WorldWideScience

Sample records for cells require phospholipase

  1. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells.

    Science.gov (United States)

    Vitale, Nicolas

    2010-02-01

    Exocytosis of hormones occurs through the fusion of large dense-core secretory vesicles with the plasma membrane. This highly regulated process involves key proteins such as SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and also specific lipids at the site of membrane fusion. Among the different lipids required for exocytosis, our recent observations have highlighted the crucial role of PA (phosphatidic acid) in the late stages of membrane fusion in various exocytotic events. An RNAi (RNA interference) strategy coupled with the detection of PA in living cells has pointed to plasma membrane-associated PLD1 (phospholipase D(1)) as the main producer of PA in response to secretagogue stimulation. We have identified several GTPases which regulate the activation level of PLD(1) in neuroendocrine cells. Finally, RSK2 (ribosomal S6 kinase 2) appears to phosphorylate and regulate the activity of PLD(1) in a calcium-dependent manner. Altogether our results have unravelled a complex set of regulatory pathways controlling the synthesis of fusogenic lipids at the secretory granule fusion site by PLD(1). PMID:20074053

  2. Ectopic Expression of Arabidopsis Phospholipase A Genes Elucidates Role of Phospholipase Bs in S. cerevisiae Cells

    OpenAIRE

    Zhang, Meng; Zhang, Yan; Giblin, E Michael; Taylor, David C.

    2009-01-01

    In S. cerevisiae neither disruption of the phospholipase B triple knockout mutant (plb1plb2plb3; plb123) nor over-expression of phospholipase Bs (PLBs) result in a phenotype different from wild type. In performing experiments to characterize candidate plant phospholipase (PLA) genes, we found, surprisingly, that ectopic expression of either of two different A. thaliana PLA2 or PLA1 genes in the yeast plb123 mutant completely inhibited cell growth. We proposed that while PLBs might not be esse...

  3. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    International Nuclear Information System (INIS)

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with [3H]arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity

  4. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    Science.gov (United States)

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-01

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  5. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding

    Directory of Open Access Journals (Sweden)

    Martín Rubén

    2012-07-01

    Full Text Available Abstract Background Activation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer’s disease (AD and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA, an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells. Methods Primary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events. Results The direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478, a matrix metalloproteinase

  6. Phorbol ester and vasopressin activate phospholipase D in Leydig cells

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1991-01-01

    In the present study evidence is provided for the existence of phospholipase D (PLD) activity in rat Leydig cells. Leydig cells were cultured and labelled with [H]myristic acid. In the presence of ethanol, phorbol 12-myristate 13-acetate (PMA) stimulated the formation of [H]phosphatidylethanol ([...... support the notion that activation of PLD by PMA is dependent on PKC. Arginine vasopressin (AVP) caused a rapid stimulation of PLD activity in the cells. This activation was inhibited after downregulation of PKC, indicating that the agonist acts by a mechanism similar to that of PMA....

  7. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Krasilnikova Oksana A

    2001-04-01

    Full Text Available Abstract Background Numerous investigations demonstrate a novel role of thyroid hormone as a modulator of signal transduction. Protein kinase C (PKC is critical to the mechanism by which thyroid hormones potentiate both the antiviral and immunomodulatory actions of IFNγ in different cells and regulate the exchange of signalling phospholipids in hepatocytes. Because nothing is known about accumulation of PKC modulator - diacylglycerol in cells treated with T4, we examined the nongenomic effect of thyroid hormones on DAG formation and phospholipase activation in liver cells. Results The results obtained provide the first demonstration of phospholipase C, phospholipase D and protein kinase C nongenomic activation and diacylglycerol (DAG accumulation by L-T4 in liver cells. The experiments were performed in either the [14C]CH3COOH-labeled rat liver slices or isolated hepatocytes pre-labeled by [14C]oleic acid. L-T4 activates the DAG production in a concentration- and time-dependent manner. DAG formation in stimulated cells is biphasic and short-lived event: there is an initial, rapid rise in DAG concentration and then a slower accumulation that can be sustained for a few minutes. The early phase of L-T4 generated DAG only is accompanied by phosphatidylinositol 4,5-bisphosphate level decrease and inositol 1,4,5-trisphosphate formation while the second phase is abolished by PKC inhibitor l,(5-isoquinolinesulphonyl2methylpiperasine dihydrochloride (H7 and propranolol. The second phase of DAG production is accompanied by free choline release, phosphatidylcholine content drop and phosphatidylethanol (Peth formation. Inhibitor of phospholipase-C-dependent phosphoinositide hydrolysis, neomycin sulfate, reduced the Peth as well as the DAG response to L-T4. Conclusions The present data have indicated the DAG signaling in thyroid hormone-stimulated liver cells. L-thyroxine activates a dual phospholipase pathway in a sequential and synchronized manner

  8. Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation

    DEFF Research Database (Denmark)

    Varela, Diego; Simon, Felipe; Olivero, Pablo;

    2007-01-01

    Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel act...

  9. Cell Swelling Activates Phospholipase A2 in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Thoroed, S.M.; Lauritzen, L.; Lambert, I.H.;

    1997-01-01

    Ehrlich ascites tumor cells! loaded with H-labeled arachidonic acid and C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo......-osmotic exposure the rate of H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A is activated by cell swelling in the Ehrlich...... cells. Within the same time frame there is no swelling-induced increase in C-labeled stearic acid release nor in the synthesis of phosphatidyl C-butanol in the presence of C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of C...

  10. Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom.

    Science.gov (United States)

    Wille, Ana Carolina Martins; Chaves-Moreira, Daniele; Trevisan-Silva, Dilza; Magnoni, Mariana Gabriel; Boia-Ferreira, Marianna; Gremski, Luiza Helena; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2013-06-01

    The mechanism through which brown spiders (Loxosceles genus) cause dermonecrosis, dysregulated inflammatory responses, hemolysis and platelet aggregation, which are effects reported following spider bites, is currently attributed to the presence of phospholipase-D in the venom. In the present investigation, through two-dimensional immunoblotting, we observed immunological cross-reactivity for at least 25 spots in crude Loxosceles intermedia venom, indicating high expression levels for different isoforms of phospholipase-D. Using a recombinant phospholipase-D from the venom gland of L. intermedia (LiRecDT1) in phospholipid-degrading kinetic experiments, we determined that this phospholipase-D mainly hydrolyzes synthetic sphingomyelin in a time-dependent manner, generating ceramide 1-phosphate plus choline, as well as lysophosphatidylcholine, generating lysophosphatidic acid plus choline, but exhibits little activity against phosphatidylcholine. Through immunofluorescence assays with antibodies against LiRecDT1 and using a recombinant GFP-LiRecDT1 fusion protein, we observed direct binding of LiRecDT1 to the membrane of B16-F10 cells. We determined that LiRecDT1 hydrolyzes phospholipids in detergent extracts and from ghosts of B16-F10 cells, generating choline, indicating that the enzyme can access and modulate and has activity against membrane phospholipids. Additionally, using Fluo-4, a calcium-sensitive fluorophore, it was shown that treatment of cells with phospholipase-D induced an increase in the calcium concentration in the cytoplasm, but without altering viability or causing damage to cells. Finally, based on the known endogenous activity of phospholipase-D as an inducer of cell proliferation and the fact that LiRecDT1 binds to the cell surface, hydrolyzing phospholipids to generate bioactive lipids, we employed LiRecDT1 as an exogenous source of phospholipase-D in B16-F10 cells. Treatment of the cells was effective in increasing their proliferation in a

  11. InlB-mediated Listeria monocytogenes internalization requires a balanced phospholipase D activity maintained through phospho-cofilin

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Ji, Lei; Zhen, Dongyu; Tao, Sha; Li, Shuai; Sun, Yansong; Huang, Liuyu; Feng, Zhe; Li, Xianping; Han, Gaige; Schmidt, Martina; Han, Li

    2011-01-01

    Internalization of Listeria monocytogenes into non-phagocytic cells is tightly controlled by host cell actin dynamics and cell membrane alterations. However, knowledge about the impact of phosphatidylcholine cleavage driven by host cell phospholipase D (PLD) on Listeria internalization into epitheli

  12. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  13. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  14. Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in the Expression of Scramblase

    OpenAIRE

    Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Allan M. Judd; Bell, John D.

    2012-01-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells ...

  15. Phospholipase D activation correlates with microtubule reorganization in living plant cells

    NARCIS (Netherlands)

    P.B. Dhonukshe; A.M. Laxalt; J. Goedhart; Th.W.J. Gadella; T. Munnik

    2003-01-01

    A phospholipase D (PLD) was shown recently to decorate microtubules in plant cells. Therefore, we used tobacco BY-2 cells expressing the microtubule reporter GFP-MAP4 to test whether PLD activation affects the organization of plant microtubules. Within 30 min of adding n-butanol, a potent activator

  16. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells

    DEFF Research Database (Denmark)

    Nyegaard, Steffen; Novakovic, Valerie A.; Rasmussen, Jan Trige;

    2013-01-01

    Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quies......% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2...

  17. Molecular and genetics approaches for investigation of phospholipase D role in plant cells

    Directory of Open Access Journals (Sweden)

    Volotovsky I. D.

    2010-04-01

    Full Text Available The review is devoted to the analysis of publications ñoncerning the role of phospholipase D (PLD in regulation of metabolism in plant cells. Analysis of molecular and genetic studies suggest that PLD is an important component of various hormonal and stress signaling pathways

  18. Regulation of cytosolic Phospholipase A2 activity plays a central role in cell responses

    NARCIS (Netherlands)

    Rossum, Gerarda Sophia Agnes Theodora van

    2002-01-01

    Phospholipases A2 are enzymes that hydrolyse fatty acids from the sn-2 position of phospholipids, resulting in the release of free fatty acids and lysophospholipids. The sn-2 position of phospholipids in mammalian cells is enriched with arachidonic acid, which is a substrate for cyclooxygenases, lip

  19. The SH3 domain, but not the catalytic domain, is required for phospholipase C-γ1 to mediate epidermal growth factor-induced mitogenesis

    OpenAIRE

    Xie, Zhongjian; Chen, Ying; Pennypacker, Sally D.; Zhou, Zhiguang; PENG, DAN

    2010-01-01

    Phospholipase C-γ1 (PLC-γ1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-γ1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-γ1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-γ1 possesses mitogenic activity. In the pres...

  20. Parathyroid Hormone Stimulates Phosphatidylethanolamine Hydrolysis by Phospholipase D in Osteoblastic Cells

    OpenAIRE

    Singh, Amareshwar T.K.; Frohman, Michael A.; Stern, Paula H.

    2005-01-01

    Parathyroid hormone (PTH) and phorbol-12,13-dibutyrate (PDBu) stimulate phospholipase D (PLD) activity and phosphatidylcholine (PC) hydrolysis in UMR-106 osteoblastic cells [1]. The current studies were designed to determine whether ethanolamine-containing phospholipids, and specifically phosphatidylethanolamine (PE), could also be substrates. In cells labeled with 14C-ethanolamine PTH and PDBu treatment decreased 14C-phosphatidylethanolamine. In cells co-labeled with 3H-choline and 14C-ethan...

  1. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth.

    Science.gov (United States)

    Potocký, Martin; Eliás, Marek; Profotová, Bronislava; Novotná, Zuzana; Valentová, Olga; Zárský, Viktor

    2003-05-01

    Phospholipase D (PLD) and its product phosphatidic acid (PA) are involved in a number of signalling pathways regulating cell proliferation, membrane vesicle trafficking and defence responses in eukaryotic cells. Here we report that PLD and PA have a role in the process of polarised plant cell expansion as represented by pollen tube growth. Both phosphatidylinositol-4,5-bisphosphate-dependent and independent PLD activities were identified in pollen tube extracts, and activity levels during pollen tube germination and growth were measured. PLD-mediated PA production in vivo can be blocked by primary alcohols, which serve as a substrate for the transphosphatidylation reaction. Both pollen germination and tube growth are stopped in the presence 0.5% 1-butanol, whereas secondary and tertiary isomers do not show any effect. This inhibition could be overcome by addition of exogenous PA-containing liposomes. In the absence of n-butanol, addition of a micromolar concentration of PA specifically stimulates pollen germination and tube elongation. Furthermore, a recently established link between PLD and microtubule dynamics was supported by taxol-mediated partial rescue of the 1-butanol-inhibited pollen tubes. The potential signalling role for PLD-derived PA in plant cell expansion is discussed.

  2. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    OpenAIRE

    Rebai Tarek; Bezzine Sofiane; Misery Laurent; Karray Aida; Boulais Nicholas; Zarai Zied; Gargouri Youssef; Mejdoub Hafedh

    2011-01-01

    Abstract Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used...

  3. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells

    OpenAIRE

    Liu, Y; Fanburg, B L

    2008-01-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [3H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpressio...

  4. Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures

    NARCIS (Netherlands)

    Iakimova, E.T.; Michaeli, R.; Woltering, E.J.

    2013-01-01

    Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, th

  5. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  6. Phospholipase C-gamma 1 association with CD3 structure in T cells

    OpenAIRE

    1992-01-01

    Recently, we and others have reported tyrosine phosphorylation of phospholipase C-gamma 1 (PLC gamma 1) enzyme after CD3 activation of T cells, and have proposed that PLC gamma 1 mediates signal transduction through the T cell receptor (TCR/CD3). Here, using immunoblotting and immune complex PLC assays, we show that CD3 stimulation of Jurkat cells induces the association of PLC gamma 1 enzyme with CD3 complex. PLC activity is also found to co-precipitate with the CD3 zeta chain from activated...

  7. Calcium-independent phospholipase A₂, group VIA, is critical for RPE cell survival

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vohra, Rupali; Westlund, Barbro S.;

    2014-01-01

    PURPOSE: To investigate the significance of calcium-independent phospholipase A₂, group VIA (iPLA2-VIA), in RPE cell survival following responses to sodium iodate (SI) in cell cultures. METHODS: The human retinal pigment epithelium (RPE) cell line (ARPE-19) cells and primary mouse-RPE cultures were...... treated with SI to induce cell death. Cells were transfected with an iPLA₂-VIA promoter-luciferase construct to evaluate the regulation of iPLA-VIA after exposure to SI. PCR analysis, western blot analysis, and activity assays were performed to evaluate the mRNA level, protein level, and activity levels...... of iPLA₂-VIA after SI exposure. Inhibitors of iPLA₂-VIA were used to explore a potential protective role in cells exposed to SI. Primary RPE cell cultures were grown from iPLA₂-VIA knockout mice and wild-type mice. The cultures were exposed to SI to investigate a possible increased protection against...

  8. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (GM1), di-sialoganglioside (GD1a) and tri-sialoganglioside (GT1b). In contrast, honeybee venom-derived phospholipase A2 induced the net degranulation directly without cytotoxicity, which was not inhibited by GM1, GD1a and GT1b. For analysis of distribution of Gαq and Gαi protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gαq and Gαi at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A2-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A2-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  9. Role of Phospholipase C-L2, a Novel Phospholipase C-Like Protein That Lacks Lipase Activity, in B-Cell Receptor Signaling

    OpenAIRE

    Takenaka, Kei; Fukami, Kiyoko; Otsuki, Makiko; Nakamura, Yoshikazu; Kataoka, Yuki; Wada, Mika; Tsuji, Kohichiro; Nishikawa, Shin-ichi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-01-01

    Phospholipase C (PLC) plays important roles in phosphoinositide turnover by regulating the calcium-protein kinase C signaling pathway. PLC-L2 is a novel PLC-like protein which lacks PLC activity, although it is very homologous with PLC δ. PLC-L2 is expressed in hematopoietic cells, but its physiological roles and intracellular functions in the immune system have not yet been clarified. To elucidate the physiological function of PLC-L2, we generated mice which had a genetic PLC-L2 deficiency. ...

  10. Listeria monocytogenes listeriolysin O and phosphatidylinositol-specific phospholipase C affect adherence to epithelial cells.

    Science.gov (United States)

    Krawczyk-Balska, Agata; Bielecki, Jacek

    2005-09-01

    Listeria monocytogenes, a foodborn intracellular animal and human pathogen, produces several exotoxins contributing to virulence. Among these are listeriolysin O (LLO), a pore-forming cholesterol-dependent hemolysin, and a phosphatidylinositol-specific phospholipase C (PI-PLC). LLO is known to play an important role in the escape of bacteria from the primary phagocytic vacuole of macrophages, and PI-PLC supports this process. Evidence is accumulating that LLO and PI-PLC are multifunctional virulence factors with many important roles in the host-parasite interaction other than phagosomal membrane disruption. LLO and PI-PLC may induce a number of host cell responses by modulating signal transduction of infected cells via intracellular Ca2+ levels and the metabolism of phospholipids. This would result in the activation of host phospholipase C and protein kinase C. In the present study, using Bacillus sub tilis strains expressing LLO, PI-PLC, and simultaneously LLO and PI-PLC, we show that LLO and PI-PLC enhance bacterial binding to epithelial cells Int407, with LLO being necessary and PI-PLC playing an accessory role. The results of this work suggest that these two listerial proteins act on epithelial cells prior to internalization. PMID:16391652

  11. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  12. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts.

  13. Role of the Phospholipase A2 Receptor in Liposome Drug Delivery in Prostate Cancer Cells

    Science.gov (United States)

    2015-01-01

    The M-type phospholipase A2 receptor (PLA2R1) is a member of the C-type lectin superfamily and can internalize secreted phospholipase A2 (sPLA2) via endocytosis in non-cancer cells. sPLA2 itself was recently shown to be overexpressed in prostate tumors and to be a possible mediator of metastasis; however, little is known about the expression of PLA2R1 or its function in prostate cancers. Thus, we examined PLA2R1 expression in primary prostate cells (PCS-440-010) and human prostate cancer cells (LNCaP, DU-145, and PC-3), and we determined the effect of PLA2R1 knockdown on cytotoxicity induced by free or liposome-encapsulated chemotherapeutics. Immunoblot analysis demonstrated that the expression of PLA2R1 was higher in prostate cancer cells compared to that in primary prostate cells. Knockdown of PLA2R1 expression in PC-3 cells using shRNA increased cell proliferation and did not affect the toxicity of cisplatin, doxorubicin (Dox), and docetaxel. In contrast, PLA2R1 knockdown increased the in vitro toxicity of Dox encapsulated in sPLA2 responsive liposomes (SPRL) and correlated with increased Dox and SPRL uptake. Knockdown of PLA2R1 also increased the expression of Group IIA and X sPLA2. These data show the novel findings that PLA2R1 is expressed in prostate cancer cells, that PLA2R1 expression alters cell proliferation, and that PLA2R1 modulates the behavior of liposome-based nanoparticles. Furthermore, these studies suggest that PLA2R1 may represent a novel molecular target for controlling tumor growth or modulating delivery of lipid-based nanomedicines. PMID:25189995

  14. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    Science.gov (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  15. Changes of phospholipase D activity of rat peritoneal mast cells in degranulation

    Institute of Scientific and Technical Information of China (English)

    Yun-biLU; MingWU; Han-liangZHOU

    2004-01-01

    AIM: To study the changes of phospholipase D (PLD) activity of actively sensitized rat peritoneal mast cells(RPMC) in degranulation. METHODS: Degranulation of RPMC was determined by measurement of β-hexosaminidase release. PLD activity assay was carried out by measurement of PLD product, choline, with chemiluminescent oxidation of luminol. RESULTS: Actively sensitized RPMC challenged with ovalbumin (0.5-8 mg/L for 120 s, 4mg/L for 15-120 s) resulted in significant activation of PLD accompanied with the increment of β-hexosaminidase release. PLD activity of sensitized RPMC was increased by more than 2-fold compared with that of unsensitized RPMC which contained low levels of PLD activity [(35+ 13) pmol choline/min in 1 × 106 cells], but β-hexosaminidase releases of the sensitized cells were as low as spontaneous releases. After challenge with ovalbumin 4 mg/L for 120 s, PLD activity of sensitized RPMC was increased to (155±43) pmol choline/min in 1×106 cells and β-hexosaminidase release was also elevated significantly (4.5-fold of spontaneous release, n=6, P<0.05). When unsensitized RPMC were stimulated with antigen, PLD activity and β-hexosaminidase release of the cells were hardly changed.Sensitized RPMC were treated with 1% 1-butanol or 2,3- disphosphoglycerate 10 mmol/L before challenge with ovalbumin, these drugs induced an inhibition of PLD activity and a reduction of β-hexosaminidase release to basal level. 1-Butanol 0.1% also worked. CONCLUSION: Phospholipase D plays an important role in the regulation of β-hexosaminidase release in actively sensitized rat peritoneal mast cells.

  16. Differential phospholipid-labeling suggests two subtypes of phospholipase D in rat Leydig cells

    DEFF Research Database (Denmark)

    Lauritzen, L.; Hansen, Harald S.

    1995-01-01

    The aim of the present study was to compare the transphosphatidylation activity of phospholipase D (PLD) under different substrate labeling conditions, in order to investigate whether PLD in rat Leydig cells exhibited any substrate preferences for the alkyl- or acyl-form of phosphatidylcholine (Ptd......Cho). The [H] phosphatidylethanol formation in response to 4ß-phorbol 12-myristate 13-acetate (PMA), sphingosine, or Ca-ionophore A23187, was lower when Leydig cells were labeled with 1-O-[H]alkyl lysoPtdCho compared with the responses when [H]myristic acid was employed. In contrast, the results...... for the receptor agonists (vasopressin, bradykinin, and lysophosphatidic acid), using the two labels, showed mole consistency. Thus, the PLD-activity induced by PMA, sphingosine, or A23187 has a more selective substrate range (i.e. mainly acyl-linked PtdCho) than the PLD-activity stimulated via a receptor. Our...

  17. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell

    International Nuclear Information System (INIS)

    Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A2 acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable there to interact with them. Using laser scanning confocal microscopy we show here that Alexa-labelled ammodytoxin entered the cytoplasm of the rat hippocampal neuron and subsequently also its nucleus. The transport of proteins into the nucleus proceeds via the cytosol of a cell, therefore, ammodytoxin passed the cytosol of the neuron on its way to the nucleus. Although it is not yet clear how ammodytoxin is translocated into the cytosol of the neuron, our results demonstrate that its stability in the cytosol is not in question, providing the evidence that the toxin can act in this cellular compartment

  18. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Science.gov (United States)

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725

  19. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  20. Increased phospholipase a activity and formation of communicative contacts between Acanthamoeba castellanii cells

    NARCIS (Netherlands)

    Hax, W.M.A.; Demel, R.A.; Spies, F.; Vossenberg, J.B.J.; Linnemans, W.A.M.

    1974-01-01

    1. 1. Exogenous 1-palmitoyl-sn-glycero-3-phosphorylcholine becomes incorporated into the membrane of A. castellanii within 2 min of incubation. 2. 2. Homogenates of A. castellanii are shown to contain phospholipase A activity. 3. 3. The phospholipase A activity is dependent on the population density

  1. Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, B A; Muñoz-Sánchez, J A; Vázquez-Flota, F; Hernández-Sotomayor, S M T

    2015-05-01

    The plant response to different stress types can occur through stimulus recognition and the subsequent signal transduction through second messengers that send information to the regulation of metabolism and the expression of defense genes. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA), which has been widely used to stimulate secondary metabolite production in cell cultures. In this work, we studied the effects of SA treatment on [(32)-P]Pi phospholipid turnover and phospholipase D (PLD) activity using cultured Capsicum chinense cells. In cultured cells, the PIP2 turnover showed changes after SA treatment, while the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), did not show changes during the temporal course. SA treatment significantly increased phosphatidic acid (PA) turnover over time compared to control cells. The PA accumulation in cells treated with 1-butanol showed a decrease in messengers; at the same time, there was a 1.5-fold increase in phosphatidylbutanol. These results suggest that the participation of the PLD pathway is a source of PA production, and the activation of this mechanism may be important in the cell responses to SA treatment.

  2. Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D.

    Science.gov (United States)

    Li, Y; Shiels, A J; Maszak, G; Byron, K L

    2001-06-01

    Physiological concentrations of [Arg(8)]vasopressin (AVP; 10-500 pM) stimulate oscillations of cytosolic free Ca2+ concentration (Ca2+ spikes) in A7r5 vascular smooth muscle cells. We previously reported that this effect of AVP was blocked by a putative phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (5 microM). In the present study, the products of PLA2, arachidonic acid (AA), and lysophospholipids were found to be ineffective in stimulating Ca2+ spiking, and inhibitors of AA metabolism did not prevent AVP-stimulated Ca2+ spiking. Thin layer chromatography was used to monitor the release of AA and phosphatidic acid (PA), which are the products of PLA2 and phospholipase D (PLD), respectively. AVP (100 pM) stimulated both AA and PA formation, but only PA formation was inhibited by ONO-RS-082 (5 microM). Exogenous PLD (type VII; 2.5 U/ml) stimulated Ca2+ spiking equivalent to the effect of 100 pM AVP. AVP stimulated transphosphatidylation of 1-butanol (a PLD-catalyzed reaction) but not 2-butanol, and 1-butanol (but not 2-butanol) completely prevented AVP-stimulated Ca2+ spiking. Protein kinase C (PKC) inhibition, which completely prevents AVP-stimulated Ca2+ spiking, did not inhibit AVP-stimulated phosphatidylbutanol formation. These results suggest that AVP-stimulated Ca2+ spiking depends on activation of PLD rather than PLA2 and that PKC activation may be downstream of PLD in the signaling cascade.

  3. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1.

    OpenAIRE

    Weiss, A; Koretzky, G; Schatzman, R C; Kadlecek, T

    1991-01-01

    Stimulation of the T-cell antigen receptor (TCR), which itself is not a protein-tyrosine kinase (PTK), activates a PTK and phospholipase C (PLC). Using the human T-cell leukemic line Jurkat and normal peripheral blood lymphocytes, we demonstrate that stimulation of the TCR specifically induces the recovery of PLC activity in eluates from anti-phosphotyrosine immunoprecipitates. Stimulation of the human muscarinic receptor, subtype 1, when expressed in Jurkat activates PLC through a guanine nu...

  4. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    Directory of Open Access Journals (Sweden)

    Rebai Tarek

    2011-06-01

    Full Text Available Abstract Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2 has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+ granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.

  5. LPS—induced activation of phospholipase A2 phospholipase C and protein kinase C of murine macrophage—like cell lines (J774 and P388D1)

    Institute of Scientific and Technical Information of China (English)

    CHANGZHONGLIANG; MICHAELNOVOTNEY; 等

    1992-01-01

    A murine macrophage-like cell line J774,acquired,in response to LPS,an ability to kill tumor necrosis factor(TNF)-insensitive target P815 mastocytoma cells whereas another cell line,P388D1 did not ,LPS triggered signaling mechanisms between the two cell lines were compared with an aim to inquire about the possible nature of the above-mentioned difference,The results whowed that two cell lines respond to LPS-treatment by parallel activation of both phospholipases C and A2 (PLC and PLA2) to approximately the same extent.The maximum response of toth enzymes of J774 cells was noted within 10 min the treatment whereas that of P388D1 cells required more than 20 min,The other properties of LPS-responsive enzymes studied were similar between two cell lines,including Activation of PLC and PLA2 and PKC in macrophages by LPS. Ca2+ augmentation of enzyme activation,participation of guanine nucleotide binding(G) proteins in the initial activation preocesses,and inhibition of enzyme activation by the prior treatment of cells with choleraor pertussis toxinsetc.Moreover,LPS-triggered activation of PLC and PLA2 was found to be followed by the increase of PKC activities in both cell lines.Inspite of these similarities.J774 cells possessed both basic and acidicforms of PKC activities,while P 388 D1 cells owned only PKC of basic form,Nevertheless,the question why J774 cells but not P388D1 cells,can acquire the tumoricidal activity,aganist P815,cells following LPStreatment rematins to be answered.

  6. Immunohistochemical localization of hepatopancreatic phospholipase in gastropods mollusc, Littorina littorea and Buccinum undatum digestive cells

    Directory of Open Access Journals (Sweden)

    Zarai Zied

    2011-11-01

    Full Text Available Abstract Background Among the digestive enzymes, phospholipase A2 (PLA2 hydrolyzes the essential dietary phospholipids in marine fish and shellfish. However, we know little about the organs that produce PLA2, and the ontogeny of the PLA2-cells. Accordingly, accurate localization of PLA2 in marine snails might afford a better understanding permitting the control of the quality and composition of diets and the mode of digestion of lipid food. Results We have previously producted an antiserum reacting specifically with mSDPLA2. It labeled zymogen granules of the hepatopancreatic acinar cells and the secretory materials of certain epithelial cells in the depths of epithelial crypts in the hepatopancreas of snail. To confirm this localization a laser capture microdissection was performed targeting stained cells of hepatopancreas tissue sections. A Western blot analysis revealed a strong signal at the expected size (30 kDa, probably corresponding to the PLA2. Conclusions The present results support the presence of two hepatopancreatic intracellular and extracellular PLA2 in the prosobranchs gastropods molluscs, Littorina littorea and Buccinum undatum and bring insights on their localizations.

  7. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  8. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  9. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Science.gov (United States)

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  10. Phospholipase d activation correlates with microtubule reorganization in living plant cells.

    Science.gov (United States)

    Dhonukshe, Pankaj; Laxalt, Ana M; Goedhart, Joachim; Gadella, Theodorus W J; Munnik, Teun

    2003-11-01

    A phospholipase D (PLD) was shown recently to decorate microtubules in plant cells. Therefore, we used tobacco BY-2 cells expressing the microtubule reporter GFP-MAP4 to test whether PLD activation affects the organization of plant microtubules. Within 30 min of adding n-butanol, a potent activator of PLD, cortical microtubules were released from the plasma membrane and partially depolymerized, as visualized with four-dimensional confocal imaging. The isomers sec- and tert-butanol, which did not activate PLD, did not affect microtubule organization. The effect of treatment on PLD activation was monitored by the in vivo formation of phosphatidylbutanol, a specific reporter of PLD activity. Tobacco cells also were treated with mastoparan, xylanase, NaCl, and hypoosmotic stress as reported activators of PLD. We confirmed the reports and found that all treatments induced microtubule reorganization and PLD activation within the same time frame. PLD still was activated in microtubule-stabilized (taxol) and microtubule-depolymerized (oryzalin) situations, suggesting that PLD activation triggers microtubular reorganization and not vice versa. Exogenously applied water-soluble synthetic phosphatidic acid did not affect the microtubular cytoskeleton. Cell cycle studies revealed that n-butanol influenced not just interphase cortical microtubules but also those in the preprophase band and phragmoplast, but not those in the spindle structure. Cell growth and division were inhibited in the presence of n-butanol, whereas sec- and tert-butanol had no such effects. Using these novel insights, we propose a model for the mechanism by which PLD activation triggers microtubule reorganization in plant cells.

  11. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases

    NARCIS (Netherlands)

    Zwaal, R.F.A.; Roelofsen, B.; Comfurius, P.; Deenen, L.L.M. van

    1975-01-01

    1. 1. The action of eight purified phospholipases on intact human erythrocytes has been investigated. Four enzymes, e.g. phospholipases A2 from pancreas and Crotalus adamanteus, phospholipase C from Bacillus cereus, and phospholipase D from cabbage produce neither haemolysis nor hydrolysis of phosph

  12. Phospholipase C-gamma1 is required for subculture-induced terminal differentiation of normal human oral keratinocytes.

    Science.gov (United States)

    Oh, Ju-Eun; Kook, Joong-Ki; Park, Kyung-Hee; Lee, Gene; Seo, Byoung-Moo; Min, Byung-Moo

    2003-04-01

    Serial subculture of primary normal human oral keratinocytes (NHOKs) to the post-mitotic stage induces terminal differentiation, which is in part linked to elevated levels of phospholipase C (PLC)-gamma1. Therefore, PLC-gamma1 may be involved in the signal transduction system that leads to the calcium regulation of subculture-induced keratinocyte differentiation. To test this hypothesis, the expression of PLC-gamma1 in primary NHOKs was blocked by transfecting cells with the antisense PLC-gamma1 cDNA construct. These cells demonstrated dramatic reductions in PLC-gamma1 protein and in the differentiation markers involucrin and transglutaminase following calcium exposure and an increase (15-20%) in in vitro life span versus empty vector-transfected cells. In addition, we established the ability of antisense PLC-gamma1 to block the serial subculture-induced rise in intracellular calcium. Similar observations were made following treatment with the specific PLC inhibitor U73122. These results indicate that the terminal differentiation of NHOKs by serial subculture is associated with PLC-gamma1, which mediates calcium regulation by mobilizing intracellular calcium.

  13. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release.

    Directory of Open Access Journals (Sweden)

    Ahmad Arouri

    Full Text Available The feasibility of exploiting secretory phospholipase A2 (sPLA2 enzymes, which are overexpressed in tumors, to activate drug release from liposomes precisely at the tumor site has been demonstrated before. Although the efficacy of the developed formulations was evaluated using in vitro and in vivo models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we engineered breast cancer cells to produce both luciferase and sPLA2 enzymes, where the latter is secreted to the extracellular medium. We report on setting up a robust and reproducible bioassay for testing sPLA2-sensitive, luciferin remote-loaded liposomal formulations, using 1,2-distearoyl-sn-glycero-3-phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPC/DSPG 7:3 and DSPC/DSPG/cholesterol 4:3:3 as initial test systems. Upon their addition to the cells, the liposomes were degraded almost instantaneously by sPLA2 releasing the encapsulated luciferin, which provided readout from the luciferase-expressing cells. Cholesterol enhanced the integrity of the formulation without affecting its susceptibility to sPLA2. PEGylation of the liposomes only moderately broadened the release profile of luciferin. The provided bioassay represents a useful tool for monitoring active drug release in situ in real time as well as for testing and optimizing of sPLA2-sensitive lipid formulations. In addition, the bioassay will pave the way for future in-depth in vitro and in vivo studies.

  14. Inhibitory Effect of Chinese Propolis on Phosphatidylcholine-Specific Phospholipase C Activity in Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2011-01-01

    Full Text Available To understand the mechanisms underlying the anti-inflammatory action of Chinese propolis, we investigated its effect on the activity of phosphatidylcholine-specific phospholipase C (PC-PLC that plays critical roles in control of vascular endothelial cell (VEC function and inflammatory responses. Furthermore, p53 and reactive oxygen species (ROS levels and mitochondrial membrane potential (Δψm were investigated. Our data indicated that treatment of Chinese propolis 6.25 and 12.5 μg/ml for 12 hours increased VEC viability obviously. Exposure to Chinese propolis 6.25, 12.5, and 25 μg/ml for 6 and 12 hours significantly decreased PC-PLC activity and p53 level, and ROS levels were depressed by Chinese propolis 12.5 μg/ml and 25 μg/ml dramatically. The Δψm of VECs was not affected by Chinese propolis at low concentration but disrupted by the propolis at 25 μg/ml significantly, which indicated that Chinese propolis depressed PC-PLC activity and the levels of p53 and ROS in VECs but disrupted Δψm at a high concentration.

  15. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    Science.gov (United States)

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT. PMID:18621911

  16. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    Science.gov (United States)

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  17. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells.

    Science.gov (United States)

    Tan, Charlene Siew-Hon; Ng, Yee-Kong; Ong, Wei-Yi

    2016-08-01

    Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation. PMID:26162318

  18. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  19. Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo

    DEFF Research Database (Denmark)

    Kolko, M; Bruhn, T; Christensen, Thomas;

    1999-01-01

    The secretory phospholipases A2 (sPLA2) OS2 (10, 20 and 50 pmol) or OS1, (50 pmol) purified from taipan snake Oxyuranus scutellatus scutellatus venom, and the excitatory amino acid glutamate (Glu) (2.5 and 5.0 micromol) were injected into the right striatum of male Wistar rats. Injection of 10 an...

  20. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell*

    OpenAIRE

    Shen, Li-rong; Ding, Mei-hui; Li-wen ZHANG; Zhang, Wei-Guang; Liu, Liang; Li, Duo

    2010-01-01

    Bee venom phospholipase A2 (BvPLA2) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA2 (AccPLA2) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis...

  1. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    OpenAIRE

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    International audience mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform m...

  2. beta-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Zhen, Dongyu; Tao, Sha; Schmidt, Martina; Han, Li

    2011-01-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PL

  3. Sequential Actions of Phospholipase D and Phosphatidic Acid Phosphohydrolase 2b Generate Diglyceride in Mammalian Cells

    OpenAIRE

    Sciorra, Vicki A.; Morris, Andrew J.

    1999-01-01

    Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evi...

  4. Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis

    Indian Academy of Sciences (India)

    Madduri Srinivas; Sona Rajakumari; Yeddula Narayana; Beenu Joshi; V M Katoch; Ram Rajasekharan; Kithiganahalli N Balaji

    2008-06-01

    Mycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic, latent state and can reactivate years later if the host’s immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis. Mutations in a known phospholipase C, plcC, of M. tuberculosis attenuate its growth during the late phase of infection in mice. Hydrolysis of phospholipids by phospholipase C generates diacylglycerol, a well-known signalling molecule that participates in the activation of extracellular signal-regulated kinases (ERK) through protein kinase C leading to macrophage activation. In the present study, we show that M. tuberculosis possesses an additional cell wall-associated protein, Rv3487c, with phospholipase C activity. The recombinant Rv3487c hydrolyses the substrate phosphatidylcholine and generates diacylglycerol by removing the phosphocholine. Furthermore, Rv3487c is expressed during infection as it exhibits significant humoral immunoreactivity with sera from children with tuberculosis, but not with that from adult patients.

  5. Group IVA phospholipase A(2) deficiency prevents CCl4-induced hepatic cell death through the enhancement of autophagy.

    Science.gov (United States)

    Ishihara, Keiichi; Kanai, Shiho; Tanaka, Kikuko; Kawashita, Eri; Akiba, Satoshi

    2016-02-26

    Group IVA phospholipase A2 (IVA-PLA2), which generates arachidonate, plays a role in inflammation. IVA-PLA2-deficiency reduced hepatotoxicity and hepatocyte cell death in mice that received a single dose of carbon tetrachloride (CCl4) without any inhibitory effects on CCl4-induced lipid peroxidation. An immunoblot analysis of extracts from wild-type mouse- and IVA-PLA2 KO mouse-derived primary hepatocytes that transiently expressed microtubule-associated protein 1 light chain 3B (LC3) revealed a higher amount of LC3-II, a typical index of autophagosome formation, in IVA-PLA2-deficient cells, suggesting the enhancement of constitutive autophagy. IVA-PLA2 may promote CCl4-induced cell death through the suppression of constitutive autophagy in hepatocytes.

  6. Superantigen and HLA-DR ligation induce phospholipase-C gamma 1 activation in class II+ T cells

    DEFF Research Database (Denmark)

    Kanner, S B; Odum, Niels; Grosmaire, L;

    1992-01-01

    activated by HLA-DR ligation through antibody cross-linking or by direct enterotoxin superantigen binding. Both types of stimuli induced tyrosine phosphorylation of phosphatidylinositol-specific phospholipase C gamma 1 (PLC gamma 1) and an increase in intracellular calcium concentration; however......, superantigen-induced signaling was stronger than class II ligation alone. Antibody-mediated ligation of HLA-DR with CD3 resulted in augmented PLC gamma 1 activation and increased calcium mobilization, consistent with a mechanism of superantigen activity through a combination of class II and CD3/Ti signals...... to the PLC gamma 1 signal transduction pathway, and that coligation of HLA-DR with CD3 augments T cell signaling comparable to that induced by enterotoxin superantigen. Thus, we suggest that superantigen-induced early signaling responses in activated T cells may be due in part to class II transmembrane...

  7. Cbl Suppresses B Cell Receptor–Mediated Phospholipase C (Plc)-γ2 Activation by Regulating B Cell Linker Protein–Plc-γ2 Binding

    OpenAIRE

    Yasuda, Tomoharu; Maeda, Akito; Kurosaki, Mari; Tezuka, Tohru; Hironaka, Katsunori; Yamamoto, Tadashi; Kurosaki, Tomohiro

    2000-01-01

    Accumulating evidence indicates that the Cbl protein plays a negative role in immune receptor signaling; however, the mode of Cbl action in B cell receptor (BCR) signaling still remains unclear. DT40 B cells deficient in Cbl showed enhanced BCR-mediated phospholipase C (PLC)-γ2 activation, thereby leading to increased apoptosis. A possible explanation for the involvement of Cbl in PLC-γ2 activation was provided by findings that Cbl interacts via its Src homology 2 (SH2) domain with B cell lin...

  8. Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D

    Directory of Open Access Journals (Sweden)

    Razmara Masoud

    2013-01-01

    Full Text Available Abstract Mammalian target of rapamycin (mTOR can be found in two multi-protein complexes, i.e. mTORC1 (containing Raptor and mTORC2 (containing Rictor. Here, we investigated the mechanisms by which mTORC1 and mTORC2 are activated and their downstream targets in response to platelet-derived growth factor (PDGF-BB treatment. Inhibition of phosphatidylinositol 3-kinase (PI3K inhibited PDGF-BB activation of both mTORC1 and mTORC2. We found that in Rictor-null mouse embryonic fibroblasts, or after prolonged rapamycin treatment of NIH3T3 cells, PDGF-BB was not able to promote phosphorylation of Ser473 in the serine/threonine kinase Akt, whereas Thr308 phosphorylation was less affected, suggesting that Ser473 in Akt is phosphorylated in an mTORC2-dependent manner. This reduction in Akt phosphorylation did not influence the phosphorylation of the S6 protein, a well established protein downstream of mTORC1. Consistently, triciribine, an inhibitor of the Akt pathway, suppressed PDGF-BB-induced Akt phosphorylation without having any effect on S6 phosphorylation. Thus, mTORC2 does not appear to be upstream of mTORC1. We could also demonstrate that in Rictor-null cells the phosphorylation of phospholipase Cγ1 (PLCγ1 and protein kinase C (PKC was impaired, and the PKCα protein levels strongly reduced. Furthermore, interfering with the PLCγ/Ca2+/PKC pathway inhibited PDGF-BB-induced Akt phosphorylation. In addition, PDGF-BB-induced activation of mTORC1, as measured by phosphorylation of the downstream S6 protein, was dependent on phospholipase D (PLD. It has been shown that Erk1/2 MAP-kinase directly phosphorylates and activates mTORC1; in partial agreement with this finding, we found that a Mek1/2 inhibitor delayed S6 phosphorylation in response to PDGF-BB, but it did not block it. Thus, whereas both mTORC1 and mTORC2 are activated in a PI3K-dependent manner, different additional signaling pathways are needed. mTORC1 is activated in a PLD-dependent manner

  9. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    Science.gov (United States)

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-01-01

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells. PMID:27221712

  10. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication.

    Directory of Open Access Journals (Sweden)

    Harry E Taylor

    2015-05-01

    Full Text Available Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1 infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1 links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.

  11. Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms.

    Science.gov (United States)

    Correa, Fernando; De Laurentiis, Andrea; Franchi, Ana María

    2016-09-01

    Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms. PMID:27266665

  12. The Ang II-induced growth of vascular smooth muscle cells involves a phospholipase D-mediated signaling mechanism.

    Science.gov (United States)

    Freeman, E J

    2000-02-15

    Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.

  13. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  14. A phospholipase A₂ isolated from Lachesis muta snake venom increases the survival of retinal ganglion cells in vitro.

    Science.gov (United States)

    da Silva Cunha, Karinne Cristinne; Fuly, André Lopes; de Araujo, Elizabeth Giestal

    2011-03-15

    We have previously showed that a phospholipase A₂ isolated from Lachesis muta snake venom and named LM-PLA₂-I displayed particular biological activities, as hemolysis, inhibition on platelet aggregation, edema induction and myotoxicity. In the present work, we evaluated the effect of LM-PLA₂-I on the survival of axotomized rat retinal ganglion cells kept in vitro, as well as its mechanism of action. Our results clearly showed that treatment with LM-PLA₂-I increased the survival of ganglion cells (100% when compared to control cultures) and the treatment of LM-PLA₂-I with p-bromophenacyl bromide abolished this effect. This result indicates that the effect of LM-PLA₂-I on ganglion cell survival is entirely dependent on its enzymatic activity and the generation of lysophosphatidylcholine (LPC) may be a prerequisite to the observed survival. In fact, commercial LPC mimicked the effect of LM-PLA₂-I upon ganglion cell survival. To investigate the mechanism of action of LM-PLA₂-I, cultures were treated with chelerythrine chloride, BAPTA-AM, rottlerin and also with an inhibitor of c-junc kinase (JNKi). Our results showed that rottlerin and JNK inhibitor abolished the LM-PLA₂-I on ganglion cell survival. Taken together, our results showed that LM-PLA₂-I and its enzymatic product, LPC promoted survival of retinal ganglion cells through the protein kinase C pathway and strongly suggest a possible role of the PLA₂ enzyme and LPC in controlling the survival of axotomized neuronal cells. PMID:21223976

  15. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition.

    Science.gov (United States)

    Zheng, Xi-Long; Gui, Yu; Du, Guangwei; Frohman, Michael A; Peng, Dao-Quan

    2004-02-20

    Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization. PMID:14660552

  16. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition.

    Science.gov (United States)

    Zheng, Xi-Long; Gui, Yu; Du, Guangwei; Frohman, Michael A; Peng, Dao-Quan

    2004-02-20

    Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization.

  17. NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C from Bacillus cereus acquire a transformed phenotype.

    OpenAIRE

    Johansen, T.; Bjørkøy, G; Overvatn, A; Diaz-Meco, M T; Traavik, T; Moscat, J

    1994-01-01

    In order to determine whether chronic elevation of intracellular diacylglycerol levels generated by hydrolysis of phosphatidylcholine (PC) by PC-hydrolyzing phospholipase C (PC-PLC) is oncogenic, we generated stable transfectants of NIH 3T3 cells expressing the gene encoding PC-PLC from Bacillus cereus. We found that constitutive expression of this gene (plc) led to transformation of NIH 3T3 cells as evidenced by anchorage-independent growth in soft agar, formation of transformed foci in tiss...

  18. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  19. Mechanism of Cytosolic Phospholipase A(2) Activation in Ghrelin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Ghrelin, a peptide hormone, newly identified in oral mucosal tissues, has emerged recently as an important mediator of the processes of mucosal defense. Here, we report on the mechanism of ghrelin protection against ethanol cytotoxicity in rat sublingual salivary gland cells. The protective effect of ghrelin was associated with the increase in NO and PGE2, and upregulation in cytosolic phospholipase A(2) (cPLA(2)) activity and arachidonic acid (AA) release. The loss in countering effect of ghrelin occurred with cNOS inhibitor, L-NAME, as well as indomethacin and COX-1 inhibitor, SC-560, while COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400W, had no effect. The effect of L-NAME was reflected in the inhibition of ghrelin-induced cell capacity for NO production, cPLA(2) activation and PGE2 generation, whereas indomethacin caused only the inhibition in PGE2. Moreover, the ghrelin-induced up-regulation in AA release was reflected in the cPLA(2) phosphorylation and S-nitrosylation. Inhibition in ghrelin-induced S-nitrosylation was attained with L-NAME, whereas the ERK inhibitor, PD98059, caused the blockage in cPLA(2) protein phosphorylation as well as S-nitrosylation. Thus, ghrelin protection of salivary gland cells against ethanol involves cNOS-derived NO induction of cPLA(2) activation through S-nitrosylation for the increase in AA release at the site of COX-1 action for PGE2 synthesis.

  20. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    Science.gov (United States)

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  1. Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts

    NARCIS (Netherlands)

    Roelofsen, B.; Zwaal, R.F.A.; Comfurius, P.; Woodward, C.B.; Deenen, L.L.M. van

    1971-01-01

    1. 1.|Pancreatic phospholipase A2 (phosphatide acyl-hydrolase, EC 3.1.1.4) and phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) from Bacillus cereus appeared not to be lytic for human erythrocytes, either before or after treatment of the cells with trypsin, pronase or neuram

  2. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells

    OpenAIRE

    1992-01-01

    Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody- dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5- trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibit...

  3. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin‐induced asthma model through the induction of regulatory T cells

    OpenAIRE

    Park, Soojin; Baek, Hyunjung; Jung, Kyung‐Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun‐Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-01-01

    Abstract Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA‐in...

  4. Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells.

    Directory of Open Access Journals (Sweden)

    Lorena Brito de Souza

    Full Text Available Phospholipase D (PLD has been implicated in many cellular functions, such as vesicle trafficking, exocytosis, differentiation, and proliferation. The aim of this study was to characterize the role of PLD in HSY cells, a human cell line originating from the intercalated duct of the parotid gland. As the function and intracellular localization of PLD varies according to cell type, initially, the intracellular localization of PLD1 and PLD2 was determined. By immunofluorescence, PLD1 and PLD2 both showed a punctate cytoplasmic distribution with extensive co-localization with TGN-46. PLD1 was also found in the nucleus, while PLD2 was associated with the plasma membrane. Treatment of cells with the primary alcohol 1-butanol inhibits the hydrolysis of phosphatidylcoline by PLD thereby suppressing phosphatidic acid (PA production. In untreated HSY cells, there was only a slight co-localization of PLD with the clathrin coated vesicles. When HSY cells were incubated with 1-butanol the total number of clathrin coated vesicles increased, especially in the juxtanuclear region and the co-localization of PLD with the clathrin coated vesicles was augmented. Transmission electron microscopy confirmed that the number of Golgi-associated coated vesicles was greater. Treatment with 1-butanol also affected the Golgi apparatus, increasing the volume of the Golgi saccules. The decrease in PA levels after treatment with 1-butanol likewise resulted in an accumulation of enlarged lysosomes in the perinuclear region. Therefore, in HSY cells PLD appears to be involved in the formation of Golgi associated clathrin coated vesicles as well as in the structural maintenance of the Golgi apparatus.

  5. Inhibition of astroglial cell proliferation by alcohols: interference with the protein kinase C-phospholipase D signaling pathway.

    Science.gov (United States)

    Kötter, K; Jin, S; Klein, J

    2000-12-01

    Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.

  6. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    LENUS (Irish Health Repository)

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  7. GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D.

    Science.gov (United States)

    Kristiansen, S; Nielsen, J N; Bourgoin, S; Klip, A; Franco, M; Richter, E A

    2001-09-01

    GLUT-4-containing membranes immunoprecipitated from insulin-stimulated rat skeletal muscle produce the phospholipase D (PLD) product phosphatidic acid. In vitro stimulation of PLD in crude membrane with ammonium sulfate (5 mM) resulted in transfer of GLUT-4 (3.0-fold vs. control) as well as transferrin receptor proteins from large to small membrane structures. The in vitro GLUT-4 transfer could be blocked by neomycin (a PLD inhibitor), and neomycin also reduced insulin-stimulated glucose transport in intact incubated soleus muscles. Furthermore, protein kinase B(beta) (PKB(beta)) was found to associate with the GLUT-4 protein and was transferred to small vesicles in response to ammonium sulfate in vitro. Finally, addition of cytosolic proteins, prepared from basal skeletal muscle, and GTP nucleotides to an enriched GLUT-4 membrane fraction resulted in in vitro transfer of GLUT-4 to small membranes (6.8-fold vs. unstimulated control). The cytosol and nucleotide-induced GLUT-4 transfer could be blocked by neomycin and N-ethylmaleimide. In conclusion, we have developed a cell-free assay that demonstrates in vitro GLUT-4 transfer. This transfer may suggest release of GLUT-4-containing vesicles from donor GLUT-4 membranes involving PLD activity and binding of PKB(beta) to GLUT-4.

  8. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    Science.gov (United States)

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting. PMID:23915343

  9. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    Science.gov (United States)

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-08-02

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.

  10. Mechanism of Cytosolic Phospholipase A2 Activation in Ghrelin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Ghrelin, a peptide hormone, newly identified in oral mucosal tissues, has emerged recently as an important mediator of the processes of mucosal defense. Here, we report on the mechanism of ghrelin protection against ethanol cytotoxicity in rat sublingual salivary gland cells. The protective effect of ghrelin was associated with the increase in NO and PGE2, and upregulation in cytosolic phospholipase A2 (cPLA2 activity and arachidonic acid (AA release. The loss in countering effect of ghrelin occurred with cNOS inhibitor, L-NAME, as well as indomethacin and COX-1 inhibitor, SC-560, while COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400W, had no effect. The effect of L-NAME was reflected in the inhibition of ghrelin-induced cell capacity for NO production, cPLA2 activation and PGE2 generation, whereas indomethacin caused only the inhibition in PGE2. Moreover, the ghrelin-induced up-regulation in AA release was reflected in the cPLA2 phosphorylation and S-nitrosylation. Inhibition in ghrelin-induced S-nitrosylation was attained with L-NAME, whereas the ERK inhibitor, PD98059, caused the blockage in cPLA2 protein phosphorylation as well as S-nitrosylation. Thus, ghrelin protection of salivary gland cells against ethanol involves cNOS-derived NO induction of cPLA2 activation through S-nitrosylation for the increase in AA release at the site of COX-1 action for PGE2 synthesis.

  11. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  12. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin.

    Science.gov (United States)

    Chaves-Moreira, Daniele; Souza, Fernanda N; Fogaça, Rosalvo T H; Mangili, Oldemir C; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Chaim, Olga M; Veiga, Silvio S

    2011-09-01

    Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel

  13. Mammalian phospholipase C.

    Science.gov (United States)

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  14. Release of carcinoembryonic antigen from human colon cancer cells by phosphatidylinositol-specific phospholipase C.

    OpenAIRE

    Sack, T L; Gum, J R; Low, M G; Y. S. Kim

    1988-01-01

    Carcinoembryonic antigen (CEA) is released from colon cancer cells into the circulation where it is monitored clinically as an indicator of the recurrence or progression of cancer. We have studied the mechanism of CEA membrane attachment and release using the human colonic adenocarcinoma cell line LS-174T, specimens of human colon cancers, and serum from colon cancer patients. CEA release by cells in vitro and in vivo is associated with the conversion of CEA from a membrane-bound, hydrophobic...

  15. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G;

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  16. Neomycin inhibits histamine and thapsigargin mediated Ca2+ DDT1 MF-2 cells independent of phospholipase C activation

    NARCIS (Netherlands)

    Sipma, H; VanderZee, L; DenHertog, A; Nelemans, A

    1996-01-01

    The histamine H-1 receptor mediated increase in cytoplasmic Ca2+ ([Ca2+](i)) was measured in the presence of the known phospholipase C (PLC) inhibitor, neomycin. Neomycin (1 mM) inhibited the histamine (100 mu M) induced rise in [Ca2+](i) to the same extent as observed after blocking Ca2+ entry with

  17. Bradykinin and vasopressin activate phospholipase D in rat Leydig cells by a protein kinase C-dependent mechanism

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1993-01-01

    , LH (10 ng/ml), insulin (500 nmol/l), GH (100 ng/ml), interleukin-1ß (5 U/ml) and platelet-activating factor (200 nmol/l) were found not to activate phospholipase D, whereas the Ca ionophore A23187 (10 µmol/l) stimulated phosphatidylethanol formation, suggesting that Ca might be a regulator...

  18. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    OpenAIRE

    Dasom Shin; Gihyun Lee; Sung-Hwa Sohn; Soojin Park; Kyung-Hwa Jung; Ji Min Lee; Jieun Yang; Jaeho Cho; Hyunsu Bae

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focall...

  19. On the role of protein disulfide isomerase in the retrograde cell transport of secreted phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Jernej Oberčkal

    Full Text Available Following the finding that ammodytoxin (Atx, a neurotoxic secreted phospholipase A2 (sPLA2 in snake venom, binds specifically to protein disulfide isomerase (PDI in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI, a three-dimensional model of the complex between Atx and human PDI (hPDI was constructed. The Atx binding site on hPDI is situated between domains b and b'. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx-hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (pathophysiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2-hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (pathophysiology of sPLA2s in relation to their action intracellularly.

  20. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release

    DEFF Research Database (Denmark)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen;

    2015-01-01

    models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we...

  1. Inhibitors of secreted phospholipase A2 suppress the release of PGE2 in renal mesangial cells.

    Science.gov (United States)

    Vasilakaki, Sofia; Barbayianni, Efrosini; Magrioti, Victoria; Pastukhov, Oleksandr; Constantinou-Kokotou, Violetta; Huwiler, Andrea; Kokotos, George

    2016-07-01

    The upregulation of PGE2 by mesangial cells has been observed under chronic inflammation condition. In the present work, renal mesangial cells were stimulated to trigger a huge increase of PGE2 synthesis and were treated in the absence or presence of known PLA2 inhibitors. A variety of synthetic inhibitors, mainly developed in our labs, which are known to selectively inhibit each of GIVA cPLA2, GVIA iPLA2, and GIIA/GV sPLA2, were used as tools in this study. Synthetic sPLA2 inhibitors, such as GK115 (an amide derivative based on the non-natural amino acid (R)-γ-norleucine) as well as GK126 and GK241 (2-oxoamides based on the natural (S)-α-amino acid leucine and valine, respectively) presented an interesting effect on the suppression of PGE2 formation. PMID:27234891

  2. MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma

    OpenAIRE

    Zhang, Jiwei; Bian, Zehua; Zhou, Jialiang; Song, Mingxu; Liu, Zhihui; Feng, Yuyang; Zhe, Li; Zhang, Binbin; Yin, Yuan; Huang, Zhaohui

    2015-01-01

    MicroRNAs (miRNAs) are a type of small non-coding RNAs that are often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the function and the mechanism of miR-638 in carcinoma (GC). The expression of miR-638 in GC and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by counting kit-8 assay. Different assays, including bioinformatics algorithms (Tar...

  3. PlcR1 and PlcR2 are putative calcium-binding proteins required for secretion of the hemolytic phospholipase C of Pseudomonas aeruginosa.

    OpenAIRE

    Cota-Gomez, A; Vasil, A I; Kadurugamuwa, J; Beveridge, T J; Schweizer, H. P.; Vasil, M L

    1997-01-01

    The plcHR operon of Pseudomonas aeruginosa includes the structural gene for the hemolytic phospholipase C,plcH (previously known as plcS), and two overlapping, in-phase, genes designated plcR1 and plcR2. Hemolytic and phospholipase C (PLC) activities produced by Escherichia coli and P. aeruginosa T7 expression systems were measured in strains carrying both plcH and plcR genes and in strains carrying each gene separately. When plcH was expressed by itself in the E. coli T7 system, the area of ...

  4. Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells

    DEFF Research Database (Denmark)

    Blank, Simon; Seismann, Henning; Plum, Melanie;

    2011-01-01

    Allergic reactions to hymenoptera stings are one of the major reasons for IgE-mediated anaphylaxis. However, proper diagnosis using venom extracts is severely affected by molecular cross-reactivity. In this study recombinant honeybee venom major allergen phospholipase A2 (Api m 1) was produced......-derived recombinant Api m 1 with defined CCD phenotypes might provide further insights into hymenoptera venom IgE reactivities and contribute to an improved diagnosis of hymenoptera venom allergy....

  5. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth.

    OpenAIRE

    Yoko-o, T; Matsui, Y; Yagisawa, H; Nojima, H; Uno, I; Toh-E, A

    1993-01-01

    Using the polymerase chain reaction technique, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) in the yeast Saccharomyces cerevisiae. The nucleotide sequence indicates that the gene encodes a polypeptide of 869 amino acid residues with a calculated molecular mass of 101 kDa. This polypeptide has both the X and Y regions conserved among mammalian PLC-beta, -gamma, and -delta, and the structure is most similar to that of mammalian PLC-delta. This ...

  6. Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ 1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells.

    Science.gov (United States)

    Lu, Yue; Son, Jong-Keun; Chang, Hyeun Wook

    2012-11-01

    During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4), cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2), and on phospholipase Cγ1 (PLCγ1)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid (PGD2 and LTC4) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of PLCγ1, intracellular Ca(2+) influx, the translocation of cytosolic phospholipase A2 (cPLA2) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular Ca(2+) influx by inhibiting PLCγ1 phosphorylation and suppressing the nuclear translocations of cPLA2 and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation. PMID:24009845

  7. Colourimetric Determination of Phospholipase Activities in Balamuthia mandrillaris

    Directory of Open Access Journals (Sweden)

    Syed Razi Haider

    2007-01-01

    Full Text Available Balamuthia mandrillaris is a recently identified protozoan pathogen that can cause fatal granulomatous encephalitis however the pathogenesis and pathophysiology associated with Balamuthia encephalitis remain unclear. We have recently isolated B. mandrillaris from a 33-years old male who died of encephalitis. Using this isolate, we demonstrated for the first time that B. mandrillaris exhibited phospholipase activities. More specifically, B. mandrillaris exhibited phospholipase A2 and phospholipase D activities. For the first time we used colourimetric technique based on spectrophotometer and designed phospholipases assays to determine these phospholipase activities. The functional role of phospholipases was determined in in vitro assays using human brain microvascular endothelial cells (HBMEC. We observed that PLA2-specific inhibitor i.e., cytidine 5'-diphosphocholine significantly inhibited B. mandrillaris binding to HBMEC. Similarly PLD inhibitor i.e., compound 48/80 inhibited B. mandrillaris binding to HBMEC. Moreover, both inhibitors inhibited B. mandrillaris-mediated HBMEC cytotoxicity. Overall these results clearly demonstrate that phospholipases are important virulence determinants in B. mandrillaris. Further studies will identify the precise role of phospholipases in the pathogenesis of B. mandrillaris, which may help develop therapeutic interventions. Using a novel spectrophotometric-based assay we demonstrated for the first time that B. mandrillaris exhibit phospholipase activities.

  8. Disruption of the Phospholipase D Gene Attenuates the Virulence of Aspergillus fumigatus

    OpenAIRE

    Li, Xianping; Gao, Meihua; Han, Xuelin; Tao, Sha; Zheng, Dongyu; Cheng, Ying; Yu, Rentao; Han, Gaige; Schmidt, Martina; Han, Li

    2012-01-01

    Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases on A. fumigatus virulence is rather limited. In this study, disruption of the pld gene encoding phospholipase D (PLD), an important member of the phospholipase protei...

  9. Inhibitory effect of acteoside on melittin-induced catecholamine exocytosis through inhibition of Ca(2+)-dependent phospholipase A2 and extracellular Ca(2+) influx in PC12 cells.

    Science.gov (United States)

    Song, Ho Sun; Ko, Myung Soo; Jo, Young Soo; Whang, Wan Kyunn; Sim, Sang Soo

    2015-10-01

    To investigate the inhibitory effect of acteoside on the process of exocytosis induced by melittin, we measured Ca(2+) mobilization, arachidonic acid (AA) release and catecholamine exocytosis in PC12 chromaffin cells. Melittin significantly increased the intracellular Ca(2+) mobilization via receptor-operated calcium channel but not the intracellular Ca(2+) release. It caused AA release via activation of Ca(2+)-dependent phospholipase A2 (PLA2) and catecholamine secretion in a dose-dependent manner. Acteoside dose-dependently inhibited the release of AA and intracellular Ca(2+) mobilization induced by melittin. Acteoside reduced the catecholamine release and raised the amount of intracellular chromogranin A which is co-released with catecholamine from melittin-stimulated PC12 cells. Taken together, our results suggest that acteoside could suppress the exocytosis via inhibition of Ca(2+)-dependent PLA2 and extracellular Ca(2+) influx in PC12 cells stimulated by melittin. PMID:25899996

  10. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  11. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    OpenAIRE

    Caiazza, Francesco; Harvey, Brian J; Thomas, Warren

    2010-01-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapid...

  12. Group II and IV phospholipase A2 are produced in human pancreatic cancer cells and influence prognosis

    OpenAIRE

    Kashiwagi, M; Friess, H; Uhl, W.; Berberat, P; Abou-Shady, M; MARTIGNONI, M.; Anghelacopoulos, S; Zimmermann, A.; Buchler, M.

    1999-01-01

    BACKGROUND—Phospholipase A2 (PLA2) is involved in regulating biosynthesis of arachidonic acid and its metabolites. There are three major structurally different forms of PLA2: group I, also called pancreatic PLA2 (PLA2-I); group II, referred to as secretory non-pancreatic or synovial or platelet PLA2 (PLA2-II); group IV, referred to as cytosolic PLA2 (PLA2-IV).
AIMS—To examine PLA2-I, PLA2-II, and PLA2-IV in normal and pancreatic cancer tissues.
 Patients—PLA2 was studied in 58 pancreatic aden...

  13. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-01

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  14. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes

    OpenAIRE

    Marquis, Hélène; Hager, Elizabeth J.

    2000-01-01

    Listeria monocytogenes grows in the cytosol of mammalian cells and spreads from cell to cell without exiting the intracellular milieu. During cell–cell spread, bacteria become transiently entrapped in double-membrane vacuoles. Escape from these vacuoles is mediated in part by a bacterial phospholipase C (PC-PLC), whose activation requires cleavage of an N-terminal peptide. PC-PLC activation occurs i...

  15. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  16. Contribution of phospholipase D in endothelin-1-mediated extracellular signal-regulated kinase activation and proliferation in rat uterine leiomyoma cells.

    Science.gov (United States)

    Robin, Philippe; Chouayekh, Sondes; Bole-Feysot, Christine; Leiber, Denis; Tanfin, Zahra

    2005-01-01

    Endothelin (ET)-1 is a mitogenic factor in numerous cell types, including rat myometrial cells. In the present study, we investigated the potential role of ET-1 in the proliferation of tumoral uterine smooth muscle cells (ELT-3 cells). We found that ET-1 exerted a more potent mitogenic effect in ELT-3 cells than in normal myometrial cells, as indicated by the increase in [3H]thymidine incorporation, cell number, and bromodeoxyuridine incorporation. The ET-1 was more efficient than platelet-derived growth factor and epidermal growth factor to stimulate proliferation. The ET-1-mediated cell proliferation was inhibited in the presence of U0126, a specific inhibitor of (mitogen-activated protein kinase ERK kinase), indicating that extracellular signal-regulated kinase (ERK) activation is involved. Additionally, ET-1 induced the activation of phospholipase (PL) D, leading to the synthesis of phosphatidic acid (PA). The ET-1-induced activation of PLD was twofold higher in ELT-3 cells compared to that in normal cells. The two cell types expressed mRNA for PLD1a and PLD2, whereas PLD1b was expressed only in ELT-3 cells. The exposure of cells to butan-1-ol reduced ET-1-mediated production of PA by PLD and partially inhibited ERK activation and DNA synthesis. Addition of exogenous PLD or PA in the medium reproduced the effect of ET-1 on ERK activation and cell proliferation. Collectively, these data indicate that ET-1 is a potent mitogenic factor in ELT-3 cells via a signaling pathway involving a PLD-dependent activation of ERK. This highlights the potential role of ET-1 in the development of uterine leiomyoma, and it reinforces the role of PLD in tumor growth. PMID:15355882

  17. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments. PMID:27144583

  18. Linoleic Acid Activates GPR40/FFA1 and Phospholipase C to Increase [Ca2+]i Release and Insulin Secretion in Islet Beta-Cells

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Yu-ling Song; Hui Zhou; Yan Li

    2012-01-01

    To elucidate GPR40/FFA 1 and its downstream signaling pathways in regulating insulin secretion.Methods GPR40/FFA 1 expression was detected by immunofluorescence imaging.We employed linoleic acid (LA),a free fatty acid that has a high affinity to the rat GPR40,and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat β-cells by Fluo-3 intensity under confocal microscopy recording.Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic β-cells,and insulin secretion was assessed by enzyme-linked immunosorbent assay.Results LA acutely stimulated insulin secretion from primary cultured rat pancreatic islets.LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose,which was reflected by increased Fluo-3 intensity under confocal microscopy recording.LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in β-cells after GPR40/FFA1-specific antisense treatment.In addition,the inhibition of phospholipase C (PLC) activity by U73122,PLC inhibitor,also markedly inhibited the LA-induced [Ca2+]i increase.Conclusion LA activates GPR40/FFA1 and PLC to stimulate Ca2+ release,resulting in an increase in [Ca2+]i and insulin secretion in rat islet β-cells.

  19. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells.

    Science.gov (United States)

    Muter, Joanne; Brighton, Paul J; Lucas, Emma S; Lacey, Lauren; Shmygol, Anatoly; Quenby, Siobhan; Blanks, Andrew M; Brosens, Jan J

    2016-07-01

    Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors. PMID:27167772

  20. Hydrogen peroxide induces the activation of the phospholipase C-γ1 survival pathway in PC12 cells: protective role in apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wenli Yuan; Jiazhi Guo; Xingguo Li; Zhirong Zou; Guangxue Chen; Jun Sun; Tinghua Wang; Di Lu

    2009-01-01

    It has been reported that phospholipase C-γ1 (PLC-γ1) plays an important protective role in hydrogen peroxide (H2O2)-induced pheochromocytoma (PC) 12 cells death. However, most studies have used high doses of H2O2 and the downstream targets of PLC-γ1 activation remain to be identified. The present study was designed to examine the roles of PLC-γ1 signaling pathway in the apoptosis of PC12 cells induced by low dose of H2O2, as well as the downstream factors involved in this pathway. Low-dose treatment of H2O2 resulted in PLC-γ1 tyrosine phosphorylation in a time-dependent manner and H2O2 killed the PC12 cells by inducing necrosis. In contrast, pretreatment of PC12 cells with U73122, a specific inhibitor of PLC, markedly increased the percentage of dead cells. The mode of cell death was converted to apoptosis as determined by Hoechst/PI nuclear staining and fluorescence microscopy. Western blot analysis demonstrated that the expression of Bcl-2 protein and the activation of pro-caspase-3 were not significantly affected by low dose of H2O2 alone. However, after pretreatment with U73122, Bcl-2 protein expression was dramatically decreased and the activation of pro-caspase-3 was sig-nificantly increased. We concluded that PLC-γ1 plays an important protective role in H2O2-induced PC12 cells death. Bcl-2 and caspase-3 probably participate in the signaling pathway as downstream factors.

  1. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    Science.gov (United States)

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt. PMID:15525798

  2. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    Science.gov (United States)

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  3. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C;

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  4. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Morris Valerie

    2004-05-01

    Full Text Available Abstract Background The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4 has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. Results The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2 pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Conclusion Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention.

  5. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.

    Science.gov (United States)

    Park, Soojin; Baek, Hyunjung; Jung, Kyung-Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun-Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-12-01

    Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA-induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA-challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206-dependence of bvPLA2-treated suppression of airway inflammation was evaluated in OVA-challenged CD206(-/-) mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA-challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2-treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg-depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2-mediated immune tolerance in OVA-induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2-treated OVA-induced mice but not in bvPLA2-treated OVA-induced CD206(-/-) mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA-induced asthma model. PMID:26734460

  6. Phospholipase C-β1 and β4 contribute to non-genetic cell-to-cell variability in histamine-induced calcium signals in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Sachiko Ishida

    Full Text Available A uniform extracellular stimulus triggers cell-specific patterns of Ca(2+ signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3 concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca(2+ oscillations in terms of the time constant of Ca(2+ spike amplitude decay and the Ca(2+ oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca(2+ signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca(2+ signals. RT-PCR and western blot analyses showed that phospholipase C (PLC-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca(2+ oscillations, such as the time constant of the temporal changes in the Ca(2+ spike amplitude and the Ca(2+ oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca(2+ release, can cause cell-to-cell variability in the patterns of Ca(2+ signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca(2+ signals evoked by G protein-coupled receptor stimulation.

  7. Evidence that a lipolytic enzyme--hematopoietic-specific phospholipase C-β2--promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes.

    Science.gov (United States)

    Adamiak, M; Poniewierska-Baran, A; Borkowska, S; Schneider, G; Abdelbaset-Ismail, A; Suszynska, M; Abdel-Latif, A; Kucia, M; Ratajczak, J; Ratajczak, M Z

    2016-04-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.

  8. Polydatin up-regulates clara cell secretory protein to suppress phospholipase A2 of lung induced by LPS in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2011-07-01

    Full Text Available Abstract Background Lung injury induced by lipopolysaccharide (LPS remains one of the leading causes of morbidity and mortality in children. The damage to membrane phospholipids leads to the collapse of the bronchial alveolar epithelial barrier during acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Phospholipase A2 (PLA2, a key enzyme in the hydrolysis of membrane phospholipids, plays an important traumatic role in pulmonary inflammation, and Clara cell secretory protein (CCSP is an endogenous inhibitor of PLA2. Our previous study showed that polydatin (PD, a monocrystalline extracted from a traditional Chinese medicinal herb (Polygonum cuspidatum Sieb, et Zucc, reduced PLA2 activity and sPLA2-IIA mRNA expression and mitigated LPS-induced lung injury. However, the potential mechanism for these effects has not been well defined. We have continued to investigate the effect of PD on LPS-induced expression of CCSP mRNA and protein in vivo and in vitro. Results Our results suggested that the CCSP mRNA level was consistent with its protein expression. CCSP expression was decreased in lung after LPS challenge. In contrast, PD markedly increased CCSP expression in a concentration-dependent manner. In particular, CCSP expression in PD-pretreated rat lung was higher than in rats receiving only PD treatment. Conclusion These results indicated that up-regulation of CCSP expression causing inhibition of PLA2 activation may be one of the crucial protective mechanisms of PD in LPS-induced lung injury.

  9. Phospholipase A2 Biochemistry

    OpenAIRE

    Burke, John E.; Dennis, Edward A.

    2008-01-01

    The phospholipase A2 (PLA2) superfamily consists of many different groups of enzymes that catalyze the hydrolysis of the sn-2 ester bond in a variety of different phospholipids. The products of this reaction, a free fatty acid, and lysophospholipid have many different important physiological roles. There are five main types of PLA2: the secreted sPLA2’s, the cytosolic cPLA2’s, the Ca2+ independent iPLA2’s, the PAF acetylhydrolases, and the lysosomal PLA2’s. This review focuses on the superfam...

  10. Stalling autophagy: a new function for Listeria phospholipases

    Directory of Open Access Journals (Sweden)

    Ivan Tattoli

    2014-01-01

    Full Text Available Listeria monocytogenes is a Gram-positive bacterial pathogen that induces its own uptake in non-phagocytic cells. Following invasion, Listeria escapes from the entry vacuole through the secretion of a pore-forming toxin, listeriolysin O (LLO that acts to damage and disrupt the vacuole membrane. Listeria then replicates in the cytosol and is able to spread from cell-to-cell using actin-based motility. In addition to LLO, Listeria produces two phospholipase toxins, a phosphatidylinositol-specific phospholipase C (PI-PLC, encoded by plcB and a broad-range phospholipase C (PC-PLC, encoded by plcA, which contribute to bacterial virulence. It has long been recognized that secretion of PI- and PC-PLC enables the disruption of the double membrane vacuole during cell-to-cell spread, and those phospholipases have also been shown to augment LLO-dependent escape from the entry endosome. However, a specific role for Listeria phospholipases during the cytosolic stage of infection has not been previously reported. In a recent study, we demonstrated that Listeria PI-PLC and PC-PLC contribute to the bacterial escape from autophagy through a mechanism that involves direct inhibition of the autophagic flux in the infected cells [Tattoli et al. EMBO J (2013, 32, 3066-3078].

  11. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  12. Analyses of Group III Secreted Phospholipase A2 Transgenic Mice Reveal Potential Participation of This Enzyme in Plasma Lipoprotein Modification, Macrophage Foam Cell Formation, and Atherosclerosis*S⃞

    OpenAIRE

    Sato, Hiroyasu; Kato, Rina; Isogai, Yuki; Saka, Go-ichi; Ohtsuki, Mitsuhiro; Taketomi, Yoshitaka; Yamamoto, Kei(Department of Physics, Niigata University, Niigata 950-2181, Japan); Tsutsumi, Kae; Yamada, Joe; Masuda, Seiko; Ishikawa, Yukio; Ishii, Toshiharu; Kobayashi, Tetsuyuki; Ikeda, Kazutaka; Taguchi, Ryo

    2008-01-01

    Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA...

  13. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  14. Human Neutrophil Elastase Induce Interleukin-10 Expression in Peripheral Blood Mononuclear Cells through Protein Kinase C Theta/Delta and Phospholipase Pathways

    Science.gov (United States)

    Kawata, Jin; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Sakamoto, Arisa; Aoki, Manabu; Kitano, Masafumi; Umehashi, Misako; Hirose, Eiji; Yamaguchi, Yasuo

    2016-01-01

    Objective Neutrophils have an important role in the rapid innate immune response, and the release or active secretion of elastase from neutrophils is linked to various inflammatory responses. Purpose of this study was to determine how the human neutrophil elastase affects the interleukin-10 (IL-10) response in peripheral blood mononuclear cells (PBMC). Materials and Methods In this prospective study, changes in IL-10 messenger RNA (mRNA) and protein expression levels in monocytes derived from human PBMCs were investigated after stimulation with human neutrophil elastase (HNE). A set of inhibitors was used for examining the pathways for IL-10 production induced by HNE. Results Reverse transcription polymerase chain reaction (RT-PCR) showed that stimulation with HNE upregulated IL-10 mRNA expression by monocytes, while the enzyme-linked immunosorbent assay (ELISA) revealed an increase of IL-10 protein level in the culture medium. A phospholipase C inhibitor (U73122) partially blunt- ed the induction of IL-10 mRNA expression by HNE, while IL-10 mRNA expression was significantly reduced by a protein kinase C (PKC) inhibitor (Rottlerin). A calcium chelator (3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester: TMB-8) inhibited the response of IL-10 mRNA to stimulation by HNE. In addition, pretreatment with a broad-spectrum PKC inhibitor (Ro-318425) partly blocked the response to HNE. Finally, an inhibitor of PKC theta/delta abolished the increased level of IL-10 mRNA expression. Conclusion These results indicate that HNE mainly upregulates IL-10 mRNA ex- pression and protein production in moncytes via a novel PKC theta/delta, although partially via the conventional PKC pathway. PMID:26862528

  15. Human Neutrophil Elastase Induce Interleukin-10 Expression in Peripheral Blood Mononuclear Cells through Protein Kinase C Theta/Delta and Phospholipase Pathways

    Directory of Open Access Journals (Sweden)

    Jin Kawata

    2016-02-01

    Full Text Available Objective: Neutrophils have an important role in the rapid innate immune response, and the release or active secretion of elastase from neutrophils is linked to various inflammatory responses. Purpose of this study was to determine how the human neutrophil elastase affects the interleukin-10 (IL-10 response in peripheral blood mononuclear cells (PBMC. Materials and Methods: In this prospective study, changes in IL-10 messenger RNA (mRNA and protein expression levels in monocytes derived from human PBMCs were investigated after stimulation with human neutrophil elastase (HNE. A set of inhibitors was used for examining the pathways for IL-10 production induced by HNE. Results: Reverse transcription polymerase chain reaction (RT-PCR showed that stimulation with HNE upregulated IL-10 mRNA expression by monocytes, while the enzyme-linked immunosorbent assay (ELISA revealed an increase of IL-10 protein level in the culture medium. A phospholipase C inhibitor (U73122 partially blunted the induction of IL-10 mRNA expression by HNE, while IL-10 mRNA expression was significantly reduced by a protein kinase C (PKC inhibitor (Rottlerin. A calcium chelator (3,4,5-trimethoxybenzoic acid 8-(diethylaminooctyl ester: TMB-8 inhibited the response of IL-10 mRNA to stimulation by HNE. In addition, pretreatment with a broad-spectrum PKC inhibitor (Ro-318425 partly blocked the response to HNE. Finally, an inhibitor of PKC theta/delta abolished the increased level of IL-10 mRNA expression. Conclusion: These results indicate that HNE mainly upregulates IL-10 mRNA expression and protein production in moncytes via a novel PKC theta/delta, although partially via the conventional PKC pathway.

  16. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    Science.gov (United States)

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  17. Phospholipase Cγ2 Is Critical for Dectin-1-mediated Ca2+ Flux and Cytokine Production in Dendritic Cells*

    OpenAIRE

    Xu, Shengli; Huo, Jianxin; Lee, Koon-Guan; Kurosaki, Tomohiro; Lam, Kong-Peng

    2009-01-01

    Dectin-1 is a C-type lectin that recognizes β-glucan in the cell walls of fungi and plays an important role in anti-fungal immunity. It signals via tyrosine kinase Syk and adaptor protein Card9 to activate NF-κB leading to proinflammatory cytokine production in dendritic cells (DCs). Other than this, not much else is known of the mechanism of Dectin-1 signaling. We demonstrate here that stimulation of DCs with zymosan triggers an intracellular Ca2+ flux that can be att...

  18. Phospholipases A2 in ocular homeostasis and diseases

    DEFF Research Database (Denmark)

    Wang, Jinmei; Kolko, Miriam

    2010-01-01

    Phospholipases A(2) (PLA(2)s) and its generation of second messengers play an important role in signal transduction, cell proliferation, cell survival and gene expression. At low concentrations mediators of PLA(2) activity have a variety of physiological effects whereas high levels of PLA(2) and ...

  19. Reduction of phospholipase D activity during coxsackievirus infection.

    NARCIS (Netherlands)

    Duijsings, D.; Wessels, E.; Emst-de Vries, S.E. van; Melchers, W.J.G.; Willems, P.H.G.M.; Kuppeveld, F.J.M. van

    2007-01-01

    During enterovