan; Chun-Yu Li; Chang-Lin Zhu; Wen-Xie Xu

    2006-01-01

    AIM: To study the morphological positive expression of antrial natriuretic peptide (ANP)-synthesizing cells and ultrastructural localization and the relationship between ANP-synthesizing cells and microvessel density in the stomach of rats and to analyze the distribution of the three histologically distinct regions of ANP-synthesizing cells.METHODS: Using immunohistochemical techniques, we studied positive expression of ANP-synthesizing cells in rat stomach. A postembedding immunogold microscopy technique was used for ultrastructural localization of ANP-synthesizing cells. Microvessel density in the rat stomach was estimated using tannic acid-ferric chloride (TAFC) method staining. Distribution of ANP-synthesizing cells were studied in different regions of rat stomach histochemically.RESULTS: Positive expression of ANP-synthesizing cells were localized in the gastric mucosa of rats. Localization of ANP-synthesizing cells identified them to be enterochrochromaffin cells (EC) by using a postembedding immunogold electron microscopy technique. EC cells were in the basal third of the cardiac mucosa region.ANP-synthesizing cells existed in different regions of rat stomach and its density was largest in the gastric cardiac region, and the distribution order of ANP-synthesizing cells in density was cardiac region, pyloric region and fundic region in mucosa layer. We have also found a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats using TAFC staining.CONCLUSION: ANP-synthesizing cells are expressed in the gastric mucosa. EC synthesize ANP. There is a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats.The distribution density of ANP-synthesizing cells is largest in the gastric cardiac region.

  4. Caracterisation thermique de modules de refroidissement pour la photovoltaique concentree

    Science.gov (United States)

    Collin, Louis-Michel

    Pour rentabiliser la technologie des cellules solaires, une reduction du cout d'exploitation et de fabrication est necessaire. L'utilisation de materiaux photovoltaiques a un impact appreciable sur le prix final par quantite d'energie produite. Une technologie en developpement consiste a concentrer la lumiere sur les cellules solaires afin de reduire cette quantite de materiaux. Or, concentrer la lumiere augmente la temperature de la cellule et diminue ainsi son efficacite. Il faut donc assurer a la cellule un refroidissement efficace. La charge thermique a evacuer de la cellule passe au travers du recepteur, soit la composante soutenant physiquement la cellule. Le recepteur transmet le flux thermique de la cellule a un systeme de refroidissement. L'ensemble recepteur-systeme de refroidissement se nomme module de refroidissement. Habituellement, la surface du recepteur est plus grande que celle de la cellule. La chaleur se propage donc lateralement dans le recepteur au fur et a mesure qu'elle traverse le recepteur. Une telle propagation de la chaleur fournit une plus grande surface effective, reduisant la resistance thermique apparente des interfaces thermiques et du systeme de refroidissement en aval vers le module de refroidissement. Actuellement, aucune installation ni methode ne semble exister afin de caracteriser les performances thermiques des recepteurs. Ce projet traite d'une nouvelle technique de caracterisation pour definir la diffusion thermique du recepteur a l'interieur d'un module de refroidissement. Des indices de performance sont issus de resistances thermiques mesurees experimentalement sur les modules. Une plateforme de caracterisation est realisee afin de mesurer experimentalement les criteres de performance. Cette plateforme injecte un flux thermique controle sur une zone localisee de la surface superieure du recepteur. L'injection de chaleur remplace le flux thermique normalement fourni par la cellule. Un systeme de refroidissement est installe

  5. Synthesis and characterization of hybrid silicon based complexing materials: extraction of transuranic elements from high level liquid waste; Synthese et caracterisation de gels hybrides de silice a proprietes complexantes: applications a l'extraction des transuraniens des effluents aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    1999-07-01

    Hybrid organic/inorganic silica compounds with extractive properties have been developed under an enhanced decontamination program for radioactive aqueous nitric acid waste in nuclear facilities. The materials were obtained by the sol-gel process through hydrolysis and poly-condensation of complexing organo-tri-alkoxy-silanes with the corresponding tetra-alkoxy-silane. Hybrid silica compounds were initially synthesized and characterized from mono- and bis-silyl precursors with malonamide or ethylenediamine patterns. Solids with different specific areas and pore diameters were obtained depending on the nature of the precursor, its functionality and its concentration in the tetra-alkoxy-silane. These compounds were then considered and assessed for use in plutonium and americium extraction. Excellent results-partitioning coefficients and capacities have been obtained with malonamide hybrid silica. The comparison with silica compounds impregnated or grafted with the same type of organic group is significant in this respect. Much of the improved performance obtained with hybrid silica may be attributed to the large quantity of complexing groups that can be incorporated in these materials. The effect of the solid texture on the extraction performance was also studied. Although the capacity increased with the specific area, little effect was observed on the distribution coefficients -notably for americium- indicating that the most favorable complexation sites are found on the outer surface. Macroporous malonamide hybrid silica compounds were synthesized to study the effects of the pore diameter, but the results have been inconclusive to date because of the unexpected molecular composition of the materials. (author)

  6. Synthesis and characterisation of nitrogen-containing poly heterocyclic molecules for the complexation of polluting metal cations; Synthese et caracterisation de molecules polyheterocycliques azotees pour la complexation de cations metalliques polluants

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, N

    2007-12-15

    The recovery of actinides(III) from the mixture actinides(III)/lanthanides(III) is a great deal of the nuclear waste management. Experiences have shown that derivatives of 2,6- bis(1,2,4-triazine-3-yl)pyridine (BTP) are able to extract selectively actinides(III) from lanthanides(III). But the properties of these molecules need to be reinforced to exhibit best extraction performances and to resist to the harsh conditions of the extracting processes. Originally functionalized ligands were synthesized and tested in a radioactive medium. In a second part, this work focuses on the control and the detection of actinides(III). This could be done thanks to the use of a chemical sensor such as quartz crystal microbalance. The study of this apparatus required the preliminary synthesis of original complexing BTP-derived structures. The last part of this work deals with the study of new synthetic ways to afford the BTP moiety. The palladium-catalyzed cross-coupling reaction of 3-methylthio-1,2,4-triazine with various 2-stannylated pyridines have been explored. Our investigations have also allowed to develop a method for synthesizing unsymmetrical 1,2,4,5-tetrazine from the cross-coupling reaction between 3-methylthio-6-(morpholine-N-yl)-1,2,4,5-tetrazine and organoboron / organo-stannane derivatives. (author)

  7. Creation, synthesis and characterisation of nitrogenous poly-heterocyclic new molecules for specific complexation of metallic cations; Conception, synthese et caracterisation de molecules polyheterocycliques azotees pour la complexation specifique de cations metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, C.

    2010-12-10

    In France, the nuclear waste issued from the industrial reprocessing of spent nuclear fuels (by the PUREX process) are currently vitrified at the La Hague plant, waiting for a final disposal in a deep geological repository. The law voted in June 2006 on the management of highly active nuclear waste plans to look for solutions enabling the separation and transmutation of long-lived radionuclides so as to reduce the quantity and noxiousness of the final nuclear waste. To address this issue, the CEA investigates and elaborates advanced separation processes based on specially designed complexing or extracting molecules to selectively extract minor actinides from PUREX raffinates containing fission products like lanthanides, which are neutron scavengers. BTP or bis-triazinyl-pyridines have been extensively studied at the CEA (and in Europe) for actinides(III)/lanthanides(III) separation. They complex actinides(III) selectively. However, they are sensitive to degradation by hydrolysis and radiolysis. Besides, their separation mechanisms are not well understood, especially the influence of their substituting groups on their complexing and extracting properties. The first part of work reports the syntheses of various BTP and BTBP molecules, differently substituted, as well as a new family of poly-aromatic nitrogen-contained ligands: BPBT, presenting a pyridine/triazine sequence that has never been reported in the literature. The second part is devoted to the physico-chemistry studies of the synthesized molecules, such as the determination of their protonation and complexation constants to describe the influence of different substituting groups. Finally, the last part outlines solvent extraction studies by using these ligands either like extractants or like complexants. (author) [French] Resume: La loi du 6 juin 2006 sur la gestion des dechets radioactifs de haute activite et a vie longue prevoit la recherche de solutions permettant la separation et la transmutation des

  8. Fabrication, characterization and radiation damage stability of hollandite based ceramics devoted to radioactive immobilisation; Synthese, caracterisation et etude du comportement sous irradiation electronique de matrices de type hollandite destinees au confinement du cesium radioactif

    Energy Technology Data Exchange (ETDEWEB)

    Aubin-Chevaldonnet, V. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DETCD/SCDV), Dept. d' Etudes du Traitement et du Conditionnement des Dechets, Service de Conditionnement des Dechets et Vitrification, 30 - Marcoule (France)

    2004-11-01

    Research on treating specifically the long-lived and high level nuclear wastes, notably cesium, is currently carried out in France. Cesium immobilization in host matrices of high chemical durability constitutes the favoured option. Hollandite matrix is a good candidate because of its high cesium incorporation ability and its excellent chemical stability. During this study, different compositions of hollandite ceramics Ba{sub x}Cs{sub y}C{sub z}Ti{sub 8-z}O{sub 16} (C = Al{sup 3+}, Cr{sup 3+}, Ga{sup 3+}, Fe{sup 3+}, Mg{sup 2+}, Sc{sup 3+}), synthesized by oxide route, were characterized in terms of structure, microstructure and physical and chemical properties. Iron ions seems to be the most suitable of the studied C cations to get high-performance hollandites. The stability of these ceramics under external electron irradiation, simulating the {beta} particles emitted by radioactive cesium, were also estimated, at the macroscopic and atomic scale. The point defects creation and their thermal stability were followed by electron paramagnetic resonance. (author)

  9. Synthesis and structural and thermodynamical characterization of hollandite type material intended for the specific containment of cesium; Synthese et caracterisation de ceramiques de type hollandite destinees au conditionnement specifique du cecium

    Energy Technology Data Exchange (ETDEWEB)

    Leinekugel-Le-Cocq-Errien, A.Y

    2005-09-15

    This thesis deals with the characterization of the Ba{sub 1}Cs{sub 0.28}Fe{sub 0.82}Al{sub 1.46}Ti{sub 5.72}O{sub 16} hollandite envisaged for Cs containment. Techniques used are essentially classical powder XRD or synchrotron radiation at the absorption threshold of Ba and Cs, TEM and high-temperature calorimetry. Two syntheses have been studied: an alcoxide route and a dry route. After sintering, both routes lead to an incommensurate modulated tetragonal hollandite structure (space group: I4/m(00{gamma})00) with a modulation vector distribution. Before sintering, the material obtained by the alcoxide route is composed of three phases: a tetragonal hollandite like above, a monoclinic Ba-free hollandite and a weak-coherence-length phase containing only Ba. On contrary, the dry route already leads to the tetragonal hollandite at this step of the synthesis. High temperature oxide melt solution calorimetry was used to derive standard enthalpy of formation of hollandite to deduce its free enthalpy of formation. (author)

  10. Removal of cesium from nuclear liquid waste using hybrid organic-inorganic membranes grafted by immobilized calixarenes; Synthese et caracterisation de membranes hybrides organo-minerales contenant des calixarenes. Application au traitement des effluents radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Duhart, A

    1998-07-01

    The aim of the Actinex program is to reduce massively the noxiousness of the vitrified wastes mainly due to actinides and other long-lived fission products such as {sup 129}I, {sup 99}Tc or {sup 135}Cs. Specific treatment means applicable to the industrial processes of spent fuel reprocessing have to be defined. The selective extraction of these radioelements for their transmutation or packaging in specific matrices is one of the research theme of this program. Different studies allowing the extraction of radioelements such as cesium, americium and plutonium by preferential diffusional transport through a supported liquid membrane of complexes (formed between a selective transport compound and the radioelements) are at the present time carried out in the ETPL (Effluents Treatment Processes Laboratory). Calix-4-arenes mono/bis-crown-6 are used as selective transport compounds. Meanwhile the possible losses of the selective transport compound by dissolution in the aqueous phases have oriented our researches towards a solid material in which the selective transport compound is chemically bound or trapped in the matrix. The transport compound is a calixarene, dissymmetrical and double grafted. It has been specifically synthesized for this study. It allows both to complex the cesium and to chemically bind a hetero-poly-siloxane. These monomers have poly-condensable groups which lead by sol-gel process to the formation of a three-dimensional bonds lattice. The matrix, thus obtained, can be supported either on a mineral material or on a porous organic material. Pre-polymers and the deposited layers have been characterized and correlations between the materials preparation and their properties, applied to cesium extraction, have been established. Experiments of cesium transfer through the solid membrane containing between 2 to 40% of selective transport compound, located between 2 compartments containing upstream, an acidic solution with strong salinity doped with Cs 137

  11. Synthesis and characterization of new TiO{sub 2} sensitizers for photovoltaic cells: bipyridine phosphonic di-acid ruthenium and osmium complexes and dyads composed of an organic chromophore and a ruthenium complex for antenna effect; Synthese et caracterisation de nouveaux sensibilisateurs de TiO{sub 2} pour la photovoltaique: complexes de ruthenium et d'osmium avec la bipyridine diacide phosphonique et diades composees d'un chromophore organique et d'un complexe de ruthenium pour l'effet d'antenne

    Energy Technology Data Exchange (ETDEWEB)

    Zabri, H.

    2004-04-01

    The aim of this work is to develop new poly-pyridine transition metals complexes as TiO{sub 2} sensitizers for the design of photovoltaic cells. The first part concerns the preparation and the study of the properties of RuL{sub 2}X{sub 2} complexes (L = 2,2'-bipyridine bis phosphonic acid and X = Cl, CN, NCS). The cis di-thiocyanate bis-(2,2-bipyridine-4,4-phosphonic di-acid) ruthenium (II) sensitizer has the best performances but is nevertheless inferior of 30% to its analog containing the carboxylic acid function (N3) taken as reference in this work. In a second part, the osmium complexes with the 2,2'-bipyridine-4,4'-phosphonic di-acid have been prepared on account of their widest absorbance towards the low energies of the solar spectra. The spectroscopic ({sup 1}H and {sup 13}C NMR, UV-Visible, IR, action spectra, emission and life span of the excited states) and electrochemical properties of these complexes have been studied. This study has shown that 1)the tris-(2,2'-bipyridine-4,4'-phosphonic di-acid) osmium (II) has a photovoltaic efficiency similar to those of N3 2)the phosphonic acid function leads to a bond more stable with TiO{sub 2} compared with those obtained with the carboxylic acid function. At last, dyads composed of an organic pigment (zinc phthalocyanine and boradiazaindacene) grafted on a ruthenium complex have been prepared. The two organic pigments allow to increase the cross section of light collection of the ruthenium complex by antenna effect. The photochemical study in solution shows that the fluorescence of the antennas is trapped by the next ruthenium complex probably by energy transfer. (O.M.)

  12. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed...

  13. Modelling and characterisation of a PEM fuel cell; Modelisation et caracterisation d'une pile a combustible du type PEM

    Energy Technology Data Exchange (ETDEWEB)

    Friede, W.

    2003-08-01

    In this work, the behaviour of a fuel cell is described in regard of its integration into a power production system. Its use is difficult as a great number of operating parameters has to be controlled and internal behaviour has to be known. Therefore, the relations between the operating conditions and the electrical parameters are presented. The model describes the internal phenomena in the fuel cell while staying restricted enough to allow a fast resolution in stationary and transient operation. The fuel cell is divided into layers. Each layer consists of a different material. A mono-dimensional approach has been chosen. Following an axis that is perpendicular to the membrane surface, every layer is discretized into several elements. This work is dealing with a mathematical model of a single fuel cell, based on gas and water flow equations. The electrochemical reactions are described while taking into account the mutual influence with other values. The description of the cell impedance is of special interest. The model shows the evolution of electrical values as a function of operating conditions. The resolution of the equations using Matlab-Simulink software allows to localize the internal phenomena and to visualize the transient behaviour. Special attention is given to water management, which is one of the biggest challenges in operating low temperature fuel cells. The presentation of a test bench with a 500 W PEM fuel cell and stationary and transient measurements show the cell's performance and its sensibility to parameter changes. In particular, membrane resistance and impedance values are interpreted to get more information about the internal physical phenomena of the fuel cell. (author)

  14. Concrete embedded dye-synthesized photovoltaic solar cell.

    Science.gov (United States)

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  15. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M.

    2004-12-15

    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  16. Mechanochemically Synthesized CIGS Nanocrystalline Powder for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Bharati Rehani

    2013-05-01

    Full Text Available Copper Indium Gallium Diselenide (CIGS is a compound semiconductor material from the group of I-III-VI. The material is a solid solution of copper, indium and selenium (CIS and copper, gallium and selenium with an empirical formula of CuIn(1 – xGaxSe2, where 0  x  1. CIGS has an exceptionally high absorption coefficient of more than 105 cm – 1 for 1.5 eV. Solar cells prepared from absorber layers of CIGS materials have shown an efficiency higher than 20 %. CuIn(1 – xGaxSe2 (x  0.3 nanocrystalline compound was mechanochemically synthesized by high-energy milling in a planetary ball mill. The phase identification and crystallite size of milled powders at different time intervals were carried out by X-ray diffraction (XRD. The XRD analysis indicates chalcopyrite structure and the crystallite size of about 10 nm of high-energy milled CIGS powder after two and half hours of milling. An attempt for preparing the thin film from CIGS nanocrystalline powder was carried out using the flash evaporation technique. Scanning electron microscopy (SEM reveals uniform distribution of CIGS particles in thin film.

  17. Properties of Si Nanowires Synthesized by Galvanic Cell Reaction

    Science.gov (United States)

    Yasushi Kobayashi,; Sadao Adachi,

    2010-07-01

    A galvanic cell reaction is used to synthesize Si nanowires (SiNWs) in AgNO3/HF solution at 30 °C for 60 min. The AgNO3 concentration ise varied from M=0.0001 to 0.6 mol/L in aqueous HF solution (5 mol/L). Vertically well-aligned SiNW arrays are found to be formed in the limited AgNO3 concentration range of M˜ 0.02--0.08 mol/L. The maximum nanowire length is ˜35 μm (M˜ 0.05 mol/L). The photoluminescence (PL) spectra of the SiNWs exhibit a broad peak centered at ˜1.8 eV. Below M˜ 0.02 or above ˜0.08 mol/L, the solutions produce only roughened surfaces. No PL emission is observed from such surfaces. Passive HF etching of the SiNWs leads to the removal of the surface oxide overlayer and changes the wettability from highly hydrophilic (˜5°) to superhydrophobic (˜135°). Optical absorption and Fourier-transform infrared spectroscopy show that the SiNWs have an extremely large optical absorbability not only in the interband-transition region but also in the far-infrared spectral region.

  18. Oligoethylene-glycol-functionalized polyoxythiophenes for cell engineering: syntheses, characterizations, and cell compatibilities.

    Science.gov (United States)

    Zhao, Haichao; Zhu, Bo; Sekine, Jun; Luo, Shyh-Chyang; Yu, Hsiao-hua

    2012-02-01

    A series of methyl- or benzyl-capped oligoethylene glycol functionalized 2,5-dibromo-3-oxythiophenes are synthesized and successfully polymerized by either Grignard metathesis (GRIM) polymerization or reductive coupling polymerization to yield the corresponding polymers in reasonable yields and molecular weights with narrow molecular weight distribution. These synthesized polyoxythiophenes exhibit high electroactivity and stability in aqueous solution when a potential is applied. Polyoxythiophenes from different polymerization approaches display different colors after purification and spectroelectrochemical studies confirm that the difference of color is from the difference of doping state. Little cytotoxicity is observed for the polymers by in vitro cell compatibility assay. NIH3T3 fibroblast cells are well attached and proliferate on spin-coated films. These results indicate that oligoethylene-glycol-functionalized polyoxythiophenes are promising candidates as conducting biomatierals for biomedical and bioengineering applications.

  19. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture.

    Science.gov (United States)

    Qin, Xia; Park, Hui Gyu; Zhang, Ji Yao; Lawrence, Peter; Liu, Guowen; Subramanian, Nivetha; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-01-01

    Adipose tissue is a complex endocrine organ which coordinates several crucial biological functions including fatty acid metabolism, glucose metabolism, energy homeostasis, and immune function. Brown adipose tissue (BAT) is most abundant in young infants during the brain growth spurt when demands for omega-3 docosahexaenoic acid (DHA, 22:6n-3) is greatest for brain structure. Our aim was to characterize relative biosynthesis of omega-3 long chain polyunsaturated fatty acids (LCPUFA) from precursors in cultured white (WAT) and brown (BAT) cells and study relevant gene expression. Mouse WAT and BAT cells were grown in regular DMEM media to confluence, and differentiation was induced. At days 0 and 8 cells were treated with albumin bound d5-18:3n-3 (d5-ALA) and analyzed 24h later. d5-ALA increased cellular eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) in undifferentiated BAT cells, whereas differentiated BAT cells accumulated 20:4n-3, EPA and DPA. DHA as a fraction of total omega-3 LCPUFA was greatest in differentiated BAT cells compared to undifferentiated cells. Undifferentiated WAT cells accumulated EPA, whereas differentiated cells accumulated DPA. WAT accumulated trace newly synthesized DHA. Zic1 a classical brown marker and Prdm16 a key driver of brown fat cell fate are expressed only in BAT cells. Ppargc1a is 15 fold higher in differentiated BAT cells. We conclude that in differentiated adipose cells accumulating fat, BAT cells but not WAT cells synthesize DHA, supporting the hypothesis that BAT is a net producer of DHA.

  20. Cytotoxic Effects of Newly Synthesized Palladium(II Complexes of Diethyldithiocarbamate on Gastrointestinal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Shahram Hadizadeh

    2014-01-01

    Full Text Available As a part of a drug development program to discover novel therapeutic and more effective palladium (Pd based anticancer drugs, a series of water-soluble Pd complexes have been synthesized by interaction between [Pd (phen(H2O2(NO32] and alkylenebisdithiocarbamate(al-bis-dtc disodium salts. This study was undertaken to examine the possible cytotoxic effect of three novel complexes (0.125–64 µg/mL on human gastric carcinoma (AGS, esophageal squamous cell carcinoma (Kyse-30, and hepatocellular carcinoma (HepG2 cell lines. The cytotoxicity was examined using cell proliferation and acridine orange/ethidium bromide (AO/EB assay. In order to examine the effects of new Pd(II complexes on cell cycle status, we performed cell cycle analysis. The complexes were found to have completely lethal effects on the cell lines, and the half maximal inhibitory concentration (IC50 values obtained for the cell lines were much lower in comparison with cisplatin. We demonstrated that the three new Pd(II complexes are able to induce G2/M phase arrest in AGS and HepG2; in addition, the Pd(II complexes caused an S phase arrest in Kyse-30 cell line. Our results indicate that newly synthesized Pd(II complexes may provide a novel class of chemopreventive compounds for anticancer therapy.

  1. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line

    Institute of Scientific and Technical Information of China (English)

    Fathima Stanley Rosarin; Vadivel Arulmozhi; Samuthira Nagarajan; Sankaran Mirunalini

    2013-01-01

    Objective: To synthesize silver nanoparticles by amla extract, screen the cytotoxic, oxidative stress and apoptotic effect of silver nanoparticles (AgNPs) on Hep2 cell line (laryngeal carcinoma cells) in vitro, and to compare the effect of Phyllanthus emblica (P. emblica) (amla) with AgNPs synthesized by amla and 5-FU. Methods: AgNPs was synthesized by P. emblica (aqueous extract) and nanoparticles were characterized UV-Vis spec, the presence of biomoloecules of amla capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and DLS. Cytotoxicity of experimental drugs was tested to find IC50 value. ROS generation in cells have been measured by DCFH-DA staining, AO-EtBr, Rhodamine-123 staining and DNA fragmentation were performed to assess apoptotic cell death, mitochondrial membrane potential and apoptotic DNA damage, respectively. Oxidative stress was analyzed by measuring lipid peroxides and antioxidants level to understand the cancer cell death by pro-oxidant mechanism.Results:PE-AgNPs was synthesized and confirmed through kinetic behavior of NPs. The shape of PE-AgNPs was spherical and cubic since it was agglomerated, and the nanoparticle surface was complicated. Average particle size distribution of PE-AgNPs was found to be 188 nm. Potent biomolecules of P. emblica such as polyphenols were capped with AgNPs and reduced its toxicity. In cytotoxicity assay the concentration in which the maximum number of cell death was 60 μg/mL and 50 μg/mL for P. emblica (alone) and AgNPs, respectively and IC50 values were fixed as 30 μg/mL and 20 μg/mL. ROS generation, apoptotic morphological changes, mitochondrial depolarization, DNA damage and oxidative stress was observed as more in AgNPs treated cells than in P. emblica (30 μg/mL) (alone) treated cells and 5-FU treated cells gave similar result.Conclusions:The results suggest that the AgNPs are capped with biomolecules of amla enhanced cytotoxicity in laryngeal cancer cells through oxidative

  2. Tin dioxide: synthesis, characterization and study of the interactions with different polluting gases - application to DeNOx catalysis; Dioxyde d'etain: synthese, caracterisation et etude des interactions avec differents gaz polluants - application a la catalyse DeNOx

    Energy Technology Data Exchange (ETDEWEB)

    Sergent, N.

    2003-01-01

    Two high specific surface area tin dioxides after calcination at 600 degrees C under O{sub 2} have been synthesized: SnO{sub 2}-HNO{sub 3} (24 m{sup 2} g{sup -1}) and SnO{sub 2}-N{sub 2}H{sub 4} (101 m{sup 2} g{sup -1}). The surface of the 600 degrees C - calcined SnO{sub 2}-N{sub 2}H{sub 4} sample was found to be more hydroxylated than the 600 degrees C - calcined SnO{sub 2}-HNO{sub 3} one. The thermal treatment under O{sub 2} involves the formation of mono-ionized oxygen vacancies, leading to non-stoichiometric tin dioxides. A specific treatment like outgassing at temperatures above 300-400 degrees C, was found to be necessary to extract surface oxygen atoms. The CO adsorption at liquid N{sub 2} temperature on the SnO{sub 2}-N{sub 2}H{sub 4} sample has shown the existence of two cationic Sn{sup 4+} sites, having different Lewis acidities. Concerning the surface OH groups, it has been observed: i) hydroxyl which are inaccessible to CO, ii) weakly acidic surface hydroxyl and iii) surface hydroxyl having a weak Broensted acidity. Then, a study of the interactions between the 600 degrees C - calcined SnO{sub 2}-N{sub 2}H{sub 4} sample and various pollutant gases has been carried out by transmission FTIR spectroscopy. Carbon dioxide interacts with SnO{sub 2} surface, leading to CO{sub 2} species adsorbed on cationic sites together with carbonates and bicarbonates ad-species. Carbon monoxide involves the partial reduction of SnO{sub 2} surface by reaction of CO with surface oxygens to form carbonate species and CO{sub 2}. Interactions of SnO{sub 2} surface with NO{sub 2} have shown the formation of NO{sup +}, nitrite and nitrate ad-species. The NO adsorption on SnO{sub 2}-N{sub 2}H{sub 4} have shown the formation of electron donor species (nitrite and nitrate species) together with electron acceptor species (nitrosyl species). Finally, in the Selective Catalytic Reduction (SCR) of NO{sub x} by propene in oxygen excess, SnO{sub 2} was found to be active at high

  3. Synthesis in fluoride medium and characterisation of Montmorillonite type Photoelasticity. Structural study by X-ray Absorption and nuclear magnetic resonance spectroscopies; Synthese en milieu fluore et caracterisation de phyllosilicates de type montmorillonite. etude structurale par spectroscopies d'absorption des rayons x et de resonance magnetique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Reinholdt, M.

    2001-12-15

    The aim of this work is to synthesize and characterise montmorillonite type phyllosilicates and to study the distribution of the metal elements in the structure. First, generalities about phyllosilicates are introduced. A particular attention is given to (2:1) di-octahedral phyllosilicates and especially to montmorillonite. The different methods of the synthesis of this mineral are reviewed. The method of hydrothermal synthesis in fluoride medium and the techniques used to characterize the materials (XRD, TGA-DTA, chemical analyses) are then described. The descriptions of solid state NMR and EXAFS are particularly developed. Next, a systematic study of the synthetic products is realised for two systems MO-Al{sub 2}O{sub 3}-SiO{sub 2} (M = Mg or Zn). The compositions of hydrogel are based on a theoretical formula of montmorillonite: Na{sub 2x}[Al{sub 2(1-x)}M{sub 2x}-vacancy]Si{sub 4}O{sub 10}OH{sub 2} (x represents the octahedral layer charge). A montmorillonite type phyllosilicate is obtained for 0.10 {<=} x {<=} 0.25 in the MgO-Al{sub 2}O{sub 3}-SiO{sub 2} system and for x = 0.10 in the ZnO-Al{sub 2}O{sub 3}-SiO{sub 2} system. Besides the Mg/Al substitutions in the octahedral sheet, Al/Si substitutions in the tetrahedral sheet are observed by {sup 29}Si and {sup 27}Al NMR. The {sup 19}F NMR shows a clustering of the octahedral elements in (Mg)phyllosilicate. Then, the parameters of the synthesis of (Mg)phyllosilicate are introduced. Kaolinite is observed as an intermediary phase during the crystallisation. The optimal pH is found between 5.0 and 5.5. The presence of a little amount of F- is necessary (0.05 {<=} F/SiO{sub 2} {<=} 0.10). Tetrahedral substitutions are fewer with the use of Na{sup +} as compensating cation. Finally, Zn and Mg K-edges EXAFS show a distortion of the layer and a clustering of the octahedral elements for the (Zn)phyllosilicate. A quantitative {sup 27}Al MAS-NMR method is elaborated which allows to determine both total amount of aluminium

  4. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Oue, Erika [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Lee, Ji-Won; Sakamoto, Kei [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Iimura, Tadahiro [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Aoki, Kazuhiro [Section of Pharmacology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Kayamori, Kou [Section of Diagnostic Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Department of Pathology, Ome Municipal General Hospital, Ome, Tokyo (Japan); Michi, Yasuyuki; Yamashiro, Masashi; Harada, Kiyoshi; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first

  5. Characterisation in vivo of ways of induced deaths by p53, in the male germinal cells; Caracterisation in vivo des voies de mort induites par la p53, dans les cellules germinales males

    Energy Technology Data Exchange (ETDEWEB)

    Coureuil, M

    2006-10-15

    The male germinal cells constitute a heterogeneous cell population including pre-meiotic proliferating cells (spermatogonia) and meiotic cells and post meiotic cells in differentiation (spermatocytes and spermatids). We study the involvement in vivo of the p53 protein in the death of these cells with the help of two models, (1) a transgenic model of infertility, MTp53, in which the p53 is over expressed in the differentiated cells and induced their death, (2) the response of these cells to gamma irradiation, where only the spermatogonia die by apoptosis dependent of p53. We showed that the caspases (cysteine-aspartic proteases) are involved in the terminal differentiation of normal germinal cells. But in the MTp53 model, the p53 induces the death of differentiated cells via the activation of calpains and not of caspases. We studied the response of spermatogonia, to gamma irradiation by a transcriptomic approach, by DNA chips and semi-quantitative RT-PCR. we showed that the puma and dr5 genes are induced by the p53 after irradiation. more, the study of mice invalidated for trail ( the dr5 ligand) or for puma, allowed to demonstrate that the two effectors are essential to the activation of intrinsic and extrinsic ways of apoptosis. (N.C.)

  6. An easily synthesized blue polymer for high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ergang; Hellstroem, Stefan; Zhang, Fengling; Andersson, Mats R. [Department of Chemical and Biological, Engineering/Polymer Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Hou, Lintao; Wang, Zhongqiang; Inganaes, Olle [Biomolecular and Organic Electronics, IFM, and Center of Organic Electronics, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-12-07

    High performance solar cells fabricated from an easily synthesized donor-acceptor polymer show maximum power point up to 6.0 mW cm{sup -2}, with an open-circuit voltage of 0.89 V, short-circuit current density of 10.5 mA cm{sup -2} and fill factor of 0.64, making this polymer a particularly promising candidate for high-efficiency low-cost polymer solar cells. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Modelling and characterization of the PEM fuel cell to study interactions with power converters; Modelisation et caracterisation de la pile pem pour l'etude des interactions avec les convertisseurs statiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, G.

    2005-09-15

    The climatic and energy challenges were now clearly stated. The use of hydrogen is one of the best ways which gives many hopes. Fuel cells are an essential link in the chain of the use of hydrogen. Thus, a lot of studies have been undertaken throughout the world on fuel cells in many fields of physics. Concerning the field of power electronics, a lot of work on distributed generation technologies using fuel cells has been realised too and a great number of power converters dedicated to fuel cells have been studied. However, very few studies have been undertaken on the interactions between fuel cells and power converters. The goals of this work are to study interactions between fuel cells and power converters. Some requirements for the power electronic engineer can follow from this work. This work proposes high signal dynamic models of a H{sub 2}/O{sub 2} PEM fuel cell. These models include the different physical and chemical phenomena. Specific methods based on a limited number of original experiments (low frequency current sweeps) allow to extract the model parameters. These models are used to study the interactions between fuel cells and power converters which are the most used: buck chopper, boost chopper, inverters. The important part of the double layer capacitors has thus been underlined: they can filter the current harmonics created by the power converters. Finally, some choices of filtering elements to be connected to the fuel cell are proposed. (author)

  8. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    Science.gov (United States)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40-50 nm. The zeta potential value of -27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  9. Caracterisation environnementale des emissions atmospheriques d'une source fixe et creation d'un outil de gestion dynamique =

    Science.gov (United States)

    Fournier, Marie-Claude

    Une caracterisation des emissions atmospheriques provenant des sources fixes en operation, alimentees au gaz et a l'huile legere, a ete conduite aux installations visees des sites no.1 et no.2. La caracterisation et les calculs theoriques des emissions atmospheriques aux installations des sites no.1 et no.2 presentent des resultats qui sont en dessous des valeurs reglementaires pour des conditions d'operation normales en periode hivernale et par consequent, a de plus fortes demandes energetiques. Ainsi, pour une demande energetique plus basse, le taux de contaminants dans les emissions atmospheriques pourrait egalement etre en dessous des reglementations municipales et provinciales en vigueur. Dans la perspective d'une nouvelle reglementation provinciale, dont les termes sont discutes depuis 2005, il serait souhaitable que le proprietaire des infrastructures visees participe aux echanges avec le Ministere du Developpement Durable, de l'Environnement et des Parcs (MDDEP) du Quebec. En effet, meme si le principe de droit acquis permettrait d'eviter d'etre assujetti a la nouvelle reglementation, l'application de ce type de principe ne s'inscrit pas dans ceux d'un developpement durable. L'âge avance des installations etudiees implique la planification d'un entretien rigoureux afin d'assurer les conditions optimales de combustion en fonction du type de combustible. Des tests de combustion sur une base reguliere sont donc recommandes. Afin de supporter le processus de suivi et d'evaluation de la performance environnementale des sources fixes, un outil d'aide a la gestion de l'information environnementale a ete developpe. Dans ce contexte, la poursuite du developpement d'un outil d'aide a la gestion de l'information environnementale faciliterait non seulement le travail des personnes affectees aux inventaires annuels mais egalement le processus de communication entre les differents acteurs concernes tant intra- qu'inter-etablissement. Cet outil serait egalement un bon

  10. Contribution at thermal and fluidic characterization for a proton exchange membrane fuel cell (PEMFC); Contribution a la caracterisation thermique et fluidique d'une pile a combustible a membrane echangeuse de protons (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Dumercy, L.

    2004-10-01

    The aim of this thesis is the thermal and fluidic model of a proton exchange membrane fuel cell. The management of the internal temperature of the fuel cell affect performance, in one hand directly on the electrochemical reaction, in the other hand by determination of their internal characteristics (hydratation of the membrane, diffusion resistance in the porous area). The modeling is made between two axis. At first, the thermal behavior is taken into account in the global form. The fuel cell is studied as a whole with a thermal resistance network and heat sources (heat supply by electrochemical reaction, exchanges with fluids). Dirichlet boundary conditions have been used to force surface temperatures. The meshing of the network is shrink for modeling the central cell. Specific boundary conditions are applied at this cell for quantify interference of neighboring cells. The studied cell can be used, in this case, on many situations: adiabatic, in serial or with a external flux. In addition, anode and cathode channel have been studied with a specific model, based on the counting by finite differences of a differential equations system. Taking into account the most important physical and thermophysical quantities (pressures, flow rates, water and heat exchange coefficients), it couples internal quantities off the channel and thermal state of the overall system. The studies of the phase change of water in the channel, his transfer between the anode and the cathode and his influence on the thermal balance are studied. (author)

  11. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    Science.gov (United States)

    Kamala Priya, M. R.; Iyer, Priya R.

    2015-04-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  12. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters.

    Directory of Open Access Journals (Sweden)

    Matthew D Whim

    Full Text Available BACKGROUND: In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. METHODOLOGY/PRINCIPAL FINDINGS: NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1 early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2 GFP-expressing islet cells from an NPY(GFP transgenic mouse are insulin-ir; (3 single cell RT-PCR experiments confirm that the NPY(GFP cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. CONCLUSIONS: These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.

  13. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L. Schrad

    Directory of Open Access Journals (Sweden)

    T Ramanathan

    2011-09-01

    Full Text Available Abstract Background An increasingly common application is the use of silver nanoparticles for antimicrobial coatings, wound dressings, and biomedical devices. In this present investigation, we report, biomedical potential of silver nanopaticles synthesized from calli extract of Citrullus colocynthis on Human epidermoid larynx carcinoma (HEp -2 cell line. Methods The callus extract react with silver nitrate solution confirmed silver nanoparticles synthesis through the steady change of greenish colour to reddish brown and characterized by using FT-IR, AFM. Toxicity on HEp 2 cell line assessed using MTT assay, caspase -3 assay, Lactate dehydrogenase leakage assay and DNA fragmentation assay. Results The synthesized silver nanoparticles were generally found to be spherical in shape with size 31 nm by AFM. The molar concentration of the silver nanoparticles solution in our present study is 1100 nM/10 mL. The results exhibit that silver nanoparticles mediate a dose-dependent toxicity for the cell tested, and the silver nanoparticles at 500 nM decreased the viability of HEp 2 cells to 50% of the initial level. LDH activities found to be significantly elevated after 48 h of exposure in the medium containing silver nanoparticles when compared to the control and Caspase 3 activation suggested that silver nanoparticles caused cell death through apoptosis, which was further supported by cellular DNA fragmentation, showed that the silver nanoparticles treated HEp2 cells exhibited extensive double strand breaks, thereby yielding a ladder appearance (Lane 2, while the DNA of control HEp2 cells supplemented with 10% serum exhibited minimum breakage (Lane 1. This study revealed completely would eliminate the use of expensive drug for cancer treatment.

  14. Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes

    Science.gov (United States)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh; Hamed, Fatehy

    2016-04-01

    An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (R s) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.

  15. Synthese et caracterisation d'heterostructures de (In)GaAsN pour l'optoelectronique

    Science.gov (United States)

    Beaudry, Jean-Nicolas

    2007-12-01

    This doctoral project proposes to study the incorporation of nitrogen to GaAs epitaxial layers grown on GaAs(001) substrates, a system that allows for systematically isolating the effect of nitrogen from that of indium. In this thesis we report on the results of a work where the focus was brought on (i) the growth kinetics of GaAs1-xNx during the metal-organic vapour phase epitaxy growth (OMVPE) (ii) the analysis of the physical and structural properties of GaAs1-xNx/GaAs heterostructures and (iii) the characterization of the nitrogen incorporation sites in the GaAs crystal lattice. Moreover, we present the results of exploratory studies aiming at the production of GaAs1-xN x/GaAs multilayers and to the growth of InyGa1-yAs1-x Nx quaternary alloys. These latter studies address issues that are closer to technological applications since they focus on process details pertaining to the fabrication of devices. Trimethylindum (TMIn), trimethylgallium (TMGa), tertiarybutylarsine (TBAs) and dimethylhydrazine (DMHy) were used as organometallic sources, a quite original combination since not widely encountered in the epitaxial growth field. TBAs has the great advantage of being far less dangerous than arsine in OMVPE processes, the latter being highly toxic and more prone to causing leaks on a large scale. Regarding the diversity of the growth parameters, the GaAs1-xNx/GaAs samples grown for this project definitely constitute one of the largest bank of its kind. The systematic monitoring of both the growth rate and the composition of these materials under varying growth conditions has, as a consequence, generated an impressive quantity of experimental data. In addition to the DMHy flow rate, the investigated parameters include, among others, the reactor pressure, the TMGa flow rate, the substrate temperature (from 500 to 650°C), and the V/III ratio. Not only have those results allowed to highlight important behaviors of the chemical species involved in surface reactions, but they also allowed for pointing out an important lack of knowledge on the decomposition pathways of the organometallics sources. Nitrogen incorporation in GaAs being very inefficient, exceptionally high flow rates of DMHy are required, which sometimes lead to V/III ratios greater than 500. Depending on the growth temperature, this excess of DMHy molecules on the growth surface affects the growth rate and the incorporation efficiency in a complex way. Moreover, the sensitivity of x with respect to the gas phase composition translates into a laterally non-uniform incorporation of N during the growth of epilayers with high nitrogen content. For low temperatures and extremely large flow rates of DMHy, this precursor occupies most of the adsorption sites on the growth surface, thus leading to drastic reduction of the growth rate accompanied by a very large N incorporation (x > 0,1). High resolution X-ray diffraction (HR-XRD) and heavy ion Rutherford backscattering spectroscopy (HIRBS) analyses suggest that the epilayers deposited under such conditions undergo a phase separation and exhibit an important non-stoechiometry, probably indicative of an amorphous matrix. Our results also allowed us to identify and explain a nonlinear variation of the GaAs1-xNx lattice parameter a as a function of its composition x. (Abstract shortened by UMI.)

  16. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  17. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.

    1986-12-01

    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  18. Ion-exchange membranes based on aromatic polymers for fuel cells; Preparation et caracterisation de membranes echangeuses d'ions basees sur des polymeres aromatiques pour pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Kosmala, B.

    2001-09-01

    Poly(2,6- dimethyl-1,4- phenylene oxide) was sulfonated to different degrees. New ion-exchange membranes were prepared either from sulfonated poly(2,6- dimethyl-1,4-phenylene oxide) (SPPO) alone or by mixing solutions of SPPO in the ammonium form and of poly-benzimidazole or poly(2-ethyl-aniline), casting the solution as a thin film, evaporating the solvent and treating the membrane with aqueous hydrochloric acid. The polymer-blend membranes were insoluble in organic solvents as they were crosslinked by interactions of sulfonic acid groups and basic groups of the other polymer. A very small amount of either polymer in the blend will bring about crosslinking of the membrane. The membranes were tested in a H{sub 2}/O{sub 2} fuel cells. Their performance in the fuel cell increased with increasing concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominating, which swelled excessively in water, did not give reproducible results and their performance was usually inferior to that of the membranes having an optimum ratio of both components. (author)

  19. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangiliyandi Gurunathan

    2013-01-01

    Full Text Available Silver nanoparticles (AgNPs have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM. The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH, caspase-3, reactive oxygen species (ROS generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy.

  20. Sol-gel synthesized mesoporous anatase titanium dioxide nanoparticles for dye sensitized solar cell (DSSC) applications

    Indian Academy of Sciences (India)

    R Govindaraj; M Senthil Pandian; P Ramasamy; Sumita Mukhopadhyay

    2015-04-01

    Hierarchically structured titanium dioxide nanoparticles were successfully synthesized by the sol-gel method. The synthesized nanoparticles were subjected to powder X-ray diffraction, UV-Vis DRS spectroscopy, Brunauer–Emmett–Teller method, Barrett–Joyner–Halenda analysis, field emission scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray analysis. The powder X-ray diffraction pattern shows that the obtained particles are of anatase phase with good crystallite nature. The nitrogen adsorption and desorption isotherms show that the prepared material has surface area of 31.71 m2 g-1 and the pore size distribution analysis shows the average pore diameters of mesoporous TiO2 nanostructures to be 7.1 and 9.3 nm. The UV–Vis DRS spectrum shows that the TiO2 nanoparticles are having absorption in the ultraviolet region. The optical band gap of the nanoparticles is 3.2 eV. The morphological studies show the morphology of the particles as spherical in shape. The elemental compositions of TiO2 nanoparticles were confirmed by energy-dispersive X-ray spectrum analysis. The conversion efficiency of the solar cell was 3.415% with open-circuit voltage (oc), short-circuit current (sc) and fill factor (FF) of 0.607 V, 13.206 mA cm-2 and 42.56%, respectively.

