WorldWideScience

Sample records for cells reveal complex

  1. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  3. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  4. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection.

    Directory of Open Access Journals (Sweden)

    Isabelle Derré

    2007-10-01

    Full Text Available Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.

  5. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging.

    Science.gov (United States)

    Kuznetsov, Andrey V; Hermann, Martin; Troppmair, Jakob; Margreiter, Raimund; Hengster, Paul

    2010-01-01

    Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems. PMID:19382913

  6. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells.

    Science.gov (United States)

    Nguyen, Long V; Pellacani, Davide; Lefort, Sylvain; Kannan, Nagarajan; Osako, Tomo; Makarem, Maisam; Cox, Claire L; Kennedy, William; Beer, Philip; Carles, Annaick; Moksa, Michelle; Bilenky, Misha; Balani, Sneha; Babovic, Sonja; Sun, Ivan; Rosin, Miriam; Aparicio, Samuel; Hirst, Martin; Eaves, Connie J

    2015-12-10

    Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop. PMID:26633636

  7. Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration.

    Science.gov (United States)

    Arany, Szilvia; Catalán, Marcelo A; Roztocil, Elisa; Ovitt, Catherine E

    2011-05-15

    Expression of the transcription factor, Ascl3, marks a population of adult progenitor cells, which can give rise to both acinar and duct cell types in the murine salivary glands. Using a previously reported Ascl3(EGFP-Cre/+) knock-in strain, we demonstrate that Ascl3-expressing cells represent a molecularly distinct, and proliferating population of progenitor cells located in salivary gland ducts. To investigate both the role of the Ascl3 transcription factor, and the role of the cells in which it is expressed, we generated knockout and cell-specific ablation models. Ascl3 knockout mice develop smaller salivary glands than wild type littermates, but secrete saliva normally. They display a lower level of cell proliferation, consistent with their smaller size. In the absence of Ascl3, the cells maintain their progenitor function and continue to generate both acinar and duct cells. To directly test the role of the progenitor cells, themselves, in salivary gland development and regeneration, we used Cre-activated expression of diphtheria toxin (DTA) in the Ascl3-expressing (Ascl3+) cell population, resulting in specific cell ablation of Ascl3+ cells. In the absence of the Ascl3+ progenitor cells, the mice developed morphologically normal, albeit smaller, salivary glands able to secrete saliva. Furthermore, in a ductal ligation model of salivary gland injury, the glands of these mice were able to regenerate acinar cells. Our results indicate that Ascl3+ cells are active proliferating progenitors, but they are not the only precursors for salivary gland development or regeneration. We conclude that maintenance of tissue homeostasis in the salivary gland must involve more than one progenitor cell population.

  8. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  9. Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract

    OpenAIRE

    1990-01-01

    The gastrointestinal tract is lined with a monolayer of cells that undergo perpetual and rapid renewal. Four principal, terminally differentiated cell types populate the monolayer, enterocytes, goblet cells, Paneth cells, and enteroendocrine cells. This epithelium exhibits complex patterns of regional differentiation, both from crypt- to-villus and from duodenum-to-colon. The "liver" fatty acid binding protein (L-FABP) gene represents a useful model for analyzing the molecular basis for intes...

  10. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W [SVIMR-A; (Hanson); (Heidelberg); (Melbourne)

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  11. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.

    Science.gov (United States)

    Houston, Kelly; Tucker, Matthew R; Chowdhury, Jamil; Shirley, Neil; Little, Alan

    2016-01-01

    The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them. PMID:27559336

  12. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions

    Science.gov (United States)

    Houston, Kelly; Tucker, Matthew R.; Chowdhury, Jamil; Shirley, Neil; Little, Alan

    2016-01-01

    The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them. PMID:27559336

  13. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  14. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies

    Science.gov (United States)

    Ciferri, Claudio; Chandramouli, Sumana; Leitner, Alexander; Donnarumma, Danilo; Cianfrocco, Michael A.; Gerrein, Rachel; Friedrich, Kristian; Aggarwal, Yukti; Palladino, Giuseppe; Aebersold, Ruedi; Norais, Nathalie; Settembre, Ethan C.; Carfi, Andrea

    2015-01-01

    Human Cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS) coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM) and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV. PMID:26485028

  15. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  16. Cross-Platform Assessment of Genomic Imbalance Confirms the Clinical Relevance of Genomic Complexity and Reveals Loci with Potential Pathogenic Roles in Diffuse Large B-Cell Lymphoma

    Science.gov (United States)

    Dias, Lizalynn M.; Thodima, Venkata; Friedman, Julia; Ma, Charles; Guttapalli, Asha; Mendiratta, Geetu; Siddiqi, Imran N.; Syrbu, Sergei; Chaganti, R. S. K.; Houldsworth, Jane

    2016-01-01

    Genomic copy number alterations (CNAs) in diffuse large B-cell lymphoma (DLBCL) have roles in disease pathogenesis but overall clinical relevance remains unclear. Herein, an unbiased algorithm was uniformly applied across three genome profiling datasets comprising 392 newly-diagnosed DLBCL specimens that defined 32 overlapping CNAs, involving 36 minimal common regions (MCRs). Scoring criteria were established for 50 aberrations within the MCRs while considering peak gains/losses. Application of these criteria to independent datasets revealed novel candidate genes with coordinated expression, such as CNOT2, potentially with pathogenic roles. No one single aberration significantly associated with patient outcome across datasets, but genomic complexity, defined by imbalance in more than one MCR, significantly portended adverse outcome in two of three independent datasets. Thus, the standardized scoring of CNAs currently developed can be uniformly applied across platforms, affording robust validation of genomic imbalance and complexity in DLBCL and overall clinical utility as biomarkers of patient outcome. PMID:26294112

  17. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration.

    Science.gov (United States)

    Xu, Shuangbing; Li, Xu; Gong, Zihua; Wang, Wenqi; Li, Yujing; Nair, Binoj Chandrasekharan; Piao, Hailong; Yang, Kunyu; Wu, Gang; Chen, Junjie

    2014-11-01

    Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases. PMID:25096995

  18. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    Science.gov (United States)

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  19. Structures of MART-126/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K; Powell, Jr., Daniel J.; Johnson, Laura A; Restifo, Nicholas P; Baker, Brian M [NIH; (Notre)

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

  20. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies

    OpenAIRE

    Claudio Ciferri; Sumana Chandramouli; Alexander Leitner; Danilo Donnarumma; Cianfrocco, Michael A; Rachel Gerrein; Kristian Friedrich; Yukti Aggarwal; Giuseppe Palladino; Ruedi Aebersold; Nathalie Norais; Settembre, Ethan C.; Andrea Carfi

    2015-01-01

    Author Summary Human Cytomegalovirus (HCMV) is a double stranded DNA, enveloped virus infecting >60% of the population worldwide. Typically asymptomatic in healthy adults, HCMV infection causes morbidity and mortality in immunocompromised patients and is the most common viral cause of birth defects in industrialized countries. Despite more than 30 years of research, however, no vaccine against HCMV is available. HCMV utilizes two distinct glycoprotein complexes, gH/gL/gO and gH/gL/UL128/UL130...

  1. Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells

    International Nuclear Information System (INIS)

    How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.

  2. Synthetic protein interactions reveal a functional map of the cell

    Science.gov (United States)

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  3. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

    Directory of Open Access Journals (Sweden)

    Mariya M Kucherenko

    Full Text Available The Dystroglycan-Dystrophin (Dg-Dys complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

  4. Uncoupling of bait-protein expression from the prey protein environment adds versatility for cell and tissue interaction proteomics and reveals a complex of CARP-1 and the PKA Cbeta1 subunit.

    Science.gov (United States)

    Erlbruch, Andrea; Hung, Chien-Wen; Seidler, Joerg; Borrmann, Katrin; Gesellchen, Frank; König, Norbert; Kübler, Dieter; Herberg, Friedrich W; Lehmann, Wolf D; Bossemeyer, Dirk

    2010-08-01

    An expression-uncoupled tandem affinity purification assay is introduced which differs from the standard TAP assay by uncoupling the expression of the TAP-bait protein from the target cells. Here, the TAP-tagged bait protein is expressed in Escherichia coli and purified. The two concatenated purification steps of the classical TAP are performed after addition of the purified bait to brain tissue homogenates, cell and nuclear extracts. Without prior genetic manipulation of the target, upscaling, free choice of cell compartments and avoidance of expression triggered heat shock responses could be achieved in one go. By the strategy of separating bait expression from the prey protein environment numerous established, mostly tissue-specific binding partners of the protein kinase A catalytic subunit Cbeta1 were identified, including interactions in binary, ternary and quaternary complexes. In addition, the previously unknown small molecule inhibitor-dependent interaction of Cbeta1 with the cell cycle and apoptosis regulatory protein-1 was verified. The uncoupled tandem affinity purification procedure presented here expands the application range of the in vivo TAP assay and may serve as a simple strategy for identifying cell- and tissue-specific protein complexes.

  5. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  6. Communities in Neuronal Complex Networks Revealed by Activation Patterns

    CERN Document Server

    Costa, Luciano da Fontoura

    2008-01-01

    Recently, it has been shown that the communities in neuronal networks of the integrate-and-fire type can be identified by considering patterns containing the beginning times for each cell to receive the first non-zero activation. The received activity was integrated in order to facilitate the spiking of each neuron and to constrain the activation inside the communities, but no time decay of such activation was considered. The present article shows that, by taking into account exponential decays of the stored activation, it is possible to identify the communities also in terms of the patterns of activation along the initial steps of the transient dynamics. The potential of this method is illustrated with respect to complex neuronal networks involving four communities, each of a different type (Erd\\H{o}s-R\\'eny, Barab\\'asi-Albert, Watts-Strogatz as well as a simple geographical model). Though the consideration of activation decay has been found to enhance the communities separation, too intense decays tend to y...

  7. Intersubject information mapping: revealing canonical representations of complex natural stimuli

    Directory of Open Access Journals (Sweden)

    Nikolaus Kriegeskorte

    2015-03-01

    Full Text Available Real-world time-continuous stimuli such as video promise greater naturalism for studies of brain function. However, modeling the stimulus variation is challenging and introduces a bias in favor of particular descriptive dimensions. Alternatively, we can look for brain regions whose signal is correlated between subjects, essentially using one subject to model another. Intersubject correlation mapping (ICM allows us to find brain regions driven in a canonical manner across subjects by a complex natural stimulus. However, it requires a direct voxel-to-voxel match between the spatiotemporal activity patterns and is thus only sensitive to common activations sufficiently extended to match up in Talairach space (or in an alternative, e.g. cortical-surface-based, common brain space. Here we introduce the more general approach of intersubject information mapping (IIM. For each brain region, IIM determines how much information is shared between the subjects' local spatiotemporal activity patterns. We estimate the intersubject mutual information using canonical correlation analysis applied to voxels within a spherical searchlight centered on each voxel in turn. The intersubject information estimate is invariant to linear transforms including spatial rearrangement of the voxels within the searchlight. This invariance to local encoding will be crucial in exploring fine-grained brain representations, which cannot be matched up in a common space and, more fundamentally, might be unique to each individual – like fingerprints. IIM yields a continuous brain map, which reflects intersubject information in fine-grained patterns. Performed on data from functional magnetic resonance imaging (fMRI of subjects viewing the same television show, IIM and ICM both highlighted sensory representations, including primary visual and auditory cortices. However, IIM revealed additional regions in higher association cortices, namely temporal pole and orbitofrontal cortex. These

  8. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  9. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. PMID:26659058

  10. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    Science.gov (United States)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  11. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Science.gov (United States)

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  12. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    Directory of Open Access Journals (Sweden)

    Gustafsson Lars

    2010-12-01

    Full Text Available Abstract Background Because of their functional significance, the Major Histocompatibility Complex (MHC class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective

  13. Revealing the Complexity of Community-Campus Interactions

    Science.gov (United States)

    Nichols, Naomi Elizabeth; Phipps, David; Gaetz, Stephen; Fisher, Alison L.; Tanguay, Nancy

    2014-01-01

    In this paper, four qualitative case studies capture the complex interplay between the social and structural relations that shape community - academic partnerships. Collaborations begin as relationships among people. They are sustained by institutional structures that recognize and support these relationships. Productive collaborations centralize…

  14. Exome sequencing of ion channel genes reveals complex variant profiles confounding personal risk assessment in epilepsy

    Science.gov (United States)

    Klassen, Tara; Davis, Caleb; Goldman, Alica; Burgess, Dan; Chen, Tim; Wheeler, David; McPherson, John; Bourquin, Traci; Lewis, Lora; Villasana, Donna; Morgan, Margaret; Muzny, Donna; Gibbs, Richard; Noebels, Jeffrey

    2011-01-01

    Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders. PMID:21703448

  15. Hierarchicality of trade flow networks reveals complexity of products.

    Science.gov (United States)

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely. PMID:24905753

  16. Hierarchicality of trade flow networks reveals complexity of products.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  17. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.;

    2010-01-01

    serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised the...... gastrin concentration in blood as well as microdialysate. The high gastrin concentration following omeprazole treatment was not affected by vagotomy. Vagal excitation stimulated the G cells: electrical vagal stimulation and pylorus ligation (fasted rats) raised the gastrin concentration transiently in...... microdialysate gastrin concentration in omeprazole-treated rats by 65%. We conclude that activated gastrin release, unlike basal gastrin release, is highly dependent on a neural input: 1) Vagal excitation has a transient stimulating effect on the G cells. The transient nature of the response suggests that the...

  18. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination

    OpenAIRE

    Sanborn, JZ; Chung, J.; Purdom, E; Wang, NJ; Kakavand, H; Wilmott, JS; Butler, T.; Thompson, JF; Mann, GJ; Haydu, LE; Saw, RPM; Busam, KJ; Lo, RS; Collisson, EA; Hur, JS

    2015-01-01

    © 2015, National Academy of Sciences. All rights reserved. Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized...

  19. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination.

    Science.gov (United States)

    Sanborn, J Zachary; Chung, Jongsuk; Purdom, Elizabeth; Wang, Nicholas J; Kakavand, Hojabr; Wilmott, James S; Butler, Timothy; Thompson, John F; Mann, Graham J; Haydu, Lauren E; Saw, Robyn P M; Busam, Klaus J; Lo, Roger S; Collisson, Eric A; Hur, Joe S; Spellman, Paul T; Cleaver, James E; Gray, Joe W; Huh, Nam; Murali, Rajmohan; Scolyer, Richard A; Bastian, Boris C; Cho, Raymond J

    2015-09-01

    Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized in parallel to different anatomic sites, rather than sequentially from one site to the next. In five of these six patients, the metastasizing cells had themselves arisen from a common parental subpopulation in the primary, indicating that the ability to establish metastases is a late-evolving trait. Interestingly, we discovered that individual metastases were sometimes founded by multiple cell populations of the primary that were genetically distinct. Such establishment of metastases by multiple tumor subpopulations could help explain why identical resistance variants are identified in different sites after initial response to systemic therapy. One primary tumor harbored two subclones with different oncogenic mutations in CTNNB1, which were both propagated to the same metastasis, raising the possibility that activation of wingless-type mouse mammary tumor virus integration site (WNT) signaling may be involved, as has been suggested by experimental models. PMID:26286987

  20. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.;

    2010-01-01

    vagus has not only a prompt stimulatory but also a slow inhibitory effect on gastrin release. 2) Although vagal denervation did not affect the gastrin response to anacidity, the TTX experiments revealed that both food-evoked and anacidity-evoked gastrin release depends on neural input.......We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised the...

  1. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    Science.gov (United States)

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers. PMID:25512537

  2. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners

    Science.gov (United States)

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W. Thomas; Bush, Nicole R.; Adler, Nancy; Levine, Joel D.

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of “reciprocal” interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  3. Revealing the complex conduction heat transfer mechanism of nanofluids.

    Science.gov (United States)

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  4. Revealing the complex conduction heat transfer mechanism of nanofluids

    Science.gov (United States)

    Sergis, A.; Hardalupas, Y.

    2015-06-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects

  5. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners.

    Science.gov (United States)

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W Thomas; Bush, Nicole R; Adler, Nancy; Levine, Joel D

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of "reciprocal" interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  6. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners

    Directory of Open Access Journals (Sweden)

    Mireille eGolemiec

    2016-03-01

    Full Text Available The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioural interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of ‘reciprocal’ interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored.

  7. In vitro analysis of phosphorothioate modification of DNA reveals substrate recognition by a multiprotein complex

    Science.gov (United States)

    Cao, Bo; Zheng, Xiaoqing; Cheng, Qiuxiang; Yao, Fen; Zheng, Tao; Ramesh Babu, I.; Zhou, Huchen; Dedon, Peter; You, Delin

    2015-01-01

    A wide variety of prokaryotes possess DNA modifications consisting of sequence-specific phosphorothioates (PT) inserted by members of a five-gene cluster. Recent genome mapping studies revealed two unusual features of PT modifications: short consensus sequences and partial modification of a specific genomic site in a population of bacteria. To better understand the mechanism of target selection of PT modifications that underlies these features, we characterized the substrate recognition of the PT-modifying enzymes termed DptC, D and E in a cell extract system from Salmonella. The results revealed that double-stranded oligodeoxynucleotides underwent de novo PT modification in vitro, with the same modification pattern as in vivo, i. e., GpsAAC/GpsTTC motif. Unexpectedly, in these in vitro analyses we observed no significant effect on PT modification by sequences flanking GAAC/GTTC motif, while PT also occurred in the GAAC/GTTC motif that could not be modified in vivo. Hemi-PT DNA also served as substrate of the PT-modifying enzymes, but not single-stranded DNA. The PT-modifying enzymes were then found to function as a large protein complex, with all of three subunits in tetrameric conformations. This study provided the first demonstration of in vitro DNA PT modification by PT-modifying enzymes that function as a large protein complex. PMID:26213215

  8. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  9. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

    DEFF Research Database (Denmark)

    Zhang, Guojie; Guo, Guangwu; Hu, Xueda;

    2010-01-01

    Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we...... present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative...... fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell...

  10. The oyster genome reveals stress adaptation and complexity of shell formation

    DEFF Research Database (Denmark)

    Zhang, Guofan; Fang, Xiaodong; Guo, Ximing;

    2012-01-01

    response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding...... for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells......The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress...

  11. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  12. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    OpenAIRE

    Gustafsson Lars; Stuglik Michał; Babik Wiesław; Zagalska-Neubauer Magdalena; Cichoń Mariusz; Radwan Jacek

    2010-01-01

    Abstract Background Because of their functional significance, the Major Histocompatibility Complex (MHC) class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by ge...

  13. Cutting through the complexity of cell collectives.

    Science.gov (United States)

    Nadell, Carey D; Bucci, Vanni; Drescher, Knut; Levin, Simon A; Bassler, Bonnie L; Xavier, João B

    2013-03-22

    Via strength in numbers, groups of cells can influence their environments in ways that individual cells cannot. Large-scale structural patterns and collective functions underpinning virulence, tumour growth and bacterial biofilm formation are emergent properties of coupled physical and biological processes within cell groups. Owing to the abundance of factors influencing cell group behaviour, deriving general principles about them is a daunting challenge. We argue that combining mechanistic theory with theoretical ecology and evolution provides a key strategy for clarifying how cell groups form, how they change in composition over time, and how they interact with their environments. Here, we review concepts that are critical for dissecting the complexity of cell collectives, including dimensionless parameter groups, individual-based modelling and evolutionary theory. We then use this hybrid modelling approach to provide an example analysis of the evolution of cooperative enzyme secretion in bacterial biofilms.

  14. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. PMID:26253310

  15. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum.

  16. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    Science.gov (United States)

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states. PMID:27425622

  17. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  18. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes.

    Science.gov (United States)

    Ohta, Shinya; Montaño-Gutierrez, Luis F; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G; Takeda, Shunichi; Hudson, Damien F; Rappsilber, Juri; Earnshaw, William C

    2016-08-01

    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  19. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  20. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients

  1. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  2. Conjunctival lymphangioma in a 4-year-old girl revealed tuberous sclerosis complex

    Directory of Open Access Journals (Sweden)

    Freiberg, Florentina Joyce

    2016-09-01

    Full Text Available Background: To present a case of conjunctival lymphangioma in a girl with tuberous sclerosis complex.Methods/results: A 4-year-old girl presented with a relapsing cystic lesion of the bulbar conjunctiva in the right eye with string-of-pearl-like dilation of lymphatic vessels and right-sided facial swelling with mild pain. Best-corrected vision was not impaired. Examination of the skin revealed three hypomelanotic macules and a lumbal Shagreen patch. Magnetic resonance imaging (MRI findings displayed minimal enhancement of buccal fat on the right side. Cranial and orbital MRI showed signal enhancement in the right cortical and subcortical areas. Genetic analysis revealed a heterozygous deletion encompassing exon 1 and 2 of the gene (tuberous sclerosis complex 1 gene, confirming the diagnosis of tuberous sclerosis complex.Conclusion: In conjunctival lymphangioma, tuberous sclerosis complex should be considered as the primary disease.

  3. A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling

    Institute of Scientific and Technical Information of China (English)

    Ziguo Zhang; Hans Thordal-Christensen; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads E. Nielsen; Marl-Anne Newman; Bi-Huei Hou; Shauna C. Somerville

    2008-01-01

    The lesion-mimicArabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp 122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogenresponse transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildewinduced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPRl-dependent.These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.

  4. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  5. Computational Modeling of T Cell Receptor Complexes.

    Science.gov (United States)

    Riley, Timothy P; Singh, Nishant K; Pierce, Brian G; Weng, Zhiping; Baker, Brian M

    2016-01-01

    T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition. PMID:27094300

  6. Functional Features of Trans-differentiated Hair Cells Mediated by Atoh1 Reveals a Primordial Mechanism

    OpenAIRE

    Yang, Juanmei; Bouvron, Sonia; Lv, Ping; Chi, Fanglu; Yamoah, Ebenezer N.

    2012-01-01

    Evolution has transformed a simple ear with few vestibular maculae into a complex 3-dimensional structure consisting of nine distinct endorgans. It is debatable whether the sensory epithelia underwent progressive segregation or emerged from distinct sensory patches. To address these uncertainties we examined the morphological and functional phenotype of trans-differentiated rat hair cells to reveal their primitive or endorgan-specific origins. Additionally, it is uncertain how Atoh1-mediated ...

  7. Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

    OpenAIRE

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary

    2015-01-01

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133+/GFAP− ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133+/GFAP− quiescent cells were enriched...

  8. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    Science.gov (United States)

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  9. Transcriptome Profiling of Taproot Reveals Complex Regulatory Networks during Taproot Thickening in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Yu, Rugang; Wang, Jing; Xu, Liang; Wang, Yan; Wang, Ronghua; Zhu, Xianwen; Sun, Xiaochuan; Luo, Xiaobo; Xie, Yang; Everlyne, Muleke; Liu, Liwang

    2016-01-01

    Radish (Raphanus sativus L.) is one of the most important vegetable crops worldwide. Taproot thickening represents a critical developmental period that determines yield and quality in radish life cycle. To isolate differentially expressed genes (DGEs) involved in radish taproot thickening process and explore the molecular mechanism underlying taproot development, three cDNA libraries from radish taproot collected at pre-cortex splitting stage (L1), cortex splitting stage (L2), and expanding stage (L3) were constructed and sequenced by RNA-Seq technology. More than seven million clean reads were obtained from the three libraries, from which 4,717,617 (L1, 65.35%), 4,809,588 (L2, 68.24%) and 4,973,745 (L3, 69.45%) reads were matched to the radish reference genes, respectively. A total of 85,939 transcripts were generated from three libraries, from which 10,450, 12,325, and 7392 differentially expressed transcripts (DETs) were detected in L1 vs. L2, L1 vs. L3, and L2 vs. L3 comparisons, respectively. Gene Ontology and pathway analysis showed that many DEGs, including EXPA9, Cyclin, CaM, Syntaxin, MADS-box, SAUR, and CalS were involved in cell events, cell wall modification, regulation of plant hormone levels, signal transduction and metabolisms, which may relate to taproot thickening. Furthermore, the integrated analysis of mRNA-miRNA revealed that 43 miRNAs and 92 genes formed 114 miRNA-target mRNA pairs were co-expressed, and three miRNA-target regulatory networks of taproot were constructed from different libraries. Finally, the expression patterns of 16 selected genes were confirmed using RT-qPCR analysis. A hypothetical model of genetic regulatory network associated with taproot thickening in radish was put forward. The taproot formation of radish is mainly attributed to cell differentiation, division and expansion, which are regulated and promoted by certain specific signal transduction pathways and metabolism processes. These results could provide new insights

  10. Transcriptome profiling of taproot reveals complex regulatory networks during taproot thickening in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Rugang Yu

    2016-08-01

    Full Text Available Radish (Raphanus sativus L., is one of the most important vegetable crops worldwide. Taproot thickening represents a critical developmental period that determines yield and quality in radish life cycle. To isolate differentially expressed genes (DGEs involved in radish taproot thickening process and explored the molecular mechanism in underlying taproot development, three cDNA libraries from radish taproot collected at pre-cortex splitting stage (L1, cortex splitting stage (L2 and expanding stage (L3 were constructed and sequenced by RNA-Seq technology. More than seven million clean reads were obtained from the three libraries, respectively, from which 4,717,617 (L1, 65.35%, 4,809,588 (L2, 68.24% and 4,973,745 (L3, 69.45% reads were matched to the radish reference genes. A total of 85,939 transcripts were generated from three libraries, from which 10,450, 12,325 and 7,392 differentially expressed transcripts (DETs were detected in L1 vs. L2, L1 vs. L3, and L2 vs. L3 comparisons, respectively. Gene Ontology and pathway analysis showed that many DEGs, including EXPA9, Cyclin, CaM, Syntaxin, MADS-box, SAUR and CalS were involved in cell events, cell wall modification, regulation of plant hormone levels, signal transduction and metabolisms, which may relate to taproot thickening. Furthermore, the integrated analysis of mRNA-miRNA revealed that 43 miRNAs and 92 genes that formed 114 miRNA-target mRNA pairs were co-expressed, and three miRNA-target regulatory networks of taproot were constructed from different libraries. Finally, the expression patterns of 16 selected genes were confirmed using RT-qPCR analysis. A hypothetical model of genetic regulatory network associated with taproot thickening in radish was put forward. The taproot formation of radish is mainly contributed to cell differentiation, division and expansion, which are regulated and promoted by certain specific signal transduction pathways and metabolism possesses. These results could

  11. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes.

    Science.gov (United States)

    Dean, Samuel; Moreira-Leite, Flavia; Varga, Vladimir; Gull, Keith

    2016-08-30

    The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have human orthologs. Functional analysis shows essential roles for TZPs in motility, in building the axoneme central pair apparatus and in flagellum biogenesis. Analysis using RNAi and HaloTag fusion protein approaches reveals that most TZPs (including the MKS ciliopathy complex) show long-term stable association with the TZ, whereas the BBSome is dynamic. We propose that some Bardet-Biedl syndrome and MKS pleiotropy may be caused by mutations that impact TZP complex dynamics. PMID:27519801

  12. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex.

    Science.gov (United States)

    Vukotic, Milena; Oeljeklaus, Silke; Wiese, Sebastian; Vögtle, F Nora; Meisinger, Chris; Meyer, Helmut E; Zieseniss, Anke; Katschinski, Doerthe M; Jans, Daniel C; Jakobs, Stefan; Warscheid, Bettina; Rehling, Peter; Deckers, Markus

    2012-03-01

    The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.

  13. Multisystem Langerhans Cell Histiocytosis in Adults Revealed by Skin Lesions.

    Science.gov (United States)

    Atarguine, Hanane; Hocar, Ouafa; Oussmane, Samia; Mouafik, Sara Batoul; Hamdaoui, Abderrachid; Hafiane, Hanan; Belbaraka, Rhizlane; Akhdari, Nadia; Amal, Said

    2016-01-01

    A 37-year-old woman with no remarkable medical or family history presented with papules and vesicles on an erythematous background involving the neck, sacrum, and folds (postauricular, axillary, inguinal, and under the breasts) (Figure 1). During the previous year, she was treated with local and systemic antifungals without improvement. Her history included a secondary amenorrhea, polydipsia, and polyuria (6 L/d) that started 2 years prior. Physical examination revealed chronic bilateral purulent otorrhea with thick eardrums. Histologic examination of skin biopsy revealed a highly suggestive appearance of multisystem Langerhans cell histiocytosis (LCH) with immunohistochemistry (anti-PS100 and anti-CD1a), which were positive (Figure 2A and 2B). Pituitary magnetic resonance imaging showed a thickening of the pituitary stalk in relation to a location histiocytic (Figure 3). Bone gaps were objectified on two radiographic tibial diaphyseal. Results from computed tomography (CT) scan showed a magma coelio mesenteric, axillary, and inguinal lymph nodes. PMID:27319965

  14. Contrast Adaptation Decreases Complexity in Retinal Ganglion Cell Spike Train

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-Li; HUANG Shi-Yong; ZHANG Ying-Ying; LIANG Pei-Ji

    2007-01-01

    @@ The difference in temporal structures of retinal ganglion cell spike trains between spontaneous activity and firing activity after contrast adaptation is investigated. The Lempel-Ziv complexity analysis reveals that the complexity of the neural spike train decreases after contrast adaptation. This implies that the behaviour of the neuron becomes ordered, which may carry relevant information about the external stimulus. Thus, during the neuron activity after contrast adaptation, external information could be encoded in forms of some certain patterns in the temporal structure of spike train that is significantly different, compared to that of the spike train during spontaneous activity, although the firing rates in spontaneous activity and firing activity after contrast adaptation are sometime similar.

  15. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells.

    Science.gov (United States)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  16. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  17. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Björklund, Åsa K; Forkel, Marianne; Picelli, Simone; Konya, Viktoria; Theorell, Jakob; Friberg, Danielle; Sandberg, Rickard; Mjösberg, Jenny

    2016-04-01

    Innate lymphoid cells (ILCs) are increasingly appreciated as important participants in homeostasis and inflammation. Substantial plasticity and heterogeneity among ILC populations have been reported. Here we have delineated the heterogeneity of human ILCs through single-cell RNA sequencing of several hundreds of individual tonsil CD127(+) ILCs and natural killer (NK) cells. Unbiased transcriptional clustering revealed four distinct populations, corresponding to ILC1 cells, ILC2 cells, ILC3 cells and NK cells, with their respective transcriptomes recapitulating known as well as unknown transcriptional profiles. The single-cell resolution additionally divulged three transcriptionally and functionally diverse subpopulations of ILC3 cells. Our systematic comparison of single-cell transcriptional variation within and between ILC populations provides new insight into ILC biology during homeostasis, with additional implications for dysregulation of the immune system.

  18. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  19. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes

    Science.gov (United States)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil

    2013-03-01

    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  20. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Sarita Raghunayakula

    Full Text Available Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological

  1. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.

    Science.gov (United States)

    Riesgo, Ana; Farrar, Nathan; Windsor, Pamela J; Giribet, Gonzalo; Leys, Sally P

    2014-05-01

    Sponges (Porifera) are among the earliest evolving metazoans. Their filter-feeding body plan based on choanocyte chambers organized into a complex aquiferous system is so unique among metazoans that it either reflects an early divergence from other animals prior to the evolution of features such as muscles and nerves, or that sponges lost these characters. Analyses of the Amphimedon and Oscarella genomes support this view of uniqueness-many key metazoan genes are absent in these sponges-but whether this is generally true of other sponges remains unknown. We studied the transcriptomes of eight sponge species in four classes (Hexactinellida, Demospongiae, Homoscleromorpha, and Calcarea) specifically seeking genes and pathways considered to be involved in animal complexity. For reference, we also sought these genes in transcriptomes and genomes of three unicellular opisthokonts, two sponges (A. queenslandica and O. carmela), and two bilaterian taxa. Our analyses showed that all sponge classes share an unexpectedly large complement of genes with other metazoans. Interestingly, hexactinellid, calcareous, and homoscleromorph sponges share more genes with bilaterians than with nonbilaterian metazoans. We were surprised to find representatives of most molecules involved in cell-cell communication, signaling, complex epithelia, immune recognition, and germ-lineage/sex, with only a few, but potentially key, absences. A noteworthy finding was that some important genes were absent from all demosponges (transcriptomes and the Amphimedon genome), which might reflect divergence from main-stem lineages including hexactinellids, calcareous sponges, and homoscleromorphs. Our results suggest that genetic complexity arose early in evolution as shown by the presence of these genes in most of the animal lineages, which suggests sponges either possess cryptic physiological and morphological complexity and/or have lost ancestral cell types or physiological processes.

  2. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  3. Deep seismic reflection profiling revealing the complex crustal structure of the Tongling ore district

    Institute of Scientific and Technical Information of China (English)

    L(U); Qingtian; HOU; Zengqian; ZHAO; Jinhua; SHI; Danian

    2004-01-01

    The deep seismic profiling across the Tongling ore district reveals a complex crustal structure. Strong contrasting dipping layered reflections (4-11 s, TWT),which dominate the lower crust of the northern part of the profile, are interpreted as the underplating of the basalt related to extensional tectonism. In the south of the profile, the Yangtze craton is characterized by strong reflections in the middle crust, showing a distinct two-layer crustal structure. Over the region of the Tongling uplift, there appear the complex arc shape reflections, suggesting folded, faulted and intruded structures, and the transparent zone below them reveals the existence of batholith. The south dipping strong reflections between the upper crust and lower crust (4-7 s, TWT) suggest a detachment between them. The detachment provided space for the magma intrusion, and caused the formation of the batholith. The Yangtze craton has a clear Moho reflection, while the Tongling uplift has a weak Moho, whereas below the reflective lower crust in the northern part of the profile, there are sub-Moho reflections. The abrupt variation of the Moho characteristics within a short distance indicates the complexity of magmatic activity.

  4. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization.

    Directory of Open Access Journals (Sweden)

    Julia F Pielage

    2008-03-01

    Full Text Available Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of approximately 80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa-induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections.

  5. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis

    Science.gov (United States)

    Zhang, Zhengjian; English, Brian P.; Grimm, Jonathan B.; Kazane, Stephanie A.; Hu, Wenxin; Tsai, Albert; Inouye, Carla; You, Changjiang; Piehler, Jacob; Schultz, Peter G.; Lavis, Luke D.; Revyakin, Andrey; Tjian, Robert

    2016-01-01

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions. PMID:27798851

  6. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  7. Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects

    Science.gov (United States)

    Zhang, Fan; Wu, Min; Kwoh, Chee Keong; Zheng, Jie

    2016-01-01

    Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model. PMID:27764199

  8. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  9. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  10. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    Science.gov (United States)

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. PMID:22146107

  11. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy. PMID:25556991

  12. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.

    Science.gov (United States)

    Herbert, Kristina M; Sarkar, Susanta K; Mills, Maria; Delgado De la Herran, Hilda C; Neuman, Keir C; Steitz, Joan A

    2016-02-01

    During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.

  13. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    Science.gov (United States)

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  14. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    Science.gov (United States)

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ. PMID:23821748

  15. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells. PMID:23413123

  16. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells.

  17. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.

    Directory of Open Access Journals (Sweden)

    Olga Østrup

    Full Text Available Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA. While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv and in vitro produced (ivt porcine embryos before (2-cell stage and after (late 4-cell stage EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery, protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism, different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and

  18. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben;

    2013-01-01

    stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA...... an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place...... before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate...

  19. The complex hybrid origins of the root knot nematodes revealed through comparative genomics

    Directory of Open Access Journals (Sweden)

    David H. Lunt

    2014-05-01

    Full Text Available Root knot nematodes (RKN can infect most of the world’s agricultural crop species and are among the most important of all plant pathogens. As yet however we have little understanding of their origins or the genomic basis of their extreme polyphagy. The most damaging pathogens reproduce by obligatory mitotic parthenogenesis and it has been suggested that these species originated from interspecific hybridizations between unknown parental taxa. We have sequenced the genome of the diploid meiotic parthenogen Meloidogyne floridensis, and use a comparative genomic approach to test the hypothesis that this species was involved in the hybrid origin of the tropical mitotic parthenogen Meloidogyne incognita. Phylogenomic analysis of gene families from M. floridensis, M. incognita and an outgroup species Meloidogyne hapla was carried out to trace the evolutionary history of these species’ genomes, and we demonstrate that M. floridensis was one of the parental species in the hybrid origins of M. incognita. Analysis of the M. floridensis genome itself revealed many gene loci present in divergent copies, as they are in M. incognita, indicating that it too had a hybrid origin. The triploid M. incognita is shown to be a complex double-hybrid between M. floridensis and a third, unidentified, parent. The agriculturally important RKN have very complex origins involving the mixing of several parental genomes by hybridization and their extreme polyphagy and success in agricultural environments may be related to this hybridization, producing transgressive variation on which natural selection can act. It is now clear that studying RKN variation via individual marker loci may fail due to the species’ convoluted origins, and multi-species population genomics is essential to understand the hybrid diversity and adaptive variation of this important species complex. This comparative genomic analysis provides a compelling example of the importance and complexity of

  20. A multi-gene approach reveals a complex evolutionary history in the Cyanistes species group.

    Science.gov (United States)

    Illera, Juan Carlos; Koivula, Kari; Broggi, Juli; Päckert, Martin; Martens, Jochen; Kvist, Laura

    2011-10-01

    Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources. PMID:21880092

  1. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    Science.gov (United States)

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  2. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    OpenAIRE

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cel...

  3. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    Science.gov (United States)

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time. PMID:20707997

  4. Toll-Like Receptor-Dependent Immune Complex Activation of B Cells and Dendritic Cells.

    Science.gov (United States)

    Moody, Krishna L; Uccellini, Melissa B; Avalos, Ana M; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2016-01-01

    High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated the endosomal Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7. The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. As the endosomal TLR7 and TLR9 function optimally from intracellular acidic compartments, we developed a facile methodology to monitor the trafficking of defined DNA ICs by flow cytometry and confocal microscopy. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA and will help illuminate the role of IC trafficking in the response.

  5. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells

    Directory of Open Access Journals (Sweden)

    Anne L Fletcher

    2011-09-01

    Full Text Available Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  6. Phase sensitivity of complex cells in primary visual cortex.

    Science.gov (United States)

    Hietanen, M A; Cloherty, S L; van Kleef, J P; Wang, C; Dreher, B; Ibbotson, M R

    2013-05-01

    Neurons in the primary visual cortex are often classified as either simple or complex based on the linearity (or otherwise) of their response to spatial luminance contrast. In practice, classification is typically based on Fourier analysis of a cell's response to an optimal drifting sine-wave grating. Simple cells are generally considered to be linear and produce responses modulated at the fundamental frequency of the stimulus grating. In contrast, complex cells exhibit significant nonlinearities that reduce the response at the fundamental frequency. Cells can therefore be easily and objectively classified based on the relative modulation of their responses - the ratio of the phase-sensitive response at the fundamental frequency of the stimulus (F₁) to the phase-invariant sustained response (F₀). Cells are classified as simple if F₁/F₀>1 and complex if F₁/F₀<1. This classification is broadly consistent with criteria based on the spatial organisation of cells' receptive fields and is accordingly presumed to reflect disparate functional roles of simple and complex cells in coding visual information. However, Fourier analysis of spiking responses is sensitive to the number of spikes available - F₁/F₀ increases as the number of spikes is reduced, even for phase-invariant complex cells. Moreover, many complex cells encountered in the laboratory exhibit some phase sensitivity, evident as modulation of their responses at the fundamental frequency. There currently exists no objective quantitative means of assessing the significance or otherwise of these modulations. Here we derive a statistical basis for objectively assessing whether the modulation of neuronal responses is reliable, thereby adding a level of statistical certainty to measures of phase sensitivity. We apply our statistical analysis to neuronal responses to moving sine-wave gratings recorded from 367 cells in cat primary visual cortex. We find that approximately 60% of complex cells exhibit

  7. The integrative taxonomic approach reveals host specific species in an encyrtid parasitoid species complex.

    Directory of Open Access Journals (Sweden)

    Douglas Chesters

    Full Text Available Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae, a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%. Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches.

  8. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  9. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy

    Science.gov (United States)

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk

    2016-02-01

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.

  10. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J; Novoderezhkin, Vladimir I; Scholes, Gregory D; van Grondelle, Rienk

    2016-02-09

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.

  11. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity.

    Science.gov (United States)

    Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J

    2012-05-01

    Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.

  12. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  13. High-resolution crystal structure of Streptococcus pyogenes β-NAD{sup +} glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin [Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Sang Jae [Seoul National University, Seoul 151-742 (Korea, Republic of); Im, Ha Na; Jang, Jun Young [Seoul National University, Seoul 151-747 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of)

    2013-11-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD{sup +} glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD{sup +} glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN{sub ct}–IFS complex, which consists of the SPN C-terminal domain (SPN{sub ct}; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN{sub ct} and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.

  14. Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    CERN Document Server

    Pontani, Lea-Laetitia; Viasnoff, Virgile; Brujic, Jasna

    2012-01-01

    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeos...

  15. Ultrastructural observations reveal the presence of channels between cork cells.

    Science.gov (United States)

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  16. Antiproliferative effects of copper(II)-polypyridyl complexes in breast cancer cells through inducing apoptosis.

    Science.gov (United States)

    Salimi, Mona; Abdi, Khatereh; Kandelous, Hirsa Mostafapour; Hadadzadeh, Hassan; Azadmanesh, Kayhan; Amanzadeh, Amir; Sanati, Hassan

    2015-04-01

    Although cisplatin has been used for decades to treat human cancer, some toxic side effects and resistance are observed. Previous investigations have suggested copper complexes as a novel class of tumor-cell apoptosis inducers. The present study aimed to evaluate the anti-breast cancer activities of two polypyridyl-based copper(II) complexes, [Cu(tpy)(dppz)](NO3)2 (1) and [Cu(tptz)2](NO3)2 (2) (tpy = 2,2':6',2″-terpyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine, tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine), using human breast adenocarcinoma cell line (MCF-7). The ability of the complexes to cleave supercoiled DNA in the presence and absence of external agents was also examined. The apoptotic activities of the complexes were assessed using flow cytometry, fluorescence microscope and western blotting analysis. Our results indicated the high DNA affinity and nuclease activity of complexes 1 and 2. The cleavage mechanisms between the complexes and plasmid DNA are likely to involve a singlet oxygen or singlet oxygen-like entity as the reactive oxygen species. Complexes 1 and 2 also significantly inhibited the proliferation of MCF-7 cells in a dose-dependent manner (IC50 values = 4.57 and 1.98 μM at 24 h, respectively). Complex 2 remarkably induced MCF-7 cells to undergo apoptosis, which was demonstrated by cell morphology, annexin-V and propidium iodide staining. The caspase cascade was activated as shown by the proteolytic cleavage of caspase-3 after treatment of MCF-7 cells with complex 2. Additionally, complex 2 significantly increased the expression of the Bax-to-Bcl-2 ratio to induce apoptosis. In conclusion, these results revealed that complex 2 may be a potential and promising chemotherapeutic agent to treat breast cancer.

  17. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  18. Secret Chambers: The Insider Story of Cells and Complex Life

    OpenAIRE

    Farid Pazhoohi

    2014-01-01

    Review of Secret Chambers: The Insider Story of Cells and Complex Life. Martin Brasier. 2012. Oxford University Press, UK. Pp. 320 with 15 black and white illustrations and 8 pages of color plates. £16.99 (hardcover). ISBN 9780199644001.

  19. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  20. Molecular analysis of endothelial progenitor cell (EPC subtypes reveals two distinct cell populations with different identities

    Directory of Open Access Journals (Sweden)

    Simpson David A

    2010-05-01

    Full Text Available Abstract Background The term endothelial progenitor cells (EPCs is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs and outgrowth endothelial cells (OECs. Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN with links to immunity and inflammation (TLRs, CD14, HLAs, whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.

  1. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  2. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    Science.gov (United States)

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  3. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    Science.gov (United States)

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  4. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  5. Spatial complexity and control of a bacterial cell cycle

    OpenAIRE

    Collier, Justine; Shapiro, Lucy

    2007-01-01

    A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partiti...

  6. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  7. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  8. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell.

    Directory of Open Access Journals (Sweden)

    Ryan Chong

    Full Text Available Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin

  9. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy

    Science.gov (United States)

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-02-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.

  10. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    Science.gov (United States)

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4. PMID:25615435

  11. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers.

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J C; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-11-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.

  12. Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves

    Science.gov (United States)

    Hiraiwa, M.; Abi Ghanem, M.; Wallen, S. P.; Khanolkar, A.; Maznev, A. A.; Boechler, N.

    2016-05-01

    Contact-based vibrations play an essential role in the dynamics of granular materials. Significant insights into vibrational granular dynamics have previously been obtained with reduced-dimensional systems containing macroscale particles. We study contact-based vibrations of a two-dimensional monolayer of micron-sized spheres on a solid substrate that forms a microscale granular crystal. Measurements of the resonant attenuation of laser-generated surface acoustic waves reveal three collective vibrational modes that involve displacements and rotations of the microspheres, as well as interparticle and particle-substrate interactions. To identify the modes, we tune the interparticle stiffness, which shifts the frequency of the horizontal-rotational resonances while leaving the vertical resonance unaffected. From the measured contact resonance frequencies we determine both particle-substrate and interparticle contact stiffnesses and find that the former is an order of magnitude larger than the latter. This study paves the way for investigating complex contact-based dynamics of microscale granular crystals and yields a new approach to studying micro- to nanoscale contact mechanics in multiparticle networks.

  13. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    Science.gov (United States)

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4.

  14. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2013-07-01

    Full Text Available Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM. To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls, where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentate, entorhinal cortex, subiculum as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri- hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators – perhaps due to an attenuated release of stress hormones and decreased neurotoxicity.

  15. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping.

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Toga, Arthur W; Narr, Katherine L; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators-perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572

  16. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    OpenAIRE

    Laura-Roxana Stingaciu; Hugh O’Neill; Michelle Liberton; Urban, Volker S.; Himadri B. Pakrasi; Michael Ohl

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membran...

  17. Geometric determinants of directional cell motility revealed using microcontact printing.

    Science.gov (United States)

    Brock, Amy; Chang, Eric; Ho, Chia-Chi; LeDuc, Philip; Jiang, Xingyu; Whitesides, George M; Ingber, Donald E

    2003-03-01

    Mammalian cells redirect their movement in response to changes in the physical properties of their extracellular matrix (ECM) adhesive scaffolds, including changes in available substrate area, shape, or flexibility. Yet, little is known about the cell's ability to discriminate between different types of spatial signals. Here we utilize a soft-lithography-based, microcontact printing technology in combination with automated computerized image analysis to explore the relationship between ECM geometry and directional motility. When fibroblast cells were cultured on fibronectin-coated adhesive islands with the same area (900 micrometers2) but different geometric forms (square, triangle, pentagon, hexagon, trapezoid, various parallelograms) and aspect ratios, cells preferentially extended new lamellipodia from their corners. In addition, by imposing these simple geometric constraints through ECM, cells were directed to deposit new fibronectin fibrils in these same corner regions. These data indicate that mammalian cells can sense edges within ECM patterns that exhibit a wide range of angularity and that they use these spatial cues to guide where they will deposit ECM and extend new motile processes during the process of directional migration. PMID:14674434

  18. Markov numbers and Lagrangian cell complexes in the complex projective plane

    OpenAIRE

    Evans, Jonathan David; Smith, Ivan

    2016-01-01

    We study Lagrangian embeddings of a class of two-dimensional cell complexes $L_{p,q}$ into the complex projective plane. These cell complexes, which we call pinwheels, arise naturally in algebraic geometry as vanishing cycles for quotient singularities of type $\\frac{1}{p^2}(pq-1,1)$ (Wahl singularities). We show that if a pinwheel admits a Lagrangian embedding into $\\mathbf{CP}^2$ then $p$ is a Markov number and we completely characterise $q$. We also show that a collection of Lagrangian pin...

  19. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M. (UCSC); (LBNL)

    2012-07-18

    Cyclin-dependent kinase (Cdk) phosphorylation of the Retinoblastoma protein (Rb) drives cell proliferation through inhibition of Rb complexes with E2F transcription factors and other regulatory proteins. We present the first structures of phosphorylated Rb that reveal the mechanism of its inactivation. S608 phosphorylation orders a flexible 'pocket' domain loop such that it mimics and directly blocks E2F transactivation domain (E2F{sup TD}) binding. T373 phosphorylation induces a global conformational change that associates the pocket and N-terminal domains (RbN). This first multidomain Rb structure demonstrates a novel role for RbN in allosterically inhibiting the E2F{sup TD}-pocket association and protein binding to the pocket 'LxCxE' site. Together, these structures detail the regulatory mechanism for a canonical growth-repressive complex and provide a novel example of how multisite Cdk phosphorylation induces diverse structural changes to influence cell cycle signaling.

  20. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Directory of Open Access Journals (Sweden)

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  1. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.

    Science.gov (United States)

    Archer, Stuart K; Shirokikh, Nikolay E; Beilharz, Traude H; Preiss, Thomas

    2016-07-28

    Regulation of messenger RNA translation is central to eukaryotic gene expression control. Regulatory inputs are specified by them RNA untranslated regions (UTRs) and often target translation initiation. Initiation involves binding of the 40S ribosomal small subunit (SSU) and associated eukaryotic initiation factors (eIFs)near the mRNA 5′ cap; the SSU then scans in the 3′ direction until it detects the start codon and is joined by the 60S ribosomal large subunit (LSU) to form the 80S ribosome. Scanning and other dynamic aspects of the initiation model have remained as conjectures because methods to trap early intermediates were lacking. Here we uncover the dynamics of the complete translation cycle in live yeast cells using translation complex profile sequencing (TCP-seq), a method developed from the ribosome profiling approach. We document scanning by observing SSU footprints along 5′ UTRs. Scanning SSU have 5′-extended footprints (up to~75 nucleotides), indicative of additional interactions with mRNA emerging from the exit channel, promoting forward movement. We visualized changes in initiation complex conformation as SSU footprints coalesced into three major sizes at start codons (19, 29 and 37 nucleotides). These share the same 5′ start site but differ at the 3′ end, reflecting successive changes at the entry channel from an open to a closed state following start codon recognition. We also observe SSU 'lingering' at stop codons after LSU departure. Our results underpin mechanistic models of translation initiation and termination, built on decades of biochemical and structural investigation, with direct genome-wide in vivo evidence. Our approach captures ribosomal complexes at all phases of translation and will aid in studying translation dynamics in diverse cellular contexts. Dysregulation of translation is common in disease and, for example, SSU scanning is a target of anti-cancer drug development. TCP-seq will prove useful in discerning differences

  2. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  3. Transport and uptake effects of marine complex lipid liposomes in small intestinal epithelial cell models.

    Science.gov (United States)

    Du, Lei; Yang, Yu-Hong; Xu, Jie; Wang, Yu-Ming; Xue, Chang-Hu; Kurihara, Hideyuki; Takahashi, Koretaro

    2016-04-20

    Nowadays, marine complex lipids, including starfish phospholipids (SFP) and cerebrosides (SFC) separated from Asterias amurensis as well as sea cucumber phospholipids (SCP) and cerebrosides (SCC) isolated from Cucumaria frondosa, have received much attention because of their potent biological activities. However, little information is known on the transport and uptake of these lipids in liposome forms in small intestinal cells. Therefore, this study was undertaken to investigate the effects of these complex lipid liposomes on transport and uptake in Caco-2 and M cell monolayer models. The results revealed that SFP and SCP contained 42% and 47.9% eicosapentaenoic acid (EPA), respectively. The average particle sizes of liposomes prepared in this study were from 169 to 189 nm. We found that the transport of the liposomes across the M cell monolayer model was much higher than the Caco-2 cell monolayer model. The liposomes consisting of SFP or SCP showed significantly higher transport and uptake than soy phospholipid (soy-PL) liposomes in both Caco-2 and M cell monolayer models. Our results also exhibited that treatment with 1 mM liposomes composed of SFP or SCP for 3 h tended to increase the EPA content in phospholipid fractions of both differentiated Caco-2 and M cells. Moreover, it was also found that the hybrid liposomes consisting of SFP/SFC/cholesterol (Chol) revealed higher transport and uptake across the M cell monolayer in comparison with other liposomes. Furthermore, treatment with SFP/SFC/Chol liposomes could notably decrease the trans-epithelial electrical resistance (TEER) values of Caco-2 and M cell monolayers. The present data also showed that the cell viability of differentiated Caco-2 and M cells was not affected after the treatment with marine complex lipids or soy-PL liposomes. Based on the data in this study, it was suggested that marine complex lipid liposomes exhibit prominent transport and uptake in small intestinal epithelial cell models. PMID

  4. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    Science.gov (United States)

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  5. Radiosensitization of EMT6 cells by four platinum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  6. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  7. Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

    Science.gov (United States)

    Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David

    2005-04-01

    A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.

  8. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities

    Directory of Open Access Journals (Sweden)

    Chistoserdov Andrei

    2009-11-01

    Full Text Available Abstract Background Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species' of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela. Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. Results The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA gene sequences for taxonomic

  9. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation.

    Directory of Open Access Journals (Sweden)

    Shane E Gordon

    2016-03-01

    Full Text Available Dihydrodipicolinate synthase (DHDPS catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions.

  10. Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis

    Institute of Scientific and Technical Information of China (English)

    Li Song; Xiao-Yi Zhou; Li Li; Liang-Jiao Xue; Xi Yang; Hong-Wei Xue

    2009-01-01

    Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development;however,the mechanism of how they synergistically function is still largely unknown.To explore the underlying mechanisms in photomorphogenesis,genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL).Results showed that BR deficiency stimulates,while BL treatment suppresses,the expressions of lightresponsive genes and photomorphogenesis,confirming the negative effects of BR in photomorphogenesis.This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification,cellular metabolism and energy utilization during dark-light transition.Further analysis revealed that hormone biosynthesis and signaling-related genes,especially those of auxin,were altered under BL treatment or light stimuli,indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones.Additionally,suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light,hormone,and protein degradation.The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway,which will help to elucidate the molecular mechanism of plant photomorphogenesis.

  11. Anticancer Activity Studies of Ruthenium(II) Complex Toward Human Osteosarcoma HOS Cells.

    Science.gov (United States)

    Zhu, Jian-Wei; Liu, Si-Hong; Zhang, Gui-Qiang; Xu, Hui-Hua; Wang, Yu-Xuan; Wu, Yong; Liu, Ya-Min; Wang, Yan; Liang, Jun-Bo; Guo, Qi-Feng

    2016-08-01

    A new Ru(II) complex [Ru(dmp)2(NMIP)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, NMIP = 2'-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4',5'-f][1,10]-phenanthroline) was synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxic activity of the complex against MG-63, U2OS, HOS, and MC3T3-e1 cell lines was investigated by MTT method. The complex shows moderate cytotoxicity toward HOS (IC50 = 35.6 ± 2.6 µM) and MC3T3-e1 (IC50 = 41.6 ± 2.8 µM) cell lines. The morphological studies show that the complex can induce apoptosis in HOS cells and cause an increase of reactive oxygen species levels and a decrease in the mitochondrial membrane potential. The cell cycle distribution demonstrates that the complex inhibits the cell growth at S phase. Additionally, the antitumor activity in vivo reveals that the complex can induce a decrease in tumor weight. PMID:27007877

  12. Polymorphism of DNA–anionic liposome complexes reveals hierarchy of ion-mediated interactions

    OpenAIRE

    Liang, Hongjun; Harries, Daniel; Gerard C L Wong

    2005-01-01

    Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid–DNA complexes because of their low cytotoxicity. We investigate AL–DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL–DNA complexes...

  13. Transcriptome, carbohydrate and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    Directory of Open Access Journals (Sweden)

    Martin Andreas Bauerfeind

    2015-07-01

    Full Text Available Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C affect growth of the sensitive Petunia hybrida cultivar `SweetSunshine Williams´, the transcriptome, carbohydrate metabolism and phytohormone homeostasis were monitored in aerial plant parts over four weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After three weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently

  14. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress.

    Science.gov (United States)

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars. PMID

  15. Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2013-01-01

    Full Text Available Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.

  16. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

    Directory of Open Access Journals (Sweden)

    Kahlem Pascal

    2006-06-01

    Full Text Available Abstract Background Trisomy of human chromosome 21 (Chr21 results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb to MCM3AP (46.6 Mb, with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.

  17. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  18. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  19. Single cell activity reveals direct electron transfer in methanotrophic consortia

    Science.gov (United States)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  20. Cobalt substituted thiosemicarbazone metal complex induced apoptosis in cancer cells via activation of mitochondrial pathway

    International Nuclear Information System (INIS)

    Thiosemicarbazone (TSC) and their transition metal complexes are broad class of biologically active small molecules and present a great variety of biological activity ranging from antitumour, fungicide, bacteriocide, anti inflammatory and antiviral activities. These characteristics render the whole class of compounds very interesting. In the present study, we sought to examine cytotoxic activity of thiosemicarbazone cobalt complex on various cancer cell lines along with the possible mechanism through which the compound induce apoptosis in these cell lines. Cytotoxicity of TSC cobalt complex was studied by performing standard MTT drug sensitivity assay and determining its IC50 value on various leukemic and solid cancer cell lines like HL-60, MOLT-4, K-562 and COLO-205. Cellular damage upon the treatment of test molecule was analyzed by conducting LDH release assay. DNA fragmentation and morphology of apoptotic cells were assessed respectively by performing ladder assay and acridine orange/ethidium bromide staining. Role of mitochondria in the induction of cell death was studied by measuring mitochondrial membrane potential (ΔΨm) using JC-1 probe. The cytotoxicity studies confirms that TSC cobalt complex is having potent anticancer activity on HL-60, K-562, MOLT-4 and COLO-205 cell lines with the IC50 value in the range 0.225-29.00 μM. Dose dependent increase in the LDH release into the surrounding media depicts the cell membrane disintegrity. DNA fragmentation on treated cells revealed the cell death, which is commonly associated with apoptosis. Fluorescence microscopic imaging of treated cells confirms that the mode of cell death was through apoptosis. Loss of the ΔΨm in treated cells explicates the involvement of mitochondria in the cell death induction. Further increase in caspase-3 activity upon treatment corroborates that molecule induces apoptosis. Taken together, this exploratory study revealed that TSC cobalt complex possesses potent cytotoxic and

  1. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea.

    Directory of Open Access Journals (Sweden)

    Kirill Borziak

    Full Text Available Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs, is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA, which in archaea is typically encoded by two genes (LplA-N and LplA-C, or by a lipoyl(octanoyl transferase (LipB or LipM plus a lipoic acid synthetase (LipA. Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across

  2. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  3. Deconvoluting post-transplant immunity: cell subset-specific mapping reveals pathways for activation and expansion of memory T, monocytes and B cells.

    Directory of Open Access Journals (Sweden)

    Yevgeniy A Grigoryev

    Full Text Available A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+CD62L(- effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.

  4. Naturally death-resistant precursor cells revealed as the origin of retinoblastoma

    DEFF Research Database (Denmark)

    Trinh, Emmanuelle; Lazzerini Denchi, Eros; Helin, Kristian

    2004-01-01

    The molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retinal...

  5. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Siwo Geoffrey

    2010-10-01

    Full Text Available Abstract Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c, a Zinc finger transcription factor (PFL0465c both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c.

  6. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    Science.gov (United States)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  7. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  8. Contextual interactions in a generalized energy model of complex cells

    OpenAIRE

    Dellen, Babette; Clark, John W.; Wessel, Ralf

    2009-01-01

    We propose a generalized energy model of complex cells to describe modulatory contextual influences on the responses of neurons in the primary visual cortex (V1). Many orientationselective cells in V1 respond to contrast of orientation and motion of stimuli exciting the classical receptive field (CRF) and the non-CRF, or surround. In the proposed model, a central spatiotemporal filter, defining the CRF, is nonlinearly combined with a spatiotemporal filter extending into the non- ...

  9. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.

    Science.gov (United States)

    Fang, Yi; Zhang, Qian; Wang, Xin; Yang, Xue; Wang, Xiangyu; Huang, Zhen; Jiao, Yuchen; Wang, Jing

    2016-03-01

    Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anticancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anticancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in the TNBC cell line MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. Furthermore, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, our study presents evidence at a phosphoproteomic level that genistein is able to inhibit TNBC cell growth by regulating the cell cycle and DNA damage response in a more complex manner. Our findings help elucidate the mechanisms through which genistein exerts its anticancer effects in TNBC cells. PMID:26783066

  10. Tutorial: Electroporation of cells in complex materials and tissue

    Science.gov (United States)

    Rems, L.; Miklavčič, D.

    2016-05-01

    Electroporation is being successfully used in biology, medicine, food processing, and biotechnology, and in some environmental applications. Recent applications also include in addition to classical electroporation, where cells are exposed to micro- or milliseconds long pulses, exposures to extremely short nanosecond pulses, i.e., high-frequency electroporation. Electric pulses are applied to cells in different structural configurations ranging from suspended cells to cells in tissues. Understanding electroporation of cells in tissues and other complex environments is a key to its successful use and optimization in various applications. Thus, explanation will be provided theoretically/numerically with relation to experimental observations by scaling our understanding of electroporation from the molecular level of the cell membrane up to the tissue level.

  11. Combining complexity measures of EEG data: multiplying measures reveal previously hidden information [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Thomas Burns

    2015-06-01

    Full Text Available Many studies have noted significant differences among human electroencephalograph (EEG results when participants or patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of complexity and do not regularly justify their choice of measure beyond the fact that it has been used in previous studies. If more measures were added to such studies, however, more complete information might be found about these reported differences. Such information might be useful in confirming the existence or extent of such differences, or in understanding their physiological bases. In this study we analysed publically-available EEG data using a range of complexity measures to determine how well the measures correlated with one another. The complexity measures did not all significantly correlate, suggesting that different measures were measuring unique features of the EEG signals and thus revealing information which other measures were unable to detect. Therefore, the results from this analysis suggests that combinations of complexity measures reveal unique information which is in addition to the information captured by other measures of complexity in EEG data. For this reason, researchers using individual complexity measures for EEG data should consider using combinations of measures to more completely account for any differences they observe and to ensure the robustness of any relationships identified.

  12. Topological similarity of random cell complexes and applications

    Science.gov (United States)

    Schweinhart, B.; Mason, J. K.; MacPherson, R. D.

    2016-06-01

    Although random cell complexes occur throughout the physical sciences, there does not appear to be a standard way to quantify their statistical similarities and differences. The various proposals in the literature are usually motivated by the analysis of particular physical systems and do not necessarily apply to general situations. The central concepts in this paper—the swatch and the cloth—provide a description of the local topology of a cell complex that is general (any physical system that can be represented as a cell complex is admissible) and complete (any statistical question about the local topology can be answered from the cloth). Furthermore, this approach allows a distance to be defined that measures the similarity of the local topology of two cell complexes. The distance is used to identify a steady state of a model grain boundary network, quantify the approach to this steady state, and show that the steady state is independent of the initial conditions. The same distance is then employed to show that the long-term properties in simulations of a specific model of a dislocation network do not depend on the implementation of dislocation intersections.

  13. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism.

    Science.gov (United States)

    Verhamme, Ingrid M; Bock, Paul E

    2014-10-01

    Rapid kinetics demonstrate a three-step pathway of streptokinase (SK) binding to plasminogen (Pg), the zymogen of plasmin (Pm). Formation of a fluorescently silent encounter complex is followed by two conformational tightening steps reported by fluorescence quenches. Forward reactions were defined by time courses of biphasic quenching during complex formation between SK or its COOH-terminal Lys(414) deletion mutant (SKΔK414) and active site-labeled [Lys]Pg ([5-(acetamido)fluorescein]-D-Phe-Phe-Arg-[Lys]Pg ([5F]FFR-[Lys]Pg)) and by the SK dependences of the quench rates. Active site-blocked Pm rapidly displaced [5F]FFR-[Lys]Pg from the complex. The encounter and final SK ·[5F]FFR-[Lys]Pg complexes were weakened similarly by SK Lys(414) deletion and blocking of lysine-binding sites (LBSs) on Pg kringles with 6-aminohexanoic acid or benzamidine. Forward and reverse rates for both tightening steps were unaffected by 6-aminohexanoic acid, whereas benzamidine released constraints on the first conformational tightening. This indicated that binding of SK Lys(414) to Pg kringle 4 plays a role in recognition of Pg by SK. The substantially lower affinity of the final SK · Pg complex compared with SK · Pm is characterized by a ∼ 25-fold weaker encounter complex and ∼ 40-fold faster off-rates for the second conformational step. The results suggest that effective Pg encounter requires SK Lys(414) engagement and significant non-LBS interactions with the protease domain, whereas Pm binding additionally requires contributions of other lysines. This difference may be responsible for the lower affinity of the SK · Pg complex and the expression of a weaker "pro"-exosite for binding of a second Pg in the substrate mode compared with SK · Pm. PMID:25138220

  14. Rapid Binding of Plasminogen to Streptokinase in a Catalytic Complex Reveals a Three-step Mechanism*

    Science.gov (United States)

    Verhamme, Ingrid M.; Bock, Paul E.

    2014-01-01

    Rapid kinetics demonstrate a three-step pathway of streptokinase (SK) binding to plasminogen (Pg), the zymogen of plasmin (Pm). Formation of a fluorescently silent encounter complex is followed by two conformational tightening steps reported by fluorescence quenches. Forward reactions were defined by time courses of biphasic quenching during complex formation between SK or its COOH-terminal Lys414 deletion mutant (SKΔK414) and active site-labeled [Lys]Pg ([5-(acetamido)fluorescein]-d-Phe-Phe-Arg-[Lys]Pg ([5F]FFR-[Lys]Pg)) and by the SK dependences of the quench rates. Active site-blocked Pm rapidly displaced [5F]FFR-[Lys]Pg from the complex. The encounter and final SK·[5F]FFR-[Lys]Pg complexes were weakened similarly by SK Lys414 deletion and blocking of lysine-binding sites (LBSs) on Pg kringles with 6-aminohexanoic acid or benzamidine. Forward and reverse rates for both tightening steps were unaffected by 6-aminohexanoic acid, whereas benzamidine released constraints on the first conformational tightening. This indicated that binding of SK Lys414 to Pg kringle 4 plays a role in recognition of Pg by SK. The substantially lower affinity of the final SK·Pg complex compared with SK·Pm is characterized by a ∼25-fold weaker encounter complex and ∼40-fold faster off-rates for the second conformational step. The results suggest that effective Pg encounter requires SK Lys414 engagement and significant non-LBS interactions with the protease domain, whereas Pm binding additionally requires contributions of other lysines. This difference may be responsible for the lower affinity of the SK·Pg complex and the expression of a weaker “pro”-exosite for binding of a second Pg in the substrate mode compared with SK·Pm. PMID:25138220

  15. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    Science.gov (United States)

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.

  16. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  17. Crystal Structure of a Complex of Surfactant Protein D (SP-D) and Haemophilus influenzae Lipopolysaccharide Reveals Shielding of Core Structures in SP-D-Resistant Strains.

    Science.gov (United States)

    Clark, Howard W; Mackay, Rose-Marie; Deadman, Mary E; Hood, Derek W; Madsen, Jens; Moxon, E Richard; Townsend, J Paul; Reid, Kenneth B M; Ahmed, Abdul; Shaw, Amy J; Greenhough, Trevor J; Shrive, Annette K

    2016-05-01

    The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325. Combined with enzyme-linked immunosorbent assays (ELISAs) and fluorescence-activated cell sorter (FACS) binding analyses, our results show that extended LPS structures previously thought to be targets for collectins are important in shielding the more vulnerable sites in the LPS core, revealing a mechanism by which pathogens with complex LPS extensions efficiently evade a first-line mucosal innate immune defense. The structure also reveals for the first time the dominant form of anhydro-Kdo.

  18. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

    Science.gov (United States)

    De Souza, Amanda P; Alvim Kamei, Claire L; Torres, Andres F; Pattathil, Sivakumar; Hahn, Michael G; Trindade, Luisa M; Buckeridge, Marcos S

    2015-07-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  19. Structural comparison of the Caenorhabditis elegans and human Ndc80 complexes bound to microtubules reveals distinct binding behavior

    Science.gov (United States)

    Wilson-Kubalek, Elizabeth M.; Cheeseman, Iain M.; Milligan, Ronald A.

    2016-01-01

    During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore–microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore–microtubule attachments. Here we compare the binding of the Caenorhabditis elegans and human Ndc80 complexes to microtubules at high resolution using cryo–electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas the C. elegans Ndc80 complex binds more tightly to β-tubulin. In addition, the C. elegans Ndc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore–microtubule interactions. PMID:26941333

  20. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  1. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    Science.gov (United States)

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-18

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis.

  2. Polycomb complex PRC1 as gatekeeper of intestinal stem cell identity

    Science.gov (United States)

    Léveillé, Nicolas

    2016-01-01

    Intestinal stem cells (ISCs) are adult multipotent cells essential for the maintenance of intestinal epithelial homeostasis. Wnt signaling activity ensures that the pool of ISCs at the basis of the intestinal crypts is preserved. Dysregulation of the Wnt pathway is often observed in cancer and supports malignant progression. Chiacchiera and colleagues recently demonstrated the implication of the polycomb complex PRC1 in the regulation of the Wnt pathway in adult ISCs. The authors show that PRC1 maintains intestinal homeostasis by repressing the expression of ZICs, a family of transcription factors inactivating the β-catenin/TCF complex. Importantly, interfering with PRC1 activity completely inhibits the formation of Wnt-dependent tumors. These findings reveal a new layer of epigenetic regulation of the Wnt pathway and open novel opportunities for cancer stem cell targeted therapy. PMID:27488310

  3. How Can We Explain Poverty? Case Study of Dee Reveals the Complexities

    Science.gov (United States)

    Seccombe, Karen

    2011-01-01

    Many theories have been offered to explain why people are impoverished. This article by Karen Seccombe uses the case study of "Dee," a newly single mother, to explore four of the most common: individualism, social structuralism, the culture of poverty, and fatalism. She concludes that poverty is a highly complex phenomenon, and it is likely that…

  4. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex

    NARCIS (Netherlands)

    Cabral, A.; Groenewald, J.Z.; Rego, C.; Oliveira, H.; Crous, P.W.

    2012-01-01

    Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and

  5. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry

    Directory of Open Access Journals (Sweden)

    Lukas Nejdl

    2013-10-01

    Full Text Available In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen(hisCl2, Zn(hisCl2 and ZnS quantum dots (QDs using printed electrodes. This method was chosen due to the simple (easy to use instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential were studied. We showed that the increasing concentration of the complexes (Zn(phen(hisCl2, Zn(hisCl2 led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry.

  6. Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation In Liver Cells

    Science.gov (United States)

    Osna, Natalia A.; White, Ronda L.; Thiele, Geoffrey M.; Donohue, Terrence M.

    2009-01-01

    The proteasome is a major enzyme that cleaves proteins for antigen presentation. Cleaved peptides traffic to the cell surface, where they are presented in the context of MHC class I. Recognition of these complexes by cytotoxic T lymphocytes is crucial for elimination of cells bearing “non-self” proteins. Our previous studies revealed that ethanol suppresses proteasome function in ethanol-metabolizing liver cells. We hypothesized that proteasome suppression reduces the hydrolysis of antigenic peptides, thereby decreasing the presentation of the peptide-MHC class I-complexes on the cell surface. To test this, we used the mouse hepatocyte cell line (CYP2E1/ADH-transfected HepB5 cells) or primary mouse hepatocytes, both derived from livers of C57Bl/6 mice, which present the ovalbumin peptide, SIINFEKL, complexed with H2Kb. To induce H2Kb expression, HepB5 cells were treated with interferon gamma (IFNγ) and then exposed to ethanol. In these cells, ethanol metabolism decreased not only proteasome activity, but also hydrolysis of the C-extended peptide, SIINFEKL-TE and the presentation of SIINFEKL-H2Kb complexes measured after the delivery of SIINFEKL-TE to cytoplasm. The suppressive effects of ethanol were, in part, attributed to ethanol-elicited impairment of IFNγ signaling. However, in primary hepatocytes, even in the absence of IFNγ, we observed a similar decline in proteasome activity and antigen presentation after ethanol exposure. We conclude that proteasome function is directly suppressed by ethanol metabolism and indirectly, by preventing the activating effects of IFNγ. Ethanol-elicited reduction in proteasome activity contributes to the suppression of SIINFEKL-H2Kb presentation on the surface of liver cells. Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis C or B viral infections (HCV and HBV, respectively). Professional antigen-presenting cells (dendritic cells and macrophages) are responsible for priming the

  7. Trafficking of the IKs -Complex in MDCK Cells

    DEFF Research Database (Denmark)

    David, Jens-Peter; Andersen, Martin N; Olesen, Søren-Peter;

    2013-01-01

    has not been unequivocally resolved yet. We employed trafficking-deficient K 7.1 and KCNE1 mutants to investigate I trafficking using the polarized Madin-Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes...... place in a post-endoplasmic reticulum compartment. We demonstrate that K 7.1 targets the I -complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical K 7.1 basolateral targeting signals. Our data provide a possible explanation...

  8. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  9. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages.

    Science.gov (United States)

    Sansom, Robert S; Gabbott, Sarah E; Purnell, M A

    2013-06-23

    Jawed vertebrates (gnathostomes) have undergone radical anatomical and developmental changes in comparison with their jawless cousins (cyclostomes). Key among these is paired appendages (fins, legs and wings), which first evolved at some point on the gnathostome stem. The anatomy of fossil stem gnathostomes is, therefore, fundamental to our understanding of the nature and timing of the origin of this complex innovation. Here, we show that Euphanerops, a fossil jawless fish from the Devonian, possessed paired anal-fin radials, but no pectoral or pelvic fins. This unique condition occurs at an early stage on the stem-gnathostome lineage. This condition, and comparison with the varied condition of paired fins in other ostracoderms, indicates that there was a large amount of developmental plasticity during this episode-rather than a gradual evolution of this complex feature. Apparently, a number of different clades were exploring morphospace or undergoing multiple losses.

  10. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  11. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes.

    Science.gov (United States)

    Li, Y; Zakharov, D; Zhao, S; Tappero, R; Jung, U; Elsen, A; Baumann, Ph; Nuzzo, R G; Stach, E A; Frenkel, A I

    2015-01-01

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction-ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. This method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes. PMID:26119246

  12. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    Science.gov (United States)

    Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U.; Elsen, A.; Baumann, Ph.; Nuzzo, R. G.; Stach, E. A.; Frenkel, A. I.

    2015-06-01

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction--ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. This method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.

  13. Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi.

    Directory of Open Access Journals (Sweden)

    Angham Boubou

    Full Text Available The spider mite Tetranychus evansi is an emerging pest of solanaceous crops worldwide. Like many other emerging pests, its small size, confusing taxonomy, complex history of associations with humans, and propensity to start new populations from small inocula, make the study of its invasion biology difficult. Here, we use recent developments in Approximate Bayesian Computation (ABC and variation in multi-locus genetic markers to reconstruct the complex historical demography of this cryptic invasive pest. By distinguishing among multiple pathways and timing of introductions, we find evidence for the "bridgehead effect", in which one invasion serves as source for subsequent invasions. Tetranychus evansi populations in Europe and Africa resulted from at least three independent introductions from South America and involved mites from two distinct sources in Brazil, corresponding to highly divergent mitochondrial DNA lineages. Mites from southwest Brazil (BR-SW colonized the African continent, and from there Europe through two pathways in a "bridgehead" type pattern. One pathway resulted in a widespread invasion, not only to Europe, but also to other regions in Africa, southern Europe and eastern Asia. The second pathway involved the mixture with a second introduction from BR-SW leading to an admixed population in southern Spain. Admixture was also detected between invasive populations in Portugal. A third introduction from the Brazilian Atlantic region resulted in only a limited invasion in Europe. This study illustrates that ABC methods can provide insights into, and distinguish among, complex invasion scenarios. These processes are critical not only in understanding the biology of invasions, but also in refining management strategies for invasive species. For example, while reported observations of the mite and outbreaks in the invaded areas were largely consistent with estimates of geographical expansion from the ABC approach, historical

  14. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice.

    Directory of Open Access Journals (Sweden)

    Jason B Wolf

    2008-06-01

    Full Text Available Parent-of-origin-dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life.

  15. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    OpenAIRE

    Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U. (Udo); Elsen, A.; Baumann, Ph.; Nuzzo, R.G.; Stach, E A; Frenkel, A. I.

    2015-01-01

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—e...

  16. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    OpenAIRE

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Synaptic vesicle fusion is catalyzed by multiprotein complexes that bring two lipid bilayers into close opposition. Several assembly mechanisms have been proposed for the synaptic vesicle fusion machinery, but exactly how these proteins interact in vivo remains unclear. We developed two-color fluorescence nanoscopy to directly visualize molecular interactions in situ and discovered that syntaxin-1, SNAP-25, and Munc18-1 (mammalian uncoordinated-18), three essential components for neurotransmi...

  17. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    OpenAIRE

    Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant m...

  18. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    OpenAIRE

    Eileen eLuders; Florian eKurth; Toga, Arthur W.; Narr, Katherine L.; Christian eGaser

    2013-01-01

    Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significa...

  19. CrypticspeciescompositionandgeneticdiversitywithinBemisiatabaci complex in soybean in India revealed by mtCOI DNA sequence

    Institute of Scientific and Technical Information of China (English)

    Prasanna H C; Kanakala S; Archana K; Jyothsna P; Varma R K; Malathi V G

    2015-01-01

    Bemisia tabaci is a cryptic species complex, causing signiifcant loss on many agricultural y important crops worldwide. Knowledge on species composition and diversity within B. tabaci complex is critical for evolving sustainable pest management strategies. Here we investigate the whitelfy species complex in soybean in major soybean growing states of India. The mitochondrial cytochrome oxidase gene subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian methods indicated the existence of three cryptic species namely Asia I, Asia II 1, and Asia II 7. Al the haplotypes detected in the study could be assigned to these three cryptic species fol owing the species demarcation criteria of 3.5%divergence threshold. Of these, Asia II 1 was found to be predominant with wide spread distribution across the surveyed regions from cool temperate zones to hot and humid tropical plains. On the contrary, cryptic species Asia II 7 showed localized distribu-tion. The Asia II 1 exhibited the highest haplotype diversity and Asia I showed high level of nucleotide diversity. There was a signiifcantly high genetic differentiation among these three cryptic species. The MEAM 1, a dreadful invasive species was not detected in the specimens tested in the current study. The diversity and distribution of three cryptic species is discussed in the light of current knowledge on distribution of whitelfy species in India and yel ow mosaic disease observed during sampling survey.

  20. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data.

    Science.gov (United States)

    Rosenblum, Erica Bree; James, Timothy Y; Zamudio, Kelly R; Poorten, Thomas J; Ilut, Dan; Rodriguez, David; Eastman, Jonathan M; Richards-Hrdlicka, Katy; Joneson, Suzanne; Jenkinson, Thomas S; Longcore, Joyce E; Parra Olea, Gabriela; Toledo, Luís Felipe; Arellano, Maria Luz; Medina, Edgar M; Restrepo, Silvia; Flechas, Sandra Victoria; Berger, Lee; Briggs, Cheryl J; Stajich, Jason E

    2013-06-01

    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.

  1. Cysteine scanning reveals minor local rearrangements of the horizontal helix of respiratory complex I.

    Science.gov (United States)

    Steimle, Stefan; Schnick, Christian; Burger, Eva-Maria; Nuber, Franziska; Krämer, Dorothée; Dawitz, Hannah; Brander, Sofia; Matlosz, Bartlomiej; Schäfer, Jacob; Maurer, Katharina; Glessner, Udo; Friedrich, Thorsten

    2015-10-01

    The NADH:ubiquinone oxidoreductase, respiratory complex I, couples electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the redox reaction and a membrane arm catalyzing proton translocation. The membrane arm is almost completely aligned by a 110 Å unique horizontal helix that is discussed to transmit conformational changes induced by the redox reaction in a piston-like movement to the membrane arm driving proton translocation. Here, we analyzed such a proposed movement by cysteine-scanning of the helix of the Escherichia coli complex I. The accessibility of engineered cysteine residues and the flexibility of individual positions were determined by labeling the preparations with a fluorescent marker and a spin-probe, respectively, in the oxidized and reduced states. The differences in fluorescence labeling and the rotational flexibility of the spin probe between both redox states indicate only slight conformational changes at distinct positions of the helix but not a large movement. PMID:26115017

  2. Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex.

    Science.gov (United States)

    Obado, Samson O; Brillantes, Marc; Uryu, Kunihiro; Zhang, Wenzhu; Ketaren, Natalia E; Chait, Brian T; Field, Mark C; Rout, Michael P

    2016-02-01

    The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes. PMID:26891179

  3. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes.

    Science.gov (United States)

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie

    2015-01-21

    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein-protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein-protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein-protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.

  4. Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex.

    Directory of Open Access Journals (Sweden)

    Kyutae Kim

    Full Text Available Twenty different aminoacyl-tRNA synthetases (ARSs link each amino acid to their cognate tRNAs. Individual ARSs are also associated with various non-canonical activities involved in neuronal diseases, cancer and autoimmune diseases. Among them, eight ARSs (D, EP, I, K, L, M, Q and RARS, together with three ARS-interacting multifunctional proteins (AIMPs, are currently known to assemble the multi-synthetase complex (MSC. However, the cellular function and global topology of MSC remain unclear. In order to understand the complex interaction within MSC, we conducted affinity purification-mass spectrometry (AP-MS using each of AIMP1, AIMP2 and KARS as a bait protein. Mass spectrometric data were funneled into SAINT software to distinguish true interactions from background contaminants. A total of 40, 134, 101 proteins in each bait scored over 0.9 of SAINT probability in HEK 293T cells. Complex-forming ARSs, such as DARS, EPRS, IARS, Kars, LARS, MARS, QARS and RARS, were constantly found to interact with each bait. Variants such as, AIMP2-DX2 and AIMP1 isoform 2 were found with specific peptides in KARS precipitates. Relative enrichment analysis of the mass spectrometric data demonstrated that TARSL2 (threonyl-tRNA synthetase like-2 was highly enriched with the ARS-core complex. The interaction was further confirmed by coimmunoprecipitation of TARSL2 with other ARS core-complex components. We suggest TARSL2 as a new component of ARS core-complex.

  5. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    Science.gov (United States)

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  6. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.

    Directory of Open Access Journals (Sweden)

    Elliott J Stollar

    Full Text Available There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.

  7. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2009-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  8. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  9. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. PMID:25525749

  10. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    Science.gov (United States)

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  11. Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression

    Directory of Open Access Journals (Sweden)

    Phillips Wendy S

    2006-02-01

    Full Text Available Abstract Background Cnidarian – dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian – algal symbiosis. Results We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian – dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian – dinoflagellate associations provides critical insights into the maintenance and regulation of the

  12. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    Science.gov (United States)

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  13. Complex Networks Reveal Persistent Global / Regional Structure and Predictive Information Content in Climate Data

    Science.gov (United States)

    Steinhaeuser, K.; Chawla, N. V.; Ganguly, A. R.

    2010-12-01

    Recent articles have posited that the skills of climate model projections, particularly for variables and scales of interest to decision makers, may need to be significantly improved. Here we hypothesize that there is information content in variables that are projected more reliably, for example, sea surface temperatures, which is relevant for improving predictions of other variables at scales which may be more crucial, for example, regional land temperature and precipitation anomalies. While this hypothesis may be partially supported based on conceptual understanding, a key question to explore is whether the relevant information content can be meaningfully extracted from observations and model simulations. Here we use climate reconstructions from reanalysis datasets to examine the question in detail. Our tool of choice is complex networks, which have provided useful insights in the context of descriptive analysis and change detection for climate in the recent literature. We describe a new adaptation of complex networks based on computational approaches which provide additional descriptive insights at both global and regional scales, specifically sea surface variables, and provide a unified framework for data-guided predictive modeling, specifically for regional temperature and precipitation over land. Complex networks were constructed from historical data to study the properties of the global climate system and characterize behavior at the global scale. Clusters based on community detection, which leverage the network distance, were used to identify regional structures. Persistence and stability of these features over time were evaluated. Predictive information content of ocean indicators with respect to land climate was extracted using a suite of regression models and validated on held-out data. Our results suggest that the new adaptation of complex networks may be well-suited to provide a unified framework for exploring climate teleconnections or long

  14. Effects on hippocampus of lifelong absence of glucocorticoids in the pro-opiomelanocortin null mutant mouse reveal complex relationship between glucocorticoids and hippocampal structure and function.

    Science.gov (United States)

    Ostwald, Dirk; Karpac, Jason; Hochgeschwender, Ute

    2006-01-01

    In humans changes in serum cortisol levels have been observed with aging, stress, and with affective disorders such as major depression and post-traumatic stress disorder. Corticosteroids are known to influence hippocampal structure and function; specifically, plasma corticosteroid levels have been inversely correlated with hippocampal cell proliferation, cell death, and impaired memory function. The relationship between corticosteroids and structure and function of the hippocampus has been studied in experimental systems in adult animals by increasing or decreasing corticosterone levels through pharmacological supplementation and through surgical removal of the adrenal gland. Here, we utilized the genetically engineered pro-opiomelanocortin (POMC) null mutant mouse, which because of the lack of all POMC peptides has no corticosterone from birth throughout life. The effect of this lifelong absence of corticosterone on the dentate gyrus of the hippocampus is a decrease in granule cell density, which correlated with a decrease in cell proliferation but not an increase in cell degeneration. Fine morphology of granule cells was unaltered. Analyses of gene expression revealed no changes in POMC null mutant vs wild-type hippocampus with respect to levels of expression of corticoid receptor genes or genes known to be regulated by corticosterone. Spatial learning as tested by the Morris water maze was not altered in the POMC null mutant mouse. Taken together with findings from other studies of the effects of altered levels of corticosteroids on the hippocampus, our results argue for a complex homeostasis in which disturbances of any one factor can offset the system in varying ways.

  15. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Directory of Open Access Journals (Sweden)

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  16. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    Science.gov (United States)

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex. PMID:27668216

  17. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Directory of Open Access Journals (Sweden)

    Riffat I Munir

    Full Text Available Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes, sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199 and carbohydrate binding modules (95 were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  18. DNA Barcode Analysis of Thrips (Thysanoptera Diversity in Pakistan Reveals Cryptic Species Complexes.

    Directory of Open Access Journals (Sweden)

    Romana Iftikhar

    Full Text Available Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27% at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%. BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci, and one predatory thrips (Aeolothrips intermedius showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  19. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.

    Directory of Open Access Journals (Sweden)

    Eoin N Leen

    Full Text Available Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro, NS7(pol by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro, which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro C-terminus is formed in vivo by NS6(pro processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro specificity.

  20. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  1. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    Science.gov (United States)

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips. PMID:26741134

  2. The cometary composition of a protoplanetary disk as revealed by complex cyanides

    CERN Document Server

    Oberg, Karin I; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J

    2015-01-01

    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the s...

  3. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Science.gov (United States)

    Munir, Riffat I; Schellenberg, John; Henrissat, Bernard; Verbeke, Tobin J; Sparling, Richard; Levin, David B

    2014-01-01

    Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  4. Metagenomic signatures of a tropical mining-impacted stream reveal complex microbial and metabolic networks.

    Science.gov (United States)

    Reis, Mariana P; Dias, Marcela F; Costa, Patrícia S; Ávila, Marcelo P; Leite, Laura R; de Araújo, Flávio M G; Salim, Anna C M; Bucciarelli-Rodriguez, Mônica; Oliveira, Guilherme; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2016-10-01

    Bacteria from aquatic ecosystems significantly contribute to biogeochemical cycles, but details of their community structure in tropical mining-impacted environments remain unexplored. In this study, we analyzed a bacterial community from circumneutral-pH tropical stream sediment by 16S rRNA and shotgun deep sequencing. Carrapatos stream sediment, which has been exposed to metal stress due to gold and iron mining (21 [g Fe]/kg), revealed a diverse community, with predominance of Proteobacteria (39.4%), Bacteroidetes (12.2%), and Parcubacteria (11.4%). Among Proteobacteria, the most abundant reads were assigned to neutrophilic iron-oxidizing taxa, such as Gallionella, Sideroxydans, and Mariprofundus, which are involved in Fe cycling and harbor several metal resistance genes. Functional analysis revealed a large number of genes participating in nitrogen and methane metabolic pathways despite the low concentrations of inorganic nitrogen in the Carrapatos stream. Our findings provide important insights into bacterial community interactions in a mining-impacted environment. PMID:27441985

  5. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Aube, Michel, E-mail: 4aubem@videotron.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Laboratoire de Toxicologie, Institut national de sante publique du Quebec, 945 avenue Wolfe, Quebec, QC, Canada G1V 5B3 (Canada)

    2011-04-15

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cells and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The

  6. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cells and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x103 and 50x103 dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x103 and 5x103 dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p3 dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, β-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The proliferative effect of the mixture on CAMA-1 cells in

  7. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    Science.gov (United States)

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]·H2O (C1), [CuNO3(L)]·H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.

  8. Chemical Complexity in the Shocked Outflow L1157 Revealed by CARMA

    Science.gov (United States)

    Dollhopf, Niklaus M.; McGuire, Brett A.; Carroll, P. Brandon; Remijan, Anthony J.

    2015-01-01

    Amino acids, the complex organic molecules which are the building blocks of life, have been found in meteoritic samples and, most recently, in samples from Comet Wild-2. Yet, no amino acids have been detected in the gas-phase in the interstellar medium, which seeds and enriches these meteorites and comets. Glycine, the simplest amino acid, has been shown to form in the laboratory through the reaction of hydroxylamine (NH2OH) with acetic acid (CH3COOH), a known interstellar molecule. This has prompted a move to search for NH2OH as a proxy of identifying regions where subsequent searches for glycine may prove the most fruitful.A search for NH2OH was conducted in seven diverse, molecule-rich sources and resulted in non-detections for all seven (Pulliam, et al. 2012). Theoretical work suggested the temperature of the sources was perhaps too low for NH2OH to thermally-desorb into the gas phase. Searches in shocked molecular regions, however, may overcome this barrier, as complex molecules are non-thermally liberated into the gas-phase by these shocks.Here, we present results from a targeted search toward the prototypical shocked outflow L1157. L1157-B0, -B1, and -B2 are shocked regions within the outflow from the infrared source L1157-mm. Using observations from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), we have mapped a variety of molecular tracers in the region and conducted an interferometric search for NH2OH with typical spatial resolutions of ~3'. We find that the prototypical complex molecule methanol (CH3OH) peaks in B2, the newer shock. We compare this with the distributions of HCN and HCO+ and discuss the implications for chemical evolution within the region. HCN, used as a density tracer, also peaks in B2 while HCO+ is shown as diffuse throughout B0. We also present the first maps of isocyanic acid (HNCO) in L1157. HNCO is found to peak in B2, cospatial with CH3OH and HCN. Finally, we report a non-detection of three NH2OH transitions

  9. RNA-Seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis

    Directory of Open Access Journals (Sweden)

    Garcia Tzintzuni I

    2012-09-01

    Full Text Available Abstract Background The release of oil resulting from the blowout of the Deepwater Horizon (DH drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. Results Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. Conclusion RNA-Seq may be successfully applied to feral and

  10. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association

    Science.gov (United States)

    Cenens, William; Makumi, Angela; Govers, Sander K.; Lavigne, Rob; Aertsen, Abram

    2015-01-01

    Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host. PMID:26720743

  11. Dengue in China: Comprehensive Phylogenetic Evaluation Reveals Evidence of Endemicity and Complex Genetic Diversity.

    Science.gov (United States)

    Chen, Rubing; Han, Guan-Zhu

    2016-01-01

    Despite the increasing threat of dengue outbreaks in China, it is still considered as an imported disease and its introduction and/or circulation patterns remain obscure. On the basis of the most extensive phylogenetic analysis to date, we showed highly complex genetic diversity of dengue viruses (DENVs) in south China with up to 20 different clades/lineages from multiple serotypes co-circulating in the same year. Despite that most of these clades/lineages were resulted from imported cases, evidence of local persistence of DENV serotype 1 (DENV-1) was observed, indicating its potential endemicity in Guangdong province. This study, therefore, provided an overview of DENV genetic diversity and evolutionary dynamics in China, which will be useful for developing policies to prevent and control future dengue outbreaks in China. PMID:26458780

  12. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis

    CERN Document Server

    Bernabeu, Miguel O; Jones, Martin; Nielsen, Jens H; Krüger, Timm; Nash, Rupert W; Groen, Derek; Hetherington, James; Gerhardt, Holger; Coveney, Peter V

    2013-01-01

    There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In the current paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. Our findings show that the flow patterns recovered are complex, that branches of predominant flow exist from early development stages, and that the pruning process tends to make the wall shear stress experienced by the capillaries incre...

  13. [Complex metabolic disorders revealing a gastric ulcer of the bulb. A case report].

    Science.gov (United States)

    Neffati, F; Hellara, I; Jelizi, M A; Bahri, J; Douki, W; Amor, A Ben; Najjar, M F

    2009-01-01

    We report the case of a 54-year-old man, without particular pathological antecedents admitted to the emergency of the university hospital of Monastir, for right renal colic. Radiography of the urinary tract without preparation and renal echography showed bilateral renal lithiasis and a right ureteral lithiasis. The interrogation revealed concept of vomiting after which the patient felt relieved. The biological assessment objectified an hypochloremic metabolic alcalosis, an increase in the anion gap, a severe impaired renal function of obstructive origin and an hypokaliemia. The presence of the lithiasis did not explain on its own the metabolic disorders of this patient. The other investigations showed that initial pathology was an evolutionary bulb ulcer into pre-stenosis justifying treatment by omeprazole and explaining the biological disorders. PMID:19654086

  14. Collaborative play in young children as a complex dynamic system: revealing gender related differences.

    Science.gov (United States)

    Steenbeek, Henderien; van der Aalsvoort, Diny; van Geert, Paul

    2014-07-01

    This study was focused on the role of gender-related differences in collaborative play, by examining properties of play as a complex system, and by using micro-genetic analysis techniques. A complex dynamic systems model of dyadic play was used to make predictions with regard to duration and number of contact-episodes during play of same-sex dyads, both on the micro- (i.e., per individual session), meso- (i.e., in smoothed data), and macro time scale (i.e., the change over six consecutive play sessions). The empirical data came from a study that examined the collaborative play skills of children who experienced six twenty minute play sessions within a three week period of time. Monte Carlo permutation analyses were used to compare model predictions and empirical data. The findings point to strongly asymmetric distributions in the duration and number of contact episodes in all dyads over the six sessions, as a direct consequence of the underlying dynamics of the play system. The model prediction that girls-dyads would show longer contact episodes than boys-dyads was confirmed, but the prediction regarding the difference in number of peaks was not confirmed. In addition, the majority of the model predictions regarding changes over the course of six sessions were consistent with the data. That is, the average duration and the maximum duration of contact-episodes increases both in boys-dyads and girls-dyads, but differences occur in the strength of the increase. Contrary to expectation, the number of contact-episodes decreases both in boys-dyads and in girls-dyads. PMID:24894265

  15. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling.

    Science.gov (United States)

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-08-01

    Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H(3) thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification. PMID:27622053

  16. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  17. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  18. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  19. Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis.

    Science.gov (United States)

    Valdés-Santiago, Laura; Cervantes-Chávez, José Antonio; Winkler, Robert; León-Ramírez, Claudia G; Ruiz-Herrera, José

    2012-03-01

    Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago maydis. With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to spe mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since samdc mutants accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.

  20. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*

    Science.gov (United States)

    Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416

  1. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  2. Structural Identification of the Vps18 β-Propeller Reveals a Critical Role in the HOPS Complex Stability and Function*

    Science.gov (United States)

    Behrmann, Heide; Lürick, Anna; Kuhlee, Anne; Balderhaar, Henning Kleine; Bröcker, Cornelia; Kümmel, Daniel; Engelbrecht-Vandré, Siegfried; Gohlke, Ulrich; Raunser, Stefan; Heinemann, Udo; Ungermann, Christian

    2014-01-01

    Membrane fusion at the vacuole, the lysosome equivalent in yeast, requires the HOPS tethering complex, which is recruited by the Rab7 GTPase Ypt7. HOPS provides a template for the assembly of SNAREs and thus likely confers fusion at a distinct position on vacuoles. Five of the six subunits in HOPS have a similar domain prediction with strong similarity to COPII subunits and nuclear porins. Here, we show that Vps18 indeed has a seven-bladed β-propeller as its N-terminal domain by revealing its structure at 2.14 Å. The Vps18 N-terminal domain can interact with the N-terminal part of Vps11 and also binds to lipids. Although deletion of the Vps18 N-terminal domain does not preclude HOPS assembly, as revealed by negative stain electron microscopy, the complex is instable and cannot support membrane fusion in vitro. We thus conclude that the β-propeller of Vps18 is required for HOPS stability and function and that it can serve as a starting point for further structural analyses of the HOPS tethering complex. PMID:25324549

  3. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  4. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon

    Directory of Open Access Journals (Sweden)

    Schuster Martin

    2007-08-01

    Full Text Available Abstract Background Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. Results To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB, however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. Conclusion The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors

  5. Bioinformatic analysis of the neprilysin (M13 family of peptidases reveals complex evolutionary and functional relationships

    Directory of Open Access Journals (Sweden)

    Pinney John W

    2008-01-01

    Full Text Available Abstract Background The neprilysin (M13 family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2, which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates

  6. Dissecting the function of Atg1 complex in Dictyostelium autophagy reveals a connection with the pentose phosphate pathway enzyme transketolase.

    Science.gov (United States)

    Mesquita, Ana; Tábara, Luis C; Martinez-Costa, Oscar; Santos-Rodrigo, Natalia; Vincent, Olivier; Escalante, Ricardo

    2015-08-01

    The network of protein-protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.

  7. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  8. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    DEFF Research Database (Denmark)

    Klochendler, Agnes; Weinberg-Corem, Noa; Moran, Maya;

    2012-01-01

    biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to......Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive...... reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of...

  9. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells. PMID:27074779

  10. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states

    DEFF Research Database (Denmark)

    Hall, V. J.; Jacobsen, Janus Valentin; Rasmussen, M. A.;

    2010-01-01

    Characterization of the pluripotent cell populations within the porcine embryo is essential for understanding pluripotency and self-renewal regulation in the inner cell mass (ICM) and epiblast. In this study, we perform detailed ultrastructural and molecular characterization of the developing...... pluripotent cell population as it develops from the ICM to the late epiblast. The ultrastructural observations revealed that the outer cells of the ICM have a high nuclear:cytoplasmic ratio but are transcriptionally inactive and contain mitochondria with few cristae. In contrast, the epiblast cells have...... a reduced nuclear:cytoplasmic ratio, are more transcriptionally active, and contain abundant cellular organelles. This study also revealed cavitation and potential unfolding of the epiblast. As the ICM forms the epiblast, SSEA1 is lost and VIMENTIN is lost and re-expressed. The D6 blastocyst expressed high...

  11. Enrichment of SNPs in Functional Categories Reveals Genes Affecting Complex Traits.

    Science.gov (United States)

    Zhao, Huiying; Fan, Dongsheng; Nyholt, Dale R; Yang, Yuedong

    2016-08-01

    Genome-wide association studies (GWAS) have indicated potential to identify heritability of common complex phenotypes, but traditional approaches have limited ability to detect hiding signals because single SNP has weak effect size accounting for only a small fraction of overall phenotypic variations. To improve the power of GWAS, methods have been developed to identify truly associated genes by jointly testing effects of all SNPs. However, equally considering all SNPs within a gene might dilute strong signals of SNPs in real functional categories. Here, we observed a consistent pattern on enrichment of significant SNPs in eight functional categories across six phenotypes, with the highest enrichment in coding and both UTR regions while the lowest enrichment in the intron. Based on the pattern of SNP enrichment in functional categories, we developed a new approach for detecting gene associations on traits (DGAT) by selecting the most significant functional category and then using SNPs within it to assess gene associations. The method was found to be robust in type I error rate on simulated data, and to have mostly higher power in detecting associated genes for three different diseases than other methods. Further analysis indicated ability of the DGAT to detect novel genes. The DGAT is available by http://sparks-lab.org/server/DGAT. PMID:27113629

  12. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility.

    Science.gov (United States)

    Fernández-Rivero, Noelia; Franco, Aitor; Velázquez-Campoy, Adrian; Alonso, Edurne; Muga, Arturo; Prado, Adelina

    2016-01-01

    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A-H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription. PMID:27558753

  13. Protein dynamics revealed in the excitonic spectra of single LH2 complexes

    International Nuclear Information System (INIS)

    The fluorescence emission spectrum of single peripheral light-harvesting (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila exhibits remarkable dynamics on a time scale of several minutes. Often the spectral properties are quasi-stable; sometimes large spectral jumps to the blue or to the red are observed. To explain the dynamics, every pigment is proposed to be in two conformational substates with different excitation energies, which originate from the conformational state of the protein as a result of pigment-protein interaction. Due to the excitonic coupling in the ring of 18 pigments, the two-state assumption generates a substantial amount of distinct spectroscopic states, which reflect part of the inhomogeneous distributed spectral properties of LH2. To describe the observed dynamics, spontaneous and light-induced transitions are introduced between the two states. For each 'realization of the disorder', the spectral properties are calculated using a disordered exciton model combined with the modified Redfield theory to obtain realistic spectral line shapes. The single-molecule fluorescence peak (FLP) distribution, the distribution dependence on the excitation intensity, and the FLP time traces are well described within the framework of this model

  14. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol.

    Science.gov (United States)

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area.

  15. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins.

    Science.gov (United States)

    Lavy, Meirav; Prigge, Michael J; Tao, Sibo; Shain, Stephanie; Kuo, April; Kirchsteiger, Kerstin; Estelle, Mark

    2016-01-01

    The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs. PMID:27247276

  16. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  17. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool.

    Science.gov (United States)

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S Qasim; Thomas, Mark G; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J; Tyler-Smith, Chris

    2012-07-13

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified "African" and "non-African" haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ~3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ~60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations.

  18. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells

    Directory of Open Access Journals (Sweden)

    Fujita Masatoshi

    2006-10-01

    Full Text Available Abstract In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1 functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2 replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.

  19. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice.

    Science.gov (United States)

    Zhou, Wenqi; Wang, Yuchuan; Wu, Zhongliang; Luo, Liang; Liu, Ping; Yan, Longfeng; Hou, Suiwen

    2016-07-01

    Filamentous actins (F-actins) play a vital role in epidermal cell morphogenesis. However, a limited number of studies have examined actin-dependent leaf epidermal cell morphogenesis events in rice. In this study, two recessive mutants were isolated: less pronounced lobe epidermal cell2-1 (lpl2-1) and lpl3-1, whose leaf and stem epidermis developed a smooth surface, with fewer serrated pavement cell (PC) lobes, and decreased papillae. The lpl2-1 also exhibited irregular stomata patterns, reduced plant height, and short panicles and roots. Molecular genetic studies demonstrated that LPL2 and LPL3 encode the PIROGI/Specifically Rac1-associated protein 1 (PIR/SRA1)-like and NCK-associated protein 1 (NAP1)-like proteins, respectively, two components of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (SCAR/WAVE) regulatory complex involved in actin nucleation and function. Epidermal cells exhibited abnormal arrangement of F-actins in both lpl2 and lpl3 expanding leaves. Moreover, the distorted trichomes of Arabidopsis pir could be partially restored by an overexpression of LPL2 A yeast two-hybrid assay revealed that LPL2 can directly interact with LPL3 in vitro Collectively, the results indicate that LPL2 and LPL3 are two functionally conserved homologs of the SCAR/WAVE complex components, and that they play an important role in controlling epidermal cell morphogenesis in rice by organising F-actin.

  20. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    Science.gov (United States)

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells.

  1. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    Science.gov (United States)

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  2. Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish

    Science.gov (United States)

    Perez-Camps, Mireia; Tian, Jing; Chng, Serene C; Sem, Kai Pin; Sudhaharan, Thankiah; Teh, Cathleen; Wachsmuth, Malte; Korzh, Vladimir; Ahmed, Sohail; Reversade, Bruno

    2016-01-01

    Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 PMID:27684073

  3. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals

    Science.gov (United States)

    Mengistu, Samson G.; Quick, Christopher G.; Creed, Irena F.

    2013-06-01

    Headwater catchment hydrology and biogeochemistry are influenced by climate, including linear trends (nonstationary signals) and climate oscillations (stationary signals). We used an analytical framework to detect nonstationary and stationary signals in yearly time series of nutrient export [dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate (NO3--N), and total dissolved phosphorus (TDP)] in forested headwater catchments with differential water loading and water storage potential at the Turkey Lakes Watershed in Ontario, Canada. We tested the hypotheses that (1) climate has nonstationary and stationary effects on nutrient export, the combination of which explains most of the variation in nutrient export; (2) more metabolically active nutrients (e.g., DON, NO3--N, and TDP) are more sensitive to these signals; and (3) catchments with relatively low water loading and water storage capacity are more sensitive to these signals. Both nonstationary and stationary signals were identified, and the combination of both explained the majority of the variation in nutrient export data. More variation was explained in more labile nutrients (DON, NO3--N, and TDP), which were also more sensitive to climate signals. The catchment with low-water storage potential and low water loading was most sensitive to nonstationary and stationary climatic oscillations, suggesting that these hydrologic features are characteristic of the most effective sentinels of climate change. The observed complex links between climate change, climatic oscillations, and water nutrient fluxes in headwater catchments suggest that climate may have considerable influence on the productivity and biodiversity of surface waters, in addition to other drivers such as atmospheric pollution.

  4. Global terrestrial water storage connectivity revealed using complex climate network analyses

    Directory of Open Access Journals (Sweden)

    A. Y. Sun

    2015-04-01

    Full Text Available Terrestrial water storage (TWS exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationships exist between precipitation and TWS, the latter also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and hydrologic cycle, but also provide new model calibration constraints for improving the current land surface models. In this work, the connectivity of TWS is quantified using the climate network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS datasets, a remote-sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE satellite mission, and a model-generated dataset from the global land data assimilation system's NOAH model (GLDAS-NOAH. Both datasets have 1 ° × 1 ° resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a statistical cutoff threshold to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show TWS hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two datasets indicate that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide important insights for constraining land surface models, especially in data sparse regions.

  5. Spatial patterns of African ungulate aggregation reveal complex but limited risk effects from reintroduced carnivores.

    Science.gov (United States)

    Moll, Remington J; Killion, Alexander K; Montgomery, Robert A; Tambling, Craig J; Hayward, Matt W

    2016-05-01

    The "landscape of fear" model, recently advanced in research on the non-lethal effects of carnivores on ungulates, predicts that prey will exhibit detectable antipredator behavior not only during risky times (i.e., predators in close proximity) but also in risky places (i.e., habitat where predators kill prey or tend to occur). Aggregation is an important antipredator response in numerous ungulate species, making it a useful metric to evaluate the strength and scope of the landscape of fear in a multi-carnivore, multi-ungulate system. We conducted ungulate surveys over a 2-year period in South Africa to test the influence of three broad-scale sources of variation in the landscape on spatial patterns in aggregation: (1) habitat structure, (2) where carnivores tended to occur (i.e., population-level utilization distributions), and (3) where carnivores tended to kill ungulate prey (i.e., probabilistic kill site maps). We analyzed spatial variation in aggregation for six ungulate species exposed to predation from recently reintroduced lion (Panthera leo) and spotted hyena (Crocuta crocuta). Although we did detect larger aggregations of ungulates in "risky places," these effects existed primarily for smaller-bodied (lion, an ambush (stalking) carnivore, had stronger influence on ungulate aggregation than the hyena, an active (coursing) carnivore. In addition, places where lions tended to kill prey had a greater effect on ungulate aggregation than places where lions tended to occur, but an opposing pattern existed for hyena. Our study reveals heterogeneity in the landscape of fear and suggests broad-scale risk effects following carnivore reintroduction only moderately influence ungulate aggregation size and vary considerably by predator hunting mode, type of predation risk, and prey species.

  6. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  7. Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging.

    Science.gov (United States)

    Han, Meng; Giese, Guenter; Schmitz-Valckenberg, Steffen; Bindewald-Wittich, Almut; Holz, Frank G; Yu, Jiayi; Bille, Josef F; Niemz, Markolf H

    2007-01-01

    The intensive metabolism of photoreceptors is delicately maintained by the retinal pigment epithelium (RPE) and the choroid. Dysfunction of either the RPE or choroid may lead to severe damage to the retina. Two-photon excited autofluorescence (TPEF) from endogenous fluorophores in the human retina provides a novel opportunity to reveal age-related structural abnormalities in the retina-choroid complex prior to apparent pathological manifestations of age-related retinal diseases. In the photoreceptor layer, the regularity of the macular photoreceptor mosaic is preserved during aging. In the RPE, enlarged lipofuscin granules demonstrate significantly blue-shifted autofluorescence, which coincides with the depletion of melanin pigments. Prominent fibrillar structures in elderly Bruch's membrane and choriocapillaries represent choroidal structure and permeability alterations. Requiring neither slicing nor labeling, TPEF imaging is an elegant and highly efficient tool to delineate the thick, fragile, and opaque retina-choroid complex, and may provide clues to the trigger events of age-related macular degeneration.

  8. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis.

    Science.gov (United States)

    Mendes, Marta Adelina; Guerra, Rosalinda Fiorella; Castelnovo, Beatrice; Silva-Velazquez, Yuriria; Morandini, Piero; Manrique, Silvia; Baumann, Nadine; Groß-Hardt, Rita; Dickinson, Hugh; Colombo, Lucia

    2016-08-01

    Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process - the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperm. We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd-1/+ mutants and VAL_RNAi lines, we find that GAMETOPHYTIC FACTOR 2 (GFA2), which is required for synergid degeneration, is downregulated, whereas expression of FERONIA (FER) and MYB98, which are necessary for pollen tube attraction and perception, remain unaffected. We also demonstrate that the vdd-1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for maintenance of the following generations, and that a complex comprising VDD and VAL regulates this event.

  9. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis.

    Science.gov (United States)

    Mendes, Marta Adelina; Guerra, Rosalinda Fiorella; Castelnovo, Beatrice; Silva-Velazquez, Yuriria; Morandini, Piero; Manrique, Silvia; Baumann, Nadine; Groß-Hardt, Rita; Dickinson, Hugh; Colombo, Lucia

    2016-08-01

    Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process - the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperm. We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd-1/+ mutants and VAL_RNAi lines, we find that GAMETOPHYTIC FACTOR 2 (GFA2), which is required for synergid degeneration, is downregulated, whereas expression of FERONIA (FER) and MYB98, which are necessary for pollen tube attraction and perception, remain unaffected. We also demonstrate that the vdd-1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for maintenance of the following generations, and that a complex comprising VDD and VAL regulates this event. PMID:27338615

  10. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.;

    2011-01-01

    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...

  11. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    Science.gov (United States)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  12. Some technetium complexes for labelling red blood cells

    International Nuclear Information System (INIS)

    A new approach to produce technetium labelled red blood cells, used routinely in diagnostic nuclear medicine, is reported. The enzyme Carbonic Anhydrase (CA), present in erythrocytes, is strongly inhibited by primary aromatic sulphonamides, which bind at the enzyme active site. Three types of ligand able to coordinate to technetium and suitable for modification to include a primary aromatic sulphonamide group were studied; bis(thiosemicarbazones), Schiff bases and some propylene amine oximes. The experimental conditions needed to label the ligands were determined. Both the thiosemicarbazone and propyleneamine oxime derivatives were labelled, but under no conditions attempted were the Schiff bases complexed by Technetium. The two major isozymes of Human Carbonic Anhydrase, HCA I and HCA II, were isolated from blood. The strength of binding of the free ligands SET, PN130 and PN135 with each of the isozymes was measured and expressed as the Dissociation Constant Kd. The rate of uptake of the technetium complexes into washed RBCs and whole blood was measured and found to be much slower in whole blood. The biodistribution of both TcPN130 and TcPN135 in rats was determined and scintigraphic images for the TcPN130 complex were recorded. Attempts to synthesise the Tc-99 analogues on the milligram scale to allow chemical characterisation of these complexes were unsuccessful. (author)

  13. Some technetium complexes for labelling red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Emery, M.F.

    1988-01-01

    A new approach to produce technetium labelled red blood cells, used routinely in diagnostic nuclear medicine, is reported. The enzyme Carbonic Anhydrase (CA), present in erythrocytes, is strongly inhibited by primary aromatic sulphonamides, which bind at the enzyme active site. Three types of ligand able to coordinate to technetium and suitable for modification to include a primary aromatic sulphonamide group were studied; bis(thiosemicarbazones), Schiff bases and some propylene amine oximes. The experimental conditions needed to label the ligands were determined. Both the thiosemicarbazone and propyleneamine oxime derivatives were labelled, but under no conditions attempted were the Schiff bases complexed by Technetium. The two major isozymes of Human Carbonic Anhydrase, HCA I and HCA II, were isolated from blood. The strength of binding of the free ligands SET, PN130 and PN135 with each of the isozymes was measured and expressed as the Dissociation Constant K{sub d}. The rate of uptake of the technetium complexes into washed RBCs and whole blood was measured and found to be much slower in whole blood. The biodistribution of both TcPN130 and TcPN135 in rats was determined and scintigraphic images for the TcPN130 complex were recorded. Attempts to synthesise the Tc-99 analogues on the milligram scale to allow chemical characterisation of these complexes were unsuccessful. (author).

  14. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency.

    Science.gov (United States)

    Ehinger, Johannes K; Piel, Sarah; Ford, Rhonan; Karlsson, Michael; Sjövall, Fredrik; Frostner, Eleonor Åsander; Morota, Saori; Taylor, Robert W; Turnbull, Doug M; Cornell, Clive; Moss, Steven J; Metzsch, Carsten; Hansson, Magnus J; Fliri, Hans; Elmér, Eskil

    2016-01-01

    Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction. PMID:27502960

  15. Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes.

    Science.gov (United States)

    Lindenmayer, David B; Blanchard, Wade; MacGregor, Christopher; Barton, Philip; Banks, Sam C; Crane, Mason; Michael, Damian; Okada, Sachiko; Berry, Laurence; Florance, Daniel; Gill, Malcolm

    2016-03-01

    guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time. PMID:27209795

  16. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is

  17. Multiple mating reveals complex patterns of assortative mating by personality and body size.

    Science.gov (United States)

    Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew

    2016-01-01

    Understanding patterns of non-random mating is central to predicting the consequences of sexual selection. Most studies quantifying assortative mating focus on testing for correlations among partners' phenotypes in mated pairs. Few studies have distinguished between assortative mating arising from preferences for similar partners (expressed by all or a subset of the population) vs. from phenotypic segregation in the environment. Also, few studies have assessed the robustness of assortative mating against temporal changes in social conditions. We tracked multiple matings by stream water striders (Aquarius remigis) across variable social conditions to investigate mating patterns by both body size and behavioural type (personality). We documented temporal changes in partner availability and used a mixed model approach to analyse individual behaviours and changes in mating status recorded on an hourly basis. We assessed whether all or only a subset of individuals in the population expressed a tendency to mate with similar phenotypes. Our analyses took into account variation in the level of competition and in the phenotypes of available partners. Males and females exhibited significant assortative mating by body size: the largest males and females, and the smallest males and females mated together more often than random. However, individuals of intermediate size were equally likely to mate with small, intermediate or large partners. Individuals also displayed two contrasting patterns of assortative mating by personality (activity level). Individuals generally mated preferentially with partners of similar activity level. However, beyond that general trend, individuals with more extreme personalities tended to exhibit disassortative mating: the most active males mated disproportionately with less active females and the least active males tended to mate with more active females. Our analyses thus revealed multiple, distinct patterns of nonrandom mating. These mating

  18. Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis

    Directory of Open Access Journals (Sweden)

    Paterson Andrew H

    2009-11-01

    Full Text Available Abstract Background The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental rearrangement, but these have not been validated at the sequence level. Results We developed computational tools to analyse the public collection of B. rapa BAC end sequence, in order to identify candidates for representing collinearity discontinuities between the genomes of B. rapa and A. thaliana. For each putative discontinuity, one of the BACs was sequenced and analysed for collinearity with the genome of A. thaliana. Additional BAC clones were identified and sequenced as part of ongoing efforts to sequence four chromosomes of B. rapa. Strikingly few of the 19 inter-chromosomal rearrangements corresponded to the set of collinearity discontinuities anticipated on the basis of previous studies. Our analyses revealed numerous instances of newly detected collinearity blocks. For B. rapa linkage group A8, we were able to develop a model for the derivation of the chromosome from the ancestral karyotype. We were also able to identify a rearrangement event in the ancestor of B. rapa that was not shared with the ancestor of A. thaliana, and is represented in triplicate in the B. rapa genome. In addition to inter-chromosomal rearrangements, we identified and analysed 32 BACs containing the end points of segmental inversion events. Conclusion Our results show that previous studies of segmental collinearity between the A. thaliana, Brassica and ancestral karyotype genomes, although very useful, represent over-simplifications of their true relationships. The presence of numerous cryptic collinear genome segments and the frequent occurrence of segmental inversions mean that inference of the positions

  19. Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis

    NARCIS (Netherlands)

    Trip, Erik Nico; Veening, Jan-Willem; Stewart, Eric J.; Errington, Jeff; Scheffers, Dirk-Jan

    2013-01-01

    Cell division in bacteria is carried out by a set of conserved proteins that all have to function at the correct place and time. A cell cycle-dependent transcriptional programme drives cell division in bacteria such as Caulobacter crescentus. Whether such a programme exists in the Gram-positive mode

  20. Autonomy and Non-autonomy of Angiogenic Cell Movements Revealed by Experiment-Driven Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Kei Sugihara

    2015-12-01

    Full Text Available Angiogenesis is a multicellular phenomenon driven by morphogenetic cell movements. We recently reported morphogenetic vascular endothelial cell (EC behaviors to be dynamic and complex. However, the principal mechanisms orchestrating individual EC movements in angiogenic morphogenesis remain largely unknown. Here we present an experiment-driven mathematical model that enables us to systematically dissect cellular mechanisms in branch elongation. We found that cell-autonomous and coordinated actions governed these multicellular behaviors, and a cell-autonomous process sufficiently illustrated essential features of the morphogenetic EC dynamics at both the single-cell and cell-population levels. Through refining our model and experimental verification, we further identified a coordinated mode of tip EC behaviors regulated via a spatial relationship between tip and follower ECs, which facilitates the forward motility of tip ECs. These findings provide insights that enhance our mechanistic understanding of not only angiogenic morphogenesis, but also other types of multicellular phenomenon.

  1. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  2. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  3. C3b complexation diversifies naturally processed T cell epitopes.

    OpenAIRE

    Cretin, François,; Serra, Vincent,; Villiers, Marie-Bernadette; Laharie, Anne-Marie; Marche, Patrice; Gabert, Françoise,

    2007-01-01

    International audience In addition to its well-established role in innate immunity, the complement component C3 is of critical importance in modulating the humoral response. In this study, we examined the effect of C3b linkage to tetanus toxin (TeNT) in the production of antigenic peptides inside human APC. We purified HLA-DR associated peptides isolated either from TeNT or TeNT-C3b pulsed cells. This study revealed that TeNT-C3b derived antigenic peptides are different and more numerous t...

  4. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  5. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    Science.gov (United States)

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  6. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    Science.gov (United States)

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  7. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    OpenAIRE

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M.

    2012-01-01

    Rubin and colleagues describe the first structures of full-length and phosphorylated Retinoblastoma (Rb) protein. These structures reveal the mechanism of Rb inactivation and provide valuable insight into this critical tumor suppressor protein's allosteric inhibition via multisite Cdk phosphorylation and its E2F and cell cycle regulation.

  8. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease

    Science.gov (United States)

    Chrysostomou, Alexia; Grady, John P.; Laude, Alex; Taylor, Robert W.; Turnbull, Doug M.

    2015-01-01

    Aims Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. Methods We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age‐matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. Results Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. Conclusions This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia. PMID:26337858

  9. Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells

    DEFF Research Database (Denmark)

    Ding, Li; Paszkowski-Rogacz, Maciej; Winzi, Maria;

    2015-01-01

    Oct4, a key regulator of pluripotency. Our data signify that there are similarities, but also fundamental differences in Oct4 regulation in EpiSCs versus embryonic stem cells (ESCs). Through multiparametric data analyses, we predict that Tox4 is associating with the Paf1C complex, which maintains cell...... identity in both cell types, and validate that this protein-protein interaction exists in ESCs and EpiSCs. We also identify numerous knockdowns that increase Oct4 expression in EpiSCs, indicating that, in stark contrast to ESCs, Oct4 is under active repressive control in EpiSCs. These studies provide a...

  10. Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells.

    Science.gov (United States)

    Du, Jun; Zhang, Erlong; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Luo, Qun; Wu, Kui; Wang, Fuyi

    2015-12-01

    Ruthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised. These complexes exhibited excellent inhibitory activity against EGFR and high affinity to interact with DNA via minor groove binding, featuring dual-targeting properties. In vitro screening demonstrated that the as-prepared ruthenium complexes are anti-proliferating towards a series of cancer cell lines, in particular the non-small-cell lung cancer cell line A549. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex 3 induced much more early-stage cell apoptosis than its cytotoxic arene ruthenium analogue and the EGFR-inhibiting 4-anilinoquinazolines, verifying the synergetic effect of the two mono-functional pharmacophores. PMID:26446567

  11. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components.

    Directory of Open Access Journals (Sweden)

    Alexa Kiss

    Full Text Available Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.

  12. DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin-Cu(ii) complex.

    Science.gov (United States)

    Roy, Atanu Singha; Tripathy, Debi Ranjan; Samanta, Sintu; Ghosh, Sudip K; Dasgupta, Swagata

    2016-04-26

    Flavonoids are widely used as anti-oxidants, anti-cancer agents and possess metal ion chelation properties. In this report we have investigated the DNA binding (and damaging), cell cytotoxicity and serum albumin (SA) binding efficacy of the rutin-Cu(ii) complex using differential spectroscopic methods. The rutin-Cu(ii) complex was able to intercalate into calf thymus DNA (ct-DNA) at lower concentrations and its DNA damaging properties were also confirmed from the agarose gel based assay, fluorescence and UV-vis studies. The copper complex was found to be effective against the growth of HeLa cells in vivo. The binding constants (Kb) of the rutin-Cu(ii) complex towards HSA and BSA were found to be (0.98 ± 0.03) and (1.05 ± 0.02) × 10(5) M(-1), respectively, at 299 K and observed to increase with the increase in temperature. Site selectivity studies revealed that the rutin-Cu(ii) complex binds near site 1 (subdomain IIA) of SAs. Thermodynamic parameters indicated that the mode of interaction of rutin and its copper complex with SAs are different from each other. Both ΔH° and ΔS° were observed to be positive for the interaction of the rutin-Cu(ii) complex with SAs, indicating the presence of hydrophobic association in binding. The values of ΔH° were estimated to be negative (-42.07 ± 2.92 and -23.29 ± 2.33 kJ mol(-1) for HSA and BSA respectively) in the binding of rutin with SAs. It implies that after chelation with Cu(ii) ion, rutin alters its binding mode which could have varying applications to its other physicochemical activities. PMID:27035097

  13. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs.

    Science.gov (United States)

    Chamberlain, Philip P; Lopez-Girona, Antonia; Miller, Karen; Carmel, Gilles; Pagarigan, Barbra; Chie-Leon, Barbara; Rychak, Emily; Corral, Laura G; Ren, Yan J; Wang, Maria; Riley, Mariko; Delker, Silvia L; Ito, Takumi; Ando, Hideki; Mori, Tomoyuki; Hirano, Yoshinori; Handa, Hiroshi; Hakoshima, Toshio; Daniel, Thomas O; Cathers, Brian E

    2014-09-01

    The Cul4-Rbx1-DDB1-Cereblon E3 ubiquitin ligase complex is the target of thalidomide, lenalidomide and pomalidomide, therapeutically important drugs for multiple myeloma and other B-cell malignancies. These drugs directly bind Cereblon (CRBN) and promote the recruitment of substrates Ikaros (IKZF1) and Aiolos (IKZF3) to the E3 complex, thus leading to substrate ubiquitination and degradation. Here we present the crystal structure of human CRBN bound to DDB1 and the drug lenalidomide. A hydrophobic pocket in the thalidomide-binding domain (TBD) of CRBN accommodates the glutarimide moiety of lenalidomide, whereas the isoindolinone ring is exposed to solvent. We also solved the structures of the mouse TBD in the apo state and with thalidomide or pomalidomide. Site-directed mutagenesis in lentiviral-expression myeloma models showed that key drug-binding residues are critical for antiproliferative effects.

  14. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    Science.gov (United States)

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  15. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  16. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates

    Science.gov (United States)

    Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.

    2015-01-01

    Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089

  17. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates.

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2015-12-01

    Full Text Available Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100 is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.

  18. Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken

    Directory of Open Access Journals (Sweden)

    Blum Yuna

    2011-11-01

    Full Text Available Abstract Background Integrative genomics approaches that combine genotyping and transcriptome profiling in segregating populations have been developed to dissect complex traits. The most common approach is to identify genes whose eQTL colocalize with QTL of interest, providing new functional hypothesis about the causative mutation. Another approach includes defining subtypes for a complex trait using transcriptome profiles and then performing QTL mapping using some of these subtypes. This approach can refine some QTL and reveal new ones. In this paper we introduce Factor Analysis for Multiple Testing (FAMT to define subtypes more accurately and reveal interaction between QTL affecting the same trait. The data used concern hepatic transcriptome profiles for 45 half sib male chicken of a sire known to be heterozygous for a QTL affecting abdominal fatness (AF on chromosome 5 distal region around 168 cM. Results Using this methodology which accounts for hidden dependence structure among phenotypes, we identified 688 genes that are significantly correlated to the AF trait and we distinguished 5 subtypes for AF trait, which are not observed with gene lists obtained by classical approaches. After exclusion of one of the two lean bird subtypes, linkage analysis revealed a previously undetected QTL on chromosome 5 around 100 cM. Interestingly, the animals of this subtype presented the same q paternal haplotype at the 168 cM QTL. This result strongly suggests that the two QTL are in interaction. In other words, the "q configuration" at the 168 cM QTL could hide the QTL existence in the proximal region at 100 cM. We further show that the proximal QTL interacts with the previous one detected on the chromosome 5 distal region. Conclusion Our results demonstrate that stratifying genetic population by molecular phenotypes followed by QTL analysis on various subtypes can lead to identification of novel and interacting QTL.

  19. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions

    Science.gov (United States)

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of

  20. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.

    Science.gov (United States)

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N; Flood, Beverly E; Bailey, Jake V; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  1. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils.

    Science.gov (United States)

    Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J

    2015-11-01

    The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells.

  2. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    Science.gov (United States)

    Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-02-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.

  3. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils.

    Science.gov (United States)

    Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J

    2015-11-01

    The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells. PMID:26073280

  4. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.

    Science.gov (United States)

    Bohórquez, Diego V; Samsa, Leigh A; Roholt, Andrew; Medicetty, Satish; Chandra, Rashmi; Liddle, Rodger A

    2014-01-01

    The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells. PMID:24587096

  5. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.

    Directory of Open Access Journals (Sweden)

    Diego V Bohórquez

    Full Text Available The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM. Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.

  6. Genomic instability of micronucleated cells revealed by single-cell comparative genomic hybridization.

    NARCIS (Netherlands)

    Imle, A.; Polzer, B.; Alexander, S.; Klein, C.A.; Friedl, P.H.A.

    2009-01-01

    Nuclear variation in size and shape and genomic instability are hallmarks of dedifferentiated cancer cells. Although micronuclei are a typical long-term consequence of DNA damage, their contribution to chromosomal instability and clonal diversity in cancer disease is unclear. We isolated cancer cell

  7. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    Science.gov (United States)

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  8. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    Science.gov (United States)

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  9. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  10. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    International Nuclear Information System (INIS)

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  11. Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2011-02-01

    Full Text Available The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterised by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC of higher primates endows specific biophysical properties and patterns of connectivity, which differ to those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial and orbital gPFC of cercopethicid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As neuron structure determines it’s computational abilities and memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species specific executive cortical functions in primates.

  12. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  13. Complex adaptive responses during antagonistic coevolution between Tribolium castaneum and its natural parasite Nosema whitei revealed by multiple fitness components

    Directory of Open Access Journals (Sweden)

    Bérénos Camillo

    2012-01-01

    Full Text Available Abstract Background Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load. Furthermore, our experimental coevolution of hosts (Tribolium castaneum and parasites (Nosema whitei included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses. Results In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP were observed for spore load (the trait of lower genetic complexity, but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite

  14. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    Science.gov (United States)

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  15. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy

    Science.gov (United States)

    Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven

    2014-04-01

    LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of

  16. Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration

    OpenAIRE

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2014-01-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Set...

  17. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

    Science.gov (United States)

    Watson, Bonnie S; Bedair, Mohamed F; Urbanczyk-Wochniak, Ewa; Huhman, David V; Yang, Dong Sik; Allen, Stacy N; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W

    2015-04-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.

  18. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  19. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  20. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres.

    Science.gov (United States)

    Schmidt, Jens C; Zaug, Arthur J; Cech, Thomas R

    2016-08-25

    Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end. PMID:27523609

  1. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    Science.gov (United States)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-01-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  2. Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy.

    Science.gov (United States)

    Caldwell, Brittany; Ustione, Alessandro; Piston, David W

    2016-08-01

    Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release. PMID:27508444

  3. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    Full Text Available The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a "gene-cooperativity" network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD.

  4. A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function.

    Science.gov (United States)

    Parker, J Brandon; Palchaudhuri, Santanu; Yin, Hanwei; Wei, Jianjun; Chakravarti, Debabrata

    2012-05-01

    The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11-HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer. PMID:22371484

  5. The Paleoproterozoic Singo granite in south-central Uganda revealed as a nested igneous ring complex using geophysical data

    Science.gov (United States)

    Abdelsalam, Mohamed G.; Katumwehe, Andrew B.; Atekwana, Estella A.; Le Pera, Alan K.; Achang, Mercy

    2016-04-01

    We used high-resolution airborne magnetic and radiometric data and satellite gravity data to investigate the form of occurrence of the Paleoproterozoic Singo granite in west-central Uganda. This granitic body covers an area of ∼700 km2, intrudes Paleoproterozoic crystalline rocks and overlain by Paleoproterozoic-Mesoproterozoic sedimentary rocks, both of which belong to the Rwenzori terrane, and it is host to hydrothermally-formed economic minerals such as gold and tungsten. Our analysis provided unprecedented geometrical details of the granitic body and revealed the following: (1) the margins of the Singo granite are characterized by a higher magnetic signature compared to the interior of the granitic body as well as the surroundings. These anomalies are apparent in both the total magnetic field and horizontal derivative images and define eight overlapping ring features. (2) the depth continuation of these magnetic anomalies define outward but steeply-dipping features as indicated by the tilt images extracted from the airborne magnetic data. This is further supported by forward modeling of the magnetic and gravity data. (3) the Singo granite is characterized by relatively high and evenly-distributed equivalent concentration of Uranium (eU) and Thorium (eTh) compared to the surroundings and this is apparent in the Potassium (K)-eTh-eU radiometric ternary image. (4) the granitic body is defined by a gravity low anomaly that persisted to a depth of three km as shown by the Bouguer anomaly image and its five km upward continuation. We used these observations to identify this granitic body as a nested igneous ring complex and we refer to it as the Singo Igneous Ring Complex (SIRC). We further interpreted the eight ring structures as individual igneous ring complexes aligned in an E-W and NE-SW direction and these were developed due to repeated calderas collapse. Additionally, we interpreted the ring-shaped magnetic anomalies as due to hydrothermally-altered margins

  6. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  8. Effect of different agents onto multidrug resistant cells revealed by fluorescence correlation spectroscopy

    Science.gov (United States)

    Boutin, C.; Roche, Y.; Jaffiol, R.; Millot, J.-M.; Millot, C.; Plain, J.; Deturche, R.; Jeannesson, P.; Manfait, M.; Royer, P.

    Fluorescence correlation spectroscopy (FCS), which is a sensitive and non invasive technique, has been used to characterize the plasma membrane fluidity and heterogeneity of multidrug resistant living cells. At the single cell level, the effects of different membrane agents present in the extra-cellular medium have been analyzed. Firstly, we reveal a modification of plasma membrane microviscosity according to the addition of a fluidity modulator, benzyl alcohol. In the other hand, revertant such as verapamil and cyclosporin-A appears to act more specifically on the slow diffusion sites as microdomains.

  9. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    Science.gov (United States)

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-01-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed “type VII.” How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE–PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways. PMID:25275011

  10. Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation.

    Science.gov (United States)

    Yamaguchi, Masaya; VanderLinden, Ryan; Weissmann, Florian; Qiao, Renping; Dube, Prakash; Brown, Nicholas G; Haselbach, David; Zhang, Wei; Sidhu, Sachdev S; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-08-18

    The mitotic checkpoint complex (MCC) coordinates proper chromosome biorientation on the spindle with ubiquitination activities of CDC20-activated anaphase-promoting complex/cyclosome (APC/C(CDC20)). APC/C(CDC20) and two E2s, UBE2C and UBE2S, catalyze ubiquitination through distinct architectures for linking ubiquitin (UB) to substrates and elongating polyUB chains, respectively. MCC, which contains a second molecule of CDC20, blocks APC/C(CDC20)-UBE2C-dependent ubiquitination of Securin and Cyclins, while differentially determining or inhibiting CDC20 ubiquitination to regulate spindle surveillance, checkpoint activation, and checkpoint termination. Here electron microscopy reveals conformational variation of APC/C(CDC20)-MCC underlying this multifaceted regulation. MCC binds APC/C-bound CDC20 to inhibit substrate access. However, rotation about the CDC20-MCC assembly and conformational variability of APC/C modulate UBE2C-catalyzed ubiquitination of MCC's CDC20 molecule. Access of UBE2C is limiting for subsequent polyubiquitination by UBE2S. We propose that conformational dynamics of APC/C(CDC20)-MCC modulate E2 activation and determine distinctive ubiquitination activities as part of a response mechanism ensuring accurate sister chromatid segregation. PMID:27522463

  11. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola.

    Science.gov (United States)

    Raman, H; Raman, R; Coombes, N; Song, J; Prangnell, R; Bandaranayake, C; Tahira, R; Sundaramoorthi, V; Killian, A; Meng, J; Dennis, E S; Balasubramanian, S

    2016-06-01

    Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes. PMID:26428711

  12. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci

    Science.gov (United States)

    Martin, Paul; McGovern, Amanda; Orozco, Gisela; Duffus, Kate; Yarwood, Annie; Schoenfelder, Stefan; Cooper, Nicholas J.; Barton, Anne; Wallace, Chris; Fraser, Peter; Worthington, Jane; Eyre, Steve

    2015-01-01

    Genome-wide association studies have been tremendously successful in identifying genetic variants associated with complex diseases. The majority of association signals are intergenic and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use Capture Hi-C to investigate, for the first time, the interactions between associated variants for four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report numerous looping interactions and provide evidence that only a minority of interactions are common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific; some disease-associated SNPs do not interact with the nearest gene but with more compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases away; and finally, regions associated with different autoimmune diseases interact with each other and the same promoter suggesting common autoimmune gene targets (for example, PTPRC, DEXI and ZFP36L1). PMID:26616563

  13. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  14. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana;

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  15. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    Science.gov (United States)

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line. PMID:27046137

  16. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    Science.gov (United States)

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line.

  17. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    Science.gov (United States)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  18. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    Science.gov (United States)

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  19. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  20. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    Science.gov (United States)

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  1. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  2. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics.

    Science.gov (United States)

    Hsu, Shang-Te D; Breukink, Eefjan; Tischenko, Eugene; Lutters, Mandy A G; de Kruijff, Ben; Kaptein, Robert; Bonvin, Alexandre M J J; van Nuland, Nico A J

    2004-10-01

    The emerging antibiotics-resistance problem has underlined the urgent need for novel antimicrobial agents. Lantibiotics (lanthionine-containing antibiotics) are promising candidates to alleviate this problem. Nisin, a member of this family, has a unique pore-forming activity against bacteria. It binds to lipid II, the essential precursor of cell wall synthesis. As a result, the membrane permeabilization activity of nisin is increased by three orders of magnitude. Here we report the solution structure of the complex of nisin and lipid II. The structure shows a novel lipid II-binding motif in which the pyrophosphate moiety of lipid II is primarily coordinated by the N-terminal backbone amides of nisin via intermolecular hydrogen bonds. This cage structure provides a rationale for the conservation of the lanthionine rings among several lipid II-binding lantibiotics. The structure of the pyrophosphate cage offers a template for structure-based design of novel antibiotics. PMID:15361862

  3. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice.

    Science.gov (United States)

    Zhou, Wenqi; Wang, Yuchuan; Wu, Zhongliang; Luo, Liang; Liu, Ping; Yan, Longfeng; Hou, Suiwen

    2016-07-01

    Filamentous actins (F-actins) play a vital role in epidermal cell morphogenesis. However, a limited number of studies have examined actin-dependent leaf epidermal cell morphogenesis events in rice. In this study, two recessive mutants were isolated: less pronounced lobe epidermal cell2-1 (lpl2-1) and lpl3-1, whose leaf and stem epidermis developed a smooth surface, with fewer serrated pavement cell (PC) lobes, and decreased papillae. The lpl2-1 also exhibited irregular stomata patterns, reduced plant height, and short panicles and roots. Molecular genetic studies demonstrated that LPL2 and LPL3 encode the PIROGI/Specifically Rac1-associated protein 1 (PIR/SRA1)-like and NCK-associated protein 1 (NAP1)-like proteins, respectively, two components of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (SCAR/WAVE) regulatory complex involved in actin nucleation and function. Epidermal cells exhibited abnormal arrangement of F-actins in both lpl2 and lpl3 expanding leaves. Moreover, the distorted trichomes of Arabidopsis pir could be partially restored by an overexpression of LPL2 A yeast two-hybrid assay revealed that LPL2 can directly interact with LPL3 in vitro Collectively, the results indicate that LPL2 and LPL3 are two functionally conserved homologs of the SCAR/WAVE complex components, and that they play an important role in controlling epidermal cell morphogenesis in rice by organising F-actin. PMID:27252469

  4. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

    Directory of Open Access Journals (Sweden)

    Derry Voisin

    2009-10-01

    Full Text Available Mutations in LACERATA (LCR, FIDDLEHEAD (FDH, and BODYGUARD (BDG cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis, of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE, which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.

  5. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence.

    Directory of Open Access Journals (Sweden)

    Amanda Scherer

    Full Text Available We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity, and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.

  6. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells.

    Directory of Open Access Journals (Sweden)

    Masahide Seki

    Full Text Available We detected and characterized the binding sites of the representative Rest complex components Rest, Sin3A, and Lsd1. We compared their binding patterns in mouse embryonic stem (ES cells and epiblast stem (EpiS cells. We found few Rest sites unique to the EpiS cells. The ES-unique site features were distinct from those of the common sites, namely, the signal intensities were weaker, and the characteristic gene function categories differed. Our analyses showed that the Rest binding sites do not always overlap with the Sin3A and Lsd1 binding sites. The Sin3A binding pattern differed remarkably between the ES and EpiS cells and was accompanied by significant changes in acetylated-histone patterns in the surrounding regions. A series of transcriptome analyses in the same cell types unexpectedly showed that the putative target gene transcript levels were not dramatically different despite dynamic changes in the Rest complex binding patterns and chromatin statuses, which suggests that Rest is not the sole determinant of repression at its targets. Nevertheless, we identified putative Rest targets with explicitly enhanced transcription upon Rest knock-down in 143 and 60 common and ES-unique Rest target genes, respectively. Among such sites, several genes are involved in ES cell proliferation. In addition, we also found that long, intergenic non-coding RNAs were apparent Rest targets and shared similar features with the protein-coding target genes. Interestingly, such non-coding target genes showed less conservation through evolution than protein-coding targets. As a result of differences in the components and targets of the Rest complex, its functional roles may differ in ES and EpiS cells.

  7. Expression profiling of major histocompatibility and natural killer complex genes reveals candidates for controlling risk of graft versus host disease.

    Directory of Open Access Journals (Sweden)

    Peter Novota

    Full Text Available BACKGROUND: The major histocompatibility complex (MHC is the most important genomic region that contributes to the risk of graft versus host disease (GVHD after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. METHODOLOGY/PRINCIPAL FINDINGS: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR, to analyze the expression of MHC, natural killer complex (NKC, and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. CONCLUSIONS/SIGNIFICANCE: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients.

  8. The FasFADD death domain complex structure reveals the basis of DISC assembly and disease mutations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liwei [Weill Cornell Medical College, New York, NY (United States); Yang, Jin Kuk [Weill Cornell Medical College, New York, NY (United States); Soongsil Univ., Seoul (Korea); Kabaleeswaran, Venkataraman [Weill Cornell Medical College, New York, NY (United States); Rice, Amanda J. [Harvard Medical School, Boston, MA (United States); Cruz, Anthony C. [National Inst. of Health (NIH), Bethesda, MD (United States); Park, Ah Young [Univ. of Oxford (United Kingdom); Yin, Qian [Weill Cornell Medical College, New York, NY (United States); Damko, Ermelinda [Weill Cornell Medical College, New York, NY (United States); Jang, Se Bok [Weill Cornell Medical College, New York, NY (United States); Pusan National Univ., Busan (Korea, Republic of); Raunser, Stefan [Harvard Medical School, Boston, MA (United States); Robinson, Carol V. [Univ. of Oxford (United Kingdom); Siegel, Richard M. [National Inst. of Health (NIH), Bethesda, MD (United States); Walz, Thomas [Harvard Medical School, Boston, MA (United States); Wu, Hao [Weill Cornell Medical College, New York, NY (United States)

    2010-10-10

    The death-inducing signaling complex (DISC) formed by the death receptor Fas, the adaptor protein FADD and caspase-8 mediates the extrinsic apoptotic program. Mutations in Fas that disrupt the DISC cause autoimmune lymphoproliferative syndrome (ALPS). Here we show that the Fas-FADD death domain (DD) complex forms an asymmetric oligomeric structure composed of 5-7 Fas DD and 5 FADD DD, whose interfaces harbor ALPS-associated mutations. Structure-based mutations disrupt the Fas-FADD interaction in vitro and in living cells; the severity of a mutation correlates with the number of occurrences of a particular interaction in the structure. The highly oligomeric structure explains the requirement for hexameric or membrane-bound FasL in Fas signaling. It also predicts strong dominant negative effects from Fas mutations, which are confirmed by signaling assays. The structure optimally positions the FADD death effector domain (DED) to interact with the caspase-8 DED for caspase recruitment and higher-order aggregation.

  9. Spindle cell carcinoma of the breast as complex cystic lesion:a case report

    Institute of Scientific and Technical Information of China (English)

    Masahiro Kitada; Satoshi Hayashi; Yoshinari Matsuda; Kei Ishibashi; Keisuke Oikawa; Naoyuki Miyokawa

    2014-01-01

    Spindle cell carcinoma of the breast is a rare tumor. hTis tumor can proliferate rapidly and cause cystic changes because of internal tissue necrosis. We evaluated a 54-year-old woman with right breast lump. Mammography showed a category four mass with a diameter of 2.5 cm. Ultrasonography (US) revealed a complex cystic lesion, and ifne-needle aspiration (FNA) cytology demonstrated bloody fluid and malignant cells. Partial breast resection and sentinel lymph node biopsy were performed. Immunohistology revealed spindle cells with positive results for cytokeratin (AE1/AE3) and vimentin, partially positive results for s-100, and negative results for desmin and α-actin. The pathological stage was IIA, and biochemical characterization showed that the tumor was triple negative. Six courses of FEC-100 chemotherapy (5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2, and cyclophosphamide 500 mg/m2) were administered. Radiotherapy was performed. hTis case is discussed with reference to the literature.

  10. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    Science.gov (United States)

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.

  11. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

    Science.gov (United States)

    Zdravkovic, Tamara; Nazor, Kristopher L; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C; Loring, Jeanne F; Fisher, Susan J

    2015-12-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines.

  12. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    Science.gov (United States)

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  13. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome.

    Science.gov (United States)

    Molinie, Benoit; Wang, Jinkai; Lim, Kok Seong; Hillebrand, Roman; Lu, Zhi-Xiang; Van Wittenberghe, Nicholas; Howard, Benjamin D; Daneshvar, Kaveh; Mullen, Alan C; Dedon, Peter; Xing, Yi; Giallourakis, Cosmas C

    2016-08-01

    N(6)-Methyladenosine (m(6)A) is a widespread, reversible chemical modification of RNA molecules, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m(6)A modified ('m(6)A levels') or the relationship of m(6)A modification(s) to alternative RNA isoforms. To deconvolute the m(6)A epitranscriptome, we developed m(6)A-level and isoform-characterization sequencing (m(6)A-LAIC-seq). We found that cells exhibit a broad range of nonstoichiometric m(6)A levels with cell-type specificity. At the level of isoform characterization, we discovered widespread differences in the use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3' untranslated regions, while nonmethylated transcript isoforms tend to use distal APA sites. m(6)A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m(6)A modifications. PMID:27376769

  14. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    Science.gov (United States)

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  15. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle touch receptor

    OpenAIRE

    Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A.

    2013-01-01

    Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analys...

  16. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    Full Text Available UNLABELLED: Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  17. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    Science.gov (United States)

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue.

  18. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G. Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.

  19. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Science.gov (United States)

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across

  20. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Directory of Open Access Journals (Sweden)

    Clio Der Sarkissian

    Full Text Available North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present. We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a, a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population

  1. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  2. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency

    Institute of Scientific and Technical Information of China (English)

    R David Hawkins; Zhen Ye; Samantha Kuan; Pengzhi Yu; Hui Liu; Xinmin Zhang; Roland D Green; Victor V Lobanenkov; Ron Stewart; James A Thomson; Bing Ren; Gary C Hon; Chuhu Yang; Jessica E Antosiewicz-Bourget; LeonardKLee; Que-Minh Ngo; Sarit Klugman; Keith A Ching; Lee E Edsall

    2011-01-01

    Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells.While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types.In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genomewide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage.We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes.We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4mel and H3K27ac,which correlate with expression of their potential target genes.Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs.Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.

  3. Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Susan M Gribble

    Full Text Available Down syndrome (DS is caused by trisomy of chromosome 21 (Hsa21 and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype--phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1 presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2 overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.

  4. The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation.

    Science.gov (United States)

    Rodor, Julie; Pan, Qun; Blencowe, Benjamin J; Eyras, Eduardo; Cáceres, Javier F

    2016-09-01

    Acinus (apoptotic chromatin condensation inducer in the nucleus) is an RNA-binding protein (RBP) originally identified for its role in apoptosis. It was later found to be an auxiliary component of the exon junction complex (EJC), which is deposited at exon junctions as a consequence of pre-mRNA splicing. To uncover the cellular functions of Acinus and investigate its role in splicing, we mapped its endogenous RNA targets using the cross-linking immunoprecipitation protocol (iCLIP). We observed that Acinus binds to pre-mRNAs, associating specifically to a subset of suboptimal introns, but also to spliced mRNAs. We also confirmed the presence of Acinus as a peripheral factor of the EJC. RNA-seq was used to investigate changes in gene expression and alternative splicing following siRNA-mediated depletion of Acinus in HeLa cells. This analysis revealed that Acinus is preferentially required for the inclusion of specific alternative cassette exons and also controls the faithful splicing of a subset of introns. Moreover, a large number of splicing changes can be related to Acinus binding, suggesting a direct role of Acinus in exon and intron definition. In particular, Acinus regulates the splicing of DFFA/ICAD transcript, a major regulator of DNA fragmentation. Globally, the genome-wide identification of RNA targets of Acinus revealed its role in splicing regulation as well as its involvement in other cellular pathways, including cell cycle progression. Altogether, this study uncovers new cellular functions of an RBP transiently associated with the EJC. PMID:27365209

  5. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  6. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    Science.gov (United States)

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  7. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination.

    Science.gov (United States)

    Wei, Ting; He, Zilong; Tan, XinYu; Liu, Xue; Yuan, Xiao; Luo, Yingfeng; Hu, Songnian

    2015-08-14

    Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination. PMID:26116530

  8. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    Science.gov (United States)

    Hoppins, Suzanne; Collins, Sean R; Cassidy-Stone, Ann; Hummel, Eric; Devay, Rachel M; Lackner, Laura L; Westermann, Benedikt; Schuldiner, Maya; Weissman, Jonathan S; Nunnari, Jodi

    2011-10-17

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.

  9. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Kim M. [Univ. of California, Berkeley, CA (United States); Wrighton, Kelly C. [Univ. of California, Berkeley, CA (United States); Piceno, Yvette M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeSantis, Todd Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilkins, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); N' Guessan, A. Lucie [Univ. of Massachusetts, Amherst, MA (United States); Peacock, Aaron [Haley & Aldrich, Oak Ridge, TN (United States); Bargar, John [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Long, Philip E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99353, USA; Banfield, Jillian F.

    2012-04-13

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.

  10. Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses.

    Science.gov (United States)

    Paterson, A M; Wallis, G P; Wallis, L J; Gray, R D

    2000-09-01

    We investigated the coevolutionary history of seabirds (orders Procellariiformes and Sphenisciformes) and their lice (order Phthiraptera). Independent trees were produced for the seabirds (tree derived from 12S ribosomal RNA, isoenzyme, and behavioral data) and their lice (trees derived from 12S rRNA data). Brook's parsimony analysis (BPA) supported a general history of cospeciation (consistency index = 0.84, retention index = 0.81). We inferred that the homoplasy in the BPA was caused by one intrahost speciation, one potential host-switching, and eight or nine sorting events. Using reconciliation analysis, we quantified the cost of fitting the louse tree onto the seabird tree. The reconciled trees postulated one host-switching, nine cospeciation, three or four intrahost speciation, and 11 to 14 sorting events. The number of cospeciation events was significantly more than would be expected from chance alone (P seabirds and lice. Neither data set displayed significant rate heterogeneity. An examination of the codivergent nodes revealed that seabirds and lice have cospeciated synchronously and that lice have evolved at approximately 5.5 times the rate of seabirds. The degree of sequence divergence supported some of the postulated intrahost speciation events (e.g., Halipeurus predated the evolution of their present hosts). The sequence data also supported some of the postulated host-switching events. These results demonstrate the value of sequence data and reconciliation analyses in unraveling complex histories between hosts and their parasites. PMID:12116418

  11. Tetrapositive plutonium, neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation.

    Science.gov (United States)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-04-17

    The Pu(4+), Np(4+), and U(4+) ions, which have large electron affinities of ∼34.6, ∼33.6, and ∼32.6 eV, respectively, were stabilized from solution to the gas phase upon coordination by three neutral tetramethyl-3-oxa-glutaramide ligands (TMOGA). Both collision induced dissociation (CID) and electron transfer dissociation (ETD) of Pu(TMOGA)3(4+) reveal the propensity for reduction of Pu(IV) to Pu(III), by loss of TMOGA(+) in CID and by simple electron transfer in ETD. The reduction of Pu(IV) is in distinct contrast to retention of Th(IV) in both CID and ETD of Th(TMOGA)3(4+), where only the C-Oether bond cleavage product was observed. U(TMOGA)3(4+) behaves similarly to Th(TMOGA)3(4+) upon CID and ETD, while the fragmentation patterns of Np(TMOGA)3(4+) lie between those of Pu(TMOGA)3(4+) and U(TMOGA)3(4+). It is notable that the gas-phase fragmentation behaviors of these exceptional tetrapositive complexes parallel fundamental differences in condensed phase chemistry within the actinide series, specifically the tendency for reduction from the IV to III oxidation states.

  12. Tetrapositive plutonium, neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation.

    Science.gov (United States)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-04-17

    The Pu(4+), Np(4+), and U(4+) ions, which have large electron affinities of ∼34.6, ∼33.6, and ∼32.6 eV, respectively, were stabilized from solution to the gas phase upon coordination by three neutral tetramethyl-3-oxa-glutaramide ligands (TMOGA). Both collision induced dissociation (CID) and electron transfer dissociation (ETD) of Pu(TMOGA)3(4+) reveal the propensity for reduction of Pu(IV) to Pu(III), by loss of TMOGA(+) in CID and by simple electron transfer in ETD. The reduction of Pu(IV) is in distinct contrast to retention of Th(IV) in both CID and ETD of Th(TMOGA)3(4+), where only the C-Oether bond cleavage product was observed. U(TMOGA)3(4+) behaves similarly to Th(TMOGA)3(4+) upon CID and ETD, while the fragmentation patterns of Np(TMOGA)3(4+) lie between those of Pu(TMOGA)3(4+) and U(TMOGA)3(4+). It is notable that the gas-phase fragmentation behaviors of these exceptional tetrapositive complexes parallel fundamental differences in condensed phase chemistry within the actinide series, specifically the tendency for reduction from the IV to III oxidation states. PMID:24660979

  13. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Science.gov (United States)

    Qiu, Jie; Wang, Yu; Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19-0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  14. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Directory of Open Access Journals (Sweden)

    Jie Qiu

    Full Text Available Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou and a wild line (Lanxi 1 collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1 no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2 besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3 high heterozygous rates (0.19-0.49 were observed in several semi-wild lines; and (4 over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  15. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action

    Energy Technology Data Exchange (ETDEWEB)

    Baram, David; Pyetan, Erez; Sittner, Assa; Auerbach-Nevo, Tamar; Bashan, Anat; Yonath, Ada (WIS-I)

    2010-07-13

    Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-{angstrom} crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its 'signature motif' as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.

  16. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination.

    Science.gov (United States)

    Wei, Ting; He, Zilong; Tan, XinYu; Liu, Xue; Yuan, Xiao; Luo, Yingfeng; Hu, Songnian

    2015-08-14

    Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.

  17. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  18. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

    Directory of Open Access Journals (Sweden)

    Andrea-Anneliese Keller

    2013-02-01

    Full Text Available Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

  19. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    Science.gov (United States)

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  20. Non-SMC condensin I complex proteins control chromosome segregation and survival of proliferating cells in the zebrafish neural retina

    Directory of Open Access Journals (Sweden)

    Harris William A

    2009-07-01

    Full Text Available Abstract Background The condensation of chromosomes and correct sister chromatid segregation during cell division is an essential feature of all proliferative cells. Structural maintenance of chromosomes (SMC and non-SMC proteins form the condensin I complex and regulate chromosome condensation and segregation during mitosis. However, due to the lack of appropriate mutants, the function of the condensin I complex during vertebrate development has not been described. Results Here, we report the positional cloning and detailed characterization of retinal phenotypes of a zebrafish mutation at the cap-g locus. High resolution live imaging reveals that the progression of mitosis between prometa- to telophase is delayed and that sister chromatid segregation is impaired upon loss of CAP-G. CAP-G associates with chromosomes between prometa- and telophase of the cell cycle. Loss of the interaction partners CAP-H and CAP-D2 causes cytoplasmic mislocalization of CAP-G throughout mitosis. DNA content analysis reveals increased genomic imbalances upon loss of non-SMC condensin I subunits. Within the retina, loss of condensin I function causes increased rates of apoptosis among cells within the proliferative ciliary marginal zone (CMZ whereas postmitotic retinal cells are viable. Inhibition of p53-mediated apoptosis partially rescues cell numbers in cap-g mutant retinae and allows normal layering of retinal cell types without alleviating their aberrant nuclear sizes. Conclusion Our findings indicate that the condensin I complex is particularly important within rapidly amplifying progenitor cell populations to ensure faithful chromosome segregation. In contrast, differentiation of postmitotic retinal cells is not impaired upon polyploidization.

  1. Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response.

    OpenAIRE

    Owens, Kelly,; Cunningham, Dale,; Macdonald, Glen; Rubel, Edwin,; Raible, David,; Pujol, Remy

    2007-01-01

    Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observation of hair cells. Labeling with vital dyes revealed a rapid response of hair cells to the aminoglycos...

  2. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples.

    Directory of Open Access Journals (Sweden)

    Ulrich Leischner

    Full Text Available Ultramicroscopy is a powerful tool to reveal detailed three-dimensional structures of large microscopical objects. Using high magnification, we observed that formalin induces fluorescence more in extra-cellular space and stains cellular structures negatively, rendering cells as dark objects in front of a bright background. Here, we show this effect on a three-dimensional image stack of a hippocampus sample, focusing on the CA1 region. This method, called FIF-Ultramicroscopy, allows for the three-dimensional observation of cellular structures in various tissue types without complicated staining techniques.

  3. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas

    DEFF Research Database (Denmark)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo;

    2013-01-01

    integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell...... transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs....

  4. Complex N-Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these

  5. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins.

    Science.gov (United States)

    Margulis, Neil G; Wilson, Joshua D; Bentivoglio, Christine M; Dhungel, Nripesh; Gitler, Aaron D; Barlowe, Charles

    2016-03-01

    Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.

  6. Molecular analysis of T-cell receptor beta genes in cutaneous T-cell lymphoma reveals Jbeta1 bias.

    Science.gov (United States)

    Morgan, Suzanne M; Hodges, Elizabeth; Mitchell, Tracey J; Harris, Susan; Whittaker, Sean J; Smith, John L

    2006-08-01

    Molecular characterization of T-cell receptor junctional region sequences in cutaneous T-cell lymphoma had not been previously reported. We have examined in detail the features of the T-cell receptor beta (TCRB) gene rearrangements in 20 individuals with well-defined stages of cutaneous T-cell lymphoma (CTCL) comprising 10 cases with early-stage mycosis fungoides (MF) and 10 cases with late-stage MF or Sezary syndrome. Using BIOMED-2 PCR primers, we detected a high frequency of clonally rearranged TCR gamma and TCRB genes (17/20 and 15/20 cases, respectively). We carried out sequencing analysis of each complete clonal variable (V)beta-diversity (D)beta-joining(J)beta fingerprint generated by PCR amplification, and determined the primary structure of the Vbeta-Dbeta-Jbeta junctional regions. We observed considerable diversity in the T-cell receptor Vbeta gene usage and complementarity-determining region 3 loops. Although we found that TCRB gene usage in CTCL and normal individuals share common features, our analysis also revealed preferential usage of Jbeta1 genes in all cases with advanced stages of disease.

  7. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  8. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    Science.gov (United States)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  9. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  10. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  11. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment.

    Science.gov (United States)

    Wang, Feng; Marshall, Christopher B; Yamamoto, Kazuo; Li, Guang-Yao; Gasmi-Seabrook, Geneviève M C; Okada, Hitoshi; Mak, Tak W; Ikura, Mitsuhiko

    2012-04-17

    Forkhead box class O 3a (FOXO3a) is a transcription factor and tumor suppressor linked to longevity that determines cell fate through activating transcription of cell differentiation, survival, and apoptotic genes. Recruitment of the coactivator CBP/p300 is a crucial step in transcription, and we revealed that in addition to conserved region 3 (CR3) of FOXO3a, the C-terminal segment of CR2 (CR2C) binds CBP/p300 and contributes to transcriptional activity. CR2C and CR3 of FOXO3a interact with the KIX domain of CBP/p300 at both "MLL" and "c-Myb" binding sites simultaneously. A FOXO3a CR2C-CR3 peptide in complex with KIX exists in equilibrium between two equally populated conformational states, one of which has CR2C bound to the MLL site and CR3 bound to the c-Myb site, whereas in the other, CR2C and CR3 bind the c-Myb and MLL sites, respectively. This promiscuous interaction between FOXO3a and CBP/p300 is further supported by additional binding sites on CBP/p300, namely, the TAZ1 and TAZ2 domains. In functional studies, our structure-guided mutagenesis showed that both CR2C and CR3 are involved in the activation of certain endogenous FOXO3a target genes. Further, phosphorylation of S626, a known AMP-dependent protein kinase target in CR3, increased affinity for CBP/p300 and the phosphomimetic mutation enhanced transactivation of luciferase. These findings underscore the significance of promiscuous multivalent interactions and posttranslational modification in the recruitment of transcriptional coactivators, which may allow transcription factors to adapt to various gene-specific genomic and chromatin structures and respond to cell signals. PMID:22474372

  12. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  13. CAFET algorithm reveals Wnt/PCP signature in lung squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Yue Hu

    Full Text Available We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC samples and developed a new algorithm called Coverage Analysis with Fisher's Exact Test (CAFET to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC and adenocarcinoma (AC subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis.

  14. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  15. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  16. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3.

    Science.gov (United States)

    Kolinko, Sebastian; Jogler, Christian; Katzmann, Emanuel; Wanner, Gerhard; Peplies, Jörg; Schüler, Dirk

    2012-07-01

    Magnetotactic bacteria (MTB) are a diverse group of prokaryotes that orient along magnetic fields using membrane-coated magnetic nanocrystals of magnetite (Fe(3) O(4) ) or greigite (Fe(3) S(4) ), the magnetosomes. Previous phylogenetic analysis of MTB has been limited to few cultivated species and most abundant members of natural populations, which were assigned to Proteobacteria and the Nitrospirae phyla. Here, we describe a single cell-based approach that allowed the targeted phylogenetic and ultrastructural analysis of the magnetotactic bacterium SKK-01, which was low abundant in sediments of Lake Chiemsee. Morphologically conspicuous single cells of SKK-01 were micromanipulated from magnetically collected multi-species MTB populations, which was followed by whole genome amplification and ultrastructural analysis of sorted cells. Besides intracellular sulphur inclusions, the large ovoid cells of SKK-01 harbour ∼175 bullet-shaped magnetosomes arranged in multiple chains that consist of magnetite as revealed by TEM and EDX analysis. Sequence analysis of 16 and 23S rRNA genes from amplified genomic DNA as well as fluorescence in situ hybridization assigned SKK-01 to the candidate division OP3, which so far lacks any cultivated representatives. SKK-01 represents the first morphotype that can be assigned to the OP3 group as well as the first magnetotactic member of the PVC superphylum. PMID:22003954

  17. Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation.

    Directory of Open Access Journals (Sweden)

    Masato S Ota

    2009-04-01

    Full Text Available The sense of taste is of critical importance to animal survival. Although studies of taste signal transduction mechanisms have provided detailed information regarding taste receptor calcium signaling molecules (TRCSMs, required for sweet/bitter/umami taste signal transduction, the ontogeny of taste cells is still largely unknown. We used a novel approach to investigate the molecular regulation of taste system development in mice by combining in silico and in vivo analyses. After discovering that TRCSMs colocalized within developing circumvallate papillae (CVP, we used computational analysis of the upstream regulatory regions of TRCSMs to investigate the possibility of a common regulatory network for TRCSM transcription. Based on this analysis, we identified Hes1 as a likely common regulatory factor, and examined its function in vivo. Expression profile analyses revealed that decreased expression of nuclear HES1 correlated with expression of type II taste cell markers. After stage E18, the CVP of Hes1(-/ (- mutants displayed over 5-fold more TRCSM-immunoreactive cells than did the CVP of their wild-type littermates. Thus, according to our composite analyses, Hes1 is likely to play a role in orchestrating taste cell differentiation in developing taste buds.

  18. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  19. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity.

    Science.gov (United States)

    Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G

    2013-12-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both

  20. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  1. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells.

    Science.gov (United States)

    Allen-Worthington, Krystal; Xie, Jianjun; Brown, Jessica L; Edmunson, Alexa M; Dowling, Abigail; Navratil, Amy M; Scavelli, Kurt; Yoon, Hojean; Kim, Do-Geun; Bynoe, Margaret S; Clarke, Iain; Roberson, Mark S

    2016-09-01

    Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion. PMID:27482602

  2. Interactions of opsonized immune complexes with whole blood cells: binding to erythrocytes restricts complex uptake by leucocyte populations

    DEFF Research Database (Denmark)

    Nielsen, C H; Svehag, S E; Marquart, H V;

    1994-01-01

    The binding of opsonized, fluorescein-labelled bovine serum albumin (BSA)/rabbit anti-BSA complexes (IC) to washed human whole blood cells and isolated leucocytes in the presence of autologous serum was investigated by flow cytometry. In the presence of erythrocytes (E), the IC-binding to granulo......The binding of opsonized, fluorescein-labelled bovine serum albumin (BSA)/rabbit anti-BSA complexes (IC) to washed human whole blood cells and isolated leucocytes in the presence of autologous serum was investigated by flow cytometry. In the presence of erythrocytes (E), the IC...

  3. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    Science.gov (United States)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  4. Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis.

    Science.gov (United States)

    Grzybowski, Tomasz; Malyarchuk, Boris A; Derenko, Miroslava V; Perkova, Maria A; Bednarek, Jarosław; Woźniak, Marcin

    2007-06-01

    Mitochondrial DNA sequence variation was examined by the control region sequencing (HVS I and HVS II) and RFLP analysis of haplogroup-diagnostic coding region sites in 570 individuals from four regional populations of Poles and two Russian groups from northwestern part of the country. Additionally, sequences of complete mitochondrial genomes representing K1a1b1a subclade in Polish and Polish Roma populations have been determined. Haplogroup frequency patterns revealed in Poles and Russians are similar to those characteristic of other Europeans. However, there are several features of Slavic mtDNA pools seen on the level of regional populations which are helpful in the understanding of complex interactions of the Eastern and Western Slavic populations with other European groups. One of the most important is the presence of subhaplogroups U5b1b1, D5, Z1 and U8a with simultaneous scarcity of haplogroup K in populations of northwestern Russia suggesting the participation of Finno-Ugrian tribes in the formation of mtDNA pools of Russians from this region. The results of genetic structure analyses suggest that Russians from Velikii Novgorod area (northwestern Russia) and Poles from Suwalszczyzna (northeastern Poland) differ from all remaining Polish and Russian samples. Simultaneously, northwestern Russians and northeastern Poles bear some similarities to Baltic (Latvians) and Finno-Ugrian groups (Estonians) of northeastern Europe, especially on the level of U5 haplogroup frequencies. The occurrence of K1a1b1a subcluster in Poles and Polish Roma is one of the first direct proofs of the presence of Ashkenazi-specific mtDNA lineages in non-Jewish European populations.

  5. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.

    Science.gov (United States)

    Gao, Jie; Buckley, Shannon M; Cimmino, Luisa; Guillamot, Maria; Strikoudis, Alexandros; Cang, Yong; Goff, Stephen P; Aifantis, Iannis

    2015-11-27

    Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets. However, Ddb1 deletion in non-dividing lymphocytes has no discernible phenotypes. Ddb1 silencing activates Trp53 pathway and leads to significant effects on cell cycle progression and rapid apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of Trp53. Conversely, depletion of DDB1 in embryonic stem cell (ESC) leads to differentiation albeit negative effects on cell cycle and apoptosis. Mass spectrometry reveals differing protein interactions between DDB1 and distinct DCAFs, the substrate recognizing components of the E3 complex, between cell types. Our studies identify CUL4-DDB1 complex as a novel post-translational regulator of stem and progenitor maintenance and differentiation.

  6. Cardiac Metastases of Renal Cell Carcinoma Revealed by Syncope: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Aziz Bazine

    2014-08-01

    Full Text Available Introduction: Cardiac metastases from renal cell carcinoma are very rare. In this report, we describe a case of ventricular metastases in the absence of vena cava or right atrial involvement. Case Report: We report the case of a 60-year-old man who had a past history of heavy tobacco intake and well-controlled arterial hypertension. He experienced sudden-onset palpitations, lost consciousness and, as a result, was involved in an accident on the public highway. Cardiac arrhythmia was suspected and, therefore, transthoracic echocardiography was suggested, which revealed a large right ventricular mass. Chest and abdominal computed tomography demonstrated a mass in the right ventricle, but without contiguous vena cava involvement, and a right renal mass related to the probable neoplasm. An ultrasound-guided renal biopsy showed a clear-cell renal cell carcinoma. A bone scan revealed a metastatic bone disease. The patient was started on sunitinib treatment, which was well tolerated. However, approximately 8 months later, reevaluation showed pulmonary metastases. The patient was subsequently started on treatment with everolimus, which, however, was poorly tolerated. Two months later, the patient died due to terminal respiratory insufficiency. Discussion: Based on the literature and our observations in this case, targeted antiangiogenic therapy should be considered as a viable therapeutic alternative to metastasectomy for patients with inoperable cardiac metastatic disease as long as there is no baseline systolic or diastolic dysfunction. The case also emphasizes the importance of a thorough history review and physical examination in the workup of patients with syncope.

  7. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  8. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  9. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Yuan, Bingbing; Shi, Jiahai; Park, Staphany S; Gromatzky, Austin A; van Oudenaarden, Alexander; Lodish, Harvey F

    2014-01-23

    Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.

  10. Mosaic Analysis with Double Markers Reveals Cell-Type-Specific Paternal Growth Dominance

    Directory of Open Access Journals (Sweden)

    Simon Hippenmeyer

    2013-03-01

    Full Text Available Genomic imprinting leads to preferred expression of either the maternal or paternal alleles of a subset of genes. Imprinting is essential for mammalian development, and its deregulation causes many diseases. However, the functional relevance of imprinting at the cellular level is poorly understood for most imprinted genes. We used mosaic analysis with double markers (MADM in mice to create uniparental disomies (UPDs and to visualize imprinting effects with single-cell resolution. Although chromosome 12 UPD did not produce detectable phenotypes, chromosome 7 UPD caused highly significant paternal growth dominance in the liver and lung, but not in the brain or heart. A single gene on chromosome 7, encoding the secreted insulin-like growth factor 2 (IGF2, accounts for most of the paternal dominance effect. Mosaic analyses implied additional imprinted loci on chromosome 7 acting cell autonomously to transmit the IGF2 signal. Our study reveals chromosome- and cell-type specificity of genomic imprinting effects.

  11. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells.

    Directory of Open Access Journals (Sweden)

    Lulu Cao

    Full Text Available The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76 plays a critical scaffolding role in T cell receptor (TCR signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.

  12. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  13. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling

    Science.gov (United States)

    Calcagnì, Alessia; kors, Lotte; Verschuren, Eric; De Cegli, Rossella; Zampelli, Nicolina; Nusco, Edoardo; Confalonieri, Stefano; Bertalot, Giovanni; Pece, Salvatore; Settembre, Carmine; Malouf, Gabriel G; Leemans, Jaklien C; de Heer, Emile; Salvatore, Marco; Peters, Dorien JM; Di Fiore, Pier Paolo; Ballabio, Andrea

    2016-01-01

    TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014). The mechanisms leading to kidney tumor development remain uncharacterized and effective therapies are yet to be identified. Hence, the need to model these diseases in an experimental animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of kidney samples revealed transcriptional induction and enhanced signaling of the WNT β-catenin pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of the WNT pathway. DOI: http://dx.doi.org/10.7554/eLife.17047.001

  14. Cellular responses induced by Cu(II quinolinonato complexes in human tumor and hepatic cells

    Directory of Open Access Journals (Sweden)

    Trávníček Zdeněk

    2012-12-01

    Full Text Available Abstract Background Inspired by the unprecedented historical success of cisplatin, one of the most important research directions in bioinorganic and medicinal chemistry is dedicated to the development of new anticancer compounds with the potential to surpass it in antitumor activity, while having lower unwanted side-effects. Therefore, a series of copper(II mixed-ligand complexes of the type [Cu(qui(L]Y · xH2O (1–6, where Hqui = 2-phenyl-3-hydroxy-4(1H-quinolinone, Y = NO3 (1, 3, 5 or BF4 (2, 4, 6, and L = 1,10-phenanthroline (phen (1, 2, 5-methyl-1,10-phenanthroline (mphen (3, 4 and bathophenanthroline (bphen (5, 6, was studied for their in vitro cytotoxicity against several human cancer cell lines (A549 lung carcinoma, HeLa cervix epitheloid carcinoma, G361 melanoma cells, A2780 ovarian carcinoma, A2780cis cisplatin-resistant ovarian carcinoma, LNCaP androgen-sensitive prostate adenocarcinoma and THP-1 monocytic leukemia. Results The tested complexes displayed a stronger cytotoxic effect against all the cancer cells as compared to cisplatin. The highest cytotoxicity was found for the complexes 4 (IC50 = 0.36 ± 0.05 μM and 0.56 ± 0.15 μM, 5 (IC50 = 0.66 ± 0.07 μM and 0.73 ± 0.08 μM and 6 (IC50 = 0.57 ± 0.11 μM and 0.70 ± 0.20 μM against A2780, and A2780cis respectively, as compared with the values of 12.0 ± 0.8 μM and 27.0 ± 4.6 μM determined for cisplatin. Moreover, the tested complexes were much less cytotoxic to primary human hepatocytes than to the cancer cells. The complexes 5 and 6 exhibited significantly high ability to modulate secretion of the pro-inflammatory cytokines TNF-α (2873 ± 238 pg/mL and 3284 ± 139 pg/mL for 5, and 6 respectively and IL-1β (1177 ± 128 pg/mL and 1087 ± 101 pg/mL for 5, and 6 respectively tested on the lipopolysaccharide (LPS-stimulated THP-1 cells as compared with the values of 1173

  15. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  16. Characterization of Hematopoietic Transcription Factor Complexes in Erythroid Cells

    NARCIS (Netherlands)

    P.J.F. Rodriguez

    2006-01-01

    textabstractEfficient tagging methodologies are an integral aspect of protein complex characterization by proteomic approaches. Due to biotin’s very high affinity for avidin and streptavidin, biotinylation tagging offers an attractive approach for the efficient purification of protein complexe

  17. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins. PMID:10482518

  18. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  19. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  20. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  1. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  2. Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes.

    Science.gov (United States)

    Hamaji, Takashi; Mogi, Yuko; Ferris, Patrick J; Mori, Toshiyuki; Miyagishima, Shinya; Kabeya, Yukihiro; Nishimura, Yoshiki; Toyoda, Atsushi; Noguchi, Hideki; Fujiyama, Asao; Olson, Bradley J S C; Marriage, Tara N; Nishii, Ichiro; Umen, James G; Nozaki, Hisayoshi

    2016-01-01

    Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT-, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale-V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs. PMID:26921294

  3. Immune complexes that contain HIV antigens activate peripheral blood T cells.

    Science.gov (United States)

    Korolevskaya, L B; Shmagel, K V; Saidakova, E V; Shmagel, N G; Chereshnev, V A

    2016-07-01

    Uninfected donor T cells were treated in vitro by model immune complexes that contained either HIV or hepatitis C virus (HCV) antigens. Unlike HCV antigen-containing complexes, the immune complexes that contained HIV antigens have been shown to activate peripheral blood T cells of uninfected donors under in vitro conditions. Both the antiviral antibodies and HIV antigen were involved in the activation process. The unique properties of the immune complexes formed by HIV antigens and antiviral antibodies are believed to result from the virus-specific antibody properties and molecular conformation of the antigen-antibody complex. PMID:27595830

  4. Variations in cell morphology in the canine cruciate ligament complex.

    Science.gov (United States)

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. PMID:22465617

  5. Formation of Interpolymer Complexes on Polypropylene Textiles via Layer-by-Layer Modification as Revealed by FTIR Method

    Directory of Open Access Journals (Sweden)

    Dawid STAWSKI

    2012-06-01

    Full Text Available Oppositely-charged polyelectrolytes such poly(acrylic acid and poly(allylamine hydrochloride have been deposited on a polypropylene nonwoven by the layer-by-layer technique. The complex formation of this modified material has been studied by FTIR spectroscopy. It has been found that external reflectance FTIR is an efficient technique for the identification of non-complexed or complexed carboxylic groups in the modified polypropylene material.

  6. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yener Bülent

    2007-10-01

    Full Text Available Abstract Background Recently, we demonstrated that human mesenchymal stem cells (hMSC stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6: 1608–20, 2005. Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM proteins (collagen I, vitronectin, or laminin-5 or osteogenic media supplements (OS media. Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST, with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. Results Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. Conclusion The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.

  7. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Denis Avey

    2015-07-01

    Full Text Available Kaposi's Sarcoma-Associated Herpesvirus (KSHV is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK mitogen-activated protein kinase (MAPK pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45

  8. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    Science.gov (United States)

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.

  9. Revealing nonergodic dynamics in living cells from a single particle trajectory.

    Science.gov (United States)

    Lanoiselée, Yann; Grebenkov, Denis S

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  10. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells.

    Science.gov (United States)

    Carlile, Thomas M; Rojas-Duran, Maria F; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M; Gilbert, Wendy V

    2014-11-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.

  11. Cytotoxic Effects of Newly Synthesized Palladium(II Complexes of Diethyldithiocarbamate on Gastrointestinal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Shahram Hadizadeh

    2014-01-01

    Full Text Available As a part of a drug development program to discover novel therapeutic and more effective palladium (Pd based anticancer drugs, a series of water-soluble Pd complexes have been synthesized by interaction between [Pd (phen(H2O2(NO32] and alkylenebisdithiocarbamate(al-bis-dtc disodium salts. This study was undertaken to examine the possible cytotoxic effect of three novel complexes (0.125–64 µg/mL on human gastric carcinoma (AGS, esophageal squamous cell carcinoma (Kyse-30, and hepatocellular carcinoma (HepG2 cell lines. The cytotoxicity was examined using cell proliferation and acridine orange/ethidium bromide (AO/EB assay. In order to examine the effects of new Pd(II complexes on cell cycle status, we performed cell cycle analysis. The complexes were found to have completely lethal effects on the cell lines, and the half maximal inhibitory concentration (IC50 values obtained for the cell lines were much lower in comparison with cisplatin. We demonstrated that the three new Pd(II complexes are able to induce G2/M phase arrest in AGS and HepG2; in addition, the Pd(II complexes caused an S phase arrest in Kyse-30 cell line. Our results indicate that newly synthesized Pd(II complexes may provide a novel class of chemopreventive compounds for anticancer therapy.

  12. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Chen, Zhuo Angel; Jawhari, Anass; Fischer, Lutz;

    2010-01-01

    Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to ex...

  13. The GIT–PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells

    OpenAIRE

    Gavina, Manuela; Za, Lorena; Molteni, Raffaella; Pardi, Ruggero; Curtis, Ivan de

    2010-01-01

    Background information. Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. The GIT–PIX protein complexes are involved in the regulation of cell motility and adhesion and in the endocytic traffic of members of the family of G-protein-coupled receptors. We have investigated the function of the endogenous GIT complexes in the regulation of cell motility stimulated by fMLP (formyl-Met-Leu-Phe) peptide, in a rat basophilic leukaemia RBL-...

  14. Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolyte

    OpenAIRE

    Miettunen, Kati; Jouttijärvi, Sami; Jiang, Roger; Saukkonen, Tapio; Romu, Jyrki; Halme, Janne; Lund, Peter

    2014-01-01

    Cheap ferritic stainless steel is applied here as the counter electrode substrate in dye sensitized solar cells with cobalt complex electrolyte. A 5.0% efficiency was reached with these type of cells which is more than 2.5 times higher compared to previously reported devices with metal counter electrode and cobalt complex electrolyte. The electrochemical impedance spectra analysis showed that the best cells with the ferritic steel counter electrode had as low charge transfer resistance (3.6 Ω...

  15. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.

    Science.gov (United States)

    Jiang, Suhua; Zou, Zhengzhi; Nie, Peipei; Wen, Ruiling; Xiao, Yingying; Tang, Jun

    2015-01-01

    Cancer metabolism has greatly interested researchers. Mammalian target of rapamycin (mTOR) is dysregulated in a variety of cancers and considered to be an appealing therapeutic target. It has been proven that growth factor signal, mediated by mTOR complex 1 (mTORC1), drives cancer metabolism by regulating key enzymes in metabolic pathways. However, the role of mTORC2 in cancer metabolism has not been thoroughly investigated. In this study, by employing automated spectrophotometry, we found the level of glucose uptake was decreased in non-small-cell lung carcinoma (NSCLC) A549, PC-9 and SK-MES-1 cells treated with rapamycin or siRNA against Raptor, indicating that the inhibition of mTORC1 attenuated glycolytic metabolism in NSCLC cells. Moreover, the inhibition of AKT reduced glucose uptake in the cells as well, suggesting the involvement of AKT pathway in mTORC1 mediated glycolytic metabolism. Furthermore, our results showed a significant decrease in glucose uptake in rictor down-regulated NSCLC cells, implying a critical role of mTORC2 in NSCLC cell glycolysis. In addition, the experiments for MTT, ATP, and clonogenic assays demonstrated a reduction in cell proliferation, cell viability, and colony forming ability in mTOR inhibiting NSCLC cells. Interestingly, the combined application of mTORC1/2 inhibitors and glycolysis inhibitor not only suppressed the cell proliferation and colony formation, but also induced cell apoptosis, and such an effect of the combined application was stronger than that caused by mTORC1/2 inhibitors alone. In conclusion, this study reports a novel effect of mTORC2 on NSCLC cell metabolism, and reveals the synergistic effects between mTOR complex 1/2 and glycolysis inhibitors, suggesting that the combined application of mTORC1/2 and glycolysis inhibitors may be a new promising approach to treat NSCLC.

  16. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Suhua Jiang

    Full Text Available Cancer metabolism has greatly interested researchers. Mammalian target of rapamycin (mTOR is dysregulated in a variety of cancers and considered to be an appealing therapeutic target. It has been proven that growth factor signal, mediated by mTOR complex 1 (mTORC1, drives cancer metabolism by regulating key enzymes in metabolic pathways. However, the role of mTORC2 in cancer metabolism has not been thoroughly investigated. In this study, by employing automated spectrophotometry, we found the level of glucose uptake was decreased in non-small-cell lung carcinoma (NSCLC A549, PC-9 and SK-MES-1 cells treated with rapamycin or siRNA against Raptor, indicating that the inhibition of mTORC1 attenuated glycolytic metabolism in NSCLC cells. Moreover, the inhibition of AKT reduced glucose uptake in the cells as well, suggesting the involvement of AKT pathway in mTORC1 mediated glycolytic metabolism. Furthermore, our results showed a significant decrease in glucose uptake in rictor down-regulated NSCLC cells, implying a critical role of mTORC2 in NSCLC cell glycolysis. In addition, the experiments for MTT, ATP, and clonogenic assays demonstrated a reduction in cell proliferation, cell viability, and colony forming ability in mTOR inhibiting NSCLC cells. Interestingly, the combined application of mTORC1/2 inhibitors and glycolysis inhibitor not only suppressed the cell proliferation and colony formation, but also induced cell apoptosis, and such an effect of the combined application was stronger than that caused by mTORC1/2 inhibitors alone. In conclusion, this study reports a novel effect of mTORC2 on NSCLC cell metabolism, and reveals the synergistic effects between mTOR complex 1/2 and glycolysis inhibitors, suggesting that the combined application of mTORC1/2 and glycolysis inhibitors may be a new promising approach to treat NSCLC.

  17. Runx-CBFβ complexes control Foxp3 expression in regulatory T cells

    OpenAIRE

    Rudra, Dipayan; Egawa, Takeshi; Chong, Mark M.W.; Treuting, Piper; Dan R. Littman; Rudensky, Alexander Y.

    2009-01-01

    Foxp3 plays an indispensable role in establishing stable transcriptional and functional programs of regulatory T (Treg) cells. Loss of Foxp3 expression in mature Treg cells results in a failure of suppressor function, yet the molecular mechanisms ensuring steady heritable Foxp3 expression in the Treg cell lineage remain unknown. Using Treg cell-specific gene targeting we found that Runx-CBFβ complexes were required for maintenance of Foxp3 mRNA and protein expression in Treg cells. Consequent...

  18. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  19. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Directory of Open Access Journals (Sweden)

    Shufeng Liu

    Full Text Available Hepatitis C virus (HCV poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP, UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1 and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection.

  20. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Science.gov (United States)

    Liu, Shufeng; Zhao, Ting; Song, BenBen; Zhou, Jianhua; Wang, Tony T

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  1. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks

    Science.gov (United States)

    Michaelides, Michael; Anderson, Sarah Ann R.; Ananth, Mala; Smirnov, Denis; Thanos, Panayotis K.; Neumaier, John F.; Wang, Gene-Jack; Volkow, Nora D.; Hurd, Yasmin L.

    2013-01-01

    The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with μPET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach. PMID:24231358

  2. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.

    Science.gov (United States)

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E

    2016-03-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions. PMID:26883038

  3. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    Science.gov (United States)

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  4. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations.

    Directory of Open Access Journals (Sweden)

    Kirsi Kujala

    Full Text Available BACKGROUND: Induced pluripotent stem cells (iPSC provide means to study the pathophysiology of genetic disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT is a malignant inherited ion channel disorder predominantly caused by mutations in the cardiac ryanodine receptor (RyR2. In this study the cellular characteristics of CPVT are investigated and whether the electrophysiological features of this mutation can be mimicked using iPSC -derived cardiomyocytes (CM. METHODOLOGY/PRINCIPAL FINDINGS: Spontaneously beating CMs were differentiated from iPSCs derived from a CPVT patient carrying a P2328S mutation in RyR2 and from two healthy controls. Calcium (Ca(2+ cycling and electrophysiological properties were studied by Ca(2+ imaging and patch-clamp techniques. Monophasic action potential (MAP recordings and 24h-ECGs of CPVT-P2328S patients were analyzed for the presence of afterdepolarizations. We found defects in Ca(2+ cycling and electrophysiology in CPVT CMs, reflecting the cardiac phenotype observed in the patients. Catecholaminergic stress led to abnormal Ca(2+ signaling and induced arrhythmias in CPVT CMs. CPVT CMs also displayed reduced sarcoplasmic reticulum (SR Ca(2+ content, indicating leakage of Ca(2+ from the SR. Patch-clamp recordings of CPVT CMs revealed both delayed afterdepolarizations (DADs during spontaneous beating and in response to adrenaline and also early afterdepolarizations (EADs during spontaneous beating, recapitulating the changes seen in MAP and 24h-ECG recordings of patients carrying the same mutation. CONCLUSIONS/SIGNIFICANCE: This cell model shows aberrant Ca(2+ cycling characteristic of CPVT and in addition to DADs it displays EADs. This cell model for CPVT provides a platform to study basic pathology, to screen drugs, and to optimize drug therapy.

  5. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  6. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  7. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    Science.gov (United States)

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  8. Historical and Contemporary Geographic Data Reveal Complex Spatial and Temporal Responses of Vegetation to Climate and Land Stewardship

    OpenAIRE

    Miguel L. Villarreal; Laura M. Norman; Webb, Robert H.; Raymond M. Turner

    2013-01-01

    Vegetation and land-cover changes are not always directional but follow complex trajectories over space and time, driven by changing anthropogenic and abiotic conditions. We present a multi-observational approach to land-change analysis that addresses the complex geographic and temporal variability of vegetation changes related to climate and land use. Using land-ownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th cen...

  9. Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex

    Directory of Open Access Journals (Sweden)

    Fuchs Pinhas

    2009-09-01

    Full Text Available Abstract Background Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes. This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. Results We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within" or by infection with a high amount of virus particles per cell (fusion "from without". Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Conclusion Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.

  10. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  11. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells.

    Science.gov (United States)

    Ibl, Verena; Stoger, Eva

    2014-01-01

    The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  12. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits.

    Science.gov (United States)

    Bornschein, Russell E; Ruotolo, Brandon T

    2015-10-21

    Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein. Ion mobility-mass spectrometry offers a solution to many of these challenges, but relies upon gas-phase measurements of intact multiprotein complexes, subcomplexes, and subunits that correlate well with solution structures. The greatest bottleneck in such workflows is the generation of representative subcomplexes and subunits. Collisional activation of complexes can act to produce product ions reflective of protein complex composition, but such product ions are typically challenging to interpret in terms of their relationship to solution structure due to their typically string-like conformations following activation and subsequent dissociation. Here, we used ion-ion chemistry to perform a broad survey of the gas-phase dissociation of charge-reduced protein complex ions, revealing general trends associated with the collisional ejection of compact, rather than unfolded, protein subunits. Furthermore, we also discover peptide and co-factor dissociation channels that dominate the product ion populations generated for such charge reduced complexes. We assess both sets of observations and discuss general principles that can be extended to the analysis of protein complex ions having unknown structures.

  13. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications

    Science.gov (United States)

    Konoplyannikov, A. G.; Alekseenskiy, A. E.; Zlotin, S. G.; Smirnov, B. B.; Kalsina, S. Sh.; Lepehina, L. A.; Semenkova, I. V.; Agaeva, E. V.; Baboyan, S. B.; Rjumshina, E. A.; Nosachenko, V. V.; Konoplyannikov, M. A.

    2015-09-01

    Combined use of complexes of the most active chemotherapeutic drugs and detonation nanodiamonds (DND) is a new trend in cancer therapy, which is probably related to selective chemotherapeutic drug delivery by DND to the zone of so-called cancer stem cells (CSC). Stable DND complexes of 4-5 nm size with salinomycin—a strong CSC inhibitor—have been obtained (as a suspension). It has been demonstrated that a complex administration considerably increases the drug antitumor effect on the transplantable tumor of LLC mice. A similar effect has been observed in CSC models in vivo, obtained by exposure of stem cells of normal mice tissues to a carcinogen 1,2-dimethylhydrazine. It has also been found out, that administration of DND complexes with the conditioned medium from mesenchymal stem cells (MSC) cultures to mice results in a considerable stimulation of stem cell pools in normal mice tissues, which can be used in regenerative medicine.

  14. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster.

    Science.gov (United States)

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-07-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390

  15. Poly(vinyl alcohol)–LiBOB complexes for lithium–air cells

    International Nuclear Information System (INIS)

    Highlights: • Mobility and diffusivity can control conductivity even if charge carriers increase. • PVA–LiBOB electrolytes can produce high conductivity in wide temperature range. • Suitable packaging of Li–air cell can reduce moisture interaction with Li metal. -- Abstract: Poly(vinyl alcohol) or PVA complexes with lithium bis(oxalato)borate or LiBOB have been prepared by solution casting. X-ray diffraction reveals that the amorphousness of the polymer increased until 40 wt.% LiBOB salt concentration. The increase in amorphousness is accompanied by a decrease in the glass transition temperature, Tg. The diffusion coefficient of lithium ion obtained from cyclic voltammetry (CV) is 1.98 × 10−8 cm2 s−1. From infrared and impedance spectroscopic studies, it is inferred that conductivity is governed by charge carrier density, ionic mobility and diffusion coefficient for PVA incorporated with 10–40 wt.% LiBOB. However, for the sample with equal weight ratio of PVA and LiBOB, ionic mobility and diffusivity have a greater influence over charge carrier density in determining conductivity at room temperature (RT). PVA can solvate a large amount of salt and for the highest conducting composition of 60 wt.% PVA–40 wt.% LiBOB, conductivity extends from 10−4 S cm−1 at RT (25 °C) to 10−3 S cm−1 at 100 °C. This sample was tested as an electrolyte in a Li–air cell

  16. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2.

    Science.gov (United States)

    Kinkel, Sarah A; Galeev, Roman; Flensburg, Christoffer; Keniry, Andrew; Breslin, Kelsey; Gilan, Omer; Lee, Stanley; Liu, Joy; Chen, Kelan; Gearing, Linden J; Moore, Darcy L; Alexander, Warren S; Dawson, Mark; Majewski, Ian J; Oshlack, Alicia; Larsson, Jonas; Blewitt, Marnie E

    2015-03-19

    Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. PMID:25645357

  17. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2

    Science.gov (United States)

    Kinkel, Sarah A.; Galeev, Roman; Flensburg, Christoffer; Keniry, Andrew; Breslin, Kelsey; Gilan, Omer; Lee, Stanley; Liu, Joy; Chen, Kelan; Gearing, Linden J.; Moore, Darcy L.; Alexander, Warren S.; Dawson, Mark; Majewski, Ian J.; Oshlack, Alicia; Larsson, Jonas

    2015-01-01

    Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA–mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. PMID:25645357

  18. Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the Immune System

    Directory of Open Access Journals (Sweden)

    Ilse Van Brussel

    2012-01-01

    Full Text Available Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.

  19. Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, V.; Spector, S; Loll, P

    2009-01-01

    Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between