  1. Photoluminescence Lifetime Imaging of Newly Synthesized Proteins in Living Cells with Iridium-alkyne Probe.

    Science.gov (United States)

    Zhang, Xinrong; Wang, Jinyu; Xue, Jie; Yan, Zihe; Zhang, Sichun; Qiao, Juan

    2017-09-23

    Designing probes for real-time imaging of dynamic processes in living cells is a continual challenge. Herein, a novel near-infrared photoluminescence probe with long lifetime was exploited for photoluminescence lifetime imaging (PLIM) based on an Iridium-alkyne complex. This probe offers benefits of desirable deep-red to NIR emission, long stokes shift, excellent cell penetration, low cytotoxicity and good resistance to photobleaching. To the best of our knowledge this is the first PLIM probe applicable to click reaction of Cu(I)-catalysed azide-alkyne cycloaddition with remarkable lifetime shifts of 414 ns before and after click reaction. The approach fully eliminates the background interference and well distinguishes the reacted probes from the unreacted probes, thus enabling the wash-free imaging of the newly synthesized proteins in single living cells. Based on the unique properties of the Iridium complexes, it is anticipated to be applied in more important issues in living cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Satheeshkumar, Elumalai; Chao, Wei-Ting; Kao, Lin-Yi; Chen, Emily Chin-Fun; Tsay, Hsin-Sheng

    2013-10-01

    Plants are exploited as a potential source for the large-scale production of noble gold nanoparticles in the recent years owing to their various potential applications in nanobiotechnology and nanomedicine. The present work describes green biosynthetic procedures for the production of gold nanoparticles for the first time by using an aqueous extract of the Dysosma pleiantha rhizome. The biosynthesized gold nanoparticles were confirmed and characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results revealed that aqueous extract of D. pleiantha rhizome has potential to reduce chloroauric ions into gold nanoparticles and the synthesized gold nanoparticles were showed spherical in shape with an average of 127nm. Further, we investigated the anti-metastatic activity of biosynthesized gold nanoparticles against human fibrosarcoma cancer cell line HT-1080. The results showed that the biosynthesized gold nanoparticles were non-toxic to cell proliferation and, also it can inhibit the chemo-attractant cell migration of human fibrosarcoma cancer cell line HT-1080 by interfering the actin polymerization pathway. Thus, the usage of gold nanoparticles biosynthesized from D. pleiantha rhizome can be used as a potential candidate in the drug and gene delivery to metastatic cancer.

  3. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  4. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    Science.gov (United States)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  5. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on A549 Lung Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    Refilwe P Molatlhegi

    Full Text Available Increased death rates due to lung cancer have necessitated the search for potential novel anticancer compounds such as carbazole derivatives. Carbazoles are aromatic heterocyclic compounds with anticancer, antibacterial and anti-inflammatory activity. The study investigated the ability of the novel carbazole compound (Z-4-[9-ethyl-9aH-carbazol-3-yl amino] pent-3-en-2-one (ECAP to induce cytotoxicity of lung cancer cells and its mechanism of action. ECAP was synthesized as a yellow powder with melting point of 240-247 °C. The 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, lipid peroxidation and comet assays were used to assess the cytotoxic effect of the compound on A549 lung cancer cells. Protein expression was determined using western blots, apoptosis was measured by luminometry (caspase-3/7, -8 and -9 assay and flow cytometry was used to measure phosphatidylserine (PS externalisation. ECAP induced a p53 mediated apoptosis of lung cancer cells due to a significant reduction in the expression of antioxidant defence proteins (Nrf2 and SOD, Hsp70 (p < 0.02 and Bcl-2 (p < 0.0006, thereby up-regulating reactive oxygen species (ROS production. This resulted in DNA damage (p < 0.0001, up-regulation of Bax expression and caspase activity and induction of apoptosis in lung cancer cells. The results show the anticancer potential of ECAP on lung cancer.

  6. Immobilization of Biocatalysts and Cells on Hybrid Membranes Syntheses on Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Yotova L.

    2007-12-01

    Full Text Available The investigations in the area of enzyme action in the living organisms give us the opportunity for applications of these biochemical catalysts in the different purposes of medicine, industry and analytical practice. Using of soluble enzymes is connected with many difficulties, because the enzymes are no regenerative and they are instability. By immobilization of the enzymes on to different carriers the more of these problems are overcome. The application of soluble enzymes caused many difficulties, by the reason that the enzymes can not be regenerated. The immobilization of the enzymes by means of different reagents and carriers overcomes this problem. The aim of this study to develop a sol-gel method of synthesis of new hybrid membrane, with immobilized biocatalysts (microbial cells and enzymes for biosensor construction. This study shows that hybrid organic-inorganic membranes were synthesized.

  7. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    Science.gov (United States)

    Özel, Faruk; Sarılmaz, Adem; Istanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-07-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV-Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18-25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs.

  8. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  9. In Situ-Synthesized Novel Microarray Optimized for Mouse Stem Cell and Early Developmental Expression Profiling

    Science.gov (United States)

    Carter, Mark G.; Hamatani, Toshio; Sharov, Alexei A.; Carmack, Condie E.; Qian, Yong; Aiba, Kazuhiro; Ko, Naomi T.; Dudekula, Dawood B.; Brzoska, Pius M.; Hwang, S. Stuart; Ko, Minoru S.H.

    2003-01-01

    Applications of microarray technologies to mouse embryology/genetics have been limited, due to the nonavailability of microarrays containing large numbers of embryonic genes and the gap between microgram quantities of RNA required by typical microarray methods and the miniscule amounts of tissue available to researchers. To overcome these problems, we have developed a microarray platform containing in situ-synthesized 60-mer oligonucleotide probes representing approximately 22,000 unique mouse transcripts, assembled primarily from sequences of stem cell and embryo cDNA libraries. We have optimized RNA labeling protocols and experimental designs to use as little as 2 ng total RNA reliably and reproducibly. At least 98% of the probes contained in the microarray correspond to clones in our publicly available collections, making cDNAs readily available for further experimentation on genes of interest. These characteristics, combined with the ability to profile very small samples, make this system a resource for stem cell and embryogenomics research. [Supplemental material is available online at www.genome.org and at the NIA Mouse cDNA Project Web site, http://lgsun.grc.nia.nih.gov/cDNA/cDNA.html.] PMID:12727912

  10. Caracterisation des proprietes acoustiques des materiaux poreux a cellules ouvertes et a matrice rigide ou souple

    Science.gov (United States)

    Salissou, Yacoubou

    L'objectif global vise par les travaux de cette these est d'ameliorer la caracterisation des proprietes macroscopiques des materiaux poreux a structure rigide ou souple par des approches inverses et indirectes basees sur des mesures acoustiques faites en tube d'impedance. La precision des approches inverses et indirectes utilisees aujourd'hui est principalement limitee par la qualite des mesures acoustiques obtenues en tube d'impedance. En consequence, cette these se penche sur quatre problemes qui aideront a l'atteinte de l'objectif global precite. Le premier probleme porte sur une caracterisation precise de la porosite ouverte des materiaux poreux. Cette propriete en est une de passage permettant de lier la mesure des proprietes dynamiques acoustiques d'un materiau poreux aux proprietes effectives de sa phase fluide decrite par les modeles semi-phenomenologiques. Le deuxieme probleme traite de l'hypothese de symetrie des materiaux poreux selon leur epaisseur ou un index et un critere sont proposes pour quantifier l'asymetrie d'un materiau. Cette hypothese est souvent source d'imprecision des methodes de caracterisation inverses et indirectes en tube d'impedance. Le critere d'asymetrie propose permet ainsi de s'assurer de l'applicabilite et de la precision de ces methodes pour un materiau donne. Le troisieme probleme vise a mieux comprendre le probleme de transmission sonore en tube d'impedance en presentant pour la premiere fois un developpement exact du probleme par decomposition d'ondes. Ce developpement permet d'etablir clairement les limites des nombreuses methodes existantes basees sur des tubes de transmission a 2, 3 ou 4 microphones. La meilleure comprehension de ce probleme de transmission est importante puisque c'est par ce type de mesures que des methodes permettent d'extraire successivement la matrice de transfert d'un materiau poreux et ses proprietes dynamiques intrinseques comme son impedance caracteristique et son nombre d'onde complexe. Enfin, le

  11. Syntheses and Photodynamic Activity of Pegylated Cationic Zn(II-Phthalocyanines in HEp2 Cells

    Directory of Open Access Journals (Sweden)

    Benson G. Ongarora, Xiaoke Hu, Susan D. Verberne-Sutton, Jayne C. Garno, M. Graça H. Vicente

    2012-01-01

    Full Text Available Di-cationic Zn(II-phthalocyanines (ZnPcs are promising photosensitizers for the photodynamic therapy (PDT of cancers and for photoinactivation of viruses and bacteria. Pegylation of photosensitizers in general enhances their water-solubility and tumor cell accumulation. A series of pegylated di-cationic ZnPcs were synthesized from conjugation of a low molecular weight PEG group to a pre-formed Pc macrocycle, or by mixed condensation involving a pegylated phthalonitrile. All pegylated ZnPcs were highly soluble in polar organic solvents but were insoluble in water; they have intense Q absorptions centered at 680 nm and fluorescence quantum yields of ca. 0.2 in DMF. The non-pegylated di-cationic ZnPc 6a formed large aggregates, which were visualized by atomic force microscopy. The cytotoxicity, cellular uptake and subcellular distribution of all cationic ZnPcs were investigated in human carcinoma HEp2 cells. The most phototoxic compounds were found to be the α-substituted Pcs. Among these, Pcs 4a and 16a were the most effective (IC50 ca. 10 μM at 1.5 J/cm2, in part due to the presence of a PEG group and the two positive charges in close proximity (separated by an ethylene group in these macrocycles. The β-substituted ZcPcs 6b and 4b accumulated the most within HEp2 cells but had low photocytoxicity (IC50 > 100 μM at 1.5 J/cm2, possibly as a result of their lower electron density of the ring and more extended conformations compared with the α-substituted Pcs. The results show that the charge distribution about the Pc macrocycle and the intracellular localization of the cationic ZnPcs mainly determine their photodynamic activity.

  12. Dynamic Effects of Cerium on Syntheses of Soluble Protein and Taxol in Suspension Culture of Taxus Chinensis Var. Mairei Cells

    Institute of Scientific and Technical Information of China (English)

    李景川; 马忠海; 元英进; 孙安慈; 胡昌序

    2001-01-01

    The dynamic effects of Ce4+ on the syntheses of soluble protein and taxol in suspension cultures of Taxus chinensis var. mairei cells were studied. The phenomena of “partition” and “bifurcation” were observed in studying the dynamic effect of Ce4+ on soluble protein synthesis and cell activity. That is, Ce4+ of low concentration improves the soluble protein synthetic strength and cell activity, while Ce4+of high concentration is harmful to protein synthesis and cell activity. In addition, Ce4+ of appropriate concentration enhances taxol synthesis.

  13. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ryosuke [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Kayamori, Kou [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Oue, Erika [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Sakamoto, Kei [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Harada, Kiyoshi [Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  14. Rat mesangial cells in vitro synthesize a spectrum of proteoglycan species including those of the basement membrane and interstitium

    DEFF Research Database (Denmark)

    Thomas, G J; Shewring, L; McCarthy, K J;

    1995-01-01

    Accumulation of extracellular matrix within the mesangium is an important event in the development of glomerular disease. In this report we have used indirect immunofluorescence to positively identify a number of constituents of the mesangial matrix synthesized by rat mesangial cells (RMC) in vitro...... including laminin, fibronectin, type IV collagen and the basement membrane heparan sulphate proteoglycan (BM-HSPG) known as perlecan. In addition, using Mab 2B5 we demonstrate that RMC synthesize a specific basement membrane chondroitin sulfate (BM-CSPG), a matrix component that in normal animals...... is localized in the mesangium but is not found in the pericapillary glomerular basement membrane (GBM). Further characterization of the proteoglycans synthesized by RMC in vitro revealed: (i) a second large CSPG, identified as versican; (ii) two small dermatan sulphate proteoglycans identified as biglycan...

  15. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    Science.gov (United States)

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  16. Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Further advances in understanding the mechanism of action of resveratrol and its application require new analogs to identify the structural determinants for the cell proliferation inhibition potency. Therefore, we synthesized new trans-resveratrol derivatives by using the Wittig and Heck methods, thus modifying the hydroxylation and methoxylation patterns of the parent molecule. Moreover, we also synthesized new ferrocenylstilbene analogs by using an original protective group in the Wittig procedure. By performing cell proliferation assays we observed that the resveratrol derivatives show inhibition on the human colorectal tumor SW480 cell line. On the other hand, cell viability/cytotoxicity assays showed a weaker effects on the human hepatoblastoma HepG2 cell line. Importantly, the lack of effect on non-tumor cells (IEC18 intestinal epithelium cells demonstrates the selectivity of these molecules for cancer cells. Here, we show that the numbers and positions of hydroxy and methoxy groups are crucial for the inhibition efficacy. In addition, the presence of at least one phenolic group is essential for the antitumoral activity. Moreover, in the series of ferrocenylstilbene analogs, the presence of a hidden phenolic function allows for a better solubilization in the cellular environment and significantly increases the antitumoral activity.

  17. Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.

    Science.gov (United States)

    Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H; Cosgrove, Daniel J; Gu, Ying

    2016-10-04

    Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.

  18. Simple and facile approach to synthesize magnetite nanoparticles and assessment of their effects on blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Cotica, Luiz F., E-mail: lfcotica@pq.cnpq.br [Department of Physics, Universidade Estadual de Maringa, Maringa, PR 87020900 (Brazil); Freitas, Valdirlei F.; Dias, Gustavo S.; Santos, Ivair A. [Department of Physics, Universidade Estadual de Maringa, Maringa, PR 87020900 (Brazil); Vendrame, Sheila C.; Khalil, Najeh M.; Mainardes, Rubiana M. [Department of Pharmacy, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040080 (Brazil); Staruch, Margo; Jain, Menka [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2012-02-15

    In this paper, a very simple and facile approach for the large scale synthesis of uniform and size-controllable single-domain magnetite nanoparticles is reported. These magnetite nanoparticles were synthesized via thermal decomposition of a ferric nitrate/ethylene glycol solution. The structural and morphological properties of the synthesized nanoparticles were carefully studied. Nearly spherical nanoparticles with inverted spinel structure and average particle and crystallite sizes smaller than 20 nm were obtained. The magnetic measurements revealed that magnetite nanoparticles have a magnetic saturation value near that of the bulk magnetite. The erythrocyte cytotoxicity assays showed no hemolytic potential of the samples containing magnetite nanoparticles, indicating no cytotoxic activity on human erythrocytes, which makes these interesting for biotechnological applications. - Highlights: > Simple and facile approach to large scale synthesis of magnetite nanoparticles. > Erythrocyte cytotoxicity assays showed no hemolytic potential of nanoparticles. > Saturation magnetization of nanoparticles reached near that of the bulk magnetite.

  19. In Situ-Synthesized Novel Microarray Optimized for Mouse Stem Cell and Early Developmental Expression Profiling

    OpenAIRE

    Carter, Mark G.; Hamatani, Toshio; Sharov, Alexei A; Carmack, Condie E; Qian, Yong; Aiba, Kazuhiro; Ko, Naomi T.; Dudekula, Dawood B.; Brzoska, Pius M.; Hwang, S. Stuart; Minoru S.H. Ko

    2003-01-01

    Applications of microarray technologies to mouse embryology/genetics have been limited, due to the nonavailability of microarrays containing large numbers of embryonic genes and the gap between microgram quantities of RNA required by typical microarray methods and the miniscule amounts of tissue available to researchers. To overcome these problems, we have developed a microarray platform containing in situ-synthesized 60-mer oligonucleotide probes representing approximately 22,000 unique mous...

  20. A synthesized nostocionone derivative potentiates programmed cell death in human T-cell leukemia Jurkat cells through mitochondria via the release of endonuclease G.

    Science.gov (United States)

    Itoh, Tomohiro; Muramatsu, Yuji; Masu, Masayo; Tsuge, Ayaka; Taniguchi, Masaki; Ninomiya, Masayuki; Ando, Masashi; Tsukamasa, Yasuyuki; Koketsu, Mamoru

    2014-01-01

    Nostocionone (Nost), a compound isolated from Nostoc commune, and its synthesized derivatives (NostDs) were evaluated for in vitro cytotoxicity against human T-cell leukemia Jurkat cells. NostD3 [(1E,4E)-1-(3,4-dihydroxyphenyl)-5-(2,6,6-trimethylcyclohex-1-enyl)penta-1,4-dien-3-one] inhibited cell growth more potently than Nost. To elucidate the mechanisms of NostD3-induced cell death, we examined changes in cell morphology, the loss of mitochondrial membrane potential (MMT), and DNA fragmentation. From these results, the cytotoxic effects of NostD3 were found to be mainly due to Type I programmed cell death (PCDI; i.e., apoptosis). Using caspase inhibitors, we further found that NostD-3-induced PCDI occurred through a caspase-independent pathway. Moreover, NostD3 decreased MMT and modulated multiple signaling molecules (MAPKs, Akt, Bcl-2, Bax, and c-Myc) in Jurkat cells, thereby inducing the release of endonuclease G (Endo-G) from mitochondria. The level of intracellular reactive oxygen species (ROS) in cells treated with NostD3 was elevated up to 1 h after the treatment. However, suppression of ROS by N-acetyl-l-cysteine restored Jurkat cell growth. Taken together, our data suggested that ROS production acted as a trigger in NostD3-induced PCDI in Jurkat cells through release of Endo-G from the mitochondria.

  1. Gene Manipulation of Human Embryonic Stem Cells by In Vitro-Synthesized mRNA for Gene Therapy.

    Science.gov (United States)

    Wang, Xiao Li; Yu, Li; Ding, Yan; Guo, Xing Rong; Yuan, Ya Hong; Li, Dong Sheng

    2015-01-01

    The difficulty in producing genetically modified human embryonic stem cells (hESCs) limits research on their applications. Virus-based gene transfer is not safe for clinical use, whereas DNAbased non-viral methods are not efficient or safe, and mRNA-based methods are useful for genetic manipulation. In this study, we easily obtained multiple types and large amounts of in vitro-synthesized mRNA by PCR. The efficiency of different transfection methods was studied by flow cytometry. The effect of different mRNA modifications on protein translation efficiency and dynamics of luciferase mRNA expression in hESCs were studied using a bioluminescence imaging system. The pluripotency of hESCs after transfection was studied by immunofluorescence. In vitro-synthesized pancreatic-duodenal homeobox 1 (PDX1) mRNA was used to induce the differentiation of hESCs into insulin-producing cells. We found that electroporation is the most efficient transfection method, and it produces more than 95% transgene expression in multiple hESC lines. Synthesized mRNA with a combination of a polyA tail, cap and base analogues is more efficiently translated into protein in hESCs compared with single-modified mRNA. Transfection of mRNA into hESCs by trypsinizing the cells into single-cell suspensions did not affect their pluripotency, and multiple types of mRNAs can be transfected into hESCs efficiently. We found that PDX-1 mRNA transfection significantly improved the expression level of genes related to beta cells and differentiated cells that express insulin and C-peptide. ELISA analysis validate the insulin secretion of islet-like cell clusters in response to glucose stimulation. Our results indicate that electroporation of in vitro-synthesized mRNA is useful for genetic manipulation of hESCs and differentiation of hESCs into particular cell types, and this finding will pave the way for clinical applications of this method.

  2. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  3. Synthesis, characterization, kinetic and thermodynamic studies of the dissolution of ThO{sub 2} and of solid solutions Th{sub 1-x}M{sub x}O{sub 2} (M = U, Pu); Synthese, caracterisation et etudes cinetique et thermodynamique de la dissolution de ThO{sub 2} et des solutions solides Th{sub 1-x}M{sub x}O{sub 2} (M = U, Pu)

    Energy Technology Data Exchange (ETDEWEB)

    Heisbourg, G

    2003-12-01

    The aim of this work was to understand the mechanisms of dissolution of ThO{sub 2} and of thorium mixed oxides such as Th{sub 1-x}U{sub x}O{sub 2} and Th{sub 1-x}Pu{sub x}O{sub 2} in aqueous, oxygenated or inert media. Several solids have been synthesized by precipitation in oxalic medium: Th{sub 1-x}U{sub x}O{sub 2} (x= 0.11; 0.24; 0.37; 0.53; 0.67; 0.81 and 0.91) and Th{sub 1-x}Pu{sub x}O{sub 2} (x= 0.13; 0.32 and 0.66). They have been characterized by XRD, SEM, TEM, XPS, XAS, PIXE and EPMA. The sintering conditions of these materials have been studied and optimized in order to obtain sintered samples with a measured density very near the theoretical densities. A kinetic study of the dissolution of ThO{sub 2} and of solid solutions Th{sub 1-x}U{sub x}O{sub 2} has been carried out in several aqueous media (HNO{sub 3}, HCl, H{sub 2}SO{sub 4}) in terms of several parameters: protons concentration, temperature, pH, ionic strength, nature of the electrolyte solution and uranium molar ratio for the solid solutions Th{sub 1-x}U{sub x}O{sub 2} in order to determine the kinetic laws of dissolution of the solid solutions having different compositions comparatively to ThO{sub 2}. The leaching tests carried out in natural waters of compositions near those of the deep geologic sites considered for the storage of nuclear wastes have shown that the dissolution of the solids was bound to the complexing effect of the constitutional ions of the water considered. The leaching tests carried out on sintered samples of the same composition have led to the same normalized dissolution velocities. The thermodynamic aspect of the dissolution of the solid solutions Th{sub 1-x}U{sub x}O{sub 2} in nitric medium has been studied at last. (O.M.)

  4. Effect of grinding time of synthesized gadolinium doped ceria (GDC10 powders on the performance of solid oxide fuel cell

    Directory of Open Access Journals (Sweden)

    Fatma Aydin

    2014-03-01

    Full Text Available Ceria-based materials are prospective electrolytes for low and intermediate temperature solid oxide fuel cells. In the present work, fully dense CeO2 ceramics doped with 10 mol% gadolinium (Gd0.1Ce0.9O1.95 were prepared with a sol–gel method and commercially purchased GDC10 electrolyte powders were processed. Particle sizes of synthesized electrolyte powders were minimized by ball-milling method. Grinding of the samples were performed in different times intervals (12 h, 15 h, 18 h, 20 h, 25 h, 30 h, 35 h, 40 h and 45 h. Then, these powders were prepared to obtain of solid oxide fuel cells (SOFCs. Performances of these cells having an active area of 1 cm2 were tested using a fuel cell test station that measured in different temperatures (650 and 700 °C. In the present study, gadolinium doped ceria (GDC10 synthesiszed powders were investigated by using XRD and SEM images. Performance values of synthesized GDC10's in different temperature were compared to by commercial GDC10. Commercial GDC10's performance at 650 °C were tested, and maximum current density of 0.413 W/cm2 and maximum current density of 0.949 A/cm2 were obtained. Commercial GDC10 at 650 °C has better result. However, synthesized GDC10's performance at 700 °C demonstrated better results than commercial GDC10's. The performance tests of samples which are 20 h mill showed that they have the maximum power density of was obtained as 0.480 W/cm2 and maximum current density of as 1.231 A/cm2.

  5. Temperature control of growth and productivity in mutant Chinese hamster ovary cells synthesizing a recombinant protein.

    Science.gov (United States)

    Jenkins, N; Hovey, A

    1993-11-05

    The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors.

  6. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells.

    Science.gov (United States)

    Yahya, Shaymaa M M; Abdelhamid, Abdou O; Abd-Elhalim, Mervat M; Elsayed, Ghada H; Eskander, Emad F

    2017-10-01

    Due to its high potency and selectivity, anticancer agents consisting of combined molecules have gained great interests. The current study introduces newly synthesized progesterone derivatives of promising anticancer effect. Moreover, the pro-apoptotic and anti-angiogenic effects of these compounds were studied extensively. Several thiazole, pyridine, pyrazole, thiazolopyridine and pyrazolopyridine progesterone derivatives were synthesized. The structure of the novel progesterone derivatives was elucidated and confirmed using the analytical and spectral data. This novel derivatives were tested for their cytotoxic effect against human breast cancer cells (MCF-7) using neutral red uptake assay. Tested compounds showed anticancer activity against MCF-7 cancer cell line in the descending order of 7>2>3>8>6>9>4. The expression levels of Bcl-2, survivin, CCND1, CDC2, P53 and P21, VEGF, Hif-1α, MMP-2, MMP-9, Ang-1, Ang-2, and FGF-1 genes were investigated using QRT-PCR (Quantitative real time-polymerase chain reaction). The study clarified that compounds 2, 3, 4, 6, 7, 8 and 9 showed significant pro-apoptotic effect through the down regulation of Bcl-2., besides, survivin and CCND1 expression levels were down regulated by compounds 3, 4, 6, 7, 8, 9. However, Compound 4 may exert this pro-apoptotic effect through the up-regulation of P53 gene expression. On the other hand, the anti-angiogenic effect of these newly synthesized derivatives was due to their down regulation of VEGF, Ang-2, MMP-9 and FGF-1; and the up-regulation of HIF-1α and ang-1. This study recommended promising pro-apoptotic and anti-angiogenic anticancer agents acting through the regulation of key regulators of apoptosis, cell cycle genes, and pro-angiogenic genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Reovirus type 3 synthesizes proteins in interferon-treated HeLa cells without reversing the antiviral state.

    Science.gov (United States)

    Feduchi, E; Esteban, M; Carrasco, L

    1988-06-01

    Treatment of HeLa cells with human lymphoblastoid interferon (IFN-alpha) does not inhibit reovirus type 3 protein synthesis during virus infection. In contrast, reovirus translation is blocked by treatment of L cells with mouse IFN-alpha. The (2'-5')A synthetase activity is induced in HeLa cells by IFN-alpha treatment and is activated after reovirus infection, since cell lysates from these cells synthesize in vitro (2'-5')A oligonucleotides. The IFN-induced protein kinase activity is also triggered in those lysates upon dsRNA addition. Thus, contrary to DNA-containing viruses, such as vaccinia virus or adenovirus, reovirus infection does not destroy or reverse the IFN-induced antiviral state. In support of this conclusion, superinfection with poliovirus or vesicular stomatitis virus of reovirus-infected HeLa cells treated with IFN leads only to a blockade of translation of the former viruses. These results provide a remarkable example where in the same cells doubly infected with two different viruses, the antiviral state induced by IFN-alpha is manifested by selectively inhibiting translation of one kind of virus (poliovirus or vesicular stomatitis virus) without affecting the translation of reovirus type 3. In addition, these results indicate that the resistance of reovirus translation to inhibition by IFN is different from the mechanism of resistance induced by DNA-containing viruses.

  8. DHL‑TauZnNa, a newly synthesized α-lipoic acid derivative, induces autophagy in human colorectal cancer cells.

    Science.gov (United States)

    Hiratsuka, Takahiro; Inomata, Masafumi; Kono, Yohei; Yokoyama, Shigeo; Shiraishi, Norio; Kitano, Seigo

    2013-06-01

    In recent years, several antioxidant substances have been found to have an antiproliferative effect on various types of carcinomas. α-lipoic acid (ALA) induces apoptosis in several types of cancer cell lines, but it is difficult to apply α-lipoic acid in clinical use as it is easily oxidized and unstable. Recently, we succeeded in synthesizing the α-lipoic acid derivative sodium N-[6,8-dimercaptooctanoyl]-2-aminoethanesulfonate zinc complex (DHL-TauZnNa), which has highly stable antioxidant effects. We investigated whether DHL-TauZnNa elicits its antiproliferative effects in vivo and in vitro by inducing apoptosis, autophagy or cell cycle arrest, and we analyzed the expression of proteins related to these phenomena and their phosphorylation in HT-29 human colon cancer cells. Subcutaneously administered DHL-TauZnNa treatment applied daily for 41 days significantly inhibited tumor growth by 43% in a xenograft mouse model (P=0.0271). DHL-TauZnNa significantly reduced cell viability over that of controls in the trypan-blue exclusion test in a time- and dose-dependent manner (PDHL-TauZnNa increased the proportion of cells in S phase and decreased that of cells in G0/G1 phase in the cell cycle analysis of HT-29 cells. Although DHL-TauZnNa did not increase caspase-3/7 activity and DNA fragmentation in flow cytometry analysis, it increased the expression of microtubule-associated protein light chain 3-II. Autophagosomes and autolysosomes were observed by electron microscopy in the cytoplasm of HT-29 cells treated with DHL-TauZnNa. These results suggest that DHL-TauZnNa inhibited the proliferation of HT-29 cells through the mechanisms of G2/M cell cycle arrest and autophagy but not that of apoptosis. The newly synthesized ALA derivative DHL-TauZnNa may be expected to become a novel cancer therapeutic strategy through its induction of autophagy.

  9. Spinal cord injury enables aromatic l-amino acid decarboxylase cells to synthesize monoamines

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans

    2014-01-01

    Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been...... in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from...

  10. Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D

    Science.gov (United States)

    Landon-Cardinal, Olivier

    Cette these s'attaque a deux problemes majeurs de l'information quantique: - Comment caracteriser efficacement un systeme quantique? - Comment stocker de l'information quantique? Elle se divise done en deux parties distinctes reliees par des elements techniques communs. Chacune est toutefois d'un interet propre et se suffit a elle-meme. Caracterisation pratique des systemes quantiques. Le calcul quantique exige un tres grand controle des systemes quantiques composes de plusieurs particules, par exemple des atomes confines dans un piege electromagnetique ou des electrons dans un dispositif semi-conducteur. Caracteriser un tel systeme quantique consiste a obtenir de l'information sur l'etat grace a des mesures experimentales. Or, chaque mesure sur le systeme quantique le perturbe et doit done etre effectuee apres avoir reprepare le systeme de facon identique. L'information recherchee est ensuite reconstruite numeriquement a partir de l'ensemble des donnees experimentales. Les experiences effectuees jusqu'a present visaient a reconstruire l'etat quantique complet du systeme, en particulier pour demontrer la capacite de preparer des etats intriques, dans lesquels les particules presentent des correlations non-locales. Or, la procedure de tomographie utilisee actuellement n'est envisageable que pour des systemes composes d'un petit nombre de particules. Il est donc urgent de trouver des methodes de caracterisation pour les systemes de grande taille. Dans cette these, nous proposons deux approches theoriques plus ciblees afin de caracteriser un systeme quantique en n'utilisant qu'un effort experimental et numerique raisonnable. - La premiere consiste a estimer la distance entre l'etat realise en laboratoire et l'etat cible que l'experimentateur voulait preparer. Nous presentons un protocole, dit de certification, demandant moins de ressources que la tomographie et tres efficace pour plusieurs classes d'etats importantes pour l'informatique quantique. - La seconde

  11. Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Kim, Doo Hwan

    2016-05-01

    A metal oxide nanoparticle has been widely investigated for its potential use in the biomedical application. The present study investigates the cytotoxicity of ZnO nanoparticle in human cervical carcinoma cells. Cell viability was determined, and it showed the possible cytotoxic effect of ZnO nanoparticles. The characteristic apoptotic features such as rounding and loss of adherence were observed in the treated cells. Fluorescence and Confocal Laser Scanning Microscope (CLSM) studies have showed reduced nuclear volume and condensed cytoplasm. The mRNA expression of apoptotic gene p53 and caspase 3 was up-regulated following ZnO nanoparticle exposure, which confirms the occurrence of apoptosis at the transcriptional level. Reactive oxygen species (ROS) was increased in a dose-dependent manner, and initiate lipid peroxidation of the liposomal membrane, which in turn regulate several signaling pathways and influencing the cytokinetic movements of cells. ZnO nanoparticles showed a dynamic cytotoxic effect in cervical carcinoma cells. ZnO nanoparticle might induce the apoptosis through increased intracellular ROS level. Moreover, up-regulated apoptotic gene expression confirms the occurrence of apoptosis. Taking all these data together, it may be concluded that ZnO nanoparticle may exert cytotoxicity on HeLa cell through the apoptotic pathway, implies the probable utility of ZnO nanoparticle in the cancer treatment and therapy.

  12. Apoptosis Induction in Human Leukemia Cell Lines by Gold Nanoparticles Synthesized Using the Green Biosynthetic Approach

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2015-01-01

    Full Text Available Gold nanoparticles were grown on Sargassum muticum water extract (S-GNPs using the green biosynthetic approach. The nanoparticles were characterized using UV-visible spectroscopy, zeta potential, and transmission electron microscopy (TEM. The resulting S-GNPs were spherical and crystalline with a size of <10 nm. The in vitro anticancer activity was demonstrated in human leukemia cell lines. The cancer cells were treated with different concentrations of S-GNPs, and calorimetric (MTT assay used for the cytotoxicity test, which resulted in an IC50 value of 4.22 ± 1.12, 5.71 ± 1.4, 6.55 ± 0.9, and 7.29 ± 1.7 μg/mL for each of the K562, HL-60, Jurkat, and CEM-ss cells, respectively. Thus, the K562 was selected for the next experiments. Furthermore, apoptosis induction was confirmed by Hoechst 33342, annexin V staining, and caspase-3/-9 activity tests. The cell cycle analysis exhibited a significant increase in the accumulation of S-GNPs treated cells at the sub-G1 phase, demonstrating the induction of apoptosis by S-GNPs. The nature of the inhibition of cancer cell growth by S-GNPs could open the way for further research in the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer.

  13. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  14. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    Science.gov (United States)

    Mahmoud, Samadpour; Azam Iraji, zad; Mehdi, Molaei

    2014-04-01

    TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (Voc = 497 mV, Jsc = 11.32 mA/cm2, FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells.

  15. EicosaCell - an immunofluorescent-based assay to localize newly synthesized eicosanoid lipid mediators at intracellular sites.

    Science.gov (United States)

    Bandeira-Melo, Christianne; Weller, Peter F; Bozza, Patricia T

    2011-01-01

    Eicosanoids (prostaglandins, leukotrienes and lipoxins) are a family of signaling lipids derived from arachidonic acid that have important roles in physiological and pathological processes. Over the past years, it has been established that successful eicosanoid production is not merely determined by arachidonic acid and eicosanoid-forming enzymes availability, but requires sequential interactions between specific biosynthetic proteins acting in cascade and may involve very unique spatial interactions. Direct assessment of specific subcellular locales of eicosanoid synthesis has been elusive, as those lipid mediators are newly formed, not stored and often rapidly released upon cell stimulation. In this chapter, we discuss the EicosaCell protocol for intracellular detection of eicosanoid-synthesizing compartments by means of a strategy to covalently cross-link and immobilize the lipid mediators at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid.

  16. High Efficient Dye-Sensitized Solar Cells Based on Synthesized SnO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    W. M. N. M. B. Wanninayake

    2016-01-01

    Full Text Available In this study, SnO2 semiconductor nanoparticles were synthesized for DSC applications via acid route using tin(ii chloride as a starting material and hydrothermal method through the use of tin(iv chloride. Powder X-ray diffraction studies confirmed the formation of the rutile phase of SnO2 with nanoranged particle sizes. A quasi-solid-state electrolyte was employed instead of a conventional liquid electrolyte in order to overcome the practical limitations such as electrolyte leakage, solvent evaporation, and sealing imperfections associated with liquid electrolytes. The gel electrolytes were prepared incorporating lithium iodide (LiI and tetrapropylammonium iodide (Pr4N+I− salts, separately, into the mixture which contains polyacrylonitrile as a polymer, propylene carbonate and ethylene carbonate as plasticizers, iodide/triiodide as the redox couple, acetonitrile as the solvent, and 4-tertiary butylpyridine as an electrolyte additive. In order to overcome the recombination problem associated with the SnO2 due to its higher electron mobility, ultrathin layer of CaCO3 coating was used to cover the surface recombination sites of SnO2 nanoparticles. Maximum energy conversion efficiency of 5.04% is obtained for the device containing gel electrolyte incorporating LiI as the salt. For the same gel electrolyte, the ionic conductivity and the diffusion coefficient of the triiodide ions are 4.70 × 10−3 S cm−1 and 4.31 × 10−7 cm2 s−1, respectively.

  17. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line.

    Science.gov (United States)

    Traber, M G; Kayden, H J; Rindler, M J

    1987-11-01

    Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control

  18. Waveform synthesizer

    Science.gov (United States)

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  19. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  20. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Science.gov (United States)

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo; Primera-Pedrozo, Oliva M.

    2015-06-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the

  1. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Torres, Marcos R. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Velez, Christian; Zayas, Beatriz [Universidad Metropolitana, ChemTox Laboratory, School of Environmental Affairs (United States); Rivera, Osvaldo [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Arslan, Zikri [Jackson State University, Department of Chemistry (United States); Gonzalez-Vega, Maxine N. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo [University of Puerto Rico, Molecular Science Research Center (United States); Primera-Pedrozo, Oliva M., E-mail: oprimera1@suagm.edu [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States)

    2015-06-15

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd{sup 2+}]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to

  2. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line

    Science.gov (United States)

    Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha

    2017-09-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.

  3. Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available The cellular synthesis site and ensuing storage location for human factor VIII (FVIII, the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and secreted from platelet alpha granules and Weibel-Palade bodies of endothelial cells. In this paper we provide direct evidence for FVIII synthesis in 2 types of primary human endothelial cells: glomerular microvascular endothelial cells (GMVECs and umbilical vein endothelial cells (HUVECs. Gene expression quantified by real time PCR revealed that levels of F8 and VWF are similar in GMVECs and HUVECs. Previous clinical studies have shown that stimulation of vasopressin V2 receptors causes parallel secretion of both proteins. In this study, we found that both endothelial cell types express AVPR2 (vasopressin V2 receptor gene and that AVPR2 mRNA levels are 5-fold higher in GMVECs than HUVECs. FVIII and VWF proteins were detected by fluorescent microscopy in Weibel-Palade bodies within GMVECs and HUVECs using antibodies proven to be target specific. Visual presence of FVIII and VWF in Weibel-Palade bodies was confirmed by correlation measurements. The high extent of correlation was compared with negative correlation values obtained from FVIII detection with cytoplasmic proteins, β-actin and Factor H. FVIII activity was positive in GMVEC and HUVEC cell lysates. Stimulated GMVECs and HUVECs were found to secrete cell-anchored ultra-large VWF strings covered with bound FVIII.

  4. Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings.

    Science.gov (United States)

    Turner, Nancy A; Moake, Joel L

    2015-01-01

    The cellular synthesis site and ensuing storage location for human factor VIII (FVIII), the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF) to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and secreted from platelet alpha granules and Weibel-Palade bodies of endothelial cells. In this paper we provide direct evidence for FVIII synthesis in 2 types of primary human endothelial cells: glomerular microvascular endothelial cells (GMVECs) and umbilical vein endothelial cells (HUVECs). Gene expression quantified by real time PCR revealed that levels of F8 and VWF are similar in GMVECs and HUVECs. Previous clinical studies have shown that stimulation of vasopressin V2 receptors causes parallel secretion of both proteins. In this study, we found that both endothelial cell types express AVPR2 (vasopressin V2 receptor gene) and that AVPR2 mRNA levels are 5-fold higher in GMVECs than HUVECs. FVIII and VWF proteins were detected by fluorescent microscopy in Weibel-Palade bodies within GMVECs and HUVECs using antibodies proven to be target specific. Visual presence of FVIII and VWF in Weibel-Palade bodies was confirmed by correlation measurements. The high extent of correlation was compared with negative correlation values obtained from FVIII detection with cytoplasmic proteins, β-actin and Factor H. FVIII activity was positive in GMVEC and HUVEC cell lysates. Stimulated GMVECs and HUVECs were found to secrete cell-anchored ultra-large VWF strings covered with bound FVIII.

  5. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2.

    Science.gov (United States)

    Ju, Ki-Young; Cho, Jung-Min; Cho, Sung-June; Yun, Je-Jung; Mun, Soo-San; Han, Eun-Mi

    2010-05-01

    An anatase TiO2 and three kinds of novel TiO2 nanoparticles were prepared by a hydrothermal method for dye-sensitized solar cells (DSSCs), which were obtained by mixing NaOH (10 M), KOH (14 M) and LiOH (10 M) solution with an anatase TiO2 powder, respectively. The TiO2 working electrodes of DSSCs were prepared and the photoelectric properties of the cells were characterized. The influence of different poly(ethylene glycol) contents in TiO2 films with and without HNO3 treatment on the electron transfer in DSSCs were investigated. It is found that the DSSC with HNO3 (0.002 mol/l)-treated film containing 16.7 wt% PEG shows the higher power conversion efficiency of 6.0%, which was mainly depended on the degrees of TiO2 pore size and uniformity of TiO2 films.

  6. Identification of Type VI Collagen Synthesizing Cells in Human Diabetic Glomerulosclerosis Using Renal Biopsy Sections

    Directory of Open Access Journals (Sweden)

    Mohammed Shawkat Razzaque

    1997-01-01

    Full Text Available Although the role of extracellular matrices in the development of glomerulosclerosis has been discussed widely, the cellular origin of type VI collagen in diabetic nephropathy (DN has remained relatively unexplored. This study reports the distribution and cellular origin of type VI collagen in DN. Type VI collagen‐specific oligonucleotide probes and monoclonal antibody were used to assess the relative expression of mRNA for \\alpha1 (VI chain and its translated protein in paraffin‐embedded renal biopsy sections of DN. By immunohistochemistry, compared to the control, increased deposition of type VI collagen was noted in the diffuse and nodular lesions of diabetic glomeruli. For cellular localization of type VI collagen mRNA, paraffin‐embedded renal sections of the control and DN were hybridized in situ with digoxigenin (Dig‐labeled antisense oligo‐DNA probe complementary to a part of \\alpha1 (VI mRNA. In comparison to the control kidney sections, increased numbers of intraglomerular cells (both mesangial and epithelial cells were positive for α1 (VI mRNA in renal biopsy sections of DN. From the results, we conclude that overexpression of type VI collagen by intraglomerular cells with its increased deposition might significantly contribute to the glomerulosclerosis found in DN.

  7. Synthesis and characterization of associating polymers which contain siloxanes chains; Synthese et caracterisation de polymeres associatifs porteurs de groupes siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, V.

    1999-01-11

    Polymers that associate via physical interactions in solutions have received much attention as viscosifiers. Such associating polymers are now used in variety of applications due to their unique theological properties coating, food thickeners, paints, enhanced oil recovery, water treatment). They contain a hydrophilic main chain with hydrophobic side chain that is generally constituted of hydrocarbon or fluorocarbon groups. Novel copolymers with sites of association in aqueous solution were prepared by co-polymerizing acrylamide with an hydrophobic monomer containing siloxane parts. Rheological properties were studied as a function of polymer concentration, microstructure, shear rate and frequency in order to show intra intermolecular associations between the hydrophobic parts. The polymer solution viscosity increases as a function of the hydrophobic group content. Tests of adsorption show a high affinity of these copolymers with clay and the amount absorbed increase with the quantity of hydrophobic entities containing in the chain. These properties are enhanced compared to copolymers containing hydrocarbon chains. (authors) 456 refs.

  8. Structural characterization of birnessite: influence of the way of synthesis; Caracterisation structurale de la birnessite: influence du protocole de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Gaillot, A.C.

    2002-01-15

    Birnessite is a lamellar manganese oxide whose layers are built up of edge sharing MnO{sub 6} octahedra. The presence of hetero-valent Mn cations and/or of vacant sites in these layers leads to a charge deficit compensated for by the presence of hydrated cations in the interlayer space. Because of their high specific area and of their strong oxidative character, these ubiquitous manganese oxides play a fundamental role in the fate of organic and metallic pollutants in the environment, but our imperfect knowledge of their structure limits the understanding and the modeling of this impact. This study aimed at classifying all different kinds of birnessite obtained using existing synthesis protocols according to two relevant criteria: layer symmetry and layer stacking mode, and at determining the structure of several essential varieties using X-ray and electron diffraction. Layers of hydrothermal birnessite contain vacant sites and, as a result, possess an hexagonal symmetry. Their stacking mode is 3R. In high-temperature birnessites, adjacent layers have an opposite orientation, which results in a two-layer polytype. The symmetry of these layers, linked to the origin of the layer charge deficit, depends on the temperature of synthesis. At 800 C the presence of vacant sites results in an hexagonal symmetry (2H polytype). At 1000 C, the layer charge deficit originates from the presence of Mn{sup 3+} cations in the layer lowering the layer symmetry (2O polytype). A variety of chemical and structural heterogeneities was also described in these samples, along with the occurrence of a new type of structural disorder. Finally we proved both the fundamental link between the origin of the layer charge and the layer symmetry, and the influence of physico-chemical parameters during synthesis (temperature, average manganese oxidation degree, nature of the interlayer cation) on the structure of the obtained compound. The chemical and thermal stabilities of these birnessites are also compared. (author)

  9. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    Science.gov (United States)

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.

    Science.gov (United States)

    Yang, Xudong; Yang, Xue; Li, Zhenyu; Li, Shouying; Han, Yexuan; Chen, Yang; Bu, Xinyuan; Su, Chunyan; Xu, Hong; Jiang, Yingnan; Lin, Quan

    2015-10-15

    In this work, a simple, low-cost and one-step microwave approach has been demonstrated for the synthesis of water-soluble carbon dots (C-dots). The average size of the resulting C-dots is about 4 nm. From the photoluminescence (PL) measurements, the C-dots exhibit excellent biocompatibility and intense PL with the high quantum yield (QY) at Ca. 25%. Significantly, the C-dots have excellent biocompatibility and the capacity to specifically target the cells overexpressing the folate receptor (FR). These exciting results indicate the as-prepared C-dots are promising biocompatible probe for cancer diagnosis and treatment.

  11. The detection of genomic DNA from bacterial cells using iron oxide nanoparticles synthesized by a hydrothermal process

    Science.gov (United States)

    Kim, Young-Sung; Kim, Ki-Chul; Hong, Tae-Whan

    2010-04-01

    We used iron oxide nanoparticles in order to extract purified DNA from bacterial cells. Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are synthesized with FeSO4·7H2O via a hydrothermal process and used as a medium to detect DNA. Various characterizations were performed including X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy, vibrating sample magnetometry, and Mössbauer spectroscopy. According to the XRD results, the XRD peaks of the synthesized magnetite and maghemite nanoparticles corresponded well with JCPDS standard data, respectively. The particle size of the iron oxide nanoparticles was about 20 nm, and the particle shape was almost spherical, which was confirmed by observation of the HRTEM image. The magnetite nanoparticles have a face-centeredcubic inverse spinel structure with a space group Fd bar 3 m, as confirmed by HRTEM and Mössbauer spectroscopy analyses. An agarose gel eletrophoresis analysis was performed to confirm the extraction ability of DNA using these iron oxide nanoparticles, revealing stronger reaction of the maghemite nanoparticles than the magnetite nanoparticles.

  12. Application of 8YSZ Nanopowder Synthesized by the Modified Solvothermal Process for Anode Supported Solid Oxide Fuel Cells.

    Science.gov (United States)

    Meepho, Malinee; Wattanasiriwech, Suthee; Angkavatana, Pavadee; Wattanasiriwech, Darunee

    2015-03-01

    Thin electrolyte yttria-stabilized zirconia (8YSZ) films were coated on the porous solid oxide fuel cell (SOFC) anode substrates for the use at an intermediate temperature range. Nano-8YSZ powder with a particle size of about 5 nm was synthesized using the modified solvothermal process. The electrolyte suspension was prepared by dispersion the synthesized 8YSZ nanopowder in ethanol, with PVB and 1,3-propanediol as a binder and a charging agent respectively. The 8YSZ suspension was subsequently deposited on the pre-sintered NiO-YSZ porous substrates by the electrophoretic deposition (EPD) technique. In order to obtain high quality electrolyte films, preparation process was optimized through two strategic approaches; (i) adjustment of suspension's rheological property and (ii) compatibility of anode-electrolyte sintering shrinkage. Rheological property of the suspension was improved with an addition of 1,3-propanediol. The zeta potential of this suspension was increased and reached the value of +24 mV so the well-dispersed slurry was finally obtained. The second approach was achieved by using a proper composite anode powders. Dense and uniform 8YSZ electrolyte films with a thickness of about 1 thickness successfully be formed on the NiO-YSZ porous substrates after co-sintering at 1400 °C for 2 h.

  13. Cell debris self-immobilized thermophilic lipase: a biocatalyst for synthesizing aliphatic polyesters.

    Science.gov (United States)

    Sun, Yang; Yang, Yan; Wang, Chenhui; Liu, Jiaming; Shi, Wei; Zhu, Xiaobo; Lu, Laijin; Li, Quanshun

    2013-05-01

    The paper explored the catalytic activity of a cell debris self-immobilized thermophilic lipase for polyester synthesis, using the ring-opening polymerization of ε-caprolactone as model. Effects of biocatalyst concentration, temperature, and reaction medium on monomer conversion and product molecular weight were systematically evaluated. The biocatalyst displayed high catalytic activity at high temperatures (70-90 °C), with 100 % monomer conversion. High monomer conversion values (>90 %) were achieved in both hydrophobic and hydrophilic solvents, and also in solvent-free system, with the exception of dichloromethane. Poly(ε-caprolactone) was obtained in 100 % monomer conversion, with a number-average molecular weight of 1,680 g/mol and a polydispersity index of 1.35 in cyclohexane at 70 °C for 72 h. Furthermore, the biocatalyst exhibited excellent operational stability, with monomer conversion values exceeding 90 % over the course of 15 batch reactions.

  14. Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes.

    Science.gov (United States)

    Ding, Yan; Yu, Ai Qing; Wang, Xiao Li; Guo, Xing Rong; Yuan, Ya Hong; Li, Dong Sheng

    2016-05-01

    Nanog is a pluripotency-related factor. It was also found to play an important role in tumorigenesis. To date, the mechanisms underlying cervical tumorigenesis still need to be elucidated. In the present study, Nanog mRNA was synthesized in vitro and transfected into HeLa cells. After mRNA transfection, the forced expressed of Nanog in HeLa cells led to markedly increased invasion, migration, resistance to chemotherapeutic agents and dedifferentiation. In a subcutaneous xenograft assay, these cells had significantly increased tumorigenic capacity. Real-time PCR indicated that Nanog‑induced dedifferentiation was associated with increased expression of endogenous Oct4, Sox2 and FoxD3. In addition, the dedifferentiated HeLa cells acquired features associated with cancer stem cells (CSCs), such as multipotent differentiation capacity, and expression of CSC markers such as CD133. These data imply that Nanog is a positive regulator of cervical cancer dedifferentiation.

  15. Virus-Specific Proteins Synthesized in Cells Infected with RNA+ Temperature-Sensitive Mutants of Sindbis Virus

    Science.gov (United States)

    Scheele, Christina M.; Pfefferkorn, E. R.

    1970-01-01

    All Sindbis virus temperature-sensitive mutants defective in “late” functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that 3H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive. PMID:5461887

  16. Novel Method for Floating Synthesizing Heavy Metal Particles as Flowing Anode of Zinc-Air Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chen Yang Wu

    2014-01-01

    Full Text Available In this study, centrally hollow microspheres of zinc were synthesized. The microspheres were then mixed with KOH electrolyte to form zinc sol, which was coagulated and precipitated. Afterward, we employed a novel technique to enable the permanent floating of zinc particles, which involved stirring zinc sol with air using a magnetic stirrer. This resulted in the formation of foam in which the zinc particles permanently floated. We then added 65 wt% of the electrolyte (KOH to prepare 35 wt% of zinc sol. We tested the cell and found the values of current density, specific energy, and electric capacity to be 7.41 mA/cm2, 840.14 Wh/kg, and 3023 mAh, respectively.

  17. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii.

    Science.gov (United States)

    Pateraki, Irini; Andersen-Ranberg, Johan; Hamberger, Britta; Heskes, Allison Maree; Martens, Helle Juel; Zerbe, Philipp; Bach, Søren Spanner; Møller, Birger Lindberg; Bohlmann, Jörg; Hamberger, Björn

    2014-03-01

    Forskolin, a complex labdane diterpenoid found in the root of Coleus forskohlii (Lamiaceae), has received attention for its broad range of pharmacological activities, yet the biosynthesis has not been elucidated. We detected forskolin in the root cork of C. forskohlii in a specialized cell type containing characteristic structures with histochemical properties consistent with oil bodies. Organelle purification and chemical analysis confirmed the localization of forskolin and of its simplest diterpene precursor backbone, (13R) manoyl oxide, to the oil bodies. The labdane diterpene backbone is typically synthesized by two successive reactions catalyzed by two distinct classes of diterpene synthases. We have recently described the identification of a small gene family of diterpene synthase candidates (CfTPSs) in C. forskohlii. Here, we report the functional characterization of four CfTPSs using in vitro and in planta assays. CfTPS2, which synthesizes the intermediate copal-8-ol diphosphate, in combination with CfTPS3 resulted in the stereospecific formation of (13R) manoyl oxide, while the combination of CfTPS1 and CfTPS3 or CfTPS4 led to formation of miltiradiene, precursor of abietane diterpenoids in C. forskohlii. Expression profiling and phylogenetic analysis of the CfTPS family further support the functional diversification and distinct roles of the individual diterpene synthases and the involvement of CfTPS1 to CfTPS4 in specialized metabolism and of CfTPS14 and CfTPS15 in general metabolism. Our findings pave the way toward the discovery of the remaining components of the pathway to forskolin, likely localized in this specialized cell type, and support a role of oil bodies as storage organelles for lipophilic bioactive metabolites.

  18. Characterization of a cell-free protein synthesizing system isolated from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, L.E.; Harper, A.E.

    1987-05-01

    The authors have characterized a cell-free preparation from rat brain that can initiate translation of endogenous mRNAs in vitro and maintain protein synthesis for at least 90 minutes at an optimum temperature of 37C. The essential component of this system is a postmitochondrial supernate (PMS) obtained by centrifuging a whole brain homogenate at 10,000 x g for 10 minutes at 4C. In the presence of phosphocreatine (PC), ATP and GTP there is active incorporation of (TVS)methionine into trichloroacetic acid precipitable protein. Incorporation is sensitive to the concentrations of PC, magnesium and potassium ions and spermidine and is inhibited 50-60% in the presence of 7-methylguanosine 5'-monophosphate, a specific inhibitor of polypeptide chain initiation. The proteolysis of brain protein that occurs when the system is incubated for more than 60 min. can be minimized by adding bovine serum albumin. The addition of 3.0 mM 5'-guanylimidodiphosphate a non-hydrolyzable analog of GTP, blocks incorporation entirely. The phosphocreatine requirement for maintaining an optimum endogenous concentration of GTP is lowered from 10.0 mM to 5.0 mM in the presence of 2.0 mM NADPH. The system that initiates protein synthesis in vitro can be used to study changes in brain protein synthesis as a result of various treatments, and the mechanisms underlying such changes.

  19. Role of calcium in the regulation of acetylcholine receptor synthese in cultured muscle cells*.

    Science.gov (United States)

    Birnbaum, M; Reis, M A; Shainberg, A

    1980-05-01

    Embroyonic muscles differentiated in vitro were used to study the effects of intracellular Ca2+ ([Ca2+1]i) variations on the amount of acetylcholine receptors ([AChR]) in the cell membrane. 2. Increased Ca2+ concentration in the growth medium ([Ca2+]o) caused a marked elevation of AChR levels, apparently through de novo synthesis. 3. Agents known to increase [Ca2+]i and its accumulation in the sarcoplasmic reticulum (SR), such as ionophore A23187, sodium dantrolene (DaNa), or high [Mg2+]o all enhanced alpha-bungarotoxin (alpha-BGT) binding after 48 h of treatment. 4. Electrical stimulation or caffeine, both affectors of SR calcium release, brought about a decrease in [AChR] probably by suppressing its synthesis. 5. The effects of simultaneous treatment with two AChR-inducing agents, namely, high [Ca2+]o in the presence of tetrodotoxin (TTX) or high [Mg2+]o were not additive, thus suggesting action via a common saturable mediator. 6. Intermediate AChR levels obtained following simultaneous treatments with opposing effects, e.g., electrical stimulation in the presence of high [Ca2+]o or DaNa, suggest contradictory actions on a common mediator. 7. All these observations indicate a strong correlation between SR calcium levels and [AChR] on myotubes; while calcium accumulation in the Sr was followed by increased AChR synthesis, calcium release was accompanied by suppression of receptor synthesis.

  20. Heterotrophic nature of the cell-free protein-synthesizing system from the strict chemolithotroph, Thiobacillus thiooxidans.

    Science.gov (United States)

    Amemiya, K; Umbreit, W W

    1974-02-01

    A cell-free protein-synthesizing system prepared from the strict chemolithotroph, Thiobacillus thiooxidans, was similar to that of heterotrophs. The poly-U directed system had a temperature optimum of 37 C, but in the presence of spermidine (3 mM) the optimum shifted to 45 C. Although growth of the chemolithotroph occurs only in acid conditions, the pH optimum for the cell-free system was pH 7.2. The endogenous-directed activity in the presence or absence of spermidine was maximal at pH 7.8. Spermidine had a stimulatory effect; however, this effect was dependent on the magnesium and tris(hydroxymethyl)aminomethane (Tris) concentrations. At low Tris concentrations (10 mM), spermidine (3 to 5 mM) could completely replace magnesium. When the Tris concentration was increased (50 mM), spermidine could not replace magnesium. Supernatant and ribosomal fractions from T. thiooxidans were exchanged with those of Bacillus thuringiensis and Escherichia coli, and the ribosomal fraction from the chemolithotroph gave good to moderate stimulation when exchanged with the supernatant from the heterotrophs. On the other hand, the supernatant from T. thiooxidans gave good stimulation when mixed with ribosomes from B. thuringiensis but poor activity with ribosomes from E. coli. Both supernatant and ribosomal fractions prepared from stationary phase extracts of T. thiooxidans were inactive in the cell-free system.

  1. Antimicrobial Efficacy and Cell Adhesion Inhibition of In Situ Synthesized ZnO Nanoparticles/Polyvinyl Alcohol Nanofibrous Membranes

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-01-01

    Full Text Available Nanoparticle metal oxides are emerging as a new class of important materials in medical, agricultural, and industrial applications. In this context, free zinc oxide (ZnO nanoparticles (NPs have been increasingly shown with broad antimicrobial activities. However, biological properties of immobilized ZnO NPs on matrixes like nanofibrous membranes are still limited. In this study, in situ synthesized ZnO NPs/polyvinyl alcohol (PVA nanofibrous membranes were fabricated by electrospinning with different zinc acetate concentrations. Characterization results indicated that, with 5 mM zinc acetate, uniform size ZnO NPs (~40 nm were formed and evenly distributed on the membrane surface. The surfaces became more hydrophobic with higher concentration of zinc acetate. ZnO NPs/PVA nanofibrous membranes showed a broad spectrum of antimicrobial activities and cell adhesion inhibiting effects against four microorganisms including Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, fungi Candida albicans, and spores of Aspergillus niger. Our data revealed that the major antimicrobial mechanism could be attributed to cell membrane damage and cellular internalization of ZnO NPs, while the hydrophobic surface of the membrane primarily contributed to the cell adhesion inhibition. This study suggests that ZnO NPs/PVA nanofibrous membranes could potentially be used as an effective antimicrobial agent to maintain agricultural and food safety.

  2. Synthesized OVA323-339MAP octamers mitigate OVA-induced airway inflammation by regulating Foxp3 T regulatory cells

    Directory of Open Access Journals (Sweden)

    Su Wen

    2012-07-01

    Full Text Available Abstract Background Antigen-specific immunotherapy (SIT has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse effects. Results In this study, synthesized OVA323-339MAP octamers were subcutaneously injected into ovalbumin (OVA-sensitized and -challenged Balb/c mice to observe its effect on allergic airway inflammation, Th2 immune response, and immune regulating function. It was confirmed that OVA sensitization and challenge led to significant peritracheal inflammatory, cell infiltration, and intensive Th2 response. Treatment of OVA323-339MAP octomers in the airway inflammation mice model increased CD4+CD25+Foxp3+ T regulatory (Treg cells and their regulatory function in peripheral blood, mediastinal draining lymph nodes, and the spleen. Furthermore, OVA323-339MAP increased IL-10 levels in bronchial alveolar lavage fluid (BALF; up-regulated the expression of IL-10, membrane-bound TGF-β1, as well as Foxp3 in lung tissues; and up-regulated programmed death-1 (PD-1 and cytotoxic T lymphocyte associated antigen 4 (CTLA-4 on the surface of Treg cells. These results were further correlated with the decreased OVA specific immunoglobulin E (sIgE level and the infiltration of inflammatory cells such as eosinophils and lymphocytes in BALF. However, OVA323-339 peptide monomers did not show any of the mentioned effects in the same animal model. Conclusions Our study indicates that OVA323-339MAP had significant therapeutic effects on mice allergic airway inflammation by regulating the balance of Th1/Th2 response through Treg cells in vivo.

  3. Ageing of palladium tritide: mechanical characterization, helium state and modelling; Vieillissement du tritiure de palladium: caracterisation mecanique, etat de l'helium et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Segard, M.

    2010-11-29

    deux modeles traitant, d'une part, de la germination des bulles d'helium-3 (utilisation d'un automate cellulaire) et, d'autre part, de la croissance des bulles (mecanique des milieux continus). Ces modeles etaient fonctionnels, mais leur utilisation etait limitee par le manque de donnees experimentales d'entree et de recalage. Ce travail de these a donc consiste a acquerir les donnees experimentales les plus pertinentes pour ameliorer la modelisation du vieillissement du tritiure de palladium. La premiere partie de ce travail a consiste a estimer les proprietes mecaniques du tritiure de palladium (limite d'elasticite, contrainte maximale, loi de comportementale), deduites de celles de l'hydrure et du deuterure de palladium, mesurees a l'aide d'essais de traction in situ. En seconde partie, la caracterisation du vieillissement a ete entreprise, focalisee sur des observations de bulles dans le tritiure de palladium par microscopie electronique en transmission, des mesures de pression a l'intErieur des bulles par resonance magnetique nucleaire et des mesures de gonflement macroscopique du materiau par pycnometrie. Ces travaux ont conduit a des avancees significatives quant a la comprehension du vieillissement et ont permis d'ameliorer considerablement sa modelisation

  4. Application of high-performance liquid chromatographic methodology to the analysis of hemoglobins synthesized in erythroid progenitor cells.

    Science.gov (United States)

    Bhaumik, K; Huisman, T H

    1989-11-10

    High-performance liquid chromatography (HPLC) has been successfully used in the quantitation of the relatively minute amounts of hemoglobin types recovered from in vitro cultures of hemoglobin-synthesizing erythroid progenitor (BFU-E) cells. This reversed-phase HPLC method uses the Vydac C4 column and water-acetonitrile-trifluoroacetic acid as mobile phases; it has been applied to the study of fetal hemoglobin synthesis patterns in ten homozygous sickle cell anemia patients and a similar number of their heterozygous relatives along with a few normal control subjects. A significant increase in the total gamma chain level was observed in the BFU-E lysate samples corresponding to the whole blood lysates of all the patients and their heterozygous relatives, except in one patient with the beta S haplotype Mor. On the other hand, the relative level of the G gamma chains appeared to be decreased in the BFU-E lysate samples of all except the individuals carrying the Mor haplotype, where it is reversed. The method has considerable advantages over other chromatographic and electrophoretic procedures; it is extremely sensitive and allows quantitation of all different globin chains in one single chromatogram.

  5. Newly synthesized podophyllotoxin derivative, LJ12, induces apoptosis and mitotic catastrophe in non-small cell lung cancer cells in vitro.

    Science.gov (United States)

    Hui, Ling; Sang, Chunyan; Wang, Donghong; Wang, Xiaohui; Wang, Meiliang; Jia, Qinghua; Ma, Mingren; Chen, Shiwu

    2016-01-01

    Deoxypodophyllotoxin (DPT), an active compound isolated from a number of herbs and used in traditional medicine, has been reported to exhibit promising anti‑tumor activity. A newly synthesized derivative, N-(1-oxyl‑4'-demethyl-4-deoxyp odophyllic)-L‑methine-4'-piperazine carbamate (LJ12) may have improved antitumor activity and fewer side effects. The present study assessed the effect of LJ12 on cell viability, apoptosis, cell cycle distribution and mitotic catastrophe in A549 human lung cancer cells in vitro. The molecular mechanisms underlying the antitumor activity of LJ12 were also examined. The results demonstrated that LJ12 reduced A549 cell viability in a time‑ and dose‑dependent manner, with a lower half maximal inhibitory concentration of ~0.1 µM, compared with another known DPT derivative, etoposide (10 µM). Flow cytometric analysis showed that LJ12 induced tumor cell arrest at the G2/M phase of the cell cycle. The present study also observed an expected concomitant decrease in the numbers of cells cells in the G0/G1 and S phases. LJ12 was found to upregulate the protein expression levels of Cdc2 and Cyclin B1. Furthermore, LJ12 induced tumor cell apoptosis and the protein expression of B cell lymphoma‑2‑associated X protein, caspase‑3 and p53. The present study also observed the formation of giant, multinucleated cells, indicating that LJ12 induced mitotic catastrophe in the tumor cells. These results indicated that LJ12 has anti‑non‑small cell lung cancer activity in vitro. Further investigations aim to develop LJ12 as a therapeutic agent for the treatment of lung cancer.

  6. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    Directory of Open Access Journals (Sweden)

    He Y

    2016-05-01

    Full Text Available Yan He,1,* Zhiyun Du,1,* Shijing Ma,1 Yue Liu,2 Dongli Li,1 Huarong Huang,1 Sen Jiang,1 Shupeng Cheng,1 Wenjing Wu,1 Kun Zhang,1 Xi Zheng1,2 1Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People’s Republic of China; 2Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA *These authors contributed equally to this work Abstract: Silver nanoparticles (AgNPs have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. Keywords: silver nanoparticles, antitumor, lung cancer, cytotoxicity, H1299

  7. Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment.

    Science.gov (United States)

    Lee, Jin-Yong; Yu, Jie; Henderson, David; Langridge, William H R

    2004-11-25

    A DNA fragment encoding the cholera toxin A2 subunit (CTA2) linked to the enterotoxigenic Escherichia coli (ETEC) colony forming fimbrial antigen CFA/I was inserted into a plant expression vector containing the cholera toxin B subunit (CTB) fused to the rotavirus enterotoxin 22 amino acid epitope NSP422. Anti-CFA/I antibodies recognized a single band of approximately 72-kDa in transformed potato tuber tissue consistent with CFA/I-CTA2 and CTB-NSP4 fusion protein assembly into a cholera holotoxin-like structure. Enzyme-linked immunosorbent assay (GM1 ELISA) indicated that the CFA/I-CTA2 fusion protein bound specific GM1 ganglioside membrane receptors and made up approximately 0.002% of the total soluble tuber protein. Oral immunization of BALB/c mice with transformed tuber tissues generated anti-CFA/I serum and intestinal IgG and IgA secretory antibodies. Attachment of ETEC H10407 to enterocyte-like Caco-2 human colon carcinoma cells incubated with antiserum from immunized mice was reduced by 15% in comparison with Caco-2 cells incubated with serum from unimmunized mice. Immunogold staining of bacterial preparations revealed deposition of gold particles on E. coli H10407 fimbria incubated with immune serum but not on fimbria treated with sera from unimmunized mice demonstrating the specificity of antibodies in the immune serum for binding to CFA/I protein containing fimbria. The protection against toxic E. coli binding to Caco-2 cells generated by antisera from mice immunized with plant-synthesized CFA/I antigen demonstrates the feasibility of plant-based multi-component vaccine protection against enterotoxigenic E. coli, rotavirus and cholera, three enteric diseases that together exert the highest levels of child morbidity and mortality in economically emerging countries.

  8. Photoactive area modification in bulk heterojunction organic solar cells using optimization of electrochemically synthesized ZnO nanorods

    Science.gov (United States)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh

    2015-11-01

    In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6-6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.

  9. Calcium phosphate thin films synthesized by pulsed laser deposition: Physico-chemical characterization and in vitro cell response

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania)]. E-mail: mihailes@ifin.nipne.ro; Torricelli, P. [Servizio di Chirurgia Sperimentale-Istituto di Ricerca Codivilla PuttiIOR, Bologna (Italy); Bigi, A. [Department of Chemistry ' G. Ciamician' , University of Bologna, 40126 Bologna (Italy); Mayer, I. [Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Iliescu, M. [Institute of Physics and Chemistry of Materials, 67037 Strasbourg (France); Werckmann, J. [Institute of Physics and Chemistry of Materials, 67037 Strasbourg (France); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Miroiu, F. [National Institute for Lasers, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Cuisinier, F. [Institut National de la Sante et de la Recherche Medicale, 67085 Strasbourg (France); Elkaim, R. [Institut National de la Sante et de la Recherche Medicale, 67085 Strasbourg (France); Hildebrand, G. [IBA e.V., Department of Biomaterials, Rosenhof, D-37308 Heilbad Heiligenstadt (Germany)

    2005-07-30

    We review the progress made by us using pulsed laser deposition (PLD) of two bioactive calcium phosphates: octacalcium phosphate (OCP) and Mn doped carbonated hydroxyapatite (Mn-CHA). Coatings of these materials well suited for biomimetic medical prostheses and pivots were synthesized on titanium substrates with a pulsed KrF* UV laser source. The best deposition conditions for Mn-CHA thin films were 13 Pa O{sub 2}, 400 deg. C with post heat treatment of 6 h in air enriched with water vapours. The coatings are stoichiometric and crystalline. For OCP, deposition at 150 deg. C in 50 Pa water vapor atmosphere, post treated by 6 h annealing in hot flux of water vapours, resulted in stoichiometric, but poorly-crystallized films. Degradation tests show different behavior for the OCP and Mn-CHA coatings. In vitro cell growth shows excellent adherence and biocompatibility of osteoblasts and fibroblasts in both OCP and Mn-CHA coatings. Human osteoblasts display normal proliferation and viability, and good differentiation behaviour.

  10. Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO₂ nanorods.

    Science.gov (United States)

    Jaramillo-Quintero, Oscar A; Solís de la Fuente, Mauricio; Sanchez, Rafael S; Recalde, Ileana B; Juarez-Perez, Emilio J; Rincón, Marina E; Mora-Seró, Iván

    2016-03-28

    Intensive research on the electron transport material (ETM) has been pursued to improve the efficiency of perovskite solar cells (PSCs) and decrease their cost. More importantly, the role of the ETM layer is not yet fully understood, and research on new device architectures is still needed. Here, we report the use of three-dimensional (3D) TiO2 with a hierarchical architecture based on rutile nanorods (NR) as photoanode material for PSCs. The proposed hierarchical nanorod (HNR) films were synthesized by a two-step low temperature (180 °C) hydrothermal method, and consist of TiO2 nanorod trunks with optimal lengths of 540 nm and TiO2 nanobranches with lengths of 45 nm. Different device configurations were fabricated with TiO2 structures (compact layer, NR and HNR) and CH3NH3PbI3, using different synthetic routes, as the active material. PSCs based on HNR-CH3NH3PbI3 achieved the highest power conversion efficiency compared to PSCs with other TiO2 structures. This result can be ascribed mainly to lower charge recombination as determined by impedance spectroscopy. Furthermore, we have observed that the CH3NH3PbI3 perovskite deposited by the two-step route shows higher efficiency, surface coverage and infiltration within the structure of 3D HNR than the one-step CH3NH3PbI(3-x)Cl(x) perovskite.

  11. Photoactive area modification in bulk heterojunction organic solar cells using optimization of electrochemically synthesized ZnO nanorods

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh

    2015-01-01

    In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV–visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6-6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17%with a high FF beyond 60%was achieved.

  12. Photovoltaic performance of nanoporous TiO2 replicas synthesized from mesoporous materials for dye-sensitized solar cells.

    Science.gov (United States)

    Hwang, Kyung-Jun; Yoo, Seung-Joon; Kim, Sung-Soo; Kim, Ji-Man; Shim, Wang-Geun; Kim, Sun-Il; Lee, Jae-Wook

    2008-10-01

    For dye-sensitized solar cell (DSSC), highly ordered nanoporous TiO2 materials with crystalline frameworks were successfully synthesized from different silica templates including SBA-15, KIT-6 and MSU-H. A photoelectrode in DSSC was fabricated by adsorbing cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye (N719) onto the prepared TiO2 nanoparticles. The samples were characterized by XRD, TEM, FE-SEM, AFM and Brunauer-Emmett-Teller (BET), and FT-IR analysis. An investigation of the influence of the bonding structure of N719 dye and nanoporous TiO2 on the photovoltaic performance of DSSC revealed that the bonding structure of N719 on TiO2 films is caused by the unidentate and bidentate linkage. Based on the overall conversion efficiency (eta), fill factor (FF), open-circuit voltage (V(oc)) and short-circuit current (/sc) from the I-V curves measured, it was observed that the photoelectric performance is strongly dependent on the dispersion properties of the nanoporous TiO2 replicas from mesoporous silica templates.

  13. Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter.

    Science.gov (United States)

    Zhu, Bo; Mizoguchi, Takuro; Kojima, Takaaki; Nakano, Hideo

    2015-01-01

    The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.

  14. Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available The C1a isoenzyme of horseradish peroxidase (HRP is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT and inactive mutant (MUT genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.

  15. Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO2 nanorods

    Science.gov (United States)

    Jaramillo-Quintero, Oscar A.; Solís de La Fuente, Mauricio; Sanchez, Rafael S.; Recalde, Ileana B.; Juarez-Perez, Emilio J.; Rincón, Marina E.; Mora-Seró, Iván

    2016-03-01

    Intensive research on the electron transport material (ETM) has been pursued to improve the efficiency of perovskite solar cells (PSCs) and decrease their cost. More importantly, the role of the ETM layer is not yet fully understood, and research on new device architectures is still needed. Here, we report the use of three-dimensional (3D) TiO2 with a hierarchical architecture based on rutile nanorods (NR) as photoanode material for PSCs. The proposed hierarchical nanorod (HNR) films were synthesized by a two-step low temperature (180 °C) hydrothermal method, and consist of TiO2 nanorod trunks with optimal lengths of 540 nm and TiO2 nanobranches with lengths of 45 nm. Different device configurations were fabricated with TiO2 structures (compact layer, NR and HNR) and CH3NH3PbI3, using different synthetic routes, as the active material. PSCs based on HNR-CH3NH3PbI3 achieved the highest power conversion efficiency compared to PSCs with other TiO2 structures. This result can be ascribed mainly to lower charge recombination as determined by impedance spectroscopy. Furthermore, we have observed that the CH3NH3PbI3 perovskite deposited by the two-step route shows higher efficiency, surface coverage and infiltration within the structure of 3D HNR than the one-step CH3NH3PbI3-xClx perovskite.Intensive research on the electron transport material (ETM) has been pursued to improve the efficiency of perovskite solar cells (PSCs) and decrease their cost. More importantly, the role of the ETM layer is not yet fully understood, and research on new device architectures is still needed. Here, we report the use of three-dimensional (3D) TiO2 with a hierarchical architecture based on rutile nanorods (NR) as photoanode material for PSCs. The proposed hierarchical nanorod (HNR) films were synthesized by a two-step low temperature (180 °C) hydrothermal method, and consist of TiO2 nanorod trunks with optimal lengths of 540 nm and TiO2 nanobranches with lengths of 45 nm. Different

  16. Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay.

    Science.gov (United States)

    Takeda, Hiroyuki; Ogasawara, Tomio; Ozawa, Tatsuhiko; Muraguchi, Atsushi; Jih, Pei-Ju; Morishita, Ryo; Uchigashima, Motokazu; Watanabe, Masahiko; Fujimoto, Toyoshi; Iwasaki, Takahiro; Endo, Yaeta; Sawasaki, Tatsuya

    2015-06-10

    G-protein-coupled receptors (GPCRs) are one of the most important drug targets, and anti-GPCR monoclonal antibody (mAb) is an essential tool for functional analysis of GPCRs. However, it is very difficult to develop GPCR-specific mAbs due to difficulties in production of recombinant GPCR antigens, and lack of efficient mAb screening method. Here we describe a novel approach for the production of mAbs against GPCR using two original methods, bilayer-dialysis method and biotinylated liposome-based interaction assay (BiLIA), both of which are developed using wheat cell-free protein synthesis system and liposome technology. Using bilayer-dialysis method, various GPCRs were successfully synthesized with quality and quantity sufficient for immunization. For selection of specific mAb, we designed BiLIA that detects interaction between antibody and membrane protein on liposome. BiLIA prevented denaturation of GPCR, and then preferably selected conformation-sensitive antibodies. Using this approach, we successfully obtained mAbs against DRD1, GHSR, PTGER1 and T1R1. With respect to DRD1 mAb, 36 mouse mAbs and 6 rabbit mAbs were obtained which specifically recognized native DRD1 with high affinity. Among them, half of the mAbs were conformation-sensitive mAb, and two mAbs recognized extracellular loop 2 of DRD1. These results indicated that this approach is useful for GPCR mAb production.

  17. In Vitro Anticancer Activity of Au, Ag Nanoparticles Synthesized Using Commelina nudiflora L. Aqueous Extract Against HCT-116 Colon Cancer Cells.

    Science.gov (United States)

    Kuppusamy, Palaniselvam; Ichwan, Solachuddin J A; Al-Zikri, Putri Nur Hidayah; Suriyah, Wastuti Hidayati; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj; Maniam, Gaanty Pragas; Yusoff, Mashitah M

    2016-10-01

    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.

  18. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Aymerick Eudes

    2016-07-01

    Full Text Available Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet. In this study, we demonstrate in Arabidopsis stems that targeted expression of S-adenosylmethionine hydrolase (AdoMetase, E.C. 3.3.1.2 in secondary cell-wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H units and a reduction of dimethylated syringyl (S units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

  19. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  20. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  1. Microwave-Synthesized Tin Oxide Nanocrystals for Low-Temperature Solution-Processed Planar Junction Organo-Halide Perovskite Solar Cells

    KAUST Repository

    Abulikemu, Mutalifu

    2017-03-25

    Tin oxide has been demonstrate to possess outstanding optoelectronic properties such as optical transparency and high electron mobility, therefore, it was successfully utilized as electron transporting layer in various kind of solar cells. In this study, for the first time, highly dispersible SnO2 nanoparticles were synthesized by microwave-assisted non-aqueous sol-gel route in an organic medium. Ethanol dispersion of the as-prepared nanoparticles was used to cast an uniform thin layer of SnO2 without the aid of aggregating agent and at low temperatures. Organohalide perovskite solar cells were fabricated using SnO2 as electron transporting layer. Morphological and spectroscopic investigations, in addition to the good photoconversion efficiency obtained evidenced that nanoparticles synthesized by this route have optimal properties such small size and crystallinity to form a continuous film, furthermore, this method allows high reproducibility and scalability of the film deposition process.

  2. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles.

    Science.gov (United States)

    Murugan, Kadarkarai; Aruna, Palanimuthu; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Paulpandi, Manickam; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Syuhei, Ban; Canale, Angelo; Benelli, Giovanni

    2016-02-01

    Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 μg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 μg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely

  3. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    Science.gov (United States)

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO2 NPs were toxic against cancer cell lines depending on their size and dose. IC50 values of SnO2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL(-1) against HCT116, while these values are 135, 157 and 187μgL(-1) against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines.

  4. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser.

    Science.gov (United States)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-15

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  5. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    Science.gov (United States)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  6. Hetero subunit interaction and RNA recognition of yeast tRNA (m7G46) methyltransferase synthesized in a wheat germ cell-free translation system.

    Science.gov (United States)

    Muneyoshi, Yuki; Matsumoto, Keisuke; Tomikawa, Chie; Toyooka, Takashi; Ochi, Anna; Masaoka, Takashi; Endo, Yaeta; Hori, Hiroyuki

    2007-01-01

    Yeast tRNA (m(7)G46) methyltransferase contains two protein subunits (Trm8 and Trm82). The enzyme catalyzes a methyl-transfer from S-adenosyl-L-methionine to the N(7) atom of guanine at position 46 in tRNA. We deviced synthesis of active Trm8-Trm82 heterodimer in a wheat germ cell-free translation system. When Trm8 or Trm82 mRNA were used for a synthesis, Trm8 or Trm82 protein could be synthesized. Upon mixing the synthesized Trm8 and Trm82 proteins, no active Trm8-Trm82 heterodimer was produced. Active Trm8-Trm82 heterodimer was only synthesized under conditions, in which both Trm8 and Trm82 mRNAs were co-translated. To address the RNA recognition mechanism of the Trm8-Trm82 complex, we investigated methyl acceptance activities of eight truncated yeast tRNA(Phe) transcripts. In this meeting, we demonstrate that yeast Trm8-Trm82 has stricter recognition requirements for the tRNA molecule as compared to the bacterial enzyme, TrmB.

  7. Au-Loaded Titanium Dioxide Nanoparticles Synthesized by Modified Sol-Gel/Impregnation Methods and Their Application to Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hathaithip Ninsonti

    2014-01-01

    Full Text Available Au-loaded TiO2 nanoparticles were synthesized by the modified sol-gel method together with the impregnation method. Anatase phase of TiO2 was obtained in all samples with an average particle size of 20 nm. For the enhancement of DSSCs, the dye-sensitized solar cells composed of the ITO/Au-loaded TiO2/N-719/electrolyte/Pt were fabricated. Au-loaded TiO2 films were deposited by using squeegee method. Finally, the fabricated cells were studied upon an irradiation of solar light to study the performance. The fabricated cell with up to 1.0 mol% Au-loaded TiO2 could enhance the performance by localized surface plasmon effect and scattering property.

  8. Gold Nanoparticles Synthesized with a Polyphenols-Rich Extract from Cornelian Cherry (Cornus mas Fruits: Effects on Human Skin Cells

    Directory of Open Access Journals (Sweden)

    Maria Perde-Schrepler

    2016-01-01

    Full Text Available Gold nanoparticles (GNPs were obtained by green synthesis with an extract from Cornus mas fruits (GNPs-CM, characterized by several methods, and their biologic effects were evaluated on two cell lines: HaCaT, normal keratinocytes, and A431, epidermoid carcinoma. GNPs were spherical with sizes between 2 and 24 nm. Their optical spectra had a dominant plasmonic band centered at 525 nm; zeta potential distribution was narrow, centered at −19.7 mV, and the mean hydrodynamic diameter was 58 nm. GNPs were visualized in both cell types entering the cells by endocytosis. The amount of gold uptaken by the cells was dose and time dependent. The intracellular concentration of Au ions was higher in HaCaT compared to A431 cells. The toxicity of GNPs-CM was dose dependent being significant only when the highest concentrations were employed. A431 cells were less affected compared to HaCaT cells, but the difference was not statistically significant. ROS production was not significant, except in HaCaT cells at the highest concentration. The comet assay revealed no significant supplementary DNA lesions, while the secretion of inflammatory cytokines was modulated by the presence of GNPs only when the cells were additionally irradiated with UVB. These results recommend GNPs-CM for further testing and possible dermatological applications.

  9. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2015-08-01

    Full Text Available Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX, High-resolution transmission electron microscopy (HRTEM, and Selected area (electron diffraction (SAED. The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm−1 for H-H weak peak, 3138 cm−1 for aromatic C-H extend, and 1648 cm−1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyltetrazolium Bromide (MTT, caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays.

  10. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Murawala, Priyanka [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Tirmale, Amruta [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); National Centre for Cell Science, NCCS, Pune 411007 (India); Shiras, Anjali, E-mail: anjalishiras@nccs.res.in [National Centre for Cell Science, NCCS, Pune 411007 (India); Prasad, B.L.V., E-mail: pl.bhagavatula@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated.

  11. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells.

    Science.gov (United States)

    Rindler, M J; Traber, M G

    1988-08-01

    Caco-2 cells, derived from human colon, have the morphological, functional, and biochemical properties of small intestinal epithelial cells. After infection with enveloped viruses, influenza virions assembled at the apical plasma membrane while vesicular stomatitis virus (VSV) particles appeared exclusively at the basolateral membrane, similar to the pattern observed in virus-infected Madin-Darby canine kidney (MDCK). When grown in Millicell filter chamber devices and labeled with [35S]methionine, Caco-2 monolayers released all of their radiolabeled secretory products preferentially into the basal chamber. Among the proteins identified were apolipoproteins AI and E, transferrin, and alpha-fetoprotein. No proteins were observed to be secreted preferentially from the apical cell surface. The lysosomal enzyme beta-hexosaminidase was also secreted primarily from the basolateral surface of the cells in the presence or absence of lysosomotropic drugs or tunicamycin, which inhibit the targetting of lysosomal enzymes to lysosomes. Neither of these drug treatments significantly affected the polarized secretion of other nonlysosomal proteins. In addition, growth hormone (GH), which is released in a nonpolar fashion from MDCK cells, was secreted exclusively from the basolateral membrane after transfection of Caco-2 cells with GH cDNA in a pSV2-based expression vector. Similar results were obtained in transient expression experiments and after selection of permanently transformed Caco-2 cells expressing GH. Since both beta-hexosaminidase and GH would be expected to lack sorting signals for polarized exocytosis in epithelial cells, these results indicate that in intestinal cells, proteins transported via the basolateral secretory pathway need not have specific sorting signals.

  12. Synthesizing Nanomaterials for Energy Applications: Probing Activity as a Function of Composition, Morphology and Purity to Address Key Issues Associated with Fuel Cells and Li-Ion Batteries

    Science.gov (United States)

    Scofield, Megan Elaine

    With the growing need to find alternative clean energy sources to fossil fuels, research into developing efficient fuel cells and batteries stands at the forefront of this grand effort. However, before mass commercialization, fundamental key issues need to be addressed. For example, fuel cells are subject to high catalyst costs and poor durability of the underlying carbon support. As a way to alleviate these issues, we have synthesized ultrathin one-dimensional (1D) alloy nanowires to probe the effect of composition, purity, and one-dimensionality upon the observed overall activity, performance, and durability. In terms of chemical composition, crystalline ultrathin PtM alloy nanowires (NWs) ('M' = Fe, Co, Ru, Cu, and Au) were generated and subsequently evaluated for the hydrogen oxidation reaction (HOR). Additionally, ternary-based catalysts were synthesized (PtRuFe) in order to analyze how chemical composition influences CO tolerance as well as methanol oxidation reaction (MOR) and formic acid oxidation reaction (FAOR) activities. In both cases, we utilized a sustainably mild, ambient wet-synthesis method for the fabrication of chemically pure and crystalline systems in order to fabricate ultrathin, homogeneous alloy NWs. Moreover, in these studies, our NW systems exhibit favorable synergistic electronic effects with respect to controls. To address another fundamental issue associated with the durability of fuel cells, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Specifically, we have demonstrated favorable metal support interactions between the Pt NPs and the SrRuO3 NP supports, which lead to increased MOR activity as compared with not only the other metal oxide supports tested but also the commercial Pt NP/C standard. In terms of Li-ion batteries, LiFePO4 materials have become increasingly popular as a cathode material due to the many benefits they possess

  13. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells.

    Science.gov (United States)

    Murawala, Priyanka; Tirmale, Amruta; Shiras, Anjali; Prasad, B L V

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment.

  14. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.

    Science.gov (United States)

    Zamporlini, Federica; Ruggieri, Silverio; Mazzola, Francesca; Amici, Adolfo; Orsomando, Giuseppe; Raffaelli, Nadia

    2014-11-01

    The redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD(+) levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD(+) availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole-cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell-specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD(+) precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma.

  15. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  16. Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones.

    Directory of Open Access Journals (Sweden)

    Li-Hsueh Wang

    Full Text Available Lipids are a source of metabolic energy, as well as essential components of cellular membranes. Although they have been shown to be key players in the regulation of cell proliferation in various eukaryotes, including microalgae, their role in the cell cycle of cnidarian-dinoflagellate (genus Symbiodinium endosymbioses remains to be elucidated. The present study examined the effects of a lipid synthesis inhibitor, cerulenin, on the cell cycle of both cultured Symbiodinium (clade B and those engaged in an endosymbiotic association with the sea anemone Aiptasia pulchella. In the former, cerulenin exposure was found to inhibit free fatty acid (FFA synthesis, as it does in other organisms. Additionally, while it also significantly inhibited the synthesis of phosphatidylethanolamine (PE, it did not affect the production of sterol ester (SE or phosphatidylcholine (PC. Interestingly, cerulenin also significantly retarded cell division by arresting the cell cycles at the G0/G1 phase. Cerulenin-treated Symbiodinium were found to be taken up by anemone hosts at a significantly depressed quantity in comparison with control Symbiodinium. Furthermore, the uptake of cerulenin-treated Symbiodinium in host tentacles occurred much more slowly than in untreated controls. These results indicate that FFA and PE may play critical roles in the recognition, proliferation, and ultimately the success of endosymbiosis with anemones.

  17. Inhibitory Activity of Synthesized Acetylated Procyanidin B1 Analogs against HeLa S3 Cells Proliferation

    Directory of Open Access Journals (Sweden)

    Syuhei Okamoto

    2014-02-01

    Full Text Available Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG, green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  18. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    Science.gov (United States)

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.

  19. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells

    DEFF Research Database (Denmark)

    Andersen, Thomas L; del Carmen Ovejero, Maria; Kirkegaard, Tove;

    2004-01-01

    (e.g., mouse vs. rabbit). Osteoclasts show high amounts of MMP-2 and -13 protein presumably made to a large extent by other cells, thereby documenting how proteinases of nonosteoclastic origin may contribute to osteoclast activities and giving insight in why the resorptive activity of purified...

  20. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.

    Science.gov (United States)

    Baldi, Franco; Daniele, Salvatore; Gallo, Michele; Paganelli, Stefano; Battistel, Dario; Piccolo, Oreste; Faleri, Claudia; Puglia, Anna Maria; Gallo, Giuseppe

    2016-04-01

    Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPS(aer) and the AgNPs-EPS(anaer), were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPS(aer), in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPS(aer). In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPS(aer) exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPS(aer). The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag(+) release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations.

  1. Failure to synthesize the CD3-gamma chain. Consequences for T cell antigen receptor assembly, processing, and expression

    DEFF Research Database (Denmark)

    Geisler, C

    1992-01-01

    is produced in the endoplasmic reticulum in the absence of CD3-gamma; 2) CD3-zeta does not associate with the Ti alpha beta-CD3 delta epsilon complex; 3) the Ti alpha beta-CD3 delta epsilon complex is not exported from the endoplasmic reticulum to the Golgi apparatus; and 4) CD3-gamma is required for cell...

  2. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    and scanning electron microscopy (SEM) as well as other surface characterization techniques. A photovoltaic device of the structure soda lime glass (SLG)/Mo/CZTS/CdS/ZnO is built, and the power conversion efficiency will be determined. Our first CZTS solar cell made from doctor blading of approx. 20 nm Cu2Zn...

  3. Comparative studies of upconversion luminescence characteristics and cell bioimaging based on one-step synthesized upconversion nanoparticles capped with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming-Kiu [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University (Hong Kong); Hao, Jianhua, E-mail: jh.hao@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-01-15

    Herein, three types of upconverting NaGdF{sub 4}:Yb/Er nanoparticles (UCNPs) have been synthesized via one-step hydrothermal synthesis with polyethylene glycol (PEG), polyethylenimine (PEI) and 6-aminocapronic acid (6AA) functionalization. To evident the presence of these groups, FTIR spectra and ζ-potentials were measured to support the successful capping of PEG, PEI and 6AA on the UCNPs. The regular morphology and cubic phase of these functionalized UCNPs were attributed to the capping effect of the surfactants. Tunable upconversion luminescence (UCL) from red to green were observed under 980 nm laser excitation and the UCL tuning was attributed to the presence of various surface ligands. Moreover, surface group dependent UCL bioimaging was performed in HeLa cells. The enhanced UCL bioimaging demonstrated by PEI functionalized UCNPs evident high cell uptake. The significant cell uptake is explained by the electrostatic attraction between the amino groups (–NH{sub 2}) and the cell membrane. Moreover, the functionalized UCNPs demonstrated low cytotoxicity in MTT assay. Additional, paramagnetic property was presented by these UCNPs under magnetic field. - Highlights: • Tunable upconversion emission by capped functional groups under fixed composition. • Surface dependent upconversion luminescence bioimaging in HeLa cells. • Low cytotoxicity. • Additional paramagnetic property due to Gd{sup 3+} ions.

  4. Synthesis of polymers for proton exchange membrane fuel cell; Synthese de polymeres pour membranes echangeuses de protons

    Energy Technology Data Exchange (ETDEWEB)

    Balland-Longeau, A.; Leninivin, C.; Pereira, F. [CEA Centre d' Etudes du Ripault, 37 - Tours (France)

    2006-05-15

    In the field of fuel cell application, the CEA - DAM has an important contribution in the development of new polymers for protonic conductor membranes. The specifications imposed are very strict in term of mechanical, thermal and chemical properties, in term of protonic conductivity, and for the performances in fuel cell. We have developed new types of per-fluorinated sulfonated polymers starting from poly-para-phenylenes (PPP). New PPP are developed using organometallic chemistry. In this article, we present the synthesis used to prepare these polymers and the very new approach allowing to insert protonic conductor chains (sulfonated and per-fluorinated sulfonated) into the polymers PPP, in the most homogeneous way. (authors)

  5. Cellular responses to stress: comparison of a family of 71--73-kilodalton proteins rapidly synthesized in rat tissue slices and canavanine-treated cells in culture.

    Science.gov (United States)

    Hightower, L E; White, F P

    1981-08-01

    Cultured rat embryo cells exposed to the L-arginine analogue L-canavanine rapidly accumulated a major 71 kilodalton polypeptide and several minor ones (110, 95, 88, and 78 kilodaltons). Canavanine-treated cultures contained elevated levels of translatable mRNA encoding P71, and the stimulated synthesis of this protein was blocked by actinomycin D, suggesting that P71 is inducible. Rat embryo cells maintained under routine culture conditions synthesized only trace amounts of P71; however, they accumulated an abundant 73 kilodalton protein that was closely related to P71. No kinetic evidence of a precursor-product relationship between P73 and P71 was found. The peptide map of P71 from cultured cells was identical to the map of proteins with the same electrophoretic mobility isolated from incubated slices of rat telencephalon. Previous studies (White, '80a, b, c) have shown that the latter proteins are rapidly synthesized by cells associated with cerebral microvessels in incubated brain slices, but are not detectable in vivo. Herein we present evidence that the synthesis of P71 is not unique to brain slices. Incubated slices of heart, lung, thymus, kidney, spleen, and liver all accumulated an abundant 71 kilodalton size class. The peptide maps of P71 obtained from brain, heart, lung and thymus tissue were similar. The stimulated synthesis of P71 in brain, heart, and lung slices was inhibited strongly by the addition of actinomycin D at the start of incubation. The 71-73 kilodalton proteins of canavanine-treated rat embryo cells and incubated slices from seven different organs were compared in detail on two-dimensional polyacrylamide gels. Eight charge variants were detected in extracts of lung, spleen, and thymus tissue, four in liver and heart, three in kidney, and two different pairs of variants in extracts of brain tissue and cultured cells. The possible significance of the rapid synthesis of a similar small set of proteins in tissue slices and cultured cells in

  6. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  7. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    Science.gov (United States)

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  8. In vitro cytotoxicity and apoptotic inducing activity of the synthesized 4-aryl-4H-chromenes derivatives against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Mohagheghi MA

    2009-09-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: 4-Aryl-4H-chromenes are novel anticancer agents which induce apoptosis in cancer cells. These compounds were found to induce apoptosis by targeting the tubulin/microtubule system in cell proliferation process. The aim of this study was to report cyototoxic and apoptosis inducing activities of a new series of synthesized 4-aryl-4H-chromenes compounds."n"n Methods: The in vitro cytotoxic activity of the synthesized 4-aryl-4H-chromenes was investigated against a paned of human cancer cell lines including MCF-7 (breast carcinoma, A549 (lung carcinoma, HEPG-2 (liver carcinoma, SW-480 (colon adenocarcinoma, U87-MG (glioblastoma, 1321N1 (astrocytoma, and DAOY (medulloblastoma. The percentage of growth inhibitory activity was evaluated using MTT colorimetric assay versus controls not treated with test derivatives. The data for etoposide, a well known anticancer drug, was included for comparison. For each compound, the 50% inhibitory concentration (IC50 were determined. Apoptosis inducing activity were assessed by DAPI staining."n"n Results: Preliminary screening showed that those chromenes analogs bearing phenyl-isoxazole-3-yl substitution or the derivatives containing methoxyphenyl in chromene ring exhibited

  9. Cytotoxic Effect on MG-63 Cell Line and Antimicrobial and Antioxidant Properties of Silver Nanoparticles Synthesized with Seed Extracts of Capsicum sp.

    Directory of Open Access Journals (Sweden)

    Nidhi Singh

    2016-01-01

    Full Text Available Applying the concept of ethnobotany, plant extract was taken into consideration as an alternative to chemicals synthesis of silver nanoparticle. The extracts from the chilli seeds were used to synthesize silver nanoparticles (AgNPs. In this study two species of chilli, Capsicum annuum and Capsicum frutescens, have been used to analyse the characteristics of the bio-active compounds found in their seeds. Analysis of the bioactive compound was performed by using Soxhlet extraction with solvents followed by Thin Layer Chromatography (TLC, High Performance Liquid Chromatography (HPLC and GC-MS. Furthermore, green synthesis of nanoparticles with chilli extracts was carried out using silver nitrate to detect its antimicrobial activity. The characterizations of both the nanoparticles were carried out using UV-Vis Spectroscopy, Atomic Force Microscopy (AFM, Fourier Transform Infrared Spectroscopy (FTIR, X-Ray Diffractometry (XRD, Scanning Electron Microscopy (SEM and energy Dispersive X-Ray Spectroscopy (EDX. Antimicrobial activity against clinical pathogens and the antioxidant assay using DPPH and FRAP assays were performed. The cytotoxicity effects on osteosarcoma cell lines were also evaluated with the synthesized AgNPs.

  10. Novel one-dimensional ZnO nanorods synthesized through a two-step post-treatment for efficiency enhancement of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Te; Xie, Yahong, E-mail: xyh0707@163.com; Hu, Jing; Zhang, Chunyang; Wang, Jide

    2015-09-25

    Highlights: • Novel 1D irregular ZnO nanorods (IZRH) and ZnO nanoparticles (ZNP) were prepared. • IZRH has a 1D nanostructure with a rough surface and a partially hollow structure. • The introduction of IZRH can significantly enhance the conversion efficiency. • The IZRH/ZNP composite photoanode yielded an overall power conversion efficiency of 7.08%. - Abstract: Novel 1D irregular ZnO nanorods (ZNR) with a rough surface and a partially hollow structure (IZRH) was synthesized through an aqueous chemical growth process, followed by a two-step post-treatment. ZNR was first treated using an innovative hydrothermal method, followed by freezing at subzero temperatures to form IZRH. The as-prepared IZRH was compounded with hierarchical ZnO nanoparticles (ZNP) synthesized through low-temperature solid-phase method. The mixture of IZRH and ZNP was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; it was used as photoanode in dye-sensitized solar cells (DSSCs). The photovoltaic performance of DSSCs was investigated. Result shows that after freezing post-treatment, IZRH can significantly enhance the conversion efficiency of DSSCs. The maximum power conversion efficiency reaches 7.08%, which is 33% and 45% higher than those of only hydrothermal post-treatment and without post-treatment, respectively.

  11. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Hu, Yan; Chua, Daniel H. C.

    2016-06-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt-1 as compared to standard carbon black of 7.4 W.mgPt-1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  12. Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5

    KAUST Repository

    Khan, Inayatali

    2014-01-12

    Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc=1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M=Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts. © Springer-Verlag Berlin Heidelberg 2014.

  13. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells

    Directory of Open Access Journals (Sweden)

    Yang SW

    2016-06-01

    Full Text Available Shih-Wei Yang,1,* Chi-Ying Tsai,2,* Yi-Chun Pan,3 Chun-Nan Yeh,4 Jong-Hwei S Pang,5 Masashi Takano,6 Atsushi Kittaka,6 Horng-Heng Juang,7 Tai C Chen,8 Kun-Chun Chiang4,9 1Department of Otolaryngology – Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, 2Department of Oral and Maxillofacial Surgery, Chang Gung Memorial Hospital, Taoyuan, 3Department of General Dentistry, Chang Gung Memorial Hospital, Chang Gung University, Keelung, 4General Surgery Department, Chang Gung Memorial Hospital, Keelung, 5Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; 6Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan; 7Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; 8Endocrine Core Laboratory, Boston University School of Medicine, Boston, MA, USA; 9Zebrafish Center, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Even with multidisciplinary treatment, the prognosis and quality of life of patients diagnosed with head and neck squamous cell carcinoma (HNSCC are still not satisfactory. Previously, 19-Nor-2α-(3-hydroxypropyl-1α,25(OH2D3 (MART-10, the new brand 1α,25(OH2D3 analog, has been demonstrated to be an effective drug to inhibit HNSCC growth in vitro. Since most cancer patients die of metastasis, in this study, the antimetastatic effect of MART-10 on HNSCC was investigated. Our results reveal that both 1α,25(OH2D3 and MART-10 effectively repressed the migration and invasion of HNSCC cells, with MART-10 being much more potent than 1α,25(OH2D3. The antimetastatic effect of 1α,25(OH2D3 and MART-10 was mediated by attenuation of epithelial–mesenchymal transition (EMT, which was supported by the finding that the expression of EMT-inducing transcriptional factors, Sail and Twist, was inhibited by 1α,25(OH2D3 and MART

  14. E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells.

    Science.gov (United States)

    Wang, Xiaoping; Guo, Qinglong; Tao, Lei; Zhao, Li; Chen, Yan; An, Teng; Chen, Zhen; Fu, Rong

    2017-01-01

    Gastric cancer (GC) is still one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the antitumor effect of E Platinum, a newly platinum-based chemotherapeutic agent bearing the basic structure of Oxaliplatin, in a variety of gastric carcinoma cells and the underlying mechanisms. We demonstrated that E Platinum significantly induced apoptosis in gastric cancer cells via mitochondrial apoptotic pathway as a result of increased reactive oxygen species (ROS). We also found that E Platinum enhanced Ca(2+) flux out from the endoplasmic reticulum by increasing the protein expression of IP3R type 1 (IP3R1) and decreasing the expression of ERp44. Dysfunction of Ca(2+) homeostasis in endoplasmic reticulum (ER) leads to accumulation of unfolded proteins and ER stress. Mechanically, E Platinum increased ER stress associated protein expression such as GRP78, p-PERK, p-eIF2α, ATF4, and CHOP. However, knocking down CHOP reversed E Platinum-induced apoptosis by blocking mitochondrial apoptotic pathway. Furthermore, 10 mg/kg of E Platinum significantly suppressed BGC-823 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, E Platinum inhibited tumor growth and induced apoptosis by ROS-mediated ER stress activation both in vitro and in vivo. Our study indicated that E Platinum may be a potential and effective treatment for gastric cancer in clinical. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Thorsten Mordhorst

    2015-02-01

    Full Text Available Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84. The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  16. Manoyl Oxide (13R), the Biosynthetic Precursor of Forskolin, Is Synthesized in Specialized Root Cork Cells in Coleus forskohlii1[W][OPEN

    Science.gov (United States)

    Pateraki, Irini; Andersen-Ranberg, Johan; Hamberger, Britta; Heskes, Allison Maree; Martens, Helle Juel; Zerbe, Philipp; Bach, Søren Spanner; Møller, Birger Lindberg; Bohlmann, Jörg; Hamberger, Björn

    2014-01-01

    Forskolin, a complex labdane diterpenoid found in the root of Coleus forskohlii (Lamiaceae), has received attention for its broad range of pharmacological activities, yet the biosynthesis has not been elucidated. We detected forskolin in the root cork of C. forskohlii in a specialized cell type containing characteristic structures with histochemical properties consistent with oil bodies. Organelle purification and chemical analysis confirmed the localization of forskolin and of its simplest diterpene precursor backbone, (13R) manoyl oxide, to the oil bodies. The labdane diterpene backbone is typically synthesized by two successive reactions catalyzed by two distinct classes of diterpene synthases. We have recently described the identification of a small gene family of diterpene synthase candidates (CfTPSs) in C. forskohlii. Here, we report the functional characterization of four CfTPSs using in vitro and in planta assays. CfTPS2, which synthesizes the intermediate copal-8-ol diphosphate, in combination with CfTPS3 resulted in the stereospecific formation of (13R) manoyl oxide, while the combination of CfTPS1 and CfTPS3 or CfTPS4 led to formation of miltiradiene, precursor of abietane diterpenoids in C. forskohlii. Expression profiling and phylogenetic analysis of the CfTPS family further support the functional diversification and distinct roles of the individual diterpene synthases and the involvement of CfTPS1 to CfTPS4 in specialized metabolism and of CfTPS14 and CfTPS15 in general metabolism. Our findings pave the way toward the discovery of the remaining components of the pathway to forskolin, likely localized in this specialized cell type, and support a role of oil bodies as storage organelles for lipophilic bioactive metabolites. PMID:24481136

  17. The chemically synthesized ageladine A-derivative LysoGlow84 stains lysosomes in viable mammalian brain cells and specific structures in the marine flatworm Macrostomum lignano.

    Science.gov (United States)

    Mordhorst, Thorsten; Awal, Sushil; Jordan, Sebastian; Petters, Charlotte; Sartoris, Linda; Dringen, Ralf; Bickmeyer, Ulf

    2015-02-11

    Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms' anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  18. Electrochemically synthesized CuInSe2 thin films from non-aqueous electrolyte for solar cell applications

    Science.gov (United States)

    Londhe, Priyanka U.; Rohom, Ashwini B.; Lakhe, Manorama G.; Bhand, Ganesh R.; Chaure, Nandu B.

    2016-12-01

    Highly polycrystalline CuInSe2 (CIS) thin films have been electrodeposited from non-aqueous ethylene glycol (EG) solvent on fluorine-doped tin-oxide-coated glass substrates at 130 °C. The co-deposition potential for Cu, In and Se was optimized by using cyclic voltammetry. CIS layers have been electrodeposited from -1.1 V to -1.5 V versus the Ag/AgCl reference electrode. The effect of selenization on structural, morphological, optical and compositional properties has been studied extensively. Highly crystalline CIS thin films are electrodeposited for all reported growth potentials without post-annealing treatment. The Raman spectra of stoichiometric CIS thin films showed a dominant A1 mode with features receptive to the crystalline quality of the layers. Noticeable changes in the surface morphology and composition of films deposited at different deposition potential were observed. All CIS layers were void free, compact, uniform, and well adherent to the substrates with particle size ˜1-3 μm. Both as-deposited and selenized samples were Cu-rich, however, the composition of selenium remained closer to the ideal value, 50%. A typical solar cell prepared at -1.3 V measured V OC = 0.316 V, J SC = 26 mA, FF = 49, and η = 4.2, under illuminated conditions at 100 mW cm-2.

  19. Readily synthesized dopant-free hole transport materials with phenol core for stabilized mixed perovskite solar cells

    Science.gov (United States)

    Xue, Yuyuan; Wu, Ying; Li, Yuan

    2017-03-01

    With the dramatic development of the power conversion efficiency (PCE) of perovskite solar cells (PVSCs), device lifetime has become one of the extensive research interests and concerns. To enhance the device durability, developing high performance dopant-free hole transport materials (HTMs) is a promising strategy. Herein, two new C3-symmetric HTMs with phenol core, TCP-OH and TCP-OC8 are readily prepared and show ultra-wide energy band-gap and excellent film-formation property. PCEs of 16.97% and 15.28% are achieved with pristine TCP-OH and TCP-OC8 film as HTMs, respectively, even though their hole mobilities are as low as 10-6 cm2 V-1 s-1. Phenol acts as hole trap in traditional concept, however, TCP-OH shows higher hole mobility than that of TCP-OC8. Moreover, TCP-OH shows higher glass transition temperature and better matching band alignment than those of TCP-OC8. Phenol shows great potential as building block for HTMs as it is beneficial to enhance hole mobility of HTMs. Moreover, our study demonstrates an interesting viewpoint to design HTMs with the balance of hole mobility and electron blocking effect.

  20. Colloidal gold nanoparticles. Synthesis, characterization and effect in polymer/fullerene solar cells; Kolloidale Goldnanopartikel. Synthese, Charakterisierung und Wirkung in Polymer/Fulleren-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Katja

    2011-06-08

    It has been reported in the literature that the efficiency of polymer/fullerene solar cells has been improved by the incorporation of Au nanoparticles. The improvement was attributed to an enhanced electrical conductivity of the active layer and to an enhanced light absorption due to the plasmon resonance of the Au nanoparticles. In this work colloidal Au nanoparticles coated with different stabilizing ligands were synthesized and characterized. Then the impact of their incorporation into P3HT/PCBM solar cells was studied. On the one hand the Au nanoparticles were incorporated into the bulk heterojunction active layer, otherwise they were deposited as an interlayer in the device set-up. No improvement of the solar cell efficiency could be observed neither for the incorporation of Au nanoparticles with isolating ligand shell nor for those with direct contact to the photoactive molecules. The efficiency even dropped, the more the higher the concentration of the Au nanoparticles was. Possible reasons are pointed out on the basis of detailed photophysical and structural investigations.

  1. TiO2 Nanostructure Synthesized by Sol-Gel for Dye Sensitized Solar Cells as Renewable Energy Source

    Science.gov (United States)

    Ramelan, A. H.; Wahyuningsih, S.; Saputro, S.; Supriyanto, E.; Hanif, Q. A.

    2017-02-01

    The use of renewable materials as a constituent of a smart alternative energy such as the use of natural dyes for light harvesting needs to be developed. Synthesis of anatase titanium dioxide (TiO2) and fabrication Dye-Sensitized Solar Cell (DSSC) using dye-based of anthocyanin from purple sweet potato (Ipomoea batatas L.) as a photosensitizer had been done. Synthesis TiO2 through sol-gel process with the addition of triblock copolymer Pluronic F127 template was controlled at pH 3 whereas calcination was carried out at a temperature of 500 °C, 550 °C and 600 °C. The obtained TiO2 were analyzed by XRD, SAA, and SEM. The conclusion is anatase TiO2 obtained until annealing up to 600 °C. Self-assembly Pluronic F127 triblock copolymer capable of restraining the growth of TiO2 crystals. Retention growth of TiO2 mesoporous produces material character that can be used as builders photoanode DSSC with natural sensitizer anthocyanin from purple sweet potatoes. Based on the analysis of X-ray diffraction patterns and surface area analyser, the higher the calcination temperature the greater the size of the anatase crystals is obtained, however, the smaller its surface area. Purple sweet potato anthocyanin’s dyed on to TiO2 was obtained a good enough performance for DSSC’s and gain the optimum performance from DSSC’s system built with mesoporous TiO2 annealed 550 °C using flavylium form anthocyanin.

  2. Growth and characterization of single-crystal CVD diamond for radiation detection applications; Synthese et caracterisation de diamants monocristallins pour applications de detecteur de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Tranchant, N

    2008-01-15

    This work aimed at the study of the synthesis of single crystal diamond using the Microwave enhanced Chemical Vapour Deposition technique (MPCVD). The work enabled the development and optimisation of the growth conditions, from the study of the crystalline quality, of the material purity, and of its electronic properties. The assessment of the transport properties was the most determinant: the use of the time of flight (TOF) technique has enabled the measurement of the carrier mobilities and of their kinetic properties as a function of the temperature. When coupled with collected charge efficiency measurements, the work led to remarkable carrier mobility values obtained in the synthesised crystals (3000 cm{sup 2}.V-1.s{sup -1}). Prepared samples were mounted as detection devices and used successfully in real conditions for the monitoring of ultra-fast pulses, as well as for neutron fluency monitoring, and for medical dosimeters for radiotherapy applications. (author)

  3. Uranium and thorium based phosphate matrix: synthesis, characterizations and lixiviation; Matrices a base de phosphate d'uranium et de thorium: syntheses, caracterisations et lixiviation

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO{sub 2})(PO{sub 4}){sub 2}, U{sub 2}O(PO{sub 4}){sub 2}, UCIPO{sub 4}, 4H{sub 2}O, and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}. Experimental evidenced are advanced for non existent compounds such as: U{sub 3}(PO{sub 4}){sub 4}, U{sub 2}O{sub 3}P{sub 2}O{sub 7} and Th{sub 3} (PO{sub 4}){sub 4}. Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO{sub 2})(PO{sub 4}){sub 2} has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U{sup 4+} and UO{sub 2}{sup 2+} ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UCIPO{sub 4}, 4H{sub 2}O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO{sub 2})(PO{sub 4}){sub 2} and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with {sup 230}U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectro-fluorimetry. Average concentration of uranium in the liquid phase is around 10{sup -4} M to 10{sup -6} M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author)

  4. COMPLEXES DE CUIVRE D’INTERET BIOINORGANIQUE MODELISANT LES METALLO-ENZYMES : SYNTHESE ET CARACTERISATION DES COMPLEXES DE CUIVRE(II) AVEC DES LIGANDS DERIVES DES IMIDAZOLES

    OpenAIRE

    BELFILALI, IMANE

    2010-01-01

    La chimie de coordination est une discipline qui fait l’interface entre la chimie organique et la chimie inorganique. Elle a connue un développement tant dans le domaine de la chimie structurale et analytique que dans celui des applications biologiques.

  5. Defects in chemically synthesized and thermally processed ZnO nanorods: implications for active layer properties in dye-sensitized solar cells.

    Science.gov (United States)

    Das, Partha Pratim; Agarkar, Shruti A; Mukhopadhyay, Soumita; Manju, Unnikrishnan; Ogale, Satishchandra B; Devi, P Sujatha

    2014-04-21

    We have carried out the effect of post annealing temperatures on the performance of solution-grown ZnO rods as photoanodes in dye-sensitized solar cells. Keeping our basic objective of exploring the effect of native defects on the performance of DSSC, we have synthesized ZnO rods having length in the range of 2-5 μm by a modified sonication-induced precipitation technique. We performed extensive characterization on the samples annealed at various temperatures and confirmed that annealing at 300 °C results in ZnO rods with minimum native defects that have been identified as doubly ionized oxygen vacancies. The electron paramagnetic resonance measurements on the samples, on the other hand, confirmed the presence of shallow donors in the low temperature annealed samples. We also carried out electrochemical impedance measurements to understand the transport properties at different interfaces in the solar cell assembly. We could conclude that solution-processed ZnO rods annealed at 300 °C are better suited for fabricating DSSC with improved efficiency (1.57%), current density (5.11 mA/cm(2)), and fill factor (45.29%). On the basis of our results, we were able to establish a close connection between the defects in the metal oxide electron transporting nano system and the DSSC performance.

  6. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages.

    Science.gov (United States)

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H; Baer, Donald R; Smith, Jordan N; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D; Chen, Shu; Porter, Alexandra E; Ryan, Mary P

    2015-09-15

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.

  7. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell

    Science.gov (United States)

    Yan, Jingbo; Zhao, Zhe; Shang, Lei; Ou, Dingrong; Cheng, Mojie

    2016-07-01

    In this study we report a nano-composite anode comprised of Y-stabilized Bi2O3 (YSB) and Sr-substituted LaMnO3 (LSM) for solid oxide electrolysis cell (SOEC). The composite powder with primary particle size ranging from 20 to 80 nm is co-synthesized via a simple citric-nitrate combustion method. X-ray diffraction examination confirms cubic fluorite YSB and rhombohedral perovskite LSM as the main phases in the composite. Temperature programmed O2 desorption identifies remarkable low temperature desorption at 330 °C. Similarly, temperature programmed H2 reduction reveals strong reduction at 385 °C. The facile oxygen evolution on YSB-LSM may result from the increased amount of oxygen vacancies and improved oxygen ion mobility. A cell employing YSB-LSM composite anode achieves current density of -1.52 A cm-2 at 800 °C and 1.28 V, 50% higher than conventional LSM-YSZ cell. Impedance results and analysis of distribution of relaxation times indicate that the rate-determining anode processes are effectively accelerated on YSB-LSM. The activation energy for oxygen evolution reaction on YSB-LSM is reduced to 0.65 eV, notably lower than on LSM-YSZ (1.29 eV). The high performance of YSB-LSM composite anode is attributed to the fast ion decorporation on YSB, the facile O2 formation on LSM, and the abundant phase boundaries that facilitate the two processes.

  8. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    Science.gov (United States)

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water

  9. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Science.gov (United States)

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  10. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  11. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    Science.gov (United States)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  12. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells.

    Science.gov (United States)

    Ghosh, Dibyendu; Halder, Ganga; Sahasrabudhe, Atharva; Bhattacharyya, Sayan

    2016-05-19

    To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ∼3.55% for CdS sensitized QDSSCs, ∼5.42% for in situ deposited CdS/CdSe co-sensitized QDSSCs and ∼6.81% for CdTe/CdS/CdS dual sensitized QDSSCs, apart from increasing the PCE of previously reported QDSSCs. A systematic investigation of the CE design revealed the high electrocatalytic activity of GOR due to the presence of organic functional groups, graphitic edge sites and a quasi-one-dimensional (quasi-1D) structure, which increases the interfacial charge transfer kinetics from the CE to the polysulfide electrolyte. The highly stable Cu1.18S-GOR CE has the added advantage of a favourable energy band alignment with the redox potential of the polysulfide electrolyte, which reduces the loss of charge carriers and thus can increase the PCE of QDSSCs.

  13. Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells

    Indian Academy of Sciences (India)

    M M Rashad; I A Ibrahim; I Osama; A E Shalan

    2014-06-01

    Nanocrystalline SnO2 powders prepared by solvothermal and co-precipitation pathways have been characterized using XRD, TEM, UV–Visible absorption, BET specific surface area (BET) method, EIS and – measurements. The obtained powders have a surface area and size of 38.59 m2/g and 10.63 nm for the SnO2 powders synthesized solvothermally at a temperature of 200 °C for 24 h, while the values were 32.59 m2/g and 16.20 nm for the formed hydroxide precursor annealed at 1000 °C for 2 h by co-precipitation route. The microstructure of the formed powders appeared as tetragonal-like structure. Thus, the prepared SnO2 nanopowders using two pathways were applied as an electrode in dye-sensitized solar cell (DSSC). The photoelectrochemical measurements indicated that the cell presents short-circuit photocurrent (sc), open circuit voltage (oc) and fill factor (FF) were 7.017 mA/cm2, 0.690 V and 69.68%, respectively, for solvothermal route and they were 4.241 mA/cm2, 0.756 V and 66.74%, respectively, for co-precipitation method. The energy conversion efficiency of the solvothermal SnO2 powders was considerably higher than that formed by co-precipitation powders; ∼ 3.20% (solvothermal) and 2.01% (co-precipitation) with the N719 dye under 100 mW/cm2 of simulated sunlight, respectively. These results were in agreement with EIS study showing that the electrons were transferred rapidly to the surface of the solvothermal-modified SnO2 nanoparticles, compared with that of a co-precipitation-modified SnO2 nanoparticles.

  14. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Plesner, T;

    1989-01-01

    The T-cell antigen receptor is composed of two variable chains (alpha and beta, termed TcR) which confer ligand specificity, and four constant chains (gamma, delta, epsilon, and zeta, collectively termed CD3) whose functions are not fully understood. To explore the role of the individual CD3...... components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...... the normal intracellular fate of the TcR-CD3 complex, and that the CD3-zeta is necessary for the intracellular transport and expression at the cell surface of the TcR-CD3 complex....

  15. III-10, a newly synthesized flavonoid, induces cell apoptosis with the involvement of reactive oxygen species-mitochondria pathway in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Zhao, Yikai; Guo, Ruichen; Li, Zhiyu; Ma, Shiping; Lu, Na

    2015-10-05

    Study of the mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. We recently established that III-10, a new flavonoid with a pyrrolidinyl and a benzyl group substitution, exerted its anti-tumor effect via inducing differentiation of human U937 leukemia cells. In this study, we demonstrated that III-10 induced cell apoptosis in human hepatocellular carcinoma cells. The activation of caspase-3, caspase-9, and the increased expression ratio of Bax/Bcl-2 were detected in III-10-induced apoptosis. Z-VAD-FMK, a pan-caspase inhibitor, partly attenuated the apoptotic induction of III-10 on both HepG2 and BEL-7402 cells. Furthermore, the increase of intracellular reactive oxygen species levels and the reduction of mitochondria ΔΨm were also observed in BEL-7402 and HepG2 cells after the treatment of III-10. Pretreatment with NAC, a reactive oxygen species production inhibitor, partly attenuated the apoptosis induced by III-10 via blocking the reactive oxygen species generation. Our data also showed that III-10 induced the release of cytochrome c and AIF to cytosol followed after the reactive oxygen species accumulation. Moreover, the GSH levels and ATP generation were both inhibited after III-10 treatment. Besides, the MAPK, the downstream effect of reactive oxygen species accumulation including JNK could be activated by III-10, as well as the inactivation of ERK. Collectively, the generation of reactive oxygen species might play an crucial role in III-10-induced mitochondrial apoptosis pathway, provided more stubborn evidence for III-10 as a potent anticancer therapeutic candidate. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Prostaglandin E-2 Synthesizing Enzymes in Rheumatoid Arthritis B Cells and the Effects of B Cell Depleting Therapy on Enzyme Expression

    NARCIS (Netherlands)

    Gheorghe, K.R.; Thurlings, R.M.; Westman, M.; Boumans, M.J.; Malmström, V.; Trollmo, C.; Korotkova, M.; Jakobsson, P.J.; Tak, P.P.

    2011-01-01

    Introduction: B cells may play an important role in promoting immune activation in the rheumatoid synovium and can produce prostaglandin E-2 (PGE(2)) when activated. In its turn, PGE(2) formed by cyclooxygenase (COX) and microsomal prostaglandin E-2 synthase 1 (MPGES1) contributes to the rheumatoid

  17. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells

    Science.gov (United States)

    Ghosh, Dibyendu; Halder, Ganga; Sahasrabudhe, Atharva; Bhattacharyya, Sayan

    2016-05-01

    To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ~3.55% for CdS sensitized QDSSCs, ~5.42% for in situ deposited CdS/CdSe co-sensitized QDSSCs and ~6.81% for CdTe/CdS/CdS dual sensitized QDSSCs, apart from increasing the PCE of previously reported QDSSCs. A systematic investigation of the CE design revealed the high electrocatalytic activity of GOR due to the presence of organic functional groups, graphitic edge sites and a quasi-one-dimensional (quasi-1D) structure, which increases the interfacial charge transfer kinetics from the CE to the polysulfide electrolyte. The highly stable Cu1.18S-GOR CE has the added advantage of a favourable energy band alignment with the redox potential of the polysulfide electrolyte, which reduces the loss of charge carriers and thus can increase the PCE of QDSSCs.To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ~3

  18. Green syntheses, v.1

    CERN Document Server

    Tundo, Pietro

    2014-01-01

    Introduction to the Green Syntheses SeriesPietro Tundo and John AndraosApplication of Material Efficiency Metrics to Assess Reaction Greenness-Illustrative Case Studies from Organic SynthesesJohn AndraosReaction 1: Synthesis of 3-Benzyl-5-Methyleneoxazolidin-2-one from N-Benzylprop-2-yn-1-Amine and CO2Qing-Wen Song and Liang-Nian HeReaction 2: Synthesis of the 5-Membered Cyclic Carbonates from Epoxides and CO2Qing-Wen Song, Liang-Nian HePart I: Green Methods for the Epoxidation of

  19. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    Science.gov (United States)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  20. Synthesized night vision goggle

    Science.gov (United States)

    Zhou, Haixian

    2000-06-01

    A Synthesized Night Vision Goggle that will be described int his paper is a new type of night vision goggle with multiple functions. It consists of three parts: main observing system, picture--superimposed system (or Cathode Ray Tube system) and Charge-Coupled Device system.

  1. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway.

    Science.gov (United States)

    Liang, Yuanwei; Zhou, Yangliang; Deng, Shulin; Chen, Tianfeng

    2016-10-19

    The use of selenium-containing heterocyclic compounds as potent cancer chemopreventive and chemotherapeutic agents has been well documented by a large number of clinical studies. In this study we developed a new approach to synthesize four benzimidazole-containing selenadiazole derivatives (BSeDs). The method uses a combination of peptide coupling reagents and microwave irradiation. This strategy features milder reaction conditions, higher yields, and shorter reaction times. The synthetic BSeDs were identified as potent antiproliferative agents against the human MCF-7 and MDA-MB-231 breast cancer cell lines. Compounds 1 b (5-(6-methyl-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole), 1 c (5-(6-chloro-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole), and 1 d (5-(6-bromo-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole) were found to show greater cytotoxicity against the triple-negative breast cancer cell line MDA-MB-231 than MCF-7, and to exhibit dose-dependent inhibition of cell migration, in which a significant decrease in the zone of cell monolayer wound closure was observed relative to untreated controls. Our results demonstrate that BSeDs can cause cell-cycle arrest and apoptosis in MDA-MB-231 cells by inducing DNA damage, inhibiting protein kinase B (AKT), and activating mitogen-activated protein kinase (MAPK) family members through the overproduction of reactive oxygen species (ROS). Taken together, the results of this study provide a facile microwave-assisted strategy for the synthesis of selenium-containing organic compounds that exhibit a high level of anticancer efficacy.

  2. Ultrastructural localization of atrial natriuretic peptide-synthesizing cells in rat stomach%心房钠尿肽合成细胞在大鼠胃的超微结构定位

    Institute of Scientific and Technical Information of China (English)

    潘理会; 李春辉; 杨宗伟

    2008-01-01

    BACKGROUND: Atrial natriuretic peptide (ANP)-synthesizing cells distribute in all over the body. However, very little is known about the morphological localization and the distribution characteristics of ANP-synthesizing cells in different regions of rat stomach. OBJECTIVE: To investigate the ultrastructural localization and distribution characteristics of ANP-synthesizing cells in rat stomach. DESIGN: Repeated measurement experiment. SETTING: Chengde Medical Collage, Chengde, Hebei Province, China. MATERIALS: This study was performed at the Laboratory for Institute of Chinese Materia Medica Immunology (provincial key laboratory), Chengde Medical College between October 2004 and July 2007. Eighteen adult Wistar rats of either gender, weighing 175-300 g, were provided by the Laboratory Animal Center of Chengde Medical College. The disposal of animals was conducted in accordance with ethical guidelines for the use and care of animals. ANP antibody and serum (Santa Cruz Biotechnology, Inc, USA), Protein A-15 nm colloidal gold labeled (Sino-American Biotechnology Company, China), CMIAS image analysis system (Beijing University of Aeronautics and Astronautics, China) and JEM-1200EX transmission election microscope (Japan) were used in the study. METHODS: After gastric and right atrial tissues (as a positive control in immanohistochemical staining for ANP-synthesizing cells) were fleshly excised from anesthetized Wistar rats, the specimens were longitudinally harvested along rat gastric cardiac region, gastric fundic mucosa and gastric pyloric region. Gastric tissue was performed immunohistochemical staining (for positive control) together with right atrial tissue, to observe the distribution characteristics of ANP-synthesizing cells in different regions of rat gastric tissue, and to localize ANP-synthesizing cells. The ultrastructural localization of ANP-synthesizing cells in the rat gastric mucosa was performed by postembedding immunoelectron microscopy. The area

  3. Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells.

    Science.gov (United States)

    Ambade, Swapnil B; Ambade, Rohan B; Mane, Rajaram S; Lee, Go-Woon; Shaikh, ShoyebMohamad F; Patil, Supriya A; Joo, Oh-Shim; Han, Sung-Hwan; Lee, Soo-Hyoung

    2013-04-11

    Electron lifetime in mesoporous nanostructured rutile TiO2 photoanodes, synthesized via a simple, cost-effective, low temperature (50-55 °C) wet chemical process, annealed at 350 °C for 1 h and not employing any sprayed TiO2 compact layer, was successfully tailored with 0.2 mM TiCl4 surface treatment that resulted in light to electric power conversion efficiency up to 4.4%.

  4. Method for synthesizing HMX

    Science.gov (United States)

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  5. ÉLABORATION ET CARACTERISATION DE REVETEMENT DURES TI-AL ET TIALN.

    Directory of Open Access Journals (Sweden)

    H BERKANE

    2014-12-01

    Full Text Available Ce travail porte sur l’étude des revêtements durs de Titane-aluminium et les nitrures Titane-aluminium, ces revêtements sont élaborés par PVD. Des films de TiAl et leurs nitrures ont été préparés par pulvérisation RF. L’influence de l’épaisseur des films et des recuits thermiques ont été effectués pour différentes températures pour étudier la stabilité des films élaborés. L’influence des paramètres de dépôt sur des propriétés mécaniques et structurales, telles que la structure, les contraintes résiduelles a été  également étudiées. L’analyse EDS des films Ti-Al révèle la présence d’oxygène dans les films. L’épaisseur des films Ti-Al augmente avec le temps de dépôt. Par contre, l’épaisseur des films diminue avec le taux d’azote. Au MEB, cet effet de l’azote est matérialisé, sur une coupe transversale où l’épaisseur des films Ti-Al-N est bien inférieure à celle des couches Ti-Al. Des essais au scratch-test montrent que le dopage favorise  l’adhérence des revêtements Ti-Al.

  6. Nitrates–melt synthesized LiNi0.8Co0.2O2 and its performance as cathode in Li-ion cells

    Indian Academy of Sciences (India)

    M Sathiya; K Hemalatha; K Ramesha; A K Shukla; A S Prakash

    2011-12-01

    Layered LiNi0.8Co0.2O2 crystallizing in $\\bar{3}$ space group is synthesized by decomposing the constituent metal–nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals < 2% Li–Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge–discharge cycles reflect a firstdischarge capacity of 184 mAh g-1 which is stabilized at 170 mAh g-1 over 50 cycles.

  7. Cytotoxicity of Nanoliposomal Cisplatin Coated with Synthesized ...

    African Journals Online (AJOL)

    The characteristics of the nanoparticles were evaluated by dynamic light ... scanning electron microscopy (SEM). ... that of free cisplatin in human ovarian cancer cell line A2780CP. ... was -20 °C under inert gas stream [12]. The .... Figure 2: SEM image of nanoliposomal cisplatin ... The chemical structure of the synthesized.

  8. Doclet To Synthesize UML

    Science.gov (United States)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  9. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef

    Directory of Open Access Journals (Sweden)

    Wu Li

    2011-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown. Results We demonstrated that IFN-alpha (IFNα-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner. Conclusions The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.

  10. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7

    Directory of Open Access Journals (Sweden)

    R.R. Remya

    2015-12-01

    Full Text Available A single step protocol to produce biofunctionalized silver nanoparticles (AgNPs using the aqueous extract of Cassia fistula flower as “natural factory” was investigated. The reaction between silver ions and aqueous flower extract after the bioreduction process has resulted in the formation of reddish brown color colloidal solution. XRD pattern showed the face centered cubic crystalline structure of AgNPs and exhibited spherical morphology as characterized by FE-SEM. FTIR studies identified different functional groups involved in effective capping of AgNPs. The zeta potential affirmed the phytoreduced AgNPs possess good stability and the size of the particle was measured by DLS. The synthesized AgNPs displayed effective cytotoxic potential against MCF7 and the inhibitory concentration (IC50 was recorded at 7.19 μg/mL. The apoptotic effects of the AgNPs were also confirmed by AO/EB staining. The investigation presents preliminary evidence that biosynthesized AgNPs can be used in the development of novel anticancer drugs.

  11. The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells

    Science.gov (United States)

    Feng, Zhaobin; Yang, Zhanhong; Huang, Jianhang; Xie, Xiaoe; Zhang, Zheng

    2015-02-01

    Carbon-coated ZnO is synthesized by the hydrothermal method. The X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) tests indicate that carbon is uniformly coated on the surface of the ZnO particle. And the crystal form of ZnO isn't changed. The effects of carbon layer on the electrochemical performances of ZnO have also been investigated by the charge/discharge cycling test, cyclic voltammetry (CV), Tafel polarization curves and electrochemical impedance spectroscope (EIS) tests. The CV curves at different scan rates exhibit that carbon-coated ZnO has the superior reversibility at high scan rate. The charge/discharge cycling tests under different charge/discharge rates show, even if at high-rate, the cycling performance and specific discharge capacity of carbon-coated ZnO are also superior to that of bare ZnO. The Tafel polarization curves and electrochemical impedance spectroscope (EIS) verify that the carbon layer can improve the anti-corrosion and charge-transfer performances of ZnO. The different rate experiments indicate that, compared with the increase of the conductivity, the effect of carbon layer on improving the anti-corrosion performance of ZnO plays a more dominating role in improving the electrochemical performances of ZnO at low charge/discharge rate.

  12. Experimental investigation of the residual stresses of 304L tubular welded joints; Caracterisation des contraintes residuelles sur assemblages soudes tubulaires en acier 304L

    Energy Technology Data Exchange (ETDEWEB)

    Monin, L.; Panier, S.; Hariri, S.; Zakrzewski, D. [Ecole des Mines de Douai, 941, rue Charles Bourseul, BP 10838, 59508 DOUAI Cedex (France); Faidi, C. [EDF-SEPTEN, 12-14, avenue Dutrievoz, 69628 VILLEURBANNE (France)

    2007-07-01

    In the nuclear energy industry, the use of components made of austenitic stainless steel is widely spread, because of its specific thermal properties. The assembly of these pressure vessels and piping by welding processes often requires surface mechanical operations. These operations aim at hardening surfaces and lowering roughness. Nevertheless the main effect of these operations is the occurrence of residual stresses which can have positive or negative effects on the fatigue life. In this study, we focus on the evaluation and relaxation of residual stresses level on AISI 304L austenitic stainless steel tubular welded structures. Some of these rings are base metal rings (which stand as reference), the rest presents a longitudinal and symmetrical Y-weld joint, with or without grinding. Surface residual stresses, and their relaxation, were determined by using the X-ray diffraction method. (authors) [French] L'utilisation de composants en acier inoxydable austenitique, aux proprietes thermiques bien specifiques, est tres courante dans le domaine de la production d'energie nucleaire. Les procedes d'assemblage par soudage de ces equipements sous pression requierent des traitements de parachevement mecanique afin d'ameliorer l'etat de surface et modifier l'etat mecanique en introduisant des contraintes residuelles, qui peuvent avoir une influence sur la duree de vie de la structure. Cette etude porte sur la caracterisation et la relaxation des contraintes residuelles, determinees sur des eprouvettes annulaires specifiques en acier inoxydable austenitique de type 304L, a l'etat brut ou avec des soudures, arasees ou non. La methode de determination utilisee est la diffraction des rayons X. La relaxation de ces contraintes au cours d'essais de fatigue est egalement etudiee. (auteurs)

  13. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury

    NARCIS (Netherlands)

    Bastian, Okan W.; Koenderman, Leo; Alblas, Jacqueline; Leenen, Luke P H; Blokhuis, Taco J.

    2016-01-01

    The role of inflammatory cells in bone regeneration remains unclear. We hypothesize that leukocytes contribute to fracture healing by rapidly synthesizing an "emergency extracellular matrix (ECM)" before stromal cells infiltrate the fracture hematoma (FH) and synthesize the eventual collagenous bone

  14. Une alternative au cobalt pour la synthese de nanotubes de carbone monoparoi par plasma inductif thermique

    Science.gov (United States)

    Carrier, Jean-Francois

    synthese de C-SWNT. Le produit final est par la suite recolte sur des filtres metalliques poreux, une fois le systeme mis a l'arret. Dans un premier temps, une analyse thermodynamique, calculee avec le logiciel Fact-Sage, a permis de mettre en lumiere l'etat des differentes produits et reactifs, tout au long de leur passage dans le systeme. Elle a permis de reveler la similitude de composition de la phase liquide du melange catalytique ternaire de base, avec celui du melange binaire, avec nickel et oxyde d'yttrium. Par la suite, une analyse du bilan d'energie, a l'aide d'un systeme d'acquisition de donnees, a permis de determiner que les conditions operatoires des cinq echantillons mis a l'essai etaient similaires. Au total, le produit final a ete caracterise a l'aide de six methodes de caracterisations differentes : l'analyse thermogravimetrique, la diffraction de rayons X, la microscopie electronique a balayage a haute resolution (HRSEM), la microscopie electronique a transmission (MET), la spectroscopie RAMAN, ainsi que la mesure de la surface specifique (BET). Les resultats de ces analyses ont permis de constater, de facon coherente, que le melange a base de molybdene etait celui qui produisait la moins bonne qualite de produit. Ensuite, en ordre croissant, s'en suivait du melange a base de MnO2 et de ZrO2. Le melange de reference, a base de cobalt, est au deuxieme rang en matiere de qualite. La palme revient au melange binaire, dont la proportion est double en nickel. Les resultats de ce travail de recherche permettent d'affirmer qu'il existe une alternative performante au cobalt pour effectuer la synthese de nanotubes de carbone monoparoi, par plasma inductif thermique. Cette alternative est l'utilisation d'un melange catalytique binaire a base de nickel et d'oxyde d'yttrium. Il est suggere que les performances plus faibles des recettes alternatives, moins performantes, pourraient etre expliquees par le profil thermique fixe du reacteur. Ceci pourrait favoriser

  15. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M.; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J.; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB+1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons), and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions. PMID:25018703

  16. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  17. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα and degrading (MAGL, FAAH enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin and parvalbumin in the adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2014-06-01

    Full Text Available The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e. DAGLα enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL and FAAH and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. CB1, DAGLα and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB1+ fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons, and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  18. Titanium dioxide nanostructure synthesized by sol-gel for organic solar cells using natural dyes extracted from black and red sticky rice

    Science.gov (United States)

    Ramelan, A. H.; Harjana, H.; Sakti, L. S.

    2012-06-01

    Nanocrystalline semiconductor metal oxides have achieved a great importance in our industrial world today. They may be defined as metal oxides with crystal size between 1 and 100 nm. TiO2 nanosize particles have attracted significant interest of materials scientists and physicists due to their special properties and have attained a great importance in several technological applications such as photocatalysis, sensors, solar cells and memory devices. TiO2 nanoparticles can be produced by a variety of techniques ranging from simple chemical to mechanical to vacuum methods, including many variants of physical and chemical vapour deposition techniques. In the present research work we report the synthesis of TiO2 nanoparticles by Sol-Gel technique. The characterization of particles was carried out by XRD and XRF techniques. The importance and applications of these nanoparticles for solar cells are also discussed in this work.

  19. Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses.

    Science.gov (United States)

    Rébeillé, Fabrice; Jabrin, Samuel; Bligny, Richard; Loizeau, Karen; Gambonnet, Bernadette; Van Wilder, Valérie; Douce, Roland; Ravanel, Stéphane

    2006-10-17

    Despite recent progress in elucidating the regulation of methionine (Met) synthesis, little is known about the catabolism of this amino acid in plants. In this article, we present several lines of evidence indicating that the cleavage of Met catalyzed by Met gamma-lyase is the first step in this process. First, we cloned an Arabidopsis cDNA coding a functional Met gamma-lyase (AtMGL), a cytosolic enzyme catalyzing the conversion of Met into methanethiol, alpha-ketobutyrate, and ammonia. AtMGL is present in all of the Arabidopsis organs and tissues analyzed, except in quiescent dry mature seeds, thus suggesting that AtMGL is involved in the regulation of Met homeostasis in various situations. Also, we demonstrated that the expression of AtMGL was induced in Arabidopsis cells in response to high Met levels, probably to bypass the elevated Km of the enzyme for Met. Second, [13C]-NMR profiling of Arabidopsis cells fed with [13C]Met allowed us to identify labeled S-adenosylmethionine, S-methylmethionine, S-methylcysteine (SMC), and isoleucine (Ile). The unexpected production of SMC and Ile was directly associated to the function of Met gamma-lyase. Indeed, we showed that part of the methanethiol produced during Met cleavage could react with an activated form of serine to produce SMC. The second product of Met cleavage, alpha-ketobutyrate, entered the pathway of Ile synthesis in plastids. Together, these data indicate that Met catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and can result in the formation of the essential amino acid Ile and a potential storage form for sulfide or methyl groups, SMC.

  20. Ganglioside biosynthesis in developing brains and apoptotic cancer cells: X. regulation of glyco-genes involved in GD3 and Sialyl-Lex/a syntheses.

    Science.gov (United States)

    Basu, Subhash; Ma, Rui; Moskal, Joseph R; Basu, Manju

    2012-06-01

    Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid are ubiquitous in the central nervous system. At least six DSL-glycosyltransferase activities (GLTs Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid (or NAc-Neuraminic acid) are ubiquitous in the central nervous system. At least six GSL-glycosyltransferase activities (GLTs) of Basu-Roseman pathway catalyzing the biosynthesis of these gangliosides have been characterized in developing chicken brains. Most of these glyco-genes are expressed in the early stages (7-17 days) of brain development and lowered in the adult stage, but the cause of reduction of enzymatic activities of these GLTs in the adult stages is not known. In order to study glyco-gene regulation we used four clonal metastatic cancer cells of colon and breast cancer tissue origin (Colo-205, SKBR-3, MDA-468, and MCF-3). The glyco-genes for synthesis of SA-LeX and SA-LeA (which contain N-acetylglucosamine, sialic acid and fucose) in these cells were modulated differently at different phases (between 2 and 48 h) of apoptotic inductions. L-PPMP, D-PDMP (inhibitor of glucosylceramide biosynthesis), Betulinic Acid (a triterpinoid isolated from bark of certain trees and used for cancer treatment in China), Tamoxifen a drug in use in the west for treatment of early stages of the disease in breast cancer patients), and cis-platin (an inhibitor of DNA biosynthesis used for testicular cancer patients) were used for induction of apoptosis in the above-mentioned cell lines. Within 2-6 h, transcriptional modulation of a number of glyco-genes was observed by DNA-micro-array (containing over 300 glyco genes attached to the glass cover slips) studies. Under long incubation time (24-48 h) almost all of the glyco-genes were downregulated. The cause of these glyco-gene regulations during apoptotic induction in metastatic carcinoma cells is unknown and needs future

  1. Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications

    Directory of Open Access Journals (Sweden)

    Jessica Manzi

    2015-12-01

    Full Text Available Olivine-type lithium metal phosphates (LiMPO4 are promising cathode materials for lithium-ion batteries. LiFePO4 (LFP is commonly used in commercial Li-ion cells but the Fe3+/Fe2+ couple can be usefully substituted with Mn3+/Mn2+, Co3+/Co2+, or Ni3+/Ni2+, in order to obtain higher redox potentials. In this communication we report a systematic analysis of the synthesis condition of LiCoPO4 (LCP using a solvo-thermal route at low temperature, the latter being a valuable candidate to overcome the theoretical performances of LFP. In fact, LCP shows higher working potential (4.8 V vs. 3.6 V compared to LFP and similar theoretical capacity (167 mAh·g−1. Our goal is to show the effect of the synthesis condition of the ability of LCP to reversibly cycle lithium in electrochemical cells. LCP samples have been prepared through a solvo-thermal method in aqueous-non aqueous solvent blends. Different Co2+ salts have been used to study the effect of the anion on the crystal growth as well as the effect of solution acidity, temperature and reaction time. Materials properties have been characterized by Fast-Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopies. The correlation between structure/morphology and electrochemical performances has been investigated by galvanostatic charge-discharge cycles.

  2. Bioactive 3D-Shaped Wound Dressings Synthesized from Bacterial Cellulose: Effect on Cell Adhesion of Polyvinyl Alcohol Integrated In Situ

    Directory of Open Access Journals (Sweden)

    Marlon Osorio

    2017-01-01

    Full Text Available We investigated wound dressing composites comprising fibrils of bacterial cellulose (BC grown by fermentation in the presence of polyvinyl alcohol (PVA followed by physical crosslinking. The reference biointerface, neat BC, favoured adhesion of fibroblasts owing to size exclusion effects. Furthermore, it resisted migration across the biomaterial. Such effects were minimized in the case of PVA/BC membranes. Therefore, the latter are suggested in cases where cell adhesion is to be avoided, for instance, in the design of interactive wound dressings with facile exudate control. The bioactivity and other properties of the membranes were related to their morphology and structure and considered those of collagen fibres. Bioactive materials were produced by simple 3D templating of BC during growth and proposed for burn and skin ulcer treatment.

  3. Fabrication of solar cells based on Cu2ZnSnS4 prepared from Cu2SnS3 synthesized using a novel chemical procedure

    Directory of Open Access Journals (Sweden)

    Correa John M.

    2016-01-01

    Full Text Available Solar cells based on kesterite-type Cu2ZnSnS4 (CZTS thin films were fabricated using a chemical route to prepare the CZTS films, consisting in sequential deposition of Cu2SnS3 (CTS and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere. The CTS compound was prepared in a one-step process using a novel chemical procedure consisting of simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition technique. Diffusion membranes were used to optimize the kinetic growth through a moderate control of release of metal ions into the work solution. As the conditions for the formation in one step of the Cu2SnS3 compound have not yet been reported in literature, special emphasis was put on finding the parameters that allow growing the Cu2SnS3 thin films by simultaneous precipitation of Cu2S and SnS2. For that, we propose a methodology that includes numerical solution of the equilibrium equations that were established through a study of the chemical equilibrium of the system SnCl2, Na3C6H5O7·2H2O, CuCl2 and Na2S2O3·5H2O. The formation of thin films of CTS and CZTS free of secondary phases grown with a stoichiometry close to that corresponding to the Cu2SnS3 and Cu2ZnSnS4 phases, was verified through measurements of X-ray diffraction (XRD and Raman spectroscopy. Solar cell with an efficiency of 4.2%, short circuit current of 16.2 mA/cm2 and open-circuit voltage of 0.49 V was obtained.

  4. Photocatalytic and dye-sensitized solar cell performances of {010}-faceted and [111]-faceted anatase TiO₂ nanocrystals synthesized from tetratitanate nanoribbons.

    Science.gov (United States)

    Du, Yi-en; Feng, Qi; Chen, Changdong; Tanaka, Yasuhiro; Yang, Xiaojing

    2014-09-24

    The morphology and exposed facet of the anatase-type TiO2 are very important to improve the photocatalytic activity and photovoltaic performance in dye-sensitized solar cells. In this work, we report the synthesis and the photocatalytic and dye-sensitized solar cell performances of anatase-type TiO2 single nanocrystals with exposed {010}- and [111]-facets and with various morphologies by using exfoliated tetratitanate nanoribbons as precursors. The precursor nanoribbons were prepared from the exfoliation of the protonated and, subsequently, tetramethylammonium/H(+) ion-exchanged K2Ti4O9. The colloidal suspension containing the nanoribbons was hydrothermally heated with a microwave-assistance at temperatures from 120 to 190 °C after pH was adjusted to 0.5-14. The dependence of the crystalline phases on temperature and pH indicated that anatase single phase can be obtained at pH 3-13 whereas temperatures higher than 160 °C. The [111]-faceted nanorod-shaped anatase nanocrystals were formed preferentially at pH ≤ 3, whereas the {010}-faceted anatase nanocrystals with morphologies of rhombic, cuboid, and spindle were preferentially at pH ≥5. The morphology observation revealed that the nanoribbons were transformed to anatase nanocrystals mainly by the topotactic structural transformation reaction accompanied by an Ostwald ripening reaction, and pH of the reaction solution took a critical role in the crystal morphology change. At pH ≤1, the mixture of anatase, rutile, and brookite were obtained at higher temperature conditions. The photocatalytic activity and photovoltaic performance were enhanced in an order of surface without a specific facet < [111]-faceted surface < {010}-faceted surface.

  5. The study of some thiazinic and indaminic dye syntheses induced by ionising radiation; Etude de quelques syntheses de colorants thianziniques et indaminiques amorcees par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Balestic, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-03-15

    au cours de la radiolyse grace a leur spectre d'absorption apres qu'ils aient ete separes du milieu reactionnel par chromatographie d'adsorption ou d'echange d'ions; d'autres produits de la radiolyse, chlorure d'ammonium et eau oxygenee, ont ete egalement caracterises. Au cours d'une etape ulterieure, une variation systematique des parametres physico-chimiques a permis de determiner les conditions les plus favorables a la radiosynthese; les rendements radiochimiques maximum obtenus ont pour valeurs respectives: G (Violet de Lauth) = 1,65; G (Bleu de Methylene) = 1,75. En outre, l'etude de l'influence sur le rendement radiochimique des reactifs amines differemment substitues a fait apparaitre la possibilite de synthetiser par voie radiochimique le Vert de Bindschedler et le Bleu de Wurster. Enfin la decouverte d'un compose intermediaire fondamental, le Rouge de Wurster, ainsi que l'etude cinetique de la synthese chimique du Bleu de Methylene ont permis de determiner les principales etapes du Bleu de Methylene reactionnel et de preciser la part qui revenait aux rayonnements ionisants dans le cas de la synthese par voie radiochimique. (auteur)

  6. Electrical and optical study of ultrasonic-assisted hydrothermal synthesized Ga doped ZnO nanorods for polymer solar cell application

    Science.gov (United States)

    Ahmadi, M.; Rashidi Dafeh, S.

    2016-08-01

    Ga doped ZnO nanorods with homogeneous morphology grown by ultrasonic-assisted hydrothermal method on ITO substrate. The effect of hydrothermal growth times 30, 60, 90 and 120 min on the characteristics of ZnO nanorods was examined. The samples were analyzed by X-ray diffraction, scanning electron microscopy, UV-Vis spectrometer and conductivity measurement. With the optimization of the growth times (60 min), we employed Ga doped ZnO nanorods with diverse dopant concentration in fabrication of polymer solar cell. By comparing the effect of Ga doped ZnO thin films with various dopant ratio (0, 0.5, 1.0 and 2 %) on the performance of Ga doped ZnO thin films, 0.5 % Ga doped ZnO was found as the most effective doping level among the selected doping concentrations. Also using 0.5 % Ga doped ZnO thin film, Jsc of 7.54 mA/cm2, Voc of 0.541 V, and fill factor of 64.81 % were achieved, which led to power conversion efficiency of 2.64 %.

  7. RAMESES publication standards: realist syntheses

    Directory of Open Access Journals (Sweden)

    Wong Geoff

    2013-01-01

    Full Text Available Abstract Background There is growing interest in realist synthesis as an alternative systematic review method. This approach offers the potential to expand the knowledge base in policy-relevant areas - for example, by explaining the success, failure or mixed fortunes of complex interventions. No previous publication standards exist for reporting realist syntheses. This standard was developed as part of the RAMESES (Realist And MEta-narrative Evidence Syntheses: Evolving Standards project. The project's aim is to produce preliminary publication standards for realist systematic reviews. Methods We (a collated and summarized existing literature on the principles of good practice in realist syntheses; (b considered the extent to which these principles had been followed by published syntheses, thereby identifying how rigor may be lost and how existing methods could be improved; (c used a three-round online Delphi method with an interdisciplinary panel of national and international experts in evidence synthesis, realist research, policy and/or publishing to produce and iteratively refine a draft set of methodological steps and publication standards; (d provided real-time support to ongoing realist syntheses and the open-access RAMESES online discussion list so as to capture problems and questions as they arose; and (e synthesized expert input, evidence syntheses and real-time problem analysis into a definitive set of standards. Results We identified 35 published realist syntheses, provided real-time support to 9 on-going syntheses and captured questions raised in the RAMESES discussion list. Through analysis and discussion within the project team, we summarized the published literature and common questions and challenges into briefing materials for the Delphi panel, comprising 37 members. Within three rounds this panel had reached consensus on 19 key publication standards, with an overall response rate of 91%. Conclusion This project used multiple

  8. Effect of Synthesized hTERT Epitopes on the Phenotype and Function of Myeloid Dendritic Cells%人工合成树状串联hTERT表位肽对mDC表型和功能的影响

    Institute of Scientific and Technical Information of China (English)

    钮柏琳; 慎华平; 杜慧敏; 杨仕明; 邹利全; 龚建平

    2011-01-01

    目的 通过对树状串联hTERT表位肽(MAP)与无肽刺激组髓样树突状细胞(mDC)的相关检测,研究MAP肽对mDC的表型和功能的影响.方法 人工固相合成四分支的MAP肽,免疫磁珠分选mDC,流式细胞技术检测相关表面分子.ElISA分别检测两组mDC培养基的IL-12p70含量,并作统计学分析.结果 人工合成MAP肽纯度高(95.26 %),免疫磁珠分选mDC纯度为72.59 %,相比于无肽刺激组mDC,MAP肽刺激组成熟(培养第9天)时MHCⅡ类分子为83.90 %、MHCⅠ类分子为91.08 %,CD86:77.03 %,CD83:92.16 %;IL-12p70的含量也大于无肽刺激组,且有统计学差异.结论 人工合成hTERT的MAP肽能足够强的激活mDC,刺激其成熟和功能的表达,可作为mDC抗肿瘤疫苗的刺激肽结构.%Objective To explore the role of tandem multiple antigenic peptide ( MAP ) on myeloid dengritic cells ( mDC ), by comparing the phenotype and function of mDC stimulated by MAP of human telomerase reverse transcriptase ( hTERT ) epitopes to the control group cells. Methods Four branches of MAP peptides were solid-phase artificially synthesized. mDC cells were isolated through magnetic activated cell sorting ( MACS ) . The surface molecules of mDC were detected by flow cytometry. The level of IL-12 p70 was detected by ELISA on both groups respectively and statistically analyzed. Results Synthetic MAP peptide was synthesized with high purity ( 95. 26 %) . The rate of mDC with magnetic activated cell sorting was 72. 59% . In MAP peptide stimulated group, MHC Ⅱ molecules reached 83. 90% , MHCI 91. 08%, CD86 77. 03% , and CD83 92. 16% , while the control group was 12. 92%. 64. 88% . 14. 45% and 26. 32%, when matured in 9-day culture. IL-12p70 secretion was higher than that in the control group, with significant difference. Conclusion The synthesized MAP peptides of hTERT can strongly activate mDC,thus can be used as stimulating peptides in anti-tumor vaccine research.

  9. Frequency synthesizers concept to product

    CERN Document Server

    Chenakin, Alexander

    2011-01-01

    A frequency synthesizer is an electronic system for generating any of a range of frequencies from a single fixed oscillator. They are found in modern devices like radio receivers, mobile phones, and GPS systems. This comprehensive resource offers RF and microwave engineers a thorough overview of both well-established and recently developed frequency synthesizer design techniques. Professionals find expert guidance on all design aspects, including main architectures, key building blocks, and practical circuit implementation. Engineers learn the development process and gain a solid understanding

  10. X-Band PLL Synthesizer

    OpenAIRE

    P. Kutin; Vagner, P.

    2006-01-01

    This paper deals with design and realization of a PLL synthesizer for the microwave X−band. The synthesizer is intended for use as a local oscillator in a K−band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal ...

  11. Template-synthesized opal hydrogels

    Institute of Scientific and Technical Information of China (English)

    LI Jun; JI Lijun; RONG Jianhua; YANG Zhenzhong

    2003-01-01

    Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response to pH were investigated. Through the sol-gel process of tetrabutyl titanate, opal titania was obtained with the opal hydrogel template.

  12. Laboratory Syntheses of Insect Pheromones.

    Science.gov (United States)

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  13. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  14. Laboratory Syntheses of Insect Pheromones.

    Science.gov (United States)

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  15. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Science.gov (United States)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  16. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  17. X-Band PLL Synthesizer

    Directory of Open Access Journals (Sweden)

    P. Kutin

    2006-04-01

    Full Text Available This paper deals with design and realization of a PLL synthesizer for the microwave X−band. The synthesizer is intended for use as a local oscillator in a K−band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal from the frequency doubler is filtered by a band-pass filter and finally amplified by a single stage amplifier.

  18. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    OpenAIRE

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resembl...

  19. The newly synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-4-one triggers cell apoptosis through induction of oxidative stress and upregulation of the p38 MAPK signaling pathway in HL-60 human leukemia cells.

    Science.gov (United States)

    Cheng, Yung-Yi; Yang, Jai-Sing; Tsai, Shih-Chang; Liaw, Chih-Chuang; Chung, Jing-Gung; Huang, Li-Jiau; Lee, Kuo-Hsiung; Lu, Chi-Cheng; Chien, Hsi-Cheng; Tsuzuki, Minoru; Kuo, Sheng-Chu

    2012-10-01

    The aim of the present study was to discover the signaling pathways associated with 2-(3-hydroxy-5-methoxy-phenyl)-6,7-methylenedioxyquinolin-4-one (YYK1)-induced apoptosis in HL-60 human leukemia cells. YYK1 induced cytotoxic effects, cell morphological changes, decreased the cell number and increased reactive oxygen species (ROS) production and loss of mitochondrial membrane potential (ΔΨm) in HL-60 cells. YYK1-induced apoptosis was confirmed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results from colorimetric assays and western blot analysis indicated that activities of caspase-7/-3, caspase-8 and caspase-9 were increased in YYK1-treated HL-60 cells. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas/CD95, FasL and FADD), intrinsic related proteins (cytochrome c, Apaf-1, AIF and Endo G), the ratio of Bax/Bcl-2 and phosphorylated p38 MAPK were increased in HL-60 cells after YYK1 treatment. Cell apoptosis was significantly reduced after pre-treatment with N-acetylcysteine (NAC; a ROS scavenger) or diphenyleneiodonium chloride (DPI; a NADPH oxidase inhibitor). Blockage of p38 MAPK signaling by SB202190 abolished YYK1-induced Fas/CD95 upregulation and apoptosis in HL-60 cells. We conclude that YYK1 induces both of extrinsic and intrinsic apoptotic pathways via ROS-mediated activation of p38 MAPK signaling in HL-60 human leukemia cells in vitro.

  20. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  1. Synthesis, characterization and study of the photoelectrochemical behaviour of a nanocrystalline electrode of TiO{sub 2}; Synthese, caracterisation et etude du comportement photo electrochimique d'une electrode nanocristalline de TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, D.J.; Lakhdari, D.; Chettah, H.; Amardjia, A. [Laboratoire d' Energietique et d' Electrochimie du Solide, Dept. de Genie des Procedes Facultes des Sciences de l' Ingenieur, U.F.A. Setif (Algeria); Haffar, H.; Abdi, D.J.; Amardjia, A.; Hemissi, M. [Universite Fehat Abbas de Setif, Lab. Dosage, Analyse et Caracterisation en Haute Resolution, Faculte des Sciences, Dept. de Physique, Setif (Algeria)

    2006-07-01

    This work deals with the synthesis of thin layers of TiO{sub 2} on glass substrates by a sol-gel process, the characterization of these layers by X-ray diffraction and the study of the effect of ultraviolet radiation (237 nm) on the electrochemical behaviour of these electrodes in different media. (O.M.)

  2. Synthesis and characterisation of nitrogen poly-heterocyclic molecules using as selective complexing agents of metallic cations; Synthese et caracterisation de molecules polyheterocycliques azotees utilisables en tant que complexants selectifs de cations metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Alphonse, F.A

    2003-12-15

    Separation of actinides (III) from lanthanides (III) is a crucial problem in the reprocessing of used nuclear fuels. Experimental results shown that soft donor extractants such as nitrogen polydentate heterocycles containing a NCCNCCN coordination site are potentials ligands for selective extraction of actinides (III). In those cases, two types of liquid-liquid extractions are employed: synergistic combination with lipophilic acid extractants and direct extraction. On the basis of the Hard and Soft Acids and Bases theory and basicity evaluation, new extractants were defined. We have first studied the synthesis of potential 1,3,5-triazine ligands designed for extraction in synergy with {alpha}-bromodecanoic acid. Secondly, we have examined the synthesis of bis-triazinyl-pyridine ligands for direct extraction studies. Extraction tests were carried out and perspectives of synthesis were deducted from those extraction results. (author)

  3. Metabolism of [3-{sup 3}H]oleanolic acid in the isolated ``Calendula officinalis`` leaf cells and transport of the synthesized glycosides, to the cell wall and the extracellular space

    Energy Technology Data Exchange (ETDEWEB)

    Szakiel, A.; Wasiukiewicz, I.; Janiszowska, W. [Warsaw Univ. (Poland). Katedra Biochemii

    1995-12-31

    It has been shown for the first time that [3-{sup 3}H]oleanolic acid glycosides formed in the cytosol of ``C. officinalis`` leaf cells are transported to the extracellular space in the form of pentaglucoside VI (44%), whereas glucuronides derived from [3-{sup 3}H]oleanolic acid 3-O-monoglucuronide (29%) as well as a part of glucosides (24%) were transported into the cell walls. (author). 15 refs, 2 figs, 1 tab.

  4. Synthesized Optimization of Triangular Mesh

    Institute of Scientific and Technical Information of China (English)

    HU Wenqiang; YANG Wenyu

    2006-01-01

    Triangular mesh is often used to describe geometric object as computed model in digital manufacture, thus the mesh model with both uniform triangular shape and excellent geometric shape is expected. But in fact, the optimization of triangular shape often is contrary with that of geometric shape. In this paper, one synthesized optimizing algorithm is presented through subdividing triangles to achieve the trade-off solution between the geometric and triangular shape optimization of mesh model. The result mesh with uniform triangular shape and excellent topology are obtained.

  5. Physiologically driven avian vocal synthesizer

    Science.gov (United States)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  6. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  7. Characterisation of Fibre Reinforced Titanium Matrix Composites. (La Caracterisation des Materiaux Composites a Matrice de Titane Renforces par Fibres)

    Science.gov (United States)

    1994-02-01

    egard ces applications sont importantes pour IAGARD, car elles permettent d’augmenter les capacites operationnelles des futurs syst~mes aeriens et, en...talons, sans oublicr qne les valeurs de TA6V identique A celle des Ceuillards externes d’une relatives de a12/01 IN sont les plus importantes . Enfin...Compe’: tesi Septernher I193. 23-2 are unlikely to behave as homogeneous components in service other factors become materials. The combination of elastic

  8. 预先合成量子点组装制备高效量子点太阳电池∗%Pre-synthesized quantum dot dep osition approach to obtain high efficient quantum dot solar cells

    Institute of Scientific and Technical Information of China (English)

    李文杰; 钟新华

    2015-01-01

    量子点太阳电池现已成为极具潜力的“第三代”光伏器件,其优点体现在材料成本低廉,制备工艺简便,以及其敏化剂特有的多激子效应(MEG)潜能和吸光范围可方便调节等方面。但是与染料分子敏化剂相比,量子点敏化剂粒径更大、表面缺乏具有与TiO2结合的官能团,这导致其在TiO2介孔中渗透阻力大、难以在TiO2表面吸附沉积,所以量子点沉积手段在电池组装过程中尤为重要。本文综述了电池组装过程中量子点的沉积方法,分类阐述了直接生长量子点方法:化学浴沉积(CBD)和连续离子层吸附生长(SILAR),以及采用预先合成量子点的沉积方法:连接分子辅助法(LA)、直接吸附法(DA)和电泳沉积(EPD)方法,陈述了各沉积方法的发展过程及相应电池性能的改善,对比了这些沉积方法的优缺点。突出介绍了预先合成量子点的沉积方法,特别是近年来不断优化而凸显优势的连接分子辅助法(LA)。总结了此方法快速、均匀沉积以及实现器件高性能的特点,介绍了此方法沉积表面缺陷更少、结构更完善、材料更“绿色化”的量子点敏化剂的最新研究成果。%Quantum dot sensitized solar cells (QDSCs) appear to be one of the promising photovoltaic candidates, due to the lower cost of obtaining materials and assembling processes, as well as the advantages of their QD sensitizers which exhibit properties of tailoring the absorbance spectrum to near-infrared (NIR) regions, the multiple exciton generation (MEG), hot electron extraction, etc. However, the difficulty of QDs penetrating into TiO2 mesoporous film remains to be an obstacle for the development of QDSCs, which comes from (1) their larger size (1–10 nm) compared with dye molecules, (2) steric hindrance from the long chain organic ligands on the surface, and (3) the lack of terminal functional group of the ligand with affinity to TiO2. These

  9. 铜、铁、锌-氟尿嘧啶配合物合成及其对肿瘤细胞增殖的抑制%Copper, iron, zinc-fluorouracil complexes synthesized in vitro inhibit tumor cell proliferation

    Institute of Scientific and Technical Information of China (English)

    周轶平; 陈元晓; 周云; 石中正; 罗敏; 钟文远; 陈英杰

    2014-01-01

    背景:有机抗癌药与金属盐形成配合物后会形成新的结构或改变离子浓度,因此改变二者的毒性与活性而产生协同作用。目的:寻求高效低毒的新型金属-氟尿嘧啶配合物抗肿瘤药物。方法:以铜、铁、锌盐和氟尿嘧啶为原料,合成了4种配合物,分别为[Cu(5-Fu)2Cl2],[Cu(5-Fu)2(NO3)2],[Fe(5-Fu)3]SO4和[Zn(5-Fu)2Cl2]。用元素分析和质谱法分析配合物的化学结构。分别以4种配合物溶液、4种盐溶液、顺铂、氟尿嘧啶培养人白血病细胞株K562与人结肠癌细胞株HCT-116,改良MTT法测试细胞增殖。结果与结论:配合物的元素分析及摩尔电导数据初步确定了配合物的化学式,质谱结果进一步证明氟尿嘧啶确实与金属离子Cu2+、Fe2+、Zn2+配位。在0.1-100 mg/L质量浓度范围内,4种配合物对K562和HCT-116细胞增殖均有不同程度的抑制作用,4种配合物对K562和HCT-116细胞增殖的IC50值均低于氟尿嘧啶组,其细胞毒活性是氟尿嘧啶的1.5-7.8倍。表明铜盐、锌盐、铁盐与氟尿嘧啶形成配合物后有协同抑制肿瘤组织细胞增殖的作用。%BACKGROUND:Anticancer drug and organic metal complexes wil form a new structure or a change in ion concentration, thus changing both the activity and toxicity to produce a synergistic effect. OBJECTIVE:To synthesize new high-efficient and low-toxic metal-fluorouracil complexes as anticancer drugs. METHODS:Copper, zinc and iron salts and fluorouracil were used to synthesize four copper, zinc and iron-fluorouracil complexes that were [Cu(5-Fu)2Cl2], [Cu(5-Fu)2(NO3)2], [Fe(5-Fu)3]SO4 and [Zn(5-Fu)2Cl2]. Preliminary chemical structures of the four complexes were confirmed by elemental analysis and mass spectrometry. Their inhibitory activity on human cancer cells, human leukemia cellline K562 and human colon cancer cellline HCT-116, was measured by MTT colorimetric assay. RESULTS AND CONCLUSION:[Cu(5-Fu)2Cl2], [Cu

  10. Asymmetric Syntheses Aided by Biocatalysts

    Institute of Scientific and Technical Information of China (English)

    陈沛然; 顾建新; 魏志亮; 韩世清; 李祖义; 林国强

    2003-01-01

    This article summarizes the achievements of the authors' group in the area of biocatalyst-catalyzed organic reactions in recent 10 years. A strain of Geotrichum sp. obtained by screeninu is capable of stereoselectlvely reducing a number of carbonyl compounds. In many cases, the stermghemistry is complementary with that obtained by baker' s yeast. Therefore, this microorganism provides a useful pathway to the preparation of alcohol eompounds with specific configurations. On the other hand, a nmmber of plant sourees have been screened for oxynitrilases and the hydrocyanation reactions of various arylcarboxalde-hydes have been investigated.A"micro-aqueous reaction system" was invented,by which a serles of novel optically active cyanohydrins were prepared.On this hasis,a high through-put comtimasous reaction system has been designed.This paper also deseribes examples of the syntheses of bio-active compounds by using the optieally active compounds obtained from the above mentioned catalytic reactions as precursors.

  11. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  12. RF SYNTHESIZER WITH DIRECT DIGITAL SYNTHESIZ

    Directory of Open Access Journals (Sweden)

    V. V. Murav’iov

    2014-01-01

    Full Text Available A synthesizer of frequencies with direct digital synthesis and a frequency multiplier on PLL are developed. Phase noises of an output signal of the synthesizer, noise of a loop of PLL, level of collateral radiations on outputs of the digital synthesizer (frequency of 100 MHz and the frequency multiplier output on a loop of PLL (frequency of 8 GHz are probed.

  13. Development of structural characterisation tools for catalysts; Developpement d'outils de caracterisation structurale de catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, J.

    1999-10-01

    Because of the diversity of their compositions and structures, and the treatments needed to render them active, heterogeneous catalysts present a major challenge in structural characterisation. Electron microscopy provides textural and structural information at the scale of the individual particle. We have been able to analyse epitaxial relationships between nanometer size particles and their support and to determine which crystal faces are most exposed. Chemical analysis can be carried out on individual particles in a bimetallic catalyst. Limitations of this technique are shown for characterisation of catalysts at the atomic scale or in reactive conditions. Here, global analysis methods based on X-ray absorption and diffraction provide more information. W-ray absorption fine structure analysis has been applied to sub-nanometer size particles in platinum based catalysts to explore interactions between the metal and reactive gases such as hydrocarbons and H{sub 2}S. Differences observed between mono-metallic and bimetallic solids lead to structural models to explain differences in catalyst reactivity. X-ray diffraction, combined with electron microscopy, shows the presence of different forms of extra-framework aluminium is steamed zeolites. Quantification of some these forms has been possible and a study of their reactivity towards different de-aluminating agents has been achieved. Work in progress shows the advantages of a combination of X-ray diffraction and absorption to study decomposition of hydrotalcites to form mixed oxides as well as possibilities in infra-red spectroscopy of adsorbed CO to determine surface sites in Fischer Tropsch catalysts. Use of in-situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity. (author)

  14. Molecular characterization of radon-induced rat lung tumors; Caracterisation moleculaire de tumeurs pulmonaires radon-induites chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet Bastide, K

    2008-11-15

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16{sup Ink4a} protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  15. Synthese de champs sonores adaptative

    Science.gov (United States)

    Gauthier, Philippe-Aubert

    La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal

  16. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  17. FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS

    Institute of Scientific and Technical Information of China (English)

    Guo-qiang Chen; Qiong Wu; Kai Zhao; Peter H.Yu

    2000-01-01

    Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated as PHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility and biodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drug delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanical property of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts have been made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening natural environments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the nondegradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost raw materials for fermentation and an inorganic extraction process for PHA purification. However, a super PHA production strain may play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is a common phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very important for finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapid PHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novel properties and lower cost will allow easier commercialization of PHA for many applications.

  18. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    OpenAIRE

    Patricia eRivera; Sergio eArrabal; Manuel eCifuentes; Grondona, Jesús M; Margarita ePérez-Martín; Leticia eRubio; Antonio eVargas Fuentes; Antonia eSerrano; Francisco Javier ePavon; Juan eSuarez; Fernando eRodríguez de Fonseca

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we use...

  19. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  20. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesizing Regression Results: A Factored Likelihood Method

    Science.gov (United States)

    Wu, Meng-Jia; Becker, Betsy Jane

    2013-01-01

    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  2. 52-GHz Millimetre-Wave PLL Synthesizer

    OpenAIRE

    Lee, Ja-Yol; Yu, Hyun-Kyu

    2010-01-01

    In this chapter, we design and fabricate a 52GHz frequency synthesizer for 60GHz dualconversion receiver using SiGe BiCMOS process technology. The designed PLL-based frequency synthesizer consists of a 26-GHz PLL and a 52-GHz frequency doubler. In the

  3. A Novel Route of Furan Compounds Syntheses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of compounds that contained furan skeletons were synthesized using 3,4-bis(trimethylsilyl)furan as staring material. 1H NMR, 13C NMR, MS and EA had identified these new molecules. The important factors that influenced reactions were discussed, and the new furan intermediates could be used in various organic syntheses.

  4. "Comments on Slavin": Synthesizing Causal Inferences

    Science.gov (United States)

    Briggs, Derek C.

    2008-01-01

    When causal inferences are to be synthesized across multiple studies, efforts to establish the magnitude of a causal effect should be balanced by an effort to evaluate the generalizability of the effect. The evaluation of generalizability depends on two factors that are given little attention in current syntheses: construct validity and external…

  5. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  6. SYNTHESIZED EXPECTED BAYESIAN METHOD OF PARAMETRIC ESTIMATE

    Institute of Scientific and Technical Information of China (English)

    Ming HAN; Yuanyao DING

    2004-01-01

    This paper develops a new method of parametric estimate, which is named as "synthesized expected Bayesian method". When samples of products are tested and no failure events occur, thedefinition of expected Bayesian estimate is introduced and the estimates of failure probability and failure rate are provided. After some failure information is introduced by making an extra-test, a synthesized expected Bayesian method is defined and used to estimate failure probability, failure rateand some other parameters in exponential distribution and Weibull distribution of populations. Finally,calculations are performed according to practical problems, which show that the synthesized expected Bayesian method is feasible and easy to operate.

  7. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

    Science.gov (United States)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.

    2016-04-01

    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  8. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    Science.gov (United States)

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  9. A universal isocyanide for diverse heterocycle syntheses

    NARCIS (Netherlands)

    Patil, Pravin; Dömling, Alexander; Khoury, Kareem; Herdtweck, Eberhardt

    2014-01-01

    Novel scaffolds are of uttermost importance for the discovery of functional material. Three different heterocyclic scaffolds easily accessible from isocyanoacetaldehyde dimethylacetal 1 by multicomponent reaction (MCR) are described. They can be efficiently synthesized by a Ugi tetrazole multicompon

  10. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  11. Progress in synthesizing functional nano materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With the consistent investment, the research team directed by Prof. Yadong Li of Chemistry Department of Tsinghua University achieved new progress in synthesizing nano materials with specific functions. The research team led by Prof.

  12. Syntheses and Functional Properties of Phthalocyanines

    Directory of Open Access Journals (Sweden)

    Keiichi Sakamoto

    2009-08-01

    Full Text Available Metal phthalocyanine tetrasulfonic acids, metal phthalocyanine octacarboxylic acids, metal octakis(hexyloxymethylphthalocyanines, and metal anthraquinocyanines have been synthesized. Then, zinc bis(1,4-didecylbenzo-bis(3,4-pyridoporphyrazines, the cyclotetramerization products of a 1:1 mixture of 3,6-didecylphthalonitrile and 3,4-dicyanopyridine, were synthesized. Futher, subphthalocyanine and its derivatives, with substituents such as thiobutyl and thiophenyl moieties were synthesized. Electrochemical measurements were performed on the abovementioned phthalocyanine derivatives and analogues in order to examine their electron transfer abilities and electrochemical reaction mechanisms in an organic solvent. Moreover, 1,4,8,11,15,18,22,25-octakis(thiophenylmethyl phthalocyanes were synthesized. The Q-bands of the latter compounds appeared in the near-infrared region. Furthermore, non-colored transparent films in the visible region can be produced.

  13. SYNTHESES AND PROPERTIES OF POLYMERIZABLE METALLOPHTHALOCYANINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    LIU Yunqi; YAMADA Akira; SHIGEHARA Kiyotaka; HARA Masahiko

    1988-01-01

    Metallophthalocyanine derivatives with polymerizable vinyl groups were synthesized, characterized and polymerized. Preliminary results on their Langmuir-Blodgett (LB) film formation and the electronic properties of (Indium-Tin Oxide/LB-film/Al) Schottky devices were reported.

  14. The Trajectory Synthesizer Generalized Profile Interface

    Science.gov (United States)

    Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.

    2010-01-01

    The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.

  15. Method to synthesize metal chalcogenide monolayer nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  16. New Mixer Used in Direct Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Milan Stork

    2008-01-01

    Full Text Available Frequency synthesizers are an essential part of any modern transceiver system. They generate clock and oscillator signals needed for up and down conversion. Today’s communication standards demand both high frequency accuracy and fast frequency settling. The fine frequency resolution, low spurious signals, accuracy and stability are most important for these devices. In this paper, the new frequency synthesizer architecture based on direct synthesis and coincidence mixer is presented. The simulation results are also shown.

  17. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  18. A.Flavus Mediated Biotransformations for the Syntheses of Active A-oxyfunctionalized Compounds

    Institute of Scientific and Technical Information of China (English)

    P.Ayhan; S.Betul; Sopaci; A.S.Demir

    2007-01-01

    1 Results Biotransformations are enzyme- and whole cell-catalysed conversions of non-natural substrates to products.They are important tools in organic synthesis,especially for the syntheses of chiral molecules,where the reactions catalysed may be asymmetric syntheses or the resolution of racemates.The main advantages associated with the use of single enantiomer compounds are increased specificity and the avoidance of adverse side effects[1].Whole cell reactions are advantegous over enzyme-catalyzed rea...

  19. Localization of the Ethylene-synthesizing System in Apple Tissue.

    Science.gov (United States)

    Mattoo, A K; Lieberman, M

    1977-11-01

    Apple (Malus sp.) slices gradually lost the ability to synthesize ethylene when incubated with a mixture of enzymes that digest cell walls. The released protoplasts did not produce ethylene. The release of protoplasts was faster from climacteric fruit slices than from preclimacteric tissue. In protoplast suspension culture, as new cell wall was deposited (as judged by the intensity of fluorescence of regenerating protoplasts stained with Calcofluor White and the incorporation of labeled myo-inositol into their ethanol-insoluble residue), ethylene synthesis was gradually regained. Restored ethylene synthesis reached a maximum after 80 hours in protoplasts from preclimacteric fruit and in 120 hours in those from climacteric tissue. Addition of methionine (1 mm) to the culture medium was essential for appreciable synthesis of ethylene; and this synthesis was inhibited by the aminoethoxy analogue of rhizobitoxine and by propyl gallate, inhibitors of ethylene synthesis in higher plants. We suggest that the ethylene-synthesizing enzyme system is highly structured in the apple cell and is localized in a cell wall-cell membrane complex.

  20. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  1. VCO PLL Frequency Synthesizers for Spacecraft Transponders

    Science.gov (United States)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian

    2007-01-01

    Two documents discuss a breadboard version of advanced transponders that, when fully developed, would be installed on future spacecraft to fly in deep space. These transponders will be required to be capable of operation on any deepspace- communications uplink frequency channel between 7,145 and 7,235 MHz, and any downlink frequency channel between 8,400 and 8,500 MHz. The document focuses on the design and operation of frequency synthesizers for the receiver and transmitter. Heretofore, frequency synthesizers in deep-space transponders have been based on dielectric resonator oscillators (DROs), which do not have the wide tuning bandwidth necessary to tune over all channels in the uplink or downlink frequency bands. To satisfy the requirement for tuning bandwidth, the present frequency synthesizers are based on voltage-controlled-oscillator (VCO) phase-locked loops (PLLs) implemented by use of monolithic microwave integrated circuits (MMICs) implemented using inGaP heterojunction bipolar transistor (HBT) technology. MMIC VCO PLL frequency synthesizers similar to the present ones have been used in commercial and military applications but, until now, have exhibited too much phase noise for use in deep-space transponders. The present frequency synthesizers contain advanced MMIC VCOs, which use HBT technology and have lower levels of flicker (1/f) phase noise. When these MMIC VCOs are used with high-speed MMIC frequency dividers, it becomes possible to obtain the required combination of frequency agility and low phase noise.

  2. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Samira Sadat, E-mail: s.abolmaali@gmail.com [Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Mohammadi, Samaneh, E-mail: samaneh.mohammadi1986@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Amoozgar, Zohreh, E-mail: zohreh_amoozgar@dfci.harvard.edu [Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States); Dinarvand, Rasoul, E-mail: dinarvand@tums.ac.ir [Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174 (Iran, Islamic Republic of)

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn{sup 2+}-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-L-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by {sup 1}H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77–83 nm and a relatively high drug loading (54 ± 4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. - Highlights: • Nanogel synthesis through chemical crosslinking of the transition metal ion coordinated polymer self-assembly • An enhanced cytocompatibility if compared to unmodified polymer • A noticeable endocytic cellular internalization and endosomolytic activity • A specific antitumor cytotoxicity, cell cycle arrest and apoptosis in resistant tumor cells.

  3. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  4. Engineering an Escherichia coli platform to synthesize designer biodiesels.

    Science.gov (United States)

    Wierzbicki, Michael; Niraula, Narayan; Yarrabothula, Akshitha; Layton, Donovan S; Trinh, Cong T

    2016-04-20

    Biodiesels, fatty acid esters (FAEs), can be synthesized by condensation of fatty acid acyl CoAs and alcohols via a wax ester synthase in living cells. Biodiesels have advantageous characteristics over petrodiesels such as biodegradability, a higher flash point, and less emission. Controlling fatty acid and alcohol moieties are critical to produce designer biodiesels with desirable physiochemical properties (e.g., high cetane number, low kinematic viscosity, high oxidative stability, and low cloud point). Here, we developed a flexible framework to engineer Escherichia coli cell factories to synthesize designer biodiesels directly from fermentable sugars. In this framework, we designed each FAE pathway as a biodiesel exchangeable production module consisting of acyl CoA, alcohol, and wax ester synthase submodules. By inserting the FAE modules in an engineered E. coli modular chassis cell, we generated E. coli cell factories to produce targeted biodiesels (e.g., fatty acid ethyl (FAEE) and isobutyl (FAIbE) esters) with tunable and controllable short-chain alcohol moieties. The engineered E. coli chassis carrying the FAIbE production module produced 54mg/L FAIbEs with high specificity, accounting for>90% of the total synthesized FAEs and ∼4.7 fold increase in FAIbE production compared to the wildtype. Fed-batch cultures further improved FAIbE production up to 165mg/L. By mixing ethanol and isobutanol submodules, we demonstrated controllable production of mixed FAEEs and FAIbEs. We envision the developed framework offers a flexible, alternative route to engineer designer biodiesels with tunable and controllable properties using biomass-derived fermentable sugars. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Megakaryocytic cells synthesize and platelets secrete alpha5-laminins, and the endothelial laminin isoform laminin 10 (alpha5beta1gamma1) strongly promotes adhesion but not activation of platelets.

    Science.gov (United States)

    Nigatu, Ayele; Sime, Wondossen; Gorfu, Gezahegn; Geberhiwot, Tarekegn; Andurén, Ingegerd; Ingerpuu, Sulev; Doi, Masayuki; Tryggvason, Karl; Hjemdahl, Paul; Patarroyo, Manuel

    2006-01-01

    Following vascular injury, basement membrane (BM) components of the blood vessels are exposed to circulating cells and may contribute to hemostasis and/or thrombosis. Laminins 8 (LN-8) (alpha4beta1gamma1) and 10 (LN-10) (alpha5beta1gamma1) are major laminin isoforms of the endothelial BM, and LN-8 is also secreted by activated platelets. In the present study, we demonstrate synthesis of alpha5-laminins LN-10 and LN-11 (alpha5beta2gamma1) by megakaryocytic cells, and intracellular expression of these laminin isoforms in blood platelets. In contrast to platelet LN alpha4 chain that had an apparent molecular weight of 180 kDa and associated mostly to LNbeta1 chain, platelet LNalpha5 consisted of 300/350 kDa polypeptides and associated mainly to LNbeta2. Both alpha4- and alpha5-laminins were secreted by platelets following stimulation. When compared to recombinant human (rh) LN-8, rhLN-10 was much more adhesive to platelets, though adhesion to both proteins was largely mediated via alpha6beta1 integrin. In spite of their adhesive properties, rhLN-8 and rhLN-10 induced neither P-selectin expression nor cell aggregation, two signs of platelet activation. This study demonstrates synthesis/expression of heterotrimeric alpha5-laminins in hematopoietic/blood cells, and provides evidence for the adhesive, but not activating, role of endothelial laminin isoforms in platelet biology.

  6. An automated Teflon microfluidic peptide synthesizer.

    Science.gov (United States)

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  7. Perception of Paralinguistic Traits in Synthesized Voices

    DEFF Research Database (Denmark)

    Baird, Alice Emily; Hasse Jørgensen, Stina; Parada-Cabaleiro, Emilia

    the paralinguistic traits of the synthesized voice. Using a corpus of 13 synthesized voices, constructed from acoustic concatenative speech synthesis, we assessed the response of 23 listeners from differing cultural backgrounds. Evaluating if the perception shifts from the known ground–truths, we asked listeners...... to assigned traits of age, gender, accent origin, and human–likeness. Results present a difference in perception for age and human–likeness across voices, and a general agreement across listeners for both gender and accent origin. Connections found between age, gender and human–likeness call for further...

  8. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis

    DEFF Research Database (Denmark)

    Xu, Deyang; Hanschen, Franziska S.; Witzel, Katja;

    2016-01-01

    , combined with the previous observation that GLS are exported from biosynthetic cells, suggest three possible routes of stele-synthesized aliphatic GLS after their synthesis: (i) GTR-dependent import to cells symplastically connected to the cortical cells and the rhizosphere; (ii) GTR-independent transport...... via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals....

  9. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-06-01

    Full Text Available Sangiliyandi Gurunathan, Jung Hyun Park, Jae Woong Han, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, Republic of KoreaBackground: Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared with bulk materials. The first goal of this study was to produce silver nanoparticles (AgNPs using two different biological resources as reducing agents, Bacillus tequilensis and Calocybe indica. The second goal was to investigate the apoptotic potential of the as-prepared AgNPs in breast cancer cells. The final goal was to investigate the role of p53 in the cellular response elicited by AgNPs.Methods: The synthesis and characterization of AgNPs were assessed by various analytical techniques, including ultraviolet-visible (UV-vis spectroscopy, X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, dynamic light scattering (DLS, and transmission electron microscopy (TEM. The apoptotic efficiency of AgNPs was confirmed using a series of assays, including cell viability, leakage of lactate dehydrogenase (LDH, production of reactive oxygen species (ROS, DNA fragmentation, mitochondrial membrane potential, and Western blot.Results: The absorption spectrum of the yellow AgNPs showed the presence of nanoparticles. XRD and FTIR spectroscopy results confirmed the crystal structure and biomolecules involved in the synthesis of AgNPs. The AgNPs derived from bacteria and fungi showed distinguishable shapes, with an average size of 20 nm. Cell viability assays suggested a dose-dependent toxic effect of AgNPs, which was confirmed by leakage of LDH, activation of ROS, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL-positive cells in MDA

  10. Evaluating Text-to-Speech Synthesizers

    Science.gov (United States)

    Cardoso, Walcir; Smith, George; Fuentes, Cesar Garcia

    2015-01-01

    Text-To-Speech (TTS) synthesizers have piqued the interest of researchers for their potential to enhance the L2 acquisition of writing (Kirstein, 2006), vocabulary and reading (Proctor, Dalton, & Grisham, 2007) and pronunciation (Cardoso, Collins, & White, 2012; Soler-Urzua, 2011). Despite their proven effectiveness, there is a need for…

  11. Concise total syntheses of (+/-)-strychnine and (+/-)-akuammicine.

    Science.gov (United States)

    Sirasani, Gopal; Paul, Tapas; Dougherty, William; Kassel, Scott; Andrade, Rodrigo B

    2010-05-21

    Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).

  12. Method and apparatus for synthesizing filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  13. SYNTHESES AND PROPERTIES OF SOME ORGANOSILANE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinghua; Robert West

    1984-01-01

    Some organosilane polymers with high molecular weights have been synthesized by cocondensation of organosilicon dihalide monomers with sodium metal in toluene. These polymers are both soluble in common solvents and meltable at lower temperatures, and can be molded, cast into films or drawn into fibers. Exposure of the solid polymers to ultraviolet light leads to degradation or crosslinking.

  14. Urea Decomposition Method to Synthesize Hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    Piao Ping YANG; Jian Feng YU; Tong Hao WU; Guo Zong LIU; Tae Sun CHANG; Dong Koo LEE; Deug Hee CHO

    2004-01-01

    The urea decomposition property at high temperature has been used to control the pH value in the synthesis of layer compounds. The hydrotalcites of Mg-Al and Ni-Al with high crystallinity were synthesized by using this property.

  15. Digital Frequency Synthesizer For Radar Astronomy

    Science.gov (United States)

    Sadr, Ramin; Satorius, Edgar; Robinett, J. Loris, Jr.; Olson, Erlend

    1992-01-01

    Report discusses conceptual digital frequency synthesizer part of programmable local oscillator in radar-astronomy system. Phase must remain continuous during adjustments of frequency, phase noise must be low, and spectral purity must be high. Discusses theory of operation in some mathematical detail and presents new analysis of spectral purity of output.

  16. Synthesizing Waves from Animated Height Fields

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Söderström, Andreas; Bridson, Robert

    2013-01-01

    for synthesizing Fourier-based ocean waves that match a previs input, allowing artists to quickly enhance the input wave animation with additional higher-frequency detail that moves consistently with the coarse waves, tweak the wave shapes to flatten troughs and sharpen peaks if desired (as is characteristic...

  17. Syntheses of very dense halogenated liquids.

    Science.gov (United States)

    Ye, Chengfeng; Shreeve, Jean'ne M

    2004-09-17

    A family of halogenated liquids with densities ranging from 1.95 to 2.80 g cm(-3) was readily synthesized by a one-pot procedure. These liquids exhibit characteristics of ionic liquids with melting/transition points lower than room temperature, long liquid ranges, and marked hydrolytic and thermal stabilities.

  18. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    Science.gov (United States)

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area. PMID:27340340

  19. Regioselectivity and stereochemistry of the synthesized sulfated polysaccharides

    OpenAIRE

    前田, 昌徹

    1998-01-01

    A novel sulfated β-1,3-xylan product was synthesized from algal cell wall microfibril homoxylan by the N,N-dimethylformamide (DMF)-SO3 complex sulfation method. Antithrombin activity appeared in this product was 6.5 times higher than that of standard heparin. From the results of 1H- and 13C-NMR spectroscopic analysis by DQF-COSY and HMQC, it was revealed that the ordered structure of β-1,3-xylan as a triple helix decayed and the resulting conformational change had been caused by the sulfatio...

  20. Syntheses and studies of organosilicon compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ren [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  1. Diskretfrequente Synthese von Nachhall-Prozessen

    OpenAIRE

    Boesnecker, Robert

    2008-01-01

    Die Arbeit verfolgt einen neuartigen Ansatz zur digitalen Nachhallsynthese. Es wird dabei von folgender Beobachtung ausgegangen: Ruft man in ein Klavier, dessen Saiten unbedämpft sind, so antwortet das Instrument mit einem aus diskreten Einzeltönen bestehenden Nachklang, der ähnlich wie ein raumakustischer Nachhall klingt. Verbreitert man bei einer diskretfrequenten Synthese nun die spektrale Breite eines jeden "Klaviertons" auf einen schmalbandigen Bandpass, so dass nicht 12 Töne, sondern 12...

  2. SYNTHESES AND CHARACTERIZATIONS OF HYPERBRANCHED POLYPHENYLENES

    Institute of Scientific and Technical Information of China (English)

    Han Peng; Hong-chen Dong; Yu-ping Dong; De-min Jia; Ben-zhong Tang

    2004-01-01

    New hyperbranched polyphenylenes with high molecular weights are synthesized by the copolycyclotrimerizations of 1,4-diethynylbenzene (I) with phenylacetylene (A), 1-octyne (B), and 1-dodecyne (C) catalyzed by TaCl5-Ph4Sn. The polymers are completely soluble in common solvents such as toluene, THF, chloroform, and dichloromethane. The polymers are characterized by spectroscopic methods and all of the polymers give satisfactory analysis data corresponding to their expected molecular structures.

  3. Predictions of synthesizing element 119 and 120

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The evaporation residue cross sections of synthesizing superheavy nuclei Z=119, 120 are calculated by different sets of master equations with different dynamical variables. Two methods basically predicted similar results that the Ca induced hot fusion can 48 produce element 119 easier than produce 120, and the evaporation residue cross sections for 119 are detectable by current advanced techniques, while the evaporation residue cross sections are below 0.1 pb for producing element 120.

  4. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  5. Magnesioferrite synthesized from magnesian-magnetites

    Directory of Open Access Journals (Sweden)

    Marcelo Hidemassa Anami

    2014-02-01

    Full Text Available Magnesioferrite is an important mineral due to its use in different scientific fields and by the fact that the soil through the action of weathering, can be a source of nutrients essential for plant development by the fact that in the soil. Its use in pure form or associated with other minerals is only possible through the synthesis in laboratory conditions. This study aimed to synthesize magnesioferrite and hematite from magnesian-magnetite by a co-precipitation procedure. The methodology used is an adaptation of the method of synthesis of pure magnetite, partially replacing the soluble salts of iron with soluble magnesium salts in the proportion of 30.0 mol% of Fe for Mg. The characterization of the synthetic minerals used x-rays diffraction, total chemical analysis and mass specific magnetic susceptibility. The results showed that besides the magnesian-magnetite an unprecedented muskoxita was synthesized, which upon annealing was converted to magnesioferrite and hematite and in the proportion of 93.1% and 6.9% respectively. The isomorphous substitution of Fe for Mg enhanced the thermal stability of the ferrimagnetic mineral synthesized.

  6. Titanat aluminium synthesized in a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, S.; Gulamova, D. [Uzbek Academy of Sciences, Tashkent (Uzbekistan). Materials Science Inst.; Boehmer, M.; Fend, T.; Rietbrock, P. [DLR, Koeln (Germany). MD-ET

    1997-12-31

    Solar furnace technology is an ecologically clean and economically attractive way, most suitable for research and development of new advanced materials. Such features of the solar furnace as sterile conditions of heating, high speed temperature delivering, materials processing in the whole range of the solar spectrum, quenching of the melt with rates of {proportional_to}10{sup 6} K/s, possibility of melting in the cold crucible etc. allow to synthesize complex oxide compositions, such as Al{sub 2}TiO{sub 5}. The study of Al{sub 2}TiO{sub 5} synthesized in the solar furnace has shown that the material is pure {beta}-Al{sub 2}TiO{sub 5} and possesses orthorhombic crystal structure. Microstructure of the material obtained from the melt has a prolonged prismatic shape. When the material is obtained by quenching the microstructure displays fine-grain structure with crystallites of 3-5 micron in size. Raman spectroscopy investigations have been performed on {beta}-Al{sub 2}TiO{sub 5} synthesized on the solar furnace. It has been observed a distinct band at 900 1/cm which is not presented in other six coordinated titanates. Most probably this band is connected with valent vibrations of the Al-O coupling in distorted octahedrons [AlO{sub 6}]. (orig.)

  7. Syntheses and studies of acetylenic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity ({sigma} = 10{sup {minus}3} S/cm) after doping with AsF{sub 5}. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 {times} 10{sup 3} to 5.3 {times} 10{sup 3}. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  8. Syntheses and studies of acetylenic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Yiwei, Ding [Iowa State Univ., Ames, IA (United States)

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity (σ = 10-3 S/cm) after doping with AsF5. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 x 103 to 5.3 x 103. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  9. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  10. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  11. Thermal Conductivity Measurement of Synthesized Mantle Minerals

    Science.gov (United States)

    Asimow, P. D.; Luo, S.; Mosenfelder, J. L.; Liu, W.; Staneff, G. D.; Ahrens, T. J.; Chen, G.

    2002-12-01

    Direct thermal conductivity (k) measurement of mantle minerals is crucial to constrain the thermal profile of the Earth as well as geodynamic studies of the mantle (e.g., to determine the Rayleigh number). We have embarked on systematic multi-anvil syntheses of dense polycrystalline specimens of mantle phases of adequate size and zero porosity for precise thermal conductivity measurements by the 3ω method (\\textit{Cahill and Pohl, Phys. Rev. B, 1987}) under elevated temperatures (T). Coesite and stishovite (see \\textit{Luo et al., GRL, 2002}) as well as majorite and wadsleyite have been synthesized; ringwoodite and perovskite are scheduled. Preliminary thermal conductivity measurements at ambient pressure on coesite (120 - 300 K, 9.53 Wm-1K-1 at 300 K) are consistent with prior room temperature data (\\textit{Yukutake & Shimada, PEPI, 1978}), while our stishovite data at 300 K appear to be low (1.96 Wm-1K-1). Efforts are being made to extend the measurement to higher temperatures (e.g., above Debye temperature Θ D), thus allowing determination of k(T) relationship (say, k~ T-n); success will depend on the decomposition kinetics of these metastable phases. The pressure dependence of k of these synthesized samples can also be measured (\\textit{e.g., Osako et al., HPMPS-6, 2002; Xu et al., EOS, 2001}). Recent thermal conductivity measurement on LiF and Al2O_3 from shock wave loading (\\textit{Holland & Ahrens, 1998}) is consistent with the modeling on MgO and Al2O_3 (\\textit{Manga & Jeanloz, JGR, 1997}) with classical theories. Thus, k values at modest pressures and T (say, above Θ D) would allow extrapolation of k to appropriate mantle conditions.

  12. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  13. 系膜细胞来源的白细胞介素-13对系膜细胞细胞因子基因表达的研究%Effect of mesangial cell-derived interleukin-13 on expression of cytokines synthesized by human mesangial cells

    Institute of Scientific and Technical Information of China (English)

    张爱华; 丁桂霞; 吴元俊; 潘晓勤; 蔡毅; 陈荣华

    2004-01-01

    目的白细胞介素-13(IL-13)是新近发现的一种抗炎性细胞因子,其在肾小球肾炎中的作用尚不清楚,该研究探讨脂多糖(LPS)对体外培养的人肾小球系膜细胞(HMC)表达IL-13作用以及IL-13对HMC促炎性细胞因子、趋化因子和促纤维化因子基因表达的影响.方法体外培养HMC,加入不同浓度的LPS和(或)IL-13后,用逆转录-聚合酶链反应和ELISA检测HMC IL-13 mRNA表达和细胞培养上清液中IL-13蛋白含量;应用核酸酶保护法检测HMC肿瘤坏死因子-α(TNF-α)、白介素-1α(IL-1α)、白介素-1β(IL-1β)、单核细胞趋化蛋白-1(MCP-1)、白介素-8(IL-8)、转化生长因子-β1(TGF-β1)mRNA的表达.结果未予LPS刺激的HMC不表达IL-13 mRNA和蛋白;LPS呈剂量依赖性和时间依赖性诱导HMC表达IL-13mRNA和分泌IL-13蛋白.HMC受LPS刺激后12 h即可表达IL-13 mRNA,48 h达高峰,72 h仍维持在较高的水平.HMC受LPS刺激后24 h,其培养上清液中检测到IL-13蛋白,48 h和72 h进一步增加.外源性IL-13呈剂量依赖性地抑制LPS诱导的系膜细胞TNF-α,IL-1α,IL-1β,MCP-1,IL-8,TGF-β1 mRNA的表达.应用抗IL-13抗体中和内源性IL-13后,上述炎症因子表达增强.结论IL-13是HMC自分泌因子.IL-13可抑制LPS诱导的系膜细胞促炎性细胞因子、趋化因子和促纤维化因子的表达,提示自分泌和旁分泌的IL-13对于肾小球疾病状态下肾脏系膜细胞的炎症反应具有抑制作用.%Objective This study aims to investigate the interleukin-13 (IL-13) expression in the human mesangial cells (HMC) and its effect on expressions of cytokines synthesized by HMC so as to study the role of IL-13 in the inflammatory process of glomerulonephritis. Methods The HMC were cultured and treated with LPS and/or recombinant human IL-13. The IL-13 mRNA expression and the IL-13 protein level in the cultured HMC were detected by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and enzyme

  14. Radiological characterization of the standard package of compacted wastes - CSD{sub C}; Caracterisation radiologique du colis standard de dechets compactes - CSD{sub C}

    Energy Technology Data Exchange (ETDEWEB)

    Gain, T. [Cogema, Etablissement de la Hague, 50 - Beaumont Hague (France)

    2001-07-01

    In order to reduce the volume of radioactive waste, Cogema has studied the compacting of waste coming from fuel structure, zirconium claddings, but on these wastes there is no knowledge about irradiation characteristics. A large program of of qualification has been made relative to every element of the system: measurement cells, standardization, configuration, algorithm and a phase of active qualification. (N.C.)

  15. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    Science.gov (United States)

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  16. Recent Advances in Chemoenzymatic Peptide Syntheses

    Directory of Open Access Journals (Sweden)

    Kenjiro Yazawa

    2014-09-01

    Full Text Available Chemoenzymatic peptide synthesis is the hydrolase-catalyzed stereoselective formation of peptide bonds. It is a clean and mild procedure, unlike conventional chemical synthesis, which involves complicated and laborious protection-deprotection procedures and harsh reaction conditions. The chemoenzymatic approach has been utilized for several decades because determining the optimal conditions for conventional synthesis is often time-consuming. The synthesis of poly- and oligopeptides comprising various amino acids longer than a dipeptide continues to pose a challenge owing to the lack of knowledge about enzymatic mechanisms and owing to difficulty in optimizing the pH, temperature, and other reaction conditions. These drawbacks limit the applications of the chemoenzymatic approach. Recently, a variety of enzymes and substrates produced using recombinant techniques, substrate mimetics, and optimal reaction conditions (e.g., frozen aqueous media and ionic liquids have broadened the scope of chemoenzymatic peptide syntheses. In this review, we highlight the recent advances in the chemoenzymatic syntheses of various peptides and their use in developing new materials and biomedical applications.

  17. Biogenic synthesized nanoparticles and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan [Manipal University Jaipur (India)

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  18. Biogenic synthesized nanoparticles and their applications

    Science.gov (United States)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  19. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Huawen Lin

    2010-09-01

    Full Text Available The essential coenzyme nicotinamide adenine dinucleotide (NAD+ plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis, as in plants, or nicotinamide, as in mammals (salvage synthesis. The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO, quinolinate synthetase (QS, quinolate phosphoribosyltransferase (QPT, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT, and NAD+ synthetase (NS. Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1 or plasmids with cloned genes (nic1-1 and nic15-1 into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1 has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.

  20. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  1. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  2. Structure of the enzymatically synthesized fructan inulin

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, A.G.; Schroeer, B. [Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, 14476 Golm (Germany); Radosta, S. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Postfach 126, 14504 Teltow (Germany); Wolff, D.; Czapla, S.; Springer, J. [Technische Universitaet Berlin, FG Makromolekulare Chemie, Str. des 17. Juni 135, 10623 Berlin (Germany)

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10{sup 6} and 90x10{sup 6} g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Methods for synthesizing metal oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  4. Energy storage materials synthesized from ionic liquids.

    Science.gov (United States)

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  5. The Complexity of Synthesizing Uniform Strategies

    Directory of Open Access Journals (Sweden)

    Bastien Maubert

    2013-03-01

    Full Text Available We investigate uniformity properties of strategies. These properties involve sets of plays in order to express useful constraints on strategies that are not μ-calculus definable. Typically, we can state that a strategy is observation-based. We propose a formal language to specify uniformity properties, interpreted over two-player turn-based arenas equipped with a binary relation between plays. This way, we capture e.g. games with winning conditions expressible in epistemic temporal logic, whose underlying equivalence relation between plays reflects the observational capabilities of agents (for example, synchronous perfect recall. Our framework naturally generalizes many other situations from the literature. We establish that the problem of synthesizing strategies under uniformity constraints based on regular binary relations between plays is non-elementary complete.

  6. Simplification of Methods for PET Radiopharmaceutical Syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  7. Method and apparatus for synthesizing hydrocarbons

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  8. Using quantum mechanics to synthesize electronic devices

    Science.gov (United States)

    Schmidt, Petra; Levi, Anthony

    2005-03-01

    Adaptive quantum design [1] has been used to explore the possibility of creating new classes of electronic semiconductor devices. We show how non-equilibrium electron transmission through a synthesized conduction band potential profile can be used to obtain a desired current - voltage characteristic. We illustrate our methodology by designing a two-terminal linear resistive element in which current is limited by quantum mechanical transmission through a potential profile and power is dissipated non-locally in the electrodes. As electronic devices scale to dimensions in which the physics of operation is dominated by quantum mechanical effects, classical designs fail to deliver the desired functionality. Our device synthesis approach is a way to realize device functionality that may not otherwise be achieved. [1] Y.Chen, R.Yu, W.Li, O.Nohadani, S.Haas, A.F.J. Levi, Journal of Applied Physics, Vol.94, No.9, p6065, 2003

  9. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  10. Syntheses and Structure Determinations of Calcium Thiolates.

    Science.gov (United States)

    Chadwick, Scott; Englich, Ulrich; Noll, Bruce; Ruhlandt-Senge, Karin

    1998-09-07

    The exploration of synthetic methodologies toward heavy alkaline-earth chalcogenolates resulted in the preparation and structural characterization of a family of calcium thiolates, including [Ca(SC(6)F(5))(2)(py)(4)], 1 (py = pyridine), the separated ion-triple [Ca(18-crown-6)(NH(3))(3))][SMes](2).2THF, 2 (Mes = 2,4,6-tBu(3)C(6)H(2)), and the contact triple [Ca(18-crown-6)(SMes)(2)].THF, 3. Compound 1 was prepared by treating [Ca(N(SiMe(3))(2))(2)](2) with 4 equiv of HSC(6)F(5) under addition of pyridine. The thiolates 2 and 3 were synthesized by treatment of calcium metal dissolved in dry, liquid NH(3) under addition of 2 equiv of HSMes and crown ether or, alternatively, by the reduction of MesSSMes with calcium metal in dry, liquid ammonia. We also report two reaction products isolated during attempted calcium thiolate syntheses: [CaBr(4)(THF)(2)(&mgr;(2)-Li)(2)(THF)(4)], 4, isolated as the product of a salt elimination reaction between CaBr(2) and 2 equiv of [Li(THF)(n)()S-2,4,6-(i)()Pr(3)C(6)H(2)](m)(). [(NH(4))(py)(SC(6)F(5))], 5, was obtained as the sole product in the reaction of metallic calcium with HSC(6)F(5) in liquid ammonia under addition of pyridine. All compounds were characterized by single-crystal X-ray crystallography in addition to IR and NMR spectroscopy.

  11. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  12. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    Science.gov (United States)

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microrheology of single microtubule filaments and synthesized cytoskeletal networks

    Science.gov (United States)

    Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The ability to sense and respond to external mechanical forces is crucial for cells in many processes such as cell growth and division. Common models on mechanotransduction rely on the conversion of mechanical stimuli to chemical signals in the cell periphery and their translocation by diffusion (passive) or molecular motors (active). These processes are rather slow (~ seconds) and it has been argued that the cytoskeleton itself might be able to transport a mechanical signal within microseconds via stress waves. Microtubules are the stiffest component of the cytoskeleton and thus ideal candidates for this purpose. We study the frequency dependent response of single microtubule filaments and small networks thereof in a bottom-up approach using several (N =2-10) time-multiplexed optical tweezers together with back focal plane interferometry. Small synthesized networks with a defined geometry are constructed using trapped Neutravidin beads as anchor points for biotinylated filaments. The network is then probed by a defined oscillation of one anchor (actor). The frequency dependent response of the remaining beads (sensors) is analyzed experimentally and modeled theoretically over a wide frequency range.

  14. Copper nanocoils synthesized through solvothermal method

    Science.gov (United States)

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  15. Measuring and Synthesizing Systems in Probabilistic Environments

    CERN Document Server

    Chatterjee, Krishnendu; Jobstmann, Barbara; Singh, Rohit

    2010-01-01

    Often one has a preference order among the different systems that satisfy a given specification. Under a probabilistic assumption about the possible inputs, such a preference order is naturally expressed by a weighted automaton, which assigns to each word a value, such that a system is preferred if it generates a higher expected value. We solve the following optimal-synthesis problem: given an omega-regular specification, a Markov chain that describes the distribution of inputs, and a weighted automaton that measures how well a system satisfies the given specification under the given input assumption, synthesize a system that optimizes the measured value. For safety specifications and measures that are defined by mean-payoff automata, the optimal-synthesis problem amounts to finding a strategy in a Markov decision process (MDP) that is optimal for a long-run average reward objective, which can be done in polynomial time. For general omega-regular specifications, the solution rests on a new, polynomial-time al...

  16. Computational Models to Synthesize Human Walking

    Institute of Scientific and Technical Information of China (English)

    Lei Ren; David Howard; Laurence Kenney

    2006-01-01

    The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper,the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.

  17. Why can't vertebrates synthesize trehalose?

    Science.gov (United States)

    Argüelles, Juan-Carlos

    2014-10-01

    The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and-more specifically-in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.

  18. Enantioselective Syntheses of (-)- and (+)-Homocitric Acid Lactones.

    Science.gov (United States)

    Rodríguez R, Gastón H.; Biellmann, Jean-François

    1996-03-08

    Highly enantioselective syntheses of enantiomers of homocitric acid lactones (R)-5a and (S)-5b are described. Thermal Diels-Alder cycloadditions of 2a and 2b to 1,3-butadiene produced adducts 3a and 3b, respectively. Oxidative ozonolysis of latter adducts gave products 4a and 4b which after acid treatment afforded a mixture with 5a and 5b as major component. Acid lactones 5a and 5b were converted into their dimethyl esters 6a and 6b which were purified by chromatography. After saponification, the products obtained were crystallized to yield (-)- and (+)-homocitric acid lactones ((R)-5a and (S)-5b). Diastereomeric excess (de) of Diels-Alder adducts 3a and 3b was determined by means of Mosher esters of glycols 8a, 8b, and racemic 8. Diels-Alder cycloaddition products of lactones 2a and 2b to 1,3-butadiene showed a diastereoselectivity of 96%.

  19. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  20. Multistep sintering to synthesize fast lithium garnets

    Science.gov (United States)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  1. Syntheses of aliphatic polycarbonates from 2'-deoxyribonucleosides.

    Science.gov (United States)

    Suzuki, Masato; Sekido, Toyokazu; Matsuoka, Shin-ichi; Takagi, Koji

    2011-05-01

    Poly(2'-deoxyadenosine) and poly(thymidine) constructed of carbonate linkages were synthesized by polycondensation between silyl ether and carbonylimidazolide at the 3'- and 5'-positions of the 2'-deoxyribonucleoside monomers. The N-benzoyl-2'-deoxyadenosine monomer afforded the corresponding polycarbonate together with the cyclic oligomers. However, the deprotection of the N-benzoyl group resulted in the scission of the polymer main chain. Thus, the N-unprotected 2'-deoxyadenosine monomers were examined for polycondensation. However, there was involved the undesired reaction between the adenine amino group and the carbonylimidazolide to form the carbamate linkage. In order to exclude this unfavorable reaction, dynamic protection was employed. Strong hydrogen bonding was used in place of the usual covalent bonding for reducing the nucleophilicity of the adenine amino group. Herein, 3',5'-O-diacylthymidines that form the complementary hydrogen bonding with the adenine amino group were added to the polymerization system of the N-unprotected 2'-deoxyadenosine monomer. Consequently, although the oligomers (M(n) = 1000-1500) were produced, the contents of the carbamate group were greatly reduced. The dynamic protection reagents were easily and quantitatively recovered as the MeOH soluble parts from the polymerization mixtures. In the polycondensation of the thymidine monomer, there tended to be involved another unfavorable reaction of carbonate exchange, which consequently formed the irregular carbonate linkages at not only the 3'-5' but also the 3'-3' and 5'-5' positions. Employing the well-designed monomer suppressed the carbonate exchange reaction to produce poly(thymidine) with the almost regular 3'-5'carbonate linkages.

  2. Syntheses and electronic structures of decamethylmetallocenes

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  3. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  4. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    Science.gov (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  5. MM-wave synthesizer has 8-to-15-GHz bandwidth

    Science.gov (United States)

    Fortunato, M. P.; Ishikawa, K. Y.

    1982-05-01

    Millimeter-wave sweeper IMPATT diodes are combined with microprocessor control and opamp circuitry to give a fast and accurate W-band synthesizer. The breakthrough in millimeter-wave frequency synthesizer development derives from the ability to lock virtually any millimeter-wave IMPATT. The considerable improvement in SSB phase noise of a phase-locked sweeper IMPATT versus a free-running Gunn, fixed-tuned IMPATT, and free-running sweeper IMPATT is illustrated. The spectra of a free-running and a phase-locked sweeper IMPATT are compared. A block diagram of the complete millimeter-wave synthesizer is included, together with typical W-band synthesizer specifications.

  6. Template synthesized chitosan nano test tubes for drug delivery applications

    Science.gov (United States)

    Perry, Jillian L. Moulton

    There is tremendous current interest in developing nanoscale drug delivery vehicles. Though intensive efforts have focused on developing spherical drug delivery vehicles, cylindrically shaped vehicles such as nanotubes offer many advantages. Typically, nanotubes can carry a larger inner payload than nanoparticles of the same diameter. Also, we can prepare nanotubes in templates whose geometries can be controlled, in turn allowing precise control over the length and diameter of the tubes. In addition, template synthesized nanotubes can be differentially functionalized on the inner and outer surfaces. Furthermore, templates that are closed on one end can be used to fabricate nano test tubes (closed on one end). The geometry of these nano test tubes allows them to be easily filled with a payload, the open end sealed with a nanoparticle to protect the payload from leaking out, and then the exterior of the tube can be functionalized with a targeting moiety. In an effort to develop such a system, we explored the fabrication of chitosan nano test tubes. Defect-free, chitosan nano test tubes of uniform size were synthesized within the pores of a nanoporous alumina template membrane. While the nano test tubes remained within the template membrane, their inner cavities were filled with a model payload. The payload was then trapped inside the nano test tubes by sealing the open ends of the tubes with latex nanoparticle caps. For proof-of-principle studies, imine linkages were used to attach the caps to the nano test tubes. To create a self-disassembling system, disulfide chemistry was used to covalently cap the nano test tubes. Once removed from the template, the exterior of the nano test tubes were modified with a targeting moiety, allowing them to be targeted to pathological sites. We have also shown that the chitosan nano test tubes are biodegradable by two systems: enzymatic cleavage by lysozymes and disulfide cleavage of the crosslinker by reducing environments

  7. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.

    Science.gov (United States)

    Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well.

  8. Preparation and photoluminescence properties of MMoO4 (M = Cu, Ni, Zn) nano-particles synthesized via electrolysis

    Science.gov (United States)

    Zhang, Wei; Yin, Jiajia; Min, Fanqi; Jia, Lili; Zhang, Daoming; Zhang, Quansheng; Xie, Jingying

    2017-01-01

    Metal molybdate (MMoO4, M = Cu, Ni, Zn) nano-particles were successfully synthesized by electrochemical method in a cation exchange membrane electrolytic cell with Na2MoO4 solution as anolyte, diluted hydrochloric acid (HCl) as catholyte, metal (Cu, Ni, Zn) as anode and stainless steel as cathode. The composition, morphology, structure, microstructure and photoluminescence property of the synthesized MMoO4 were investigated and characterized. The results show that the photoluminescence spectra of electrolytic synthesized MMoO4 have fine structures, which is markedly different from the existing research.

  9. Towards a complete caracterisation of Ganymede's environnement

    Science.gov (United States)

    Cessateur, Gaël; Barthélémy, Mathieu; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Mbemba Kabuiku, Lydie

    2013-04-01

    In the framework to the JUICE mission to the Jovian system, a complete picture of the interaction between Ganymede's atmosphere and external forcing is needed. This will definitely allow us to constrain instrument performances according to the mission objectives. The main source of information regarding the upper atmosphere is the non LTE UV-Visible-near IR emissions. Those emissions are both induce by the incident solar UV flux and particle precipitations. This work aims at characterizing the impact from those external forcing, and then at deriving some key physical parameters that are measurable by an orbiter, namely the oxygen red line at 630 nm or the resonant oxygen line at 130 nm for example. We will also present the 4S4J instrument, a proposed EUV radiometer, which will provides the solar local EUV flux, an invaluable parameter for the JUICE mission. Based on new technologies and a new design, only two passbands are considered for reconstructing the whole EUV spectrum.

  10. Radioactive waste caracterisation by neutron activation

    OpenAIRE

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point o...

  11. Optical studies of directly synthesized trans-polyacetylene films

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, T. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Suruga, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Natsume, N. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Ishikawa, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Takezoe, H. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Fukuda, A. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan)

    1995-03-01

    We studied optical spectra of directly synthesized trans-polyacetylene films. Reflection and resonance Raman spectra show that effective conjugation length distribution has longer average length and narrower width than that of ordinary thermoisomerized films. Moreover, ESR spectra show that directly synthesized films have fewer defects than ordinary thermoisomerized films. (orig.)

  12. Syntheses of (±-Romucosine and (±-Cathafiline

    Directory of Open Access Journals (Sweden)

    Surachai Nimgirawath

    2006-11-01

    Full Text Available The structures previously assigned to (--romucosine and (+-cathafiline, N-(methoxycarbonyl aporphine alkaloids from Rollina mucosa (Annonaceae and Cassytha filiformis (Lauraceae respectively, have been confirmed by total syntheses of the racemic substances. The key step of the syntheses involved formation of ring C of the aporphines by a radical-initiated cyclisation.

  13. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  14. Involvement of matrix metalloproteinases in the inhibition of cell invasion and migration through the inhibition of NF-[kappa]B by the new synthesized ethyl 2-[N-p-chlorobenzyl-(2'-methyl)]anilino-4-oxo-4,5-dihydrofuran-3-carboxylate (JOTO1007) in human cervical cancer Ca ski cells.

    Science.gov (United States)

    Huang, An-Cheng; Hsu, Shu-Chun; Kuo, Chao-Lin; Liao, Ching-Lung; Lai, Kuang-Chi; Lin, Tsung-Ping; Wu, Shin-Hwar; Lu, Hsu-Feng; Tang, Nou-Ying; Yang, Jai-Sing; Chung, Jing-Gung

    2009-01-01

    JOTO1007 (ethyl 2-[N-p-chlorobenzyl-(2'-methyl)] anilino-4-oxo-4,5-dihydrofuran -3-carboxylate) has anticancer effects in human cervical cancer Ca Ski cells. However, its mechanism of action on the cell migration and invasion of human cervical cancer Ca Ski cells is not fully understood. In this study, firstly, the effects of JOTO1007 on the migration and invasion of Ca Ski cells were examined by using matrigel counting. The results showed that JOTO1007 suppressed the migration and invasion of the Ca Ski cells. Secondly, the effect of JOTO1007 on the levels of proteins associated with cell metastasis was examined using Western blotting. The results indicated that JOTO1007 inhibited the levels of son of sevenless homolog 1 (SOS-1), growth factor receptor-bound protein 2 (GRB2), Ras homolog gene family, member A (RhoA), Rho-associated, coiled-coil containing protein kinase 1 (ROCK-1), focal adhesion kinase (FAK), phosphorylated-c-jun (p-c-jun), nuclear factor kappa B (NF-kappaB) p65, cyclooxygenase-2 (COX-2), extracellular signal-regulated kinases 1/2 (ERK1/2), matrix metalloproteinase-2 (MMP-2), MMP-7 and MMP-9 but promoted the levels of protein kinase C (PKC), phosphoinositide 3-kinases (PI3K), MAP kinase kinase kinase 3 (MEKK3), mitogen-activated protein kinase kinase 7 (MKK7), c-jun and inducible nitric oxide synthases (iNOS), while not affecting Ras, phosphorylated-ERK (p-ERK), p38 and c-jun N-terminal kinase 1/2 (JNK1/2), which finally led to the inhibition of migration and invasion of the Ca Ski cells in vitro. Overall, JOTO1007 inhibited NF-kappaB which then led to the inhibition of the MMP-2, -7 and -9 expression followed by the inhibition of migration and invasion in the Ca Ski cells.

  15. A new route of synthesizing perovskite nanotubes by templating approach

    Science.gov (United States)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  16. Synthesis, sintering and dissolution of thorium and uranium (IV) mixed oxide solid solutions: influence of the method of precursor preparation; Synthese, frittage et caracterisation de solutions solides d'oxydes mixtes de thorium et d'uranium (IV): influence de la methode de preparation du precurseur

    Energy Technology Data Exchange (ETDEWEB)

    Hingant, N

    2008-12-15

    Mixed actinide dioxides are currently considered as potential fuels for the third and fourth generations of nuclear reactors. In this context, thorium-uranium (IV) dioxide solid solutions were studied as model compounds to underline the influence of the method of preparation on their physico-chemical properties. Two methods of synthesis, both based on the initial precipitation of oxalate precursors have been developed. The first consisted in the direct precipitation ('open' system) while the second involved hydrothermal conditions ('closed' system). The second method led to a significant improvement in the crystallization of the samples especially in the field of the increase of the grain size. In these conditions, the formation of a complete solid solution Th{sub 1-x}U{sub x}(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O was prepared between both end-members. Its crystal structure was also resolved. Whatever the initial method considered, these compounds led to the final dioxides after heating above 400 C. The various steps associated to this transformation, involving the dehydration of precursors then the decomposition of oxalate groups have been clarified. Moreover, the use of wet chemistry methods allowed to reduce the sintering temperature of the final thorium-uranium (IV) dioxide solid solutions. Whatever the method of preparation considered, dense samples (95% to 97% of the calculated value) were obtained after only 3 hours of heating at 1500 C. Additionally, the use of hydrothermal conditions significantly increased the grain size, leading to the reduction of the occurrence of the grain boundaries and of the global residual porosity. The significant improvement in the homogeneity of cations distribution in the samples was also highlighted. Finally, the chemical durability of thorium-uranium (IV) dioxide solid solutions was evaluated through the development of leaching tests in nitric acid. The optimized homogeneity especially in terms of the cations distribution, allowed to limit the influence of the composition, probably because of the absence of UO{sub 2} aggregates in the samples while the decrease of the number of grain boundaries led to dissolution rates one order of magnitude lower than that determined for samples prepared in 'open' conditions. Finally, the precipitation of thorium in secondary neo-formed phases (such as ThO{sub 2}, xH{sub 2}O or Th(OH){sub 4}) when the saturation conditions were reached in the leachate was also underlined. (author)

  17. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing; Synthese et caracterisation d'un acier ODS prepare par un procede inspiredu broyage reactif: etude de l'influence des conditions de broyage et recuit

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M.

    2010-10-15

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe{sub 3} andFe{sub 2}O{sub 3} as starting reactants instead of Y{sub 2}O{sub 3} to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  18. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    Science.gov (United States)

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent.

  19. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... and in their basement membranes suggesting, but not proving, that both types of cells have ability to synthesize laminin. Production of laminin and the presence of laminin-containing basement membrane material may be important for the biological behavior of the yolk sac tumor. This tumor will also be a useful source...

  20. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    Science.gov (United States)

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-03-03

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.

  1. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    Directory of Open Access Journals (Sweden)

    Taher A. Salaheldin

    2016-03-01

    Full Text Available Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD pattern, high-resolution transmission electron Microscopy (HRTEM and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.

  2. Assessment voice synthesizers for reading in digital books

    Directory of Open Access Journals (Sweden)

    Sérvulo Fernandes da Silva Neto

    2013-07-01

    Full Text Available The digital accessibility shows ways to information access in digital media that assist people with different types of disabilities to a better interaction with the computer independent of its limitations. Of these tools are composed by voice synthesizers, that supposedly simplifying their access to any recorded knowledge through digital technologies. However such tools have emerged originally in countries foreign language. Which brings us to the following research problem: the voice synthesizers are appropriate for reading digital books in the Portuguese language? The objective of this study was to analyze and classify different software tools voice synthesizers in combination with software digital book readers to support accessibility to e-books in Portuguese. Through literature review were identified applications software voice synthesizers, composing the sample analyzed in this work. We used a simplified version of the method of Multiple Criteria Decision Support - MMDA, to assess these. In the research 12 were considered readers of e-books and 11 software voice synthesizer, tested with six formats of e-books (E-pub, PDF, HTML, DOC, TXT, and Mobi. In accordance with the results, the software Virtual Vision achieved the highest score. Relative to formats, it was found that the PDF has measured a better score when summed the results of the three synthesizers. In the studied universe contacted that many synthesizers simply cannot be used because they did not support the Portuguese language.

  3. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus.

    Science.gov (United States)

    Arul, Velusamy; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2017-03-01

    In this work, a simple hydrothermal route for the synthesis of fluorescent nitrogen doped carbon dots (N-CDs) is reported. The Hylocereus undatus (H. undatus) extract and aqueous ammonia are used as carbon and nitrogen source, respectively. The optical properties of synthesized N-CDs are analyzed using UV-Visible (UV-Vis) and fluorescence spectroscopy. The surface morphology, elemental composition, crystallinity and functional groups present in the N-CDs are examined using high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The synthesized N-CDs emit strong blue fluorescence at 400nm under the excitation of 320nm. Further, the excitation dependent emission properties are also observed from the fluorescence of synthesized N-CDs. The HR-TEM results reveal that synthesized N-CDs are in spherical shape with average diameter of 2.5nm. The XRD pattern exhibits, the graphitic nature of synthesized N-CDs. The doping of nitrogen is confirmed from the EDS and FT-IR studies. The cytotoxicity and biocompatibility of N-CDs are evaluated through MTT assay on L-929 (Lymphoblastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells. The results indicate that the fluorescent N-CDs show less cytotoxicity and good biocompatibility on both L-929 and MCF-7 cells. Moreover, the N-CDs show excellent catalytic activity towards the reduction of methylene blue by sodium borohydride. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha, E-mail: sadrassudha@gmail.com

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines.

  5. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  6. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized.

    Science.gov (United States)

    Wang, Huanan; Xu, Wenqing

    2017-07-15

    Due to higher transmembrane potential of tumor cells, enhanced accumulation of cationic drugs in tumor mitochondria has been attributed to a higher (more negative inside) mitochondrial transmembrane potential compared with normal cells, emerging researchers are focus on developing mitochondria-targeted antitumor drugs. Coumarins showed great potential on antitumor, but mitochondria-targeted coumarin derivatives have not been reported. In the present study, we synthesized mitochondria-targeted-methyl coumarin (mito-methyl coumarin) through coupling 6-methyl coumarin to TPP. We confirmed that mito-methyl coumarin inhibited HeLa cells proliferation selectively, induced ROS generation, reduced mitochondrial membrane potential, promoted mitochondria Ca(2+) accumulation, decreased mitochondria mass and induced HeLa cells apoptosis, but methyl coumarin did not. These results demonstrate that we succeed in synthesizing a novel mitochondria-targeted drug, mito-methyl coumarin, which is effective in inhibiting HeLa cells proliferation and inducing HeLa cells apoptosis through promoting ROS generation and mitochondria Ca(2+) accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    Science.gov (United States)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  8. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    Science.gov (United States)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-05

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise in vitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  9. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  10. Syntheses of (+)-cytisine, (-)-kuraramine, (-)-isokuraramine, and (-)-jussiaeiine A.

    Science.gov (United States)

    Honda, Toshio; Takahashi, Rie; Namiki, Hidenori

    2005-01-21

    Total syntheses of (+)-cytisine, (-)-kuraramine, (-)-isokuraramine, and (-)-jussiaeiine A were achieved via a samarium diiodide-promoted reductive deamination reaction, followed by simultaneous recyclization of a proline derivative to give the corresponding delta-lactam derivative, as a key step.

  11. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  12. Synthesizing SoTL Institutional Initiatives toward National Impact

    Science.gov (United States)

    Simmons, Nicola

    2016-01-01

    This chapter draws on other authors' ideas in this issue, describing parallels and outlining distinctions toward a synthesized model for the development of SoTL initiatives at the institutional level and beyond.

  13. Mayenite Synthesized Using the Citrate Sol-Gel Method

    Energy Technology Data Exchange (ETDEWEB)

    Ude, Sabina N [ORNL; Rawn, Claudia J [ORNL; Meisner, Roberta A [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kirkham, Melanie J [ORNL; Jones, Gregory L. [University of Tennessee, Knoxville (UTK); Payzant, E Andrew [ORNL

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  14. Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures.

    Science.gov (United States)

    2007-11-02

    syntheses can be accomplished within the pores of the alumina templates to make semiconductor tubules (27). Figure 5 shows that Ti02 tubules prepared...surface area forms have higher photo efficiencies (28). Ti02 /conductor nanocomposites may prove to be useful photocatalysts because the template...synthesized Ti02 nanostructures have very high surface areas (27). Furthermore, as discussed previously, each outer tubular Ti02 catalyst particle has

  15. Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase.

    Science.gov (United States)

    Hoopman, Todd C; Wang, Wei; Brautigam, Chad A; Sedillo, Jennifer L; Reilly, Thomas J; Hansen, Eric J

    2008-02-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.

  16. Conductivity dependence on synthesis parameters in hydrothermally synthesized ceria nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anis-ur-Rehman, M., E-mail: marehman@comsats.edu.pk; Saleemi, A.S.; Abdullah, A.

    2013-12-05

    Highlights: •Facile synthesis of CeO{sub 2} with composite mediated hydrothermal method is done. •Synthesis parameters significantly effect on conduction. •Enhanced dc electrical conductivity (0.3386 S cm{sup −1}) is observed at 700 °C. •Better ac conductivity is observed 2.661 S cm{sup −1} at 700 °C for 3 MHz. •Potential material for electrolyte in fuel cells for higher efficiencies. -- Abstract: Nanoparticles of cerium oxide were synthesized by Composite Mediated Hydrothermal Approach (CMHA). The synthesis conditions were optimized to enhance the conduction properties and for narrow range of nanocrystallites. The synthesis parameters like hydrothermal treatment temperature (at 180 °C and 220 °C) and time (for 45 min, 70 min and 90 min) were optimized. The structural properties of the prepared ceria were examined by X-ray diffraction (XRD) data. Scherrer’s formula was used to calculate the crystallite sizes of average and most intense peak. Temperature dependent dc conductivity was measured in temperature range 200–700 °C and found to be increasing with the increase in measuring temperature and controlling the other synthesis conditions. The frequency dependent ac conductivity and dielectric properties were measured in frequency range 20 Hz–3 MHz at different temperatures. The ac conductivity increased (from 0.00091 to 2.661 S cm{sup −1}) with the increase in temperature (from 200 to 700 °C). Raman spectrum was observed for the different bands of cerium oxide and oxygen vacancies at 514 nm excitation laser line.

  17. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: claudiamartinezalonso30@gmail.com [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: hzh@ier.unam.mx [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)

    2017-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  18. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    Science.gov (United States)

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  19. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

    Directory of Open Access Journals (Sweden)

    K. Khanra

    2016-01-01

    Full Text Available Objective(s: For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The formation of nanoparticles was confirmed by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, XRD and UV-Vis spectrophotometric analysis.  The biochemical properties were assayed by antibacterial study, cytotoxicity assay using cancer cell line.  Results: The formation of silver nanoparticles was confirmed by UV-VIS spectroscopic analysis which showed absorbance peak at 425 nm.  X-ray diffraction photograph indicated the face centered cubic structure of the synthesized AgNPs.  TEM has displayed the different dimensional images of biogenic silver nanoparticles with particle size distribution ranging from 15-40 nm with an average size of 32 nm. Silver particles are spherical in shape, clustered.  The EDX analysis was used to identify the elemental composition of synthesized AgNPs. Antibacterial activity of the synthesized AgNPs against three Gram positive and Gram negative bacteria strains like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa carried out showed significant zones of inhibition. The cytotoxicity study by AgNPS also showed cytotoxicity on ovarian cancer cell line PA-1 and lung epithelial cancer cell line A549.  Conclusion: The present study confirms that the AgNPs have great promise as antibacterial, and anticancer agent.

  20. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates.

    Science.gov (United States)

    Yu, Dongshan; Trad, Tarek; McLeskey, James T; Craciun, Valentin; Taylor, Curtis R

    2010-05-28

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20-80 nm in diameter, up to 6 μm in length, density oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  1. Mechanism of the industrial enterprises marketing communication synthesized effect formation

    Directory of Open Access Journals (Sweden)

    Ya.O. Tymokhina

    2014-09-01

    Full Text Available The aim of the article. The main purpose of the article is to propose mechanism of the industrial enterprises marketing communication (MC synthesized effect formation. An indispensable component of MC mechanism synthesized effect of industrial enterprise is the legislation that governs use of synthesized marketing communications and obtaines synthesized effect from using them. It can be divided into three groups: legislation that regulates entrepreneurial activities, legislation governing communication activities, legislation governing innovation activities. Legislation of Ukraine regulating communication activities needs to be clarified in regulation of using the latest MC tools, features of their combination, rules of their using and order of action in violation case of applicable law. The results of the analysis. Any economic activity of enterprises governed by principles that are divided into general and specific by the level of coverage. The proposed set of formation principles of synthesized effect are principles of systematic using that focus on the result and periodicity which refer to general. Within the principle of periodicity it should consider principles that characterize each level of management that are such principles as using synthesis, using synergy and complexity. Functions of synthesized effect that are subject to general principles of economic analysis are: searching, score, analysis and accounting. Essence of specific features of MC synthesized effect consists the following positions: planning function, integration function, communicative function, synthesis implementation function. Mechanism formation MC synthesized effect of industrial enterprise is a set of systems that are used in process of its creation by management levels that reflects subject-object relationship between these systems. Input elements system form factors of external and internal environment, information about which enterprise collects through market

  2. Elaboration and characterisation of thin polycrystalline films deposited by LPCVD for solar cells application; Elaboration et caracterisation de couches minces de silicium polycristallin deposees par LPCVD pour application photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Laghla, Y.

    1998-07-16

    This work is separated in 3 parts: a first part told horizontal research, concerning physical studies of the material such as optical characteristics. We have studied the main methods of evaluating optical constants, such as thickness, refractive index and optical coefficient of absorption. The second part is dedicated to calculation of optical properties of thin layers of amorphous and polycrystalline silicon obtained by low pressure chemical vapour deposition (LPCVD). The optical studies of the different materials have allowed us to the final choice of material and to optimise thickness in order to make photovoltaic diodes. Therefore we have, studied the deposit kinetics, optical, electrical, and structural (AFM, SEM) properties of the different layers contributing to the diodes manufacturing. So as to better understand the quality of these layers, we have tried to make a bond between the different observed variation of electrical, and optical parameters, and their structural variation according to their thickness. The lest part, told vertical research, consists in the technological realisation of these diodes with minimum technological steps (only three masc. levels), so as to reply to the demands of the industrial market. In this subject, we have realised diodes with a significant reduction in reverse leakage current, and a very good aware appearance to reverse polarisation up to -100 V without observing the break down voltage. (author) 186 refs.

  3. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications.

    Science.gov (United States)

    Papagianni, Maria

    2003-09-01

    Ribosomally synthesized peptides with antimicrobial properties (antimicrobial peptides-AMPs) are produced by eukaryotes and prokaryotes and represent crucial components of their defense systems against microorganisms. Although they differ in structure, they are nearly all cationic and very often amphiphilic, which reflects the fact that many of them attack their target cells by permeabilizing the cell membrane. They can be roughly categorized into those that have a high content of a certain amino acid, most often proline, those that contain intramolecular disulfide bridges, and those with an amphiphilic region in their molecule if they assume an alpha-helical structure. Most of the known ribosomally synthesized peptides with antimicrobial functions have been identified and studied during the last 20 years. As a result of these studies, new knowledge has been acquired into biology and biochemistry. It has become evident that these peptides may be developed into useful antimicrobial additives and drugs. The use of two-peptide antimicrobial peptides as replacement for clinical antibiotics is promising, though their applications in preservation of foods (safe and effective for use in meat, vegetables, and dairy products), in veterinary medicine, and in dentistry are more immediate. This review focuses on the current status of some of the main types of ribosomally synthesized AMPs produced by eucaryotes and procaryotes and discusses the novel antimicrobial functions, new developments, e.g. heterologous production of bacteriocins by lactic acid bacteria, or construction of multibacteriocinogenic strains, novel applications related to these peptides, and future research paradigms.

  4. Zirconium transition metal (poly)antimonides. Syntheses, characterization and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Greiwe, Magnus; Krause, Maximilian; Osters, Oliver; Dorantes, Alma; Piana, Michele; Nilges, Tom [Technische Univ. Muenchen, Garching (Germany). Fachgebiet Synthese und Charakterisierung Innovativer Materialien

    2013-09-15

    Herein we report on the syntheses, crystal structures and first electrochemical characterizations of ternary zirconium transition metal (poly)antimonides Zr{sub 2}TSb{sub 3} (with T = Cu, Pd) and Zr{sub 3}TSb{sub 7} (with T = Ni, Pd). The compounds were synthesized by arc-melting, followed by an annealing procedure at elevated temperatures. Phase analysis and structure analysis were performed by powder and single-crystal measurements. The electrochemical properties of all compounds were measured in half cells against lithium to test their potential as anode materials for Li batteries. The Zr{sub 3}TSb{sub 7} phases show metallic behavior with conductivities of 10{sup -1} S cm{sup -1} within a temperature range of 324 to 428 K. (orig.)

  5. Evaluation of green synthesized silver nanoparticles against parasites.

    Science.gov (United States)

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Jayaseelan, Chidambaram; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-06-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.

  6. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: A colorimetric probe in metal detection

    Science.gov (United States)

    Uddandarao, Priyanka; Balakrishnan, Raj Mohan

    2017-03-01

    Nanostructured semiconductor materials are of great importance for several technological applications due to their optical and thermal properties. The design and fabrication of metal sulfide nanoparticles with tunable properties for advanced applications have drawn a great deal of attention in the field of nanotechnology. ZnS is a potential II-IV group material which is used in hetero-junction solar cells, light emitting diodes, optoelectronic devices, electro luminescent devices and photovoltaic cells. Due to their multiple applications, there is a need to elucidate their thermal and optical properties. In the present study, thermal and optical properties of biologically synthesized ZnS nanoparticles are determined in detail with Thermal Gravimetric Analysis (TGA), Derivative Thermogravimetric Analysis (DTG), Differential Scanning Calorimeter (DSC), Diffuse Reflectance Spectroscopy (DRS), Photoluminescence (PL) and Raman spectroscopy. The results reveal that ZnS NPs exhibit a very strong quantum confinement with a significant increase in their optical band gap energy. These biologically synthesized ZnS NPs contain protein residues that can selectively bind with metal ions in aqueous solutions and can exhibit an aggregation-induced color change. This phenomenon is utilized to quantitatively measure the metal concentrations of Cu2 + and Mn2 + in this study. Further the stability of nanoparticles for the metal sensing process is accessed by UV-Vis spectrometer, zeta potential and cyclic voltammeter. The selectivity and sensitivity of ZnS NPs indicate its potential use as a sensor for metal detection in the ecosystem.

  7. Presentation rate in comprehension of natural and synthesized speech.

    Science.gov (United States)

    Reynolds, M E; Givens, J

    2001-06-01

    This study examined the effect of four presentation rates (approximately 130, 150, 170, and 190 words per minute) on the comprehension of natural and synthesized speech by having 96 subjects [1 man, 95 women ranging in age from 18 to 40 years (M=21.0)] perform a sentence-verification task. Analysis showed that, while their response latencies were significantly faster to natural than to synthesized speech, presentation rate did not have a significant effect on response latencies when sentences were presented at rates within the average speaking range (approximately 130 to 190 words per minute). Implications these findings may have for the use of synthesized speech in human factors applications are discussed.

  8. Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings.

    Science.gov (United States)

    Yamauchi, Satoshi; Wukirsari, Tuti; Ochi, Yoshiaki; Nishiwaki, Hisashi; Nishi, Kosuke; Sugahara, Takuya; Akiyama, Koichi; Kishida, Taro

    2017-09-01

    The new lignano-9,9'-lactones (α,β-dibenzyl-γ-butyrolactone lignans), which showed the higher cytotoxicity than arctigenin, were synthesized. The well-known cytotoxic arctigenin showed activity against HL-60 cells (EC50=12μM), however, it was inactive against HeLa cells (EC50>100μM). The synthesized (3,4-dichloro, 2'-butoxy)-derivative 55 and (3,4-dichloro, 4'-butyl)-derivative 66 bearing the lignano-9,9'-lactone structures showed the EC50 values of 10μM and 9.4μM against HL-60 cells, respectively. Against HeLa cells, the EC50 value of the derivative 66 was 27μM. By comparing the activities with the corresponding 9,9'-epoxy structure (tetrahydrofuran compounds), the importance of the lactone structure of 55 and 66 for the higher activities was shown. The substituents on the aromatic ring of the lignano-9,9'-lactones affected the cytotoxicity level, observing more than 10-fold difference. Copyright © 2017. Published by Elsevier Ltd.

  9. Die Meta-Synthese zur Aggregation und Reflektion qualitativer Fallstudien

    DEFF Research Database (Denmark)

    Gretzinger, Susanne; Leick, Birgit

    2017-01-01

    Metasynthesis, the qualitative counterpart of metaanalysis (Hunt 1997), is defined as “an exploratory, inductive research design to synthesize primary qualitative case studies for the purpose of making contributions beyond those achieved in the original studies” (Hoon 2013: 523, see also Sandelow......Metasynthesis, the qualitative counterpart of metaanalysis (Hunt 1997), is defined as “an exploratory, inductive research design to synthesize primary qualitative case studies for the purpose of making contributions beyond those achieved in the original studies” (Hoon 2013: 523, see also...

  10. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Peng; TANG Shao-Chun; MENG Xiang-Kang

    2009-01-01

    Silver nanoparticles with an average size of about 2Onto are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method.The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  11. Hafnium carbide structural foams synthesized from polymer precursors

    Science.gov (United States)

    Fan, Haibo

    2005-11-01

    A study was conducted to investigate a new low cost approach to produce Hafnium Carbide (HfC) structural foams through the thermolysis and pyrolysis of polymer precursors. Hafnium carbide has a melting point of over 3900 °C, the highest melting point of any known binary alloy. HfC structural foams can be fabricated into high temperature components or used as a thermal insulation material. Current available methods for creating HfC structural foams are time consuming, expensive or the material produced lacks mechanical strength. The objectives of this research were to produce HfC foam through the thermolysis and pyrolysis of Hf containing polymer mixture, optimize the properties of the HfC foam, and develop a knowledge base of acceptable process parameters. With the proposed method, HfC foam was produced by mixing a hafnium containing Macromolecular Metal Complex (MMC) and carbon source polymers, followed by heat treating the mixture under vacuum. XRD analysis showed that the produced foam was largely composed of HfC, with small amounts of hafnium oxide. The foam total porosity was measured to be over 85%. The HfC lattice parameter was found to range from 0.4613 nm to 0.4647 nm. The HfC conversion mechanism was investigated using Residual Gas Analysis, where it was observed that polymer decomposition occurred from 80 through 550 °C and HfC conversion started around 1100 °C. The HfC foam mechanical properties and microstructure were improved by optimizing the process methods and parameters. The initial research yielded an HfC foam with a compression strength of 15.16 +/- 4.66 MPa and evenly distributed foam cells with diameter sizes up to 50 mum. Continued research showed that HfC foams with total porosity of about 85% (density 1.9g/cm 3), and a foam compression strength of 212 +/- 25MPa were achievable. The proposed methodology for synthesizing HfC foam was found to be simple, inexpensive and require less production time. The process can be controlled to produce

  12. Leukotrienes and other lipoxygenase products of arachidonic acid synthesized in the kidney.

    Science.gov (United States)

    Ardaillou, R; Baud, L; Sraer, J

    1986-08-25

    Lipoxygenase products are synthesized in the kidney. Rabbit medulla and murine and human glomeruli produce 12- and 15-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Minor amounts of leukotrienes are formed under normal conditions, but it is likely that the resident renal cells are capable of synthesizing these metabolites. Rat glomeruli and papillae possess the enzymes necessary to process leukotriene C4 into leukotrienes D4 and E4. However, the enzyme activity of the papillae is masked due to the presence of an inhibitor detected in the 10,000 g supernate of the papillary homogenate. 12-HETE synthesis is markedly increased in glomeruli from rats with nephrotoxic serum nephritis and leukotriene B4 synthesis in glomeruli from rats with cationic bovine gamma-globulin-induced glomerulonephritis. In vivo consequences of the association between the resident glomerular cells and the bone marrow-derived cells have been studied in vitro in co-incubation experiments. Glomeruli release factors that stimulate the cyclo-oxygenase and lipoxygenase pathways in macrophages. Co-incubation of glomeruli, platelets, and polymorphonuclear leukocytes results in the formation of 12,20-diHETE and an excess of 12-HETE. Lipoxygenase products, regardless of their origin, modify the renal functions. Leukotriene C4 binds specifically to rat glomeruli and human cultured glomerular epithelial cells. Leukotrienes C4 or D4 administered in vivo cause renal vasoconstriction and a decline in the glomerular filtration rate. In vitro, these two sulfidopeptide leukotrienes promote epithelial cell proliferation and produce mesangial cell contraction. The lipoxygenase pathway is also implicated in the attachment of macrophages to glomeruli and in the oxidative burst of glomerular mesangial cells during phagocytosis. The future use of specific inhibitors of the synthesis or antagonists of the lipoxygenase products, particularly the leukotrienes, should provide a tool for evaluating the role of these

  13. High-level expression of a chemically synthesized gene for human interferon-gamma using a prokaryotic expression vector.

    OpenAIRE

    1984-01-01

    A chemically synthesized gene for human interferon-gamma has been cloned into a prokaryotic expression vector under the regulation of a synthetic constitutive transcriptional-translational control unit that contains a strong bacteriophage T5 early promoter and a strong ribosome-binding site. Cells harboring the recombinant plasmid express high levels (4 X 10(9) units per liter of culture) of antiviral activity specific for interferon-gamma. Analysis of total cell lysates on NaDodSO4/polyacryl...

  14. The newly synthesized anticancer drug HUHS1015 is useful for treatment of human gastric cancer.

    Science.gov (United States)

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakao, Shuhei; Shimizu, Tadashi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-03-01

    Naftopidil is clinically for treatment of benign prostate hyperplasia, and emerging evidence has pointed to its anticancer effect. To obtain the anticancer drug with the potential greater than that of naftopidil, we have newly synthesized the naftopidil analogue HUHS1015. The present study investigated the mechanism underlying HUHS1015-induced apoptosis of human gastric cancer cells and assessed the possibility for clinical use as an innovative anticancer drug. HUHS1015 reduced cell viability for MKN28 human well-differentiated gastric adenocarcinoma cell line and MKN45 human poorly differentiated gastric adenocarcinoma cell line in a concentration (0.3-100 μM)-dependent manner more effectively than cisplatin, a chemo-drug widely used. In the flow cytometry using propidium iodide (PI) and annexin V, HUHS1015 significantly increased the population of PI-positive and annexin V-negative cells, corresponding to primary necrosis and that of PI-positive and annexin V-positive cells, corresponding to late apoptosis/secondary necrosis, both in the two cell types. HUHS1015 significantly activated caspase-3, caspase-4, and caspase-8 in MKN45 cells, while no obvious caspase activation was found in MKN28 cells. HUHS1015 upregulated expression of the tumor necrosis factor α (TNFα) mRNA and protein in MKN45 cells, allowing activation of caspase-8 through TNF receptor and the effector caspase-3. HUHS1015 clearly inhibited tumor growth in mice inoculated with MKN45 cells, with the survival rate higher than that for the anticancer drugs cisplatin, paclitaxel, and irinotecan. The results of the present study show that HUHS1015 induces caspase-independent and caspase-dependent apoptosis of MKN28 and MKN45 human gastric cancer cells, respectively, and effectively suppresses MKN45 cell proliferation.

  15. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  16. Meta-Analysis: A Systematic Method for Synthesizing Counseling Research

    Science.gov (United States)

    Whiston, Susan C.; Li, Peiwei

    2011-01-01

    The authors provide a template for counseling researchers who are interested in quantitatively aggregating research findings. Meta-analytic studies can provide relevant information to the counseling field by systematically synthesizing studies performed by researchers from diverse fields. Methodologically sound meta-analyses require careful…

  17. Syntheses of Novel Highly Symmetric Carbohydrates Bearing Diacylhydrazine Framework

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; ZHANG Shu-sheng; LI Hui-xiang; LI Ji-zhi; JIAO Kui

    2005-01-01

    Several novel highly symmetric carbohydrates bearing a diacylhydrazine framework have been synthesized via a five-step procedure by utilizing D-glucose, D-galactose and D-xylose as the starting materials, respectively. The target compounds have been characterized with IR, 1H NMR and elemental analysis.

  18. Highly Stable Foams from Block Oligomers Synthesized by Enzymatic Reactions

    NARCIS (Netherlands)

    Sagis, L.M.C.; Boeriu, C.G.; Frissen, A.E.; Schols, H.A.; Wierenga, P.A.

    2008-01-01

    We have synthesized a new amphiphilic block oligomer by the enzymatic linking of a fatty acid (lauric acid) to a fructan oligomer (inulin) and tested the functionality of this carbohydrate derivative in foam stabilization. The structure of the modified oligosaccharide was found to be (Fruc)n(Glc)1CO

  19. SYNTHESES, STRUCTURES AND PROPERTIES Jian Wu1*, Fu ...

    African Journals Online (AJOL)

    Preferred Customer

    for Nationalities, College of Chemistry and Chemical Engineering, Nanning, Guangxi 530006,. China ... During the last decade, the number of studies related to the synthesis of ... possibility to rationally design and prepare supramolecular networks. ... syntheses, structural characterization, and spectral analyses of two new ...

  20. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashraf A. Mostafa

    2015-01-01

    Full Text Available Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDX, and X-ray powder diffraction (XRD. The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40–60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm followed by Staphylococcus aureus (14.8 mm and S. pyogenes (13.6 mm while the least activity was observed for Salmonella typhi (12.5 mm at concentration of 5 µg/disc. The minimum inhibitory concentration (MIC of AgNPs against S. aureus was 2.5 µg/disc and less than 2.5 µg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  1. Synthesizing a Life: An Interview with Carl Djerassi

    Science.gov (United States)

    Cardellini, Liberato

    2011-01-01

    In this interview, Carl Djerassi recalls his first years, from his pleasant childhood, to how he escaped the Nazi persecutions, to his college education in America. He remembers how with his research group he won the race for synthesis of cortisone, and how they then synthesized norethindrone, the active ingredient in oral contraceptives. Djerassi…

  2. Branched nanostructures and method of synthesizing the same

    Science.gov (United States)

    Fonseca, Luis F. (Inventor); Resto, Oscar (Inventor); Sola, Francisco (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  3. Current-mode analog nonlinear function synthesizer structures

    CERN Document Server

    Popa, Cosmin Radu

    2013-01-01

    This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions.  Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers.   ·         Describes novel methods for generating a multitude of circuit functions, based on superior-order improved accuracy approximation functions; ·         Presents techniques for analog function synthesizers that can be applied easily to a wide variety of analog signal processing circuits; ·         Enables the design of analog s...

  4. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  5. Physical properties and structure of enzymatically synthesized amylopectin analogs

    NARCIS (Netherlands)

    Ciric, Jelena; Woortman, Albert J. J.; Gordiichuk, Pavlo; Stuart, Marc C. A.; Loos, Katja

    2013-01-01

    The mechanism of the enzymatic polymerization of amylopectin analogs with phosphorylase b and glycogen branching enzyme is very intriguing. Recently, size exclusion chromatography with multi-detection of enzymatically synthesized amylopectin analogs in combination with MALDI-ToF MS analysis of enzym

  6. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses...

  7. Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L.

    Indian Academy of Sciences (India)

    B SUNDARARAJAN; G MAHENDRAN; R THAMARAISELVI; B D RANJITHA KUMARI

    2016-04-01

    The present study focuses on the green synthesis of silver nanoparticles using aqueous extract of Cardiospermum halicacabum. AgNPs were confirmed by UV–Visible spectrophotometer analysis showed SPR at424 nm. FT-IR analysis revealed biomolecules capping of the AgNPs. XRD pattern of synthesized AgNPs was found in face-centered-cubic crystal structure and average crystal size was 23 nm. SEM analyses of the synthesized AgNPsdetermine the spherical shape and EDX spectra confirmed the presence of silver ions. DLS studies revealed that the synthesized AgNPs showed the average size as 74 nm and Zeta potential value of AgNPs was −34 mv. The C. halicacabum leaf extract synthesized AgNPs efficiency were tested against different bacterial pathogens MTCC-426 Proteus vulgaris, MTCC-2453 Pseudomonas aeruginosa, MTCC-96 Staphylococcus aureus, MTCC-441 Bacillus subtilis andMTCC-735 Salmonella paratyphi, and fungal pathogens Alternaria solani and Fusarium-oxysporum. The antioxidant ability of the AgNPs was tested and the results showed significant DPPH, hydroxyl and superoxide, radical scavenging activities.

  8. Syntheses of Some Organic Fluorescent Dyes for Security Tickers

    Institute of Scientific and Technical Information of China (English)

    LI Jun-fen; BAI Guan; LIN Pei-hua; TIAN Mei-lin; DONG Chuan; LI Du-xin

    2004-01-01

    Five organic fluorescence dyes were synthesized by two- or three-step reactions. These synthetic methods have an advantage of the simple processes, low costs and high yields. The compositions of the five compounds are characterized by IR, 1H NMR, elemental analyses and fluorescence spectroscopies. The quantum yields of fluorescence were measured.

  9. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon...

  10. Plasma-Liquid Interaction: a New Way to Synthesize Nanomaterials

    CERN Document Server

    Chen, Qiang; Li, Yongfeng; Zhang, Xianhui; Yang, Size

    2014-01-01

    In this review, we have summarized the recent advances and present conditions of the nanomaterials synthesis from the plasma-liquid interactions. A theoretical analysis for the nanomaterials synthesis process is presented by analyzing the experimental data. Besides the theoretical analysis, the practical applications in several nanomaterials syntheses of the the plasma-liquid interactions are also presented.

  11. Uses of a Vinylpyridine Polymer in Undergraduate Organic Syntheses.

    Science.gov (United States)

    Getman, Damon; And Others

    1984-01-01

    Presents a series of syntheses in which poly-4-vinylpyridine is substituted for pyridine or other tertiary amines, avoiding some of the safety problems associated with traditional reagents and providing a readily recoverable and recyclable reactant. Background information, procedures used, and results are included. (JN)

  12. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  13. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  14. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  15. A New Pathway to Synthesize Cyclomercurated Ferrocenylimines Containing Heterocyclic Ring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The cyclomercurated ferrocenylimines containing heterocyclic ring were prepared by the condensation of cyclomercuration of acylferrocene with the appropriate heterocyclic amine. This procedure provides an efficient method for the synthesis of cyclomerucurated ferroceny- limines containing heterocyclic ring which are difficultly synthesized by the conventional method. The reaction mechanism is proposed.

  16. Is Synthesizing MRI Contrast Useful for Inter-modality Analysis?

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Konukoglu, Ender; Zikic, Darko

    2013-01-01

    Availability of multi-modal magnetic resonance imaging (MRI) databases opens up the opportunity to synthesize different MRI contrasts without actually acquiring the images. In theory such synthetic images have the potential to reduce the amount of acquisitions to perform certain analyses. However...

  17. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles

    Science.gov (United States)

    Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V.

    2014-08-01

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585 nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20 nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4- ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  18. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles.

    Science.gov (United States)

    Lokina, S; Suresh, R; Giribabu, K; Stephen, A; Lakshmi Sundaram, R; Narayanan, V

    2014-08-14

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4(-) ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  19. Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties

    Indian Academy of Sciences (India)

    Ghassan M Sulaiman; Hiba T Hussien; Maysoon M N M Saleem

    2015-06-01

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour changes, UV–vis spectrum and X-ray diffraction (XRD) support the biosynthesis and characterization of silver nanoparticles. UV–vis spectral analysis showed silver surface plasmon resonance band at 420 nm. X-ray diffraction showed that the particles were crystalline with face-centred cubic structure at 45.05°, 65.45° and 78.65° and the size of the silver nanoparticles was 33.5 nm. The synthesized silver nanoparticles showed potent antimicrobial activity against various pathogens, including bacteria and fungi. Biosynthesized silver nanoparticles exhibited strong antioxidant activity as well as cytotoxicity against HL-60 cells in a dose–response relationship. The powerful bioactivity demonstrated by the synthesized silver nanoparticles leads towards the biomedical use as antioxidant, antibacterial and cytotoxic agents.

  20. Syntheses and In Vitro Biological Activity of Some Derivatives of C-9154 Antibiotic

    Science.gov (United States)

    Bello, Isaac Asusheyi; Ndukwe, George Iloegbulam; Amupitan, Joseph Olorunju; Ayo, Rachael Gbekele; Shode, Francis Oluwole

    2012-01-01

    In our continued attempts at designing new antibiotics based on the structure of the C-9154 antibiotic, to simultaneously improve activity and lower toxicity, an analogue to the C-9154 antibiotic and six derivatives of this analogue were synthesized. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were synthesized using a two-step reaction which involved an additional reaction between benzyl amine and maleic anhydride and then conversion of the terminal carboxylic acid functional group to an ester functional group using a thionyl chloride mediated esterification reaction. The compounds were fully characterized using Infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogues as was anticipated with minimum inhibitory concentration in the range 0.625–5 μg/mL. The analogue had minimum inhibitory concentration in the range 2.5–10 μg/mL. These values are significantly better than that obtained for the original C-9154 antibiotic which had activity in the range 10–>100 μg/mL. PMID:25374687

  1. Syntheses of Macromolecular Ruthenium Compounds: A New Approach for the Search of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Andreia Valente

    2014-03-01

    Full Text Available The continuous rising of the cancer patient death rate undoubtedly shows the pressure to find more potent and efficient drugs than those in clinical use. These agents only treat a narrow range of cancer conditions with limited success and are associated with serious side effects caused by the lack of selectivity. In this frame, innovative syntheses approaches can decisively contribute to the success of “smart compounds” that might be only selective and/or active towards the cancer cells, sparing the healthy ones. In this scope, ruthenium chemistry is a rising field for the search of proficient metallodrugs by the use of macromolecular ruthenium complexes (dendrimers and dendronized polymers, coordination-cage and protein conjugates, nanoparticles and polymer-“ruthenium-cyclopentadienyl” conjugates that can take advantage of the singularities of tumor cells (vs. healthy cells.

  2. Influence of Formate on Bioactivity Material-thuringiensin Synthesized by Bacillus thuringiensis YBT-032

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; CHEN Xiong; CHEN Shouwen; SUN Ming; YU Ziniu

    2008-01-01

    The biological method to synthesize thuringiensin and the influence of formate on thuringiensin biosynthesis were investigated. Addition of 1.00 g/L formate to growth medium of bacillus thuringiensis YBT-032 resulted in significant enhancements in productions of citrate, a-ketoglutarate, intracellular adenine and thuringiensin. These results demonstrate that added formate attends metabolism of cell, facilitates carbon metabolic flux in tricarboxylic acid cycle and hexose monophosphate pathway. As a carbon source, formate facilitates cell growth, increases glucose consumption and enhances the ability of cell to synthesis adenine analogues, and subsequently thuringiensin. Thuringiensin production rate significantly enhanced from 6.44 to 8.46 mg·g-1·h-1 and transformation ratio from glucose to thuringiensin increased by 43.30%.

  3. Imaging local deposition of newly synthesized histones in UVC-damaged chromatin.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Bai, Siau-Kun; Polo, Sophie E

    2015-01-01

    DNA damage not only jeopardizes genome integrity but also challenges the well-organized association of DNA with histone proteins into chromatin, which is key for regulating gene expression and cell functions. The extent to which the original chromatin structure is altered after repair of DNA lesions is thus a critical issue. Dissecting histone dynamics at sites of DNA damage has provided mechanistic insights into chromatin plasticity in response to genotoxic stress. Here, we present an experimental protocol for visualizing the deposition of newly synthesized histone H3 variants at sites of UVC damage in human cells that couples SNAP-tag based labeling of new histones with local UVC irradiation of cells through micropore filters.

  4. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy

    CERN Document Server

    Diebold, Eric D; Gossett, Daniel R; Jalali, Bahram

    2013-01-01

    Fluorescence imaging is the most widely used method for unveiling the molecular composition of biological specimens. However, the weak optical emission of fluorescent probes and the tradeoff between imaging speed and sensitivity is problematic for acquiring blur-free images of fast phenomena, such as sub-millisecond biochemical dynamics in live cells and tissues, and cells flowing at high speed. We report a solution that achieves real-time pixel readout rates one order of magnitude faster than a modern electron multiplier charge coupled device (EMCCD) - the gold standard in high-speed fluorescence imaging technology. Deemed fluorescence imaging using radiofrequency-multiplexed excitation (FIRE), this approach maps the image into the radiofrequency spectrum using the beating of digitally synthesized optical fields. We demonstrate diffraction-limited confocal fluorescence imaging of stationary cells at a frame rate of 4.4 kHz, as well as fluorescence microscopy in flow at a throughput of approximately 50,000 ce...

  5. Taenia solium tapeworms synthesize corticosteroids and sex steroids in vitro.

    Science.gov (United States)

    Valdez, R A; Jiménez, P; Fernández Presas, A M; Aguilar, L; Willms, K; Romano, M C

    2014-09-01

    Cysticercosis is a disease caused by the larval stage of Taenia solium cestodes that belongs to the family Taeniidae that affects a number of hosts including humans. Taeniids tapeworms are hermaphroditic organisms that have reproductive units called proglottids that gradually mature to develop testis and ovaries. Cysticerci, the larval stage of these parasites synthesize steroids. To our knowledge there is no information about the capacity of T. solium tapeworms to metabolize progesterone or other precursors to steroid hormones. Therefore, the aim of this paper was to investigate if T. solium tapeworms were able to transform steroid precursors to corticosteroids and sex steroids. T. solium tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were cultured in the presence of tritiated progesterone or androstenedione. At the end of the experiments the culture media were analyzed by thin layer chromatography. The experiments described here showed that small amounts of testosterone were synthesized from (3)H-progesterone by complete or segmented tapeworms whereas the incubation of segmented tapeworms with (3)H-androstenedione, instead of (3)H-progesterone, improved their capacity to synthesize testosterone. In addition, the incubation of the parasites with (3)H-progesterone yielded corticosteroids, mainly deoxicorticosterone (DOC) and 11-deoxicortisol. In summary, the results described here, demonstrate that T. solium tapeworms synthesize corticosteroid and sex steroid like metabolites. The capacity of T. solium tapeworms to synthesize steroid hormones may contribute to the physiological functions of the parasite and also to their interaction with the host.

  6. Methods of synthesizing qualitative research studies for health technology assessment.

    Science.gov (United States)

    Ring, Nicola; Jepson, Ruth; Ritchie, Karen

    2011-10-01

    Synthesizing qualitative research is an important means of ensuring the needs, preferences, and experiences of patients are taken into account by service providers and policy makers, but the range of methods available can appear confusing. This study presents the methods for synthesizing qualitative research most used in health research to-date and, specifically those with a potential role in health technology assessment. To identify reviews conducted using the eight main methods for synthesizing qualitative studies, nine electronic databases were searched using key terms including meta-ethnography and synthesis. A summary table groups the identified reviews by their use of the eight methods, highlighting the methods used most generally and specifically in relation to health technology assessment topics. Although there is debate about how best to identify and quality appraise qualitative research for synthesis, 107 reviews were identified using one of the eight main methods. Four methods (meta-ethnography, meta-study, meta-summary, and thematic synthesis) have been most widely used and have a role within health technology assessment. Meta-ethnography is the leading method for synthesizing qualitative health research. Thematic synthesis is also useful for integrating qualitative and quantitative findings. Four other methods (critical interpretive synthesis, grounded theory synthesis, meta-interpretation, and cross-case analysis) have been under-used in health research and their potential in health technology assessments is currently under-developed. Synthesizing individual qualitative studies has becoming increasingly common in recent years. Although this is still an emerging research discipline such an approach is one means of promoting the patient-centeredness of health technology assessments.

  7. Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy

    Indian Academy of Sciences (India)

    D MUKUNDAN; R MOHANKUMAR; R VASANTHAKUMARI

    2017-04-01

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using aqueous extractof leaves with solution of silver nitrate (AgNO$_3$, 1 mM) and chloroauric acid (HAuCl$_4$·3H$_2$O, 1 mM), respectively. The synthesized nanoparticles were characterized using UV–visible spectrophotometry, Fourier transform infraredspectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive analysis of X-rays, X-ray diffraction, thermogravimetric analysis and cyclic voltammetry, which confirmed the reduction of Ag$^+$ ions to Ag$^0$ and Au$^{3+}$ ions to Au$^{0}$. The in vitro anticancer efficacy of AgNPs, AuNPs and aqueous extract of leaves confirmed by MTT assay exhibited IC50 concentrations of 28.125, 46.875 and 50 $\\mu$gml$^{−1}$ for lung A-549 cells, 103.125, 34.375 and 53.125 $\\mu$gml$^{−1}$ for HEp-2 cells and 62.5, 23.4 and 13.26 $\\mu$gml$^{−1}$ for MCF-7 cells, respectively. The concentrations indicate that both silver and gold nanoparticles as well as aqueous extract of leaves exhibited high anticancer efficacy.

  8. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

    Science.gov (United States)

    Gongalsky, M. B.; Osminkina, L. A.; Pereira, A.; Manankov, A. A.; Fedorenko, A. A.; Vasiliev, A. N.; Solovyev, V. V.; Kudryavtsev, A. A.; Sentis, M.; Kabashin, A. V.; Timoshenko, V. Yu.

    2016-04-01

    Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.

  9. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    Science.gov (United States)

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer.

  10. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging.

    Science.gov (United States)

    Gongalsky, M B; Osminkina, L A; Pereira, A; Manankov, A A; Fedorenko, A A; Vasiliev, A N; Solovyev, V V; Kudryavtsev, A A; Sentis, M; Kabashin, A V; Timoshenko, V Yu

    2016-04-22

    Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.

  11. MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors

    Science.gov (United States)

    Mishra, Neeraj; Shinde, Sachin; Vishwakarma, Ritesh; Kadam, Siddhi; Sharon, Madhuri; Sharon, Maheshwar

    2013-06-01

    The Multiwall Carbon Nanotubes (MWCNTs) were synthesized at 800 °C by single stage chemical vapor deposition (CVD) from the carbonaceous source of waste polypropylene plastic (WPP) in the presence of a Ni catalyst. The fabrication of capacitor cell is very simple and does not require any binders. The electrochemical performances of the carbon nanotubes electrode were investigated by use of the cyclic voltammetry and galvanostatic charge/discharge for its application in super capacitors. The specific capacitance of 59 F/g of the electrode was achieved with scan rate of 5 mV/s in the solution of 1N KOH.

  12. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  13. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate

    OpenAIRE

    Brans Alain; Makarchikov Alexander F; Bettendorff Lucien

    2007-01-01

    Abstract Background We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP), in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. Results Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried o...

  14. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  15. Discovery of novel antileishmanial agents in an attempt to synthesize pentamidine-aplysinopsin hybrid molecule.

    Science.gov (United States)

    Porwal, Sharad; Chauhan, Shikha S; Chauhan, Prem M S; Shakya, Nishi; Verma, Aditya; Gupta, Suman

    2009-10-08

    In an attempt to synthesize pentamidine-aplysinopsin hybrid molecule 25, a lead molecule 8 (containing Z-configured aplysinopsin moiety) was identified for antileishmanial activity. Optimization of lead 8 provided 24 (containing E-configured aplysinopsin) possessing 10 times more activity and 401-fold less toxicity than the drug pentamidine in cell based assays. Synthesis of 24 was possible, surprisingly, because of two innate reactivities of indole-3-carbaldehyde which provided it in diastereo- and regio-selectively pure form without recourse to the long reaction pathway.

  16. Electrochemical behavior of the graphene materials synthesized using low temperature plasma

    Science.gov (United States)

    Shavelkina, M. B.; Amirov, R. H.; Richagov, A. Y.; Shatalova, T. B.

    2017-01-01

    By means of DC plasma torch of up to 45 kW power, few-layered graphene sheets were obtained. Their properties and structure were characterized by using electron microscopy, thermal analysis, Raman and infrared (IR) spectroscopy. Boundary surface of samples have been investigated using the method of “limited evaporation” and BET method. Electrochemical examination of their properties was conducted. Due to the activity and stability of synthesized materials the conclusion was made regarding the possibility of the use of them as catalysts carriers for fuel cells electrodes, electric current sources, conducting additives for electrodes in non-aqueous electrolytes.

  17. [The function of the oxytocin-synthesizing system of the hypothalamus in rats with diabetes mellitus undergoing hypoxic training].

    Science.gov (United States)

    Kolesnyk, Iu M; Abramov, A V; Trzhetsyns'kyĭ, S D; Hancheva, O V

    1999-01-01

    The state of hypothalamic oxytocin-synthesizing system in Wistar rats were investigating. The morphometric measurements and immunocytochemical detection of oxytocin-containing cells was used for determining of the functional state of supraoptic nucleus, anterior and posterior-medialis magnocellular subdivisions of paraventricular nucleus. It was established intermittent hypoxic training exert positive influence on rats with experimental diabetes mellitus. This effects depending on increasing synthesis and secretion of hypothalamic oxytocin. Intermittent hypoxic training elevate contents of immunoreactive oxytocin without changing morphometric characteristics in neurons of supraoptic and paraventricular nuclei and median eminence of hypothalamus. In comparison oxytocin contents in these neurons elevade less significance in diabetic rats, but it was observed increasing of nucleolus volume in hypothalamic oxytocin-synthesizing neurons. Intermittent hypoxic training of diabetic rats stimulate more significance elevating oxytocin contents in hypothalamic neurons and median eminence that evidence high level activity of hypothalamic oxytocin-synthesizing system.

  18. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    Science.gov (United States)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  19. A Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires.

    Science.gov (United States)

    Gao, Jingyun; Zhao, Qing; Sun, Yanghui; Li, Guo; Zhang, Jingmin; Yu, Dapeng

    2011-12-01

    We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence measurements. The chemical state of P was investigated by electron energy loss spectroscopy (EELS) analyses in individual ZnO nanowires. P was found to substitute at oxygen sites (PO), with the presence of anti-site P on Zn sites (PZn). P-doped ZnO nanowires were high resistance and the related P-doping mechanism was discussed by combining EELS results with electrical measurements, structure characterization and photoluminescence measurements. Our method provides an efficient way of synthesizing P-doped ZnO nanowires and the results help to understand the P-doping mechanism.

  20. Method of synthesizing silica nanofibers using sound waves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  1. Synthesizing arbitrary two-photon polarization mixed states

    CERN Document Server

    Wei, T C; Branning, D; Goldbart, P M; James, D F V; Jeffrey, E; Kwiat, P G; Mukhopadhyay, S; Peters, N A; Wei, Tzu-Chieh; Altepeter, Joseph B.; Branning, David; Goldbart, Paul M.; Jeffrey, Evan; Kwiat, Paul G.; Mukhopadhyay, Swagatam; Peters, Nicholas A.

    2005-01-01

    Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: Scheme I requires several sets of crystals, while Scheme II requires only a single set, but relies on decohering the pump beam. Additionally, we describe two further schemes which are much easier to implement. Although the total capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maximally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.

  2. Method of synthesizing silica nanofibers using sound waves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2017-08-08

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  3. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  4. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    Science.gov (United States)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-05-01

    In this work, we report a hydrothermally synthesized Dy doped BaF2 (BaF2:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF2:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The 60Co γ- ray irradiated BaF2:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF2:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicable as a gamma dosimeter.

  5. Hafnium carbide structural foams synthesized from polymer precursors

    Institute of Scientific and Technical Information of China (English)

    FAN Hai-bo; YANG Hong; N. K. RAVALA; H. C. WIKLE III; R. H. ZEE; B. A. CHIN

    2006-01-01

    Hafnium carbide (HfC) was applied in space and aerospace due to its ultra high melting temperature, high specific strength and moderate oxidation resistance. A novel synthesizing method was used to produce low density and high strength HfC structural foams through the thermolysis and pyrolysis of Hf containing polymer precursors (mixing of hafnium trifluoroacetylacetonate and epoxy) under vacuum atmosphere. The X-ray diffraction analysis shows that the produced foam is primarily composed of HfC containing 9%-10% HfO2. Several polymer powder compaction methods were used to improve the mechanical properties of HfC foam. Compression strengths of 200 MPa are achieved for HfC foams with density of 1.9 g/cm3 (total porosity about 85%). The proposed methodology of synthesizing HfC foam has the advantages of simple, inexpensive and less production time than alternate methods.

  6. Electrical properties of polyaniline nanofibre synthesized with biocatalyst

    Science.gov (United States)

    Kim, Byoung-Kye; Kim, Yong Hwan; Won, Keehoon; Chang, Hyunju; Choi, Youngmin; Kong, Ki-jeong; Rhyu, Beoyong Whan; Kim, Ju-Jin; Lee, Jeong-O.

    2005-08-01

    Polyaniline (PANI) nanofibres were synthesized using a biocatalyst (recombinant Coprinus cinereus peroxidase) instead of toxic chemical oxidants. Relatively uniform nanofibres with 50-100 nm diameter were easily obtained with this method, and the doping state of the PANI nanofibre could be controlled either with 1N camphorsulfonic acid (CSA) or with 30% NH4OH. Doped (or dedoped) PANI nanofibres were deposited on pre-patterned Au electrodes for electrical characterization. Completely dedoped PANI behaves as an insulator, while a larger current, by more than four orders of magnitude, was observed from doped PANI nanofibres. A weak p-type gate effect was observed for PANI nanofibre devices as well. As one could expect from the easy doping nature of PANI, PANI nanofibre devices show high sensitivity toward dedoping (NH3) gases, thereby demonstrating the possibility of using enzyme-synthesized PANI nanofibre devices as sensitive chemical sensors.

  7. Heart Rate Responses to Synthesized Affective Spoken Words

    Directory of Open Access Journals (Sweden)

    Mirja Ilves

    2012-01-01

    Full Text Available The present study investigated the effects of brief synthesized spoken words with emotional content on the ratings of emotions and heart rate responses. Twenty participants' heart rate functioning was measured while they listened to a set of emotionally negative, neutral, and positive words produced by speech synthesizers. At the end of the experiment, ratings of emotional experiences were also collected. The results showed that the ratings of the words were in accordance with their valence. Heart rate deceleration was significantly the strongest and most prolonged to the negative stimuli. The findings are the first suggesting that brief spoken emotionally toned words evoke a similar heart rate response pattern found earlier for more sustained emotional stimuli.

  8. Design of optocoupler for synthesizing four color spectra

    Science.gov (United States)

    Liu, Zechun; Ge, Aiming; Tao, Xinran; Yang, Shengqi; Wang, Tianyi

    2016-07-01

    LEDs with the advantage of high luminous efficacy and long life time show the potential of replacing traditional luminaire. Most commercial white LED light sources use blue or ultraviolet chip coated with emitting phosphor, but the sensitivity and instability of such phosphors has become a big issue. The typical RGB-LED by using individual chips has the problem of spatial separation and insufficient spectral overlap which leads to low CRI. This study suggests a novel and high-efficiency design of fiber optical optocoupler to synthesize four colors emitted by separate LEDs to provide the ideal light sources by adjusting the individual LEDs separately. By choosing different colored light to be synthesized, this optocoupler can be used as light sources which can be highly controlled to offer the best lighting conditions. Compared with other widely used commercial LED sources, this new design of light sources can be used in special experiments which require multi-spectral light.

  9. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  10. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings.

  11. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  12. Structural and magnetic properties of mechanochemically synthesized nanosized yttrium titanate

    Directory of Open Access Journals (Sweden)

    Barudžija Tanja

    2012-01-01

    Full Text Available Nanosized perovskite YTiO3 with the mean crystallite size of 18 nm was synthesized for the first time by mechanochemical treatment. The mechanochemical solid state reaction between commercial Y2O3 powder and mechanochemically synthesized TiO powder in molar ratio 0.5:1 was completed for 3 h in a high-energy planetary ball mill in argon atmosphere. The heating in vacuum at 1150 °C for 12 h transforms nanosized YTiO3 to a well-crystallized single-phase perovskite YTiO3. Both samples were characterized by X-ray diffraction (XRD and thermogravimetric (TGA/DTA analyses, as well as superconducting quantum interference device magnetometer (SQUID measurements.

  13. Multimorphologies of hydrochloride polyaniline synthesized by conventional and interfacial polymerization

    Science.gov (United States)

    Ferreira, André A.; Sanches, Edgar A.

    2017-09-01

    The aim of this paper is to analyze the structure and morphology of the hydrochloride Polyaniline Emeraldine-salt form (PANI-ES) synthesized by conventional (PANI-ES/C1 and PANI-ES/C2) and interfacial (PANI-ES/I1 and PANI/ES/I2) polymerization using HCl 1 M and 2 M. The X-ray diffraction patterns (XRD) of PANI-ES/I1 and PANI-ES/I2 have presented higher crystallinity. Furthermore, the peak located at 2θ = 18.3° has not been reported in scientific literature. PANI-ES/C1 and PANI-ES/C2 presented closed crystallinity percentage around 50 (±2) %, while PANI-ES/I1 and PANI-ES/I2 presented, respectively, 55 (±2) % and 63 (±2) % of crystallinity. However, PANI-ES/C2, PANI-ES/I1 and PANI-ES/I2 have presented larger ;b; unit cell parameter, from 8.9021 Å (PANI-ES/C1) to ∼16.2931 Å, due to the more efficient doping of the chloride ions. Fourier-transform Infrared Spectroscopy technique (FTIR) was useful to evaluate significant changes in the quinoid (Q) and benzenoid (B) bands: PANI-ES/C1 and PANI-ES/C2 presented the ratio Q/B, respectively, 0.4 and 0.6, indicating that the doping level by exposure to a higher dopant concentration has increased. An even more intense dopant action was verified in PANI-ES/I1 and PANI-ES/I2, presenting Q/B ratios of 0.7 and 0.9, respectively. These results reveal the more efficient doping level provided by the interfacial polymerization. Scanning Electron Microscopy (SEM) images showed that PANI-ES/C1 presented short nanofibers, while PANI-ES/C2 showed nanofibers length and diameter, respectively, around 61% and 13% higher than those found in PANI-ES/C1. However, PANI-ES/I1 and PANI-ES/I2 presented four different types of morphologies (nanoplates, nanorods, nanofibers and nanoflowers) due to the peculiarity of this polymerization method. The difference of length and diameter between PANI-ES/C1 and PANI-ES/I2 nanofibers reaches 64% and 52%, respectively. Thermogravimetric Analysis (TGA) showed that the event related to the dopant release

  14. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Rajneesh Misra; Venkataramanarao G Anand; Harapriya Rath; Tavarekere K Chandrashekar

    2005-03-01

    In this paper, a brief review of the syntheses, characterization and anion-binding properties of core-modified octaphyrins is presented. It has been shown that the core-modified octaphyrins exhibit aromaticity both in solution and in solid state, confirming the validity of the (4 + 2) Huckel rule for larger -electron systems. Solid-state binding characteristics of TFA anions of two core-modified octaphyrins are also described.

  15. Tailored super magnetic nanoparticles synthesized via template free hydrothermal technique

    Science.gov (United States)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M. S. A.

    2016-01-01

    Magnetite nanoparticles of controlled shape and dimensions were synthesized using a modified hydrothermal technique. The influence of different synthesis conditions on the shape, size (length and diameter), structure and magnetic properties of the prepared nanoparticles is presented. The mineral phases, the morphologies, size distribution of the resulting magnetic nanoparticles and their magnetic properties were characterized using different characterization methods. We designed magnetite nanoparticles with different morphologies (nanospheres, nanorods, nanocubes and hexagons) and with improved saturation magnetization reaching 90 emu/g.

  16. An improved fractional divider for fractional-N frequency synthesizers

    Science.gov (United States)

    Zhang, Wei; Liu, Yang; Zhou, Yongqi

    2009-07-01

    This paper presents an improved fractional divider used in 1.8~2GHz fractional-N frequency synthesizers. A new clock setting for delta-sigma modulator (DSM) is proposed to prevent the potential problems of traditional fractional dividers: the DSM output would be wrongly loaded and the action of DSM circuit may affect the phase-detection of phase-frequency-detector (PFD). Simulation result shows the effectiveness of this improvement.

  17. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    and Ca(BH4)2, respectively [3,4]. An attempt to synthesize alkali and alkaline earth metal borohydrides from various borides by ball milling under high hydrogen pressure is presented here. MgB2, AlB2 and CaB6 have been milled with MHx (M = Li, Na, Mg, Ca) at p(H2) = 110 bar for 24 hours. All samples were...

  18. Photocarrier generation in directly synthesized trans-polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Shibahara, S.; Nishioka, T.; Natsume, N.; Ishikawa, K.; Takezoe, H.; Fukuda, A. [Tokyo Inst. of Technol. (Japan). Dept. of Org. and Polymeric Mater.

    1998-05-15

    The direct photocarrier generation edge of directly synthesized trans-polyacetylene was studied by means of electric field, temperature and excitation photon energy dependence of photocarrier generation efficiency. We found that the excited states have an energy barrier to generate the charged carrier at the absorption edge and the direct barrierless photocarrier generation starts at about 1.7 eV. These results strongly support the existence of the exciton state at the absorption edge in trans-polyacetylene. (orig.) 31 refs.

  19. New synthesizing feature parameter of wear particles image

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper outlines the application of wavelet analysis method to computering wear par-ticles image processing and introduces the concept of grain parameter for wear particle imagebased on statistical feature parameters. The feature of wear particles image can be obtained fromthe wavelet decomposition and the statistics analysis. Test results showed that grain parametercan be used as a synthesizing feature parameter for wear particle image.

  20. Syntheses of New Functionalized Monomers for π-Conjugated Polymers

    Institute of Scientific and Technical Information of China (English)

    D.VYPRACHTICKY; V.CIMRO; P.PAVLKOVA; I.KMNEK

    2007-01-01

    1 Results Tailored monomers based on the activated esters of 2,5-dibromobenzoic (sulfonic) acid derivatives, the 3-substituted 2,5-dibromothiophenes, the 9-substituted 2,7-dibromocarbazoles, and on the brominated 1,10-phenanthrolines suitable for Suzuki, Yamamoto or Grignard metathesis (GRIM) coupling reactions were synthesized and characterized by melting point, elemental analysis, 1H NMR, FTIR and TLC. The Horner-Wadsworth-Emmons reaction mechanism was utilized for the preparation of the 3-[2-(pyren-1...

  1. Syntheses and molecular self-assembly of chiral phosphorami dates

    Institute of Scientific and Technical Information of China (English)

    DU, Da-Ming; HUA, Wen-Ting; WANG, Jian-Wu

    2000-01-01

    Two chiral phosphoramidates, ( R )-( - )-1, 1′-binaphthyl-2, 2′-dihydroxy-N-[ α-( S)-methylbenzyl] phosphoramidate and (-)-l,1′-biphenyl-2,2′-dihydroxy-N-[ α-( S)-methylbenzyl]- phosphoramidate were synthesized. Their crystal structures were determined by X-ray single crystal diffraction analysis. The phoshorramidate molecules are self-associated by inter molecular N-H…… O = P hydrogen bonds and aromatic edge to face interactions.

  2. A novel way to synthesize Pb nanotapes in liquid ammonia

    Institute of Scientific and Technical Information of China (English)

    Lei Sun; Meng Lei Zhang; Xiao Jun Tao; Yan Bao Zhao

    2011-01-01

    Lead nanotapes were synthesized in liquid ammonia solvent in the presence of sodium metal at low temperature. The process was template free. Transmission electron microscopy (TEM) observations and X-ray diffraction (XRD) characterizations revealed that the as-prepared Pb nanotapes have average diameters in the range of 40-50 nm, and lengths up to several hundred nanometers, and exhibit cubic crystal structures.

  3. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  4. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon...... of knowledge on IoT and pinpointing the most influential ideas to-date on the topic....

  5. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  6. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  7. Preparation and Cytotoxicity of Novel Aliphatic Polycarbonate Synthesized from Dihydroxyacetone

    Institute of Scientific and Technical Information of China (English)

    Lian Sheng WANG; Xue Song JIANG; Hao WANG; Si Xue CHENG; Ren Xi ZHUO

    2005-01-01

    A new cyclic carbonate, 2,2-ethylenedioxypropane-1,3-diol carbonate (EOPDC), was synthesized through a two-step reaction from dihydroxyacetone dimer, and polymerized in bulk initiated by Sn(Oct)2 to give a high molecular weight polycarbonate. The structure of monomer and the polymer were characterized by FT-IR, 1H NMR, 13C NMR. The cytotoxicity of the obtained polycarbonate was investigated by MTT assay.

  8. A NEW METHOD TO SYNTHESIZE THE CATIONIC GRAFT STARCH

    Institute of Scientific and Technical Information of China (English)

    LinLi; BingyueLiu; YafengCao

    2004-01-01

    The cationic graft copolymer was synthesized byreversed phase emulsion copolymerization of starchwith diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization wascarried out using (NH4)2S2Os-NH2CONH2 redox asinitiator and selecting Span-20 as emulsifier. Theeffects of emulsifier content in oil phase, volumeratio of oil to water, initiator concentration and moleratio of DADMAC to AM on the graftcopolymerization were discussed. The optimumcondition of synthetics was found with theorthogonal test method.

  9. Adsorption Mechanism of Ciprofloxacin from Water by Synthesized Birnessite

    OpenAIRE

    Xuebing Xing; Jingwen Feng; Guocheng Lv; Kenan Song; Lefu Mei; Libing Liao; Xiaoyu Wang; Ben Xu

    2015-01-01

    The efficiency of ciprofloxacin (CIP) adsorption on synthesized birnessite was systematically studied under varying physicochemical conditions, such as solution pH, contact time, initial CIP concentration, and different average oxidation states (AOS) of Mn in birnessite. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and molecular simulations were employed to investigate the adsorption mechanism of CIP on birnessite. Experimental results showed that surface adsorption instead of ...

  10. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    SHEN Cheng-Min; HUI Chao; YANG Tian-Zhong; XIAO Cong-Wen; CHEN Shu-Tang; DING Hao; GAO Hong-Jun

    2008-01-01

    @@ Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L1o structure and the particles are ferromagnetic at room temperature.

  11. Knowledge Syntheses in Medical Education: Demystifying Scoping Reviews.

    Science.gov (United States)

    Thomas, Aliki; Lubarsky, Stuart; Durning, Steven J; Young, Meredith E

    2017-02-01

    An unprecedented rise in health professions education (HPE) research has led to increasing attention and interest in knowledge syntheses. There are many different types of knowledge syntheses in common use, including systematic reviews, meta-ethnography, rapid reviews, narrative reviews, and realist reviews. In this Perspective, the authors examine the nature, purpose, value, and appropriate use of one particular method: scoping reviews. Scoping reviews are iterative and flexible and can serve multiple main purposes: to examine the extent, range, and nature of research activity in a given field; to determine the value and appropriateness of undertaking a full systematic review; to summarize and disseminate research findings; and to identify research gaps in the existing literature. Despite the advantages of this methodology, there are concerns that it is a less rigorous and defensible means to synthesize HPE literature. Drawing from published research and from their collective experience with this methodology, the authors present a brief description of scoping reviews, explore the advantages and disadvantages of scoping reviews in the context of HPE, and offer lessons learned and suggestions for colleagues who are considering conducting scoping reviews. Examples of published scoping reviews are provided to illustrate the steps involved in the methodology.

  12. Antimicrobial Properties of Newly Synthesized Derivatives of Coumarine

    Directory of Open Access Journals (Sweden)

    S. Govori

    2010-01-01

    Full Text Available Problem statement: Coumarins are well known for their biological activity. On the basis of that we have synthesized some new derivatives of coumarine and investigated their antimicrobial properties. Approach: 4-Heteroaryl-coumarin-3-carbaldehydes 4(a-d are synthesized by condensation of 4-chloro-coumarin-3-carbaldehydes 2 and corresponding heterorylamines 3(a-d under reflux reaction conditions. Antimicrobial properties of new coumarins 4(a-d are investigated and results are submitted for their activities against Staphylococcus aureus, Escherichia coli, Hafnia alvei, Pseudomonas aeruginosa and Enterobacter cloacae. Applying the Agar disc diffusion technique we measured diameters of the inhibition zone around discs which are previously wetted with N, N-DMF solution of compounds, 1, 3 and 5 mg L−1. Results: The inhibition zone depends from concentrations and also from sort of bacteria. The inhibition zone differ from 0 to 30mm. Two sort of bacteria, Hafnia alvei and Pseudomonas aeruginosa, are resistant to these new synthesized compounds. Conclusion: From results we may conclude that these derivates showed moderate to high activity against Staphylococcus aureus, Escherichia coli and Enterobacter cloaco. Compounds 4(a-d are more active against Staphylococcus aureus, E.coli and Enterobacter cloaco. Compounds 4(a-d are not active against Hafnia alvei and Pseudomonas aeruginosa.

  13. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  14. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

  15. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Roshmi Thomas

    2014-12-01

    Full Text Available Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM and scanning electron microscope (SEM. The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  16. A simple method for synthesizing and producing guitar sounds

    Science.gov (United States)

    Torres, Jesús A.; Rendón, Pablo L.

    2013-05-01

    An uncomplicated model is proposed to describe the transverse force exerted by a plucked string on a guitar bridge. This model incorporates the effect of internal damping, lending the synthesized sound a transient quality that makes it more realistic than sound produced without taking damping into account. The synthesized signals are then compared to actual measurements for both free and palm-muted vibrations, and show agreement in both cases. These synthesized signals can also be used to play MIDI files through a guitar acting as a modified loudspeaker cone, driving the instrument mechanically. The sound thus obtained is realistic and provides an interesting classroom exercise for an undergraduate audience. The main set-up is also affordable as a laboratory activity and for public demonstrations, and has the advantage of being simple to implement and flexible enough to allow different kinds of modification. It is, in fact, reliable enough to use as a tool for the comparison of different guitars driven in the same manner.

  17. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  18. Antibacterial activity of silver nanoparticles synthesized from serine.

    Science.gov (United States)

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  19. Design & Implementation of High Switching & Low Phase Noise Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Ali M. N. Hassan

    2006-01-01

    Full Text Available This research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75 GHz,Step size (1 MHz, Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider, voltage controlled oscillator , loop filter & reference oscillator. The single chip is used to provide the following properties :•Low power consumptionSmall size, light weight.Flexibility in selecting crystal oscillator frequencies to fit into the system frequency planning.•High reliability.The application of this synthesizer in frequency hopping systems, satellite communications & radar because it has high switching speed ,low phase noise & low spurious level.

  20. Biocompatibility and antimicrobial activity of zinc(II doped hydroxyapatite, synthesized by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Kojić Vesna

    2012-01-01

    Full Text Available In order to obtain multifunctional materials with good biocompatibility and antimicrobial effect, hydroxyapatite (HAp doped with Zn2+ was synthesized by hydrothermal method. Powders with different content of zinc ions were synthesized and compared with undoped HAp to investigation of Zn2+ ion influence on the antimicrobial activity of HAp. Analyses of undoped and Zn2+-doped powders before and after thermal treatment at 1200ºC were performed by SEM and XRD. Antimicrobial effects of powders were examined in relation to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans in liquid medium. The results showed that the obtained powders have good antimicrobial activity, but higher antimicrobial activities of powders doped with Zn2+ were observed after annealing at 1200°C. For powders annealed at 1200°C in vitro biocompatibility tests MTT and DET with MRC-5 fibroblast cells in liquid medium were carried out. Based on MTT and DET tests it was shown that powders do not have a significant cytotoxic effect, which was confirmed by SEM analysis of MRC-5 fibroblast cells after theirs in vitro contact with powders. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 and FP7-REGPOT-2009-1 NANOTECH FTM

  1. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.

    Science.gov (United States)

    Kummara, Sivaiah; Patil, Mrityunjaya B; Uriah, Tiewlasubon

    2016-12-01

    Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag(+) ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green Ag

  2. "Synthesizing Proteins”, the game: Proposal and evaluation of an educational tool

    Directory of Open Access Journals (Sweden)

    Julio Cesar Queiroz de Carvalho

    2014-08-01

    Full Text Available Educational games have been recommended by curriculum guides for biology teaching because they stimulate and promote group activities and foster spontaneous and creative development of students. The use of materials and diversified teaching strategies can facilitate the study of topics such as proteins and their relationship to DNA and RNA, which have some complexity and require a high level of abstraction. In this context we developed the game "Synthesizing Proteins", aimed at high school. The game promotes student recognition, use and interpretation of a meaningful and representative model of a biological system and can assist in developing the skills necessary for research, and scientific and technological understanding. The game comprises of a board containing a drawing of a eukaryotic cell, and cards representing cell structures and biochemical processes involved in protein synthesis.

  3. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids

    KAUST Repository

    Groh, Matthias Friedrich

    2013-01-01

    The high-temperature syntheses of the low-valent halogenides P2I4, Te2Br, α-Te4I4, Te4(Al2Cl7)2, Te4(Bi6Cl20), Te8(Bi4Cl14),Bi8(AlCl4)2, Bi6Cl7,and Bi6Br7, as well as of WSCl4 andWOCl4 have been replaced by resource-efficient low-temperature syntheses in room temperature ionic liquids (RTILs). The simple one-pot syntheses generally do not require elaborate equipment such as twozone furnaces or evacuated silica ampoules. Compared to the published conventional approaches, reduction of reaction time (up to 80%) and temperature (up to 500 K) and, simultaneously, an increase in yield were achieved. In the majority of cases, the solid products were phase-pure. X-Ray diffraction on single crystals (redetermination of 11 crystal structures) has demonstrated that the quality of the crystals from RTILs is comparable to that of products obtained by chemical transport reactions. © 2013 Verlag der Zeitschrift für Naturforschung, Tübingen.

  4. Growth factor PDGF-BB stimulates cultured cardiomyocytes to synthesize the extracellular matrix component hyaluronan.

    Directory of Open Access Journals (Sweden)

    Urban Hellman

    Full Text Available BACKGROUND: Hyaluronan (HA is a glycosaminoglycan located in the interstitial space which is essential for both structural and cell regulatory functions in connective tissue. We have previously shown that HA synthesis is up-regulated in a rat model of experimental cardiac hypertrophy and that cardiac tissue utilizes two different HA synthases in the hypertrophic process. Cardiomyocytes and fibroblasts are two major cell types in heart tissue. The fibroblasts are known to produce HA, but it has been unclear if cardiomyocytes share the same feature, and whether or not the different HA synthases are activated in the different cell types. METHODOLOGY/PRINCIPAL FINDINGS: This study shows, for the first time that cardiomyocytes can produce HA. Cardiomyocytes (HL-1 and fibroblasts (NIH 3T3 were cultivated in absence or presence of the growth factors FGF2, PDGF-BB and TGFB2. HA concentration was quantified by ELISA, and the size of HA was estimated using dynamic light scattering. Cardiomyocytes synthesized HA but only when stimulated by PDGF-BB, whereas fibroblasts synthesized HA without addition of growth factors as well as when stimulated by any of the three growth factors. When fibroblasts were stimulated by the growth factors, reverse dose dependence was observed, where the highest dose induced the least amount of HA. With the exception of TGFB2, a trend of reverse dose dependence of HA size was also observed. CONCLUSIONS/SIGNIFICANCE: Co-cultivation of cardiomyocytes and fibroblasts (80%/20% increased HA concentration far more that can be explained by HA synthesis by the two cell types separately, revealing a crosstalk between cardiomyocytes and fibroblasts that induces HA synthesis. We conclude that dynamic changes of the myocardium, such as in cardiac hypertrophy, do not depend on the cardiomyocyte alone, but are achieved when both cardiomyocytes and fibroblasts are present.

  5. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  6. Analyzing and synthesizing phylogenies using tree alignment graphs.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    Full Text Available Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG. The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees, we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to

  7. Synthese und Struktur von Basen-Addukten des Magnesiumindenids

    OpenAIRE

    Behrens, Ulrich

    2009-01-01

    Abstract Abstract. An improved X-ray structure determination of magnesium indenide (Mg(C9H7)2, 1) at low temperature was carried out. Four donor-acceptor complexes of Mg(C9H7)2 (1) with O- and N-donor Lewis bases have been synthesized and characterized by X-ray structure analysis. With dioxane and tetramethylethylenediamine (tmeda) two simple monomeric complexes, [Mg(C9H7)2(dioxane)2] ? 1.5 dioxane (2a) and [Mg(C9H7)2(tmeda)] (3), were formed. With the O-donors tetrahydrofuran (thf...

  8. Antibacterial screening of silver nanoparticles synthesized by marine micro algae

    Institute of Scientific and Technical Information of China (English)

    D Devina Merin; S Prakash; B Valentine Bhimba

    2010-01-01

    Objective:To explore the biosynthesis of silver nanoparticles synthesized by marine microalgae. Methods: Marine microalgae was collected from Central Marine Fisheries Research Institute (CMFRI, tuticorin) and cultured in the lab. Silver nanoparticles synthesis were observed in normal and microwave irradiated microalgae and screened against human pathogens for the presence of antimicrobials.Results: The presence of silver nanoparticle was confirmed by UV-Visible spectroscopy at420 nm by the presence of plasmon peak. Further confirmation was done by scanning electron microscope(SEM).Conclusions: These results not only provide a base for further research but are useful for drug development in the present and future.

  9. Moraxella catarrhalis Synthesizes an Autotransporter That Is an Acid Phosphatase▿

    OpenAIRE

    Hoopman, Todd C.; Wang, Wei; Brautigam, Chad A.; Sedillo, Jennifer L; Reilly, Thomas J.; Hansen, Eric J.

    2007-01-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10−10) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation dom...

  10. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin; Li

    2001-01-01

    This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.……

  11. Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework

    Science.gov (United States)

    Shen, Hao; Xu, Lingbo; Li, Dongsheng; Yang, Deren

    2017-09-01

    Er silicate/porous silicon (PS) composites with effective sensitized erbium emission at 1.53 μm have been synthesized on the PS framework. Cross-sectional scanning electron microscopy and X-ray diffraction reveal that the PS is coated by Er silicate in composites. Indirect excitation of Er3+ ion luminescence via energy transfer from PS is confirmed. The temperature dependence of Er-related photoluminescence intensity and lifetime is investigated, which concludes a phonon-mediated energy transfer process. The combination of the PS framework and Er silicate provides a possible strategy for practical silicon-based light sources.

  12. Proposal of an Algorithm to Synthesize Music Suitable for Dance

    Science.gov (United States)

    Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo

    This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.

  13. Structural features of carbon materials synthesized by different methods

    Science.gov (United States)

    Streletskii, O. A.; Ivanenko, I. P.; Khvostov, V. V.; Savchenko, N. F.; Nishchak, O. Yu.; Aleksandrov, A. F.

    2016-10-01

    This paper presents the results of investigations of three types of carbon structures synthesized by different methods, such as arc discharge plasma enhanced chemical vapor deposition of carbon in a magnetic field, chemical dehydrohalogenation of the poly(vinyl chloride)/poly(vinylidene chloride) precursor, and pulsed plasma ion assisted deposition. It has been found that the samples prepared by different methods have a common feature, i.e., the presence of three-dimensional clusters based on sp 2- or sp 3-bonds surrounded by quasi-one-dimensional carbon chains. It has been shown that the structure of carbon materials changes depending on the synthesis conditions.

  14. Electron microscopy of microwave-synthesized rare-earth chromites

    OpenAIRE

    Schmidt, Rainer; Prado-Gonjal, Jesus; Avila, David; Amador, Ulises; Moran, Emilio

    2014-01-01

    The perovskite rare-earth (RE) chromite series (RE)CrO3 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb, Lu) has been synthesized in our laboratory using microwave techniques. In this work we will demonstrate how X-ray diffraction (XRD), Rietveld refinement of XRD pattern and complementary High Resolution Transmission Electron Microscopy (HRTEM) were used to confirm that the desired crystal structure had been formed. Field-emission scanning electron microscopy (FE-SEM) gave clear ...

  15. Syntheses of (+)-alismoxide and (+)-4-epi-alismoxide.

    Science.gov (United States)

    Blay, Gonzalo; García, Begoña; Molina, Eva; Pedro, José R

    2006-09-29

    The first total syntheses of (+)-alismoxide and (+)-4-epi-alismoxide are reported. Formal chemo-, regio-, and stereoselective addition of water to 10alpha-acetoxy-1alphaH,5betaH-guaia-3,6-diene afforded the target compounds after reduction. The absolute stereochemistry of (+)-alismoxide has been established. The low [alpha](D) +8.6 value indicates that significant amounts of alismoxide result from biosynthetic processes. Furthermore, the structure of the natural guaienediol isolated from Silphium perfoliatum has been corrected to (-)-alismoxide.

  16. A NEW METHOD TO SYNTHESIZE THE CATIONIC GRAFT STARCH

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Bingyue Liu; Yafeng Cao

    2004-01-01

    The cationic graft copolymer was synthesized by reversed phase emulsion copolymerization of starch with diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization was carried out using (NH4)2S2O8-NH2CONH2 redox as initiator and selecting Span-20 as emulsifier. The effects of emulsifier content in oil phase, volume ratio of oil to water, initiator concentration and mole ratio of DADMAC to AM on the graft copolymerization were discussed. The optimum condition of synthetics was found with the orthogonal test method.

  17. Enantioselctive Syntheses of Sulfur Analogues of Flavan-3-Ols

    Directory of Open Access Journals (Sweden)

    Richard Lombardy

    2010-08-01

    Full Text Available The first enantioselective syntheses of sulfur flavan-3-ol analogues 1–8 have been accomplished, whereby the oxygen atom of the pyran ring has been replaced by a sulfur atom. The key steps were: (a Pd(0 catalyzed introduction of –S t-butyl group, (b Sharpless enantioselective dihydroxylation of the alkene, (c acid catalyzed ring closure to produce the thiopyran ring, and (d removal of benzyl groups using N,N-dimethylaniline and AlCl3. The compounds were isolated in high chemical and optical purity.

  18. Annual reports in inorganic and general syntheses 1976

    CERN Document Server

    Zimmer, Hans

    2013-01-01

    Annual Reports in Inorganic and General Syntheses-1976 presents an annual review of synthetically useful information that would prove beneficial to nearly all organic chemists, both specialist and nonspecialist in synthesis. It should help relieve some of the information storage burden of the specialist and should aid the nonspecialist who is seeking help with a specific problem to become rapidly aware of recent synthetic advances.This is the fifth volume of ARIGS and is organized along the lines developed for the preceding volumes. The authors were encouraged to use synthetic aspects as their

  19. Syntheses of Novel 5-Alkylamido-1,10-phenanthrolines

    Institute of Scientific and Technical Information of China (English)

    SHU Huo-ming; LI Hua-ming; HAN Chang-ri; WANG Peng

    2004-01-01

    5-Amino-1, 10-phenanthroline and three types of new 5-substituted 1,10-phenanthroline derivatives by different alkyl amides, phen-NHCOR [phen = 1,10-phenanthroline; R =CH = CH2; (CH2)nBr, n = 1,3-5;(CH2)nCH3, n = 9-14], were synthesized. They were characterized by means of elemental analyses, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and mass spectroscopy. These new compounds are important ligands or the active materials of ruthenium ( I ) electrochemiluminescent (ECL) sensors.

  20. About graphene ribbons development in laser synthesized nanocarbon

    Science.gov (United States)

    Gavrila Florescu, L.; Vasile, E.; Sandu, I.; Soare, I.; Fleaca, C.; Ianchis, R.; Luculescu, C.; Dutu, E.; Birjega, R.; Morjan, I.; Voicu, I.

    2011-04-01

    The work presents preliminary studies with the goal to extend the share of long graphene ribbons in laser-synthesized carbon black. Investigations revealed the existence, as a major constituent, of graphene ribbons composed of up to 10-15 graphene layers, spaced at ˜0.35-0.37 nm and of tens of nanometres in length. The samples used to study the development of this specific structure were obtained from sensitized acetylene-based mixtures and the experiments were performed following the variation of both the experimental parameters and gas composition.

  1. About graphene ribbons development in laser synthesized nanocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Gavrila Florescu, L. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Vasile, E. [METAV, 16-18 Zapada Mieilor St., 71529 Bucharest (Romania); Sandu, I.; Soare, I.; Fleaca, C. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Ianchis, R. [Institute of Chemical Research, 202 Splaiul Independentei, CP 15-159, 76250 Bucharest (Romania); Luculescu, C.; Dutu, E.; Birjega, R.; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Voicu, I., E-mail: ionvoicu2001@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania)

    2011-04-01

    The work presents preliminary studies with the goal to extend the share of long graphene ribbons in laser-synthesized carbon black. Investigations revealed the existence, as a major constituent, of graphene ribbons composed of up to 10-15 graphene layers, spaced at {approx}0.35-0.37 nm and of tens of nanometres in length. The samples used to study the development of this specific structure were obtained from sensitized acetylene-based mixtures and the experiments were performed following the variation of both the experimental parameters and gas composition.

  2. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin Li

    2001-01-01

    @@ This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.

  3. Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen

    OpenAIRE

    Claes, Christina

    2016-01-01

    Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten i...

  4. Syntheses of DL-threo-Thiamphenicol via Green Oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Four methyl aryl thioethers related to thiamphenicol syntheses and methyl phenyl sulfide were cleanly oxidized into methyl sulfones in high to excellent yields via catalytic green oxidation with aqueous hydrogen peroxide in combination with sodium tungstate. When the same reactions were similarly performed in the absence of the catalyst, the corresponding sulfoxides could be obtained. This viable synthetic approach for the synthesis of DL-threo-thiamphenicol is a simple procedure, which has an economic advantage in view of its application for the large-scale synthesis because it can be carried out under mild conditions.

  5. Algorithms for Synthesizing Priorities in Component-based Systems

    CERN Document Server

    Cheng, Chih-Hong; Chen, Yu-Fang; Yan, Rongjie; Jobstmann, Barbara; Ruess, Harald; Buckl, Christian; Knoll, Alois

    2011-01-01

    We present algorithms to synthesize component-based systems that are safe and deadlock-free using priorities, which define stateless-precedence between enabled actions. Our core method combines the concept of fault-localization (using safety-game) and fault-repair (using SAT for conflict resolution). For complex systems, we propose three complementary methods as preprocessing steps for priority synthesis, namely (a) data abstraction to reduce component complexities, (b) alphabet abstraction and #-deadlock to ignore components, and (c) automated assumption learning for compositional priority synthesis.

  6. Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit By Cytotoxicity And Hemocompatibility Assay And Nanofibers Production

    OpenAIRE

    Xavier, M.V; Macedo, M.F.; Benatti, A. C. B.; Jardini, A.L.; Rodrigues A.A.; Lopes M.S.; R. MACIEL FILHO; Kharmandayan, P

    2016-01-01

    The absorbable polyacid is one of the most used and studied materials in tissue engineering. This work synthesized a poly (L-lactic acid) (PLLA) through ring-opening polymerization and produced nanofibers by the electrospinning process. The PLLA was analyzed by FTIR and the cytotoxicity was evaluated by the MTT assay and Live/Dead®. The hemocompatibility was tested by platelet adhesion and hemolytic activity assay. The tests were performed in contact with human mesenchymal cells a...

  7. Novel Materials Based on Enzymatically Synthesized Amylose and Amylopectin

    NARCIS (Netherlands)

    Vlist, J. van der; Loos, K.; Cheng, H.N.; Gross, R.A.

    2008-01-01

    Oligo- and polysaccharides are important macromolecules in living systems, showing their multifunctional characteristics in the construction of cell walls, energy storage, cell recognition and their immune response. Starch, the most abundant storage reserve carbohydrate in plants, is composed of two

  8. Structural and electrical studies of sol-gel synthesized nanocrystalline hexagonal yttrium iron manganite ceramics

    Science.gov (United States)

    Touthang, Jangkhohao; Maisnam, Mamata

    2017-03-01

    Hexagonal yttrium manganites, YMnO3, are interesting materials for their multiferroic behavior. Substituting suitable cations either at the Y-site or Mn-site offers great opportunities to produce a variety of manganites and tune their properties. Nanocrystalline yttrium iron manganites with the compositional formula Y1‑xFexMnO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were synthesized by sol-gel autocombustion method. The prepared samples were heated at 1100∘C for 1 h. Another set of samples with compositional formula YFexMn1‑xO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were also synthesized by the same method and heated at 1100∘C for 1 h. Various characterizations were done on these manganite systems synthesized by substituting iron at different sites. X-ray diffraction (XRD) technique studied the structure of the samples and analysis of XRD patterns confirmed the formation of hexagonal phase in the samples. Structural parameters such as lattice constants, crystallite size, theoretical density, etc. were determined using the XRD data. The unit cell dimensions have been found to agree with the standard data and the Debye-Scherrer crystallite size obtained from XRD data ranges from 42 nm to 77 nm. The room temperature frequency variations of electrical properties such as dielectric constant, dielectric loss and AC conductivity were measured in the range of 100 Hz-2 MHz and the variations showed a dispersive behavior for all the samples. The various measurements and the results obtained were studied and discussed in the paper.

  9. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI Role

    Directory of Open Access Journals (Sweden)

    Sergio Lentijo Mozo

    2017-01-01

    Full Text Available Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs using a two-step approach that made use of polyethylenenemine (PEI as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1 in the absence of PEI or (2 by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  10. A high-power synthesized ultrawideband radiation source

    Science.gov (United States)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  11. Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation

    Directory of Open Access Journals (Sweden)

    Anna Tochwin

    2017-09-01

    Full Text Available Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs via one-pot reversible addition-fragmentation chain transfer (RAFT copolymerisation of poly(ethylene glycolmethyl ether methacrylate (PEGMEMA, Mn = 475 g/mol, poly(propylene glycolmethacrylate (PPGMA, Mn = 375 g/mol, and disulfide diacrylate (DSDA using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR and Gel Permeation Chromatography (GPC. Differential Scanning Calorimetry (DSC was used to determine lower critical solution temperatures (LCSTs of these copolymers, which are in the range of 17–57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible and crosslinkable (via thiol-ene click chemistry properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.

  12. Intrahepatic synthese of immunoglobulin G in chronic liver disease.

    Science.gov (United States)

    Kronborg, I J; Knopf, P M

    1980-04-01

    A method has been developed to measure the in vitro production of immunoglobulin (Ig) by liver biopsy specimens. Five to 30 mg of liver tissue was cultured for 24 h in Dulbecco's modified Eagle's medium/10% foetal calf serum (FCS) containing radiolabelled leucine (L-[4,5-3H] leucine). The culture medium was collected, centrifuged and the supernatant dialysed to remove labelled leucine. The residual radioactivity was a measure of newly synthesized 3H-labelled proteins released into the medium. The quantity of IgG was determined by immunoprecipitation with monospecific antisera to IgG heavy chains. The presence of IgG in the supernatant was confirmed by chromatography on protein-A Sepharose column. In 6 biopsies without evidence of active inflammation (4 normal and 2 fatty liver by histological criteria) less than 1% of the protein synthesized was IgG. In contrast in the presence of active inflammation in 4 cases of alcoholic hepatitis the IgG percentage ranged from 2 to 6%. Maximal levels of IgG production were detected in 3 cases of chronic active hepatitis (CAH) and ranged from 5 to 30%. The increased Ig synthesis by the liver in alcoholic hepatitis and CAH is presumed to be an index of the intrahepatic host response and may have important implications for mechanisms of liver damage in these diseases.

  13. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  14. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role

    KAUST Repository

    Mozo, Sergio Lentijo

    2017-01-12

    Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs) using a two-step approach that made use of polyethylenenemine (PEI) as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1) in the absence of PEI or (2) by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID) magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  15. Microwave synthesizer using an on-chip Brillouin oscillator.

    Science.gov (United States)

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise in reduced form factor and even integrated systems. On this second front, there has been remarkable progress in the area of microcavity devices with large storage time (high optical quality factor). Here we report generation of highly coherent microwaves using a chip-based device that derives stability from high optical quality factor. The device has a record low electronic white-phase-noise floor for a microcavity-based oscillator and is used as the optical, voltage-controlled oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. The synthesizer performance is comparable to mid-range commercial devices.

  16. Construction of a cyanobacterium synthesizing cyclopropane fatty acids.

    Science.gov (United States)

    Machida, Shuntaro; Shiraiwa, Yoshihiro; Suzuki, Iwane

    2016-09-01

    Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.

  17. Mechanism of microwave synthesized BaTiO3

    Institute of Scientific and Technical Information of China (English)

    刘韩星; 李永伟; 张汉林; 欧阳世翕

    1997-01-01

    The difference of intermediate products,microstructure and element concentration in the particles between microwave synthesized samples and conventional samples was responsible for the existence of non-thermal effect in the microwave field.The diffusions of Ba2+,Ti4+ in the microwave field were enhanced,so that the diffusion of Ti4+ could not be neglected as in the conventional solid state reactions.The influences of the microwave field were mainly expressed as diffusion coefficient and the driving force of ionic motion.The intermediate phase Ba2TiO4 which occurred in the conventional solid reaction was not found during microwave syntheses.The quantity analyses based on XRD experimental data show that the reaction dynamics in microwave is suitable for the Carter equation.The activity energy for reaction of BaCO3 and TiO2 in the microwave field was 42.26 kJ/mol,which was only one fifth of the conventional reaction.

  18. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  19. Preparation, characterization and wear resistance to ceramic composites Si C/Ti B{sub 2}; Elaboration, caracterisation et resistance a l`usure de composites ceramiques SiC/TiB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, C.

    1997-12-18

    The composites Si C-Ti B{sub 2} (5,10,15% vol. Ti B{sub 2}) have been synthesized by natural and reactive sintering from Ti O{sub 2}, B{sub 4} C and phenolic resin used as carbon source, by the reaction: Ti O{sub 2} + 0.5 B{sub 4} C +1.5 C -> Ti B{sub 2} + 2 CO (1400 degrees Celsius). They have been characterized from a microstructural, mechanical and tribological point of view. The dispersion of Ti B{sub 2} particles is very homogeneous in optical microscopy and in scanning electron microscopy. The images analysis has showed that most of the particles have a size smaller than 1 {mu}m. The atomic force microscopy and the transmission electron microscopy have revealed the existence of nanometrical particles. Concerning the mechanical properties, the fracture toughness increases with the Ti B{sub 2} rate and the hardness decreases. By friction, the composite materials wear slowly than the monolithic SiC. The wear mechanisms are modified in air and in water. In air, a layer of oxidized scraps, protector if it is stable, are formed for composites while there is formation of rollers for SiC. In water, composites are polished while SiC wears by cleavages. The influence of the Ti B{sub 2} phase on the wear resistance is due to the tribo-oxidation: a lubrication can take place through the tribo-oxidation products. (O.M.) 64 refs.

  20. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaraj, Chandran, E-mail: krishnarajbio@gmail.com [Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Harper, Stacey L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Yun, Soon-Il, E-mail: siyun@jbnu.ac.kr [Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2016-01-15

    Highlights: • Synthesis of AgNPs achieved using Malva crispa Linn., leaves extract. • 96 h LC{sub 50} concentration of AgNPs was observed at 142.2 μg/l in adult zebrafish. • Cytological changes and intrahepatic localization of AgNPs were demonstrated in tissues. • Presence of micronuclei and nuclear abnormalities were observed. • The mRNA expression of stress and immune response related genes were analyzed. - Abstract: The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO{sub 3} with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC{sub 50} concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC{sub 50} concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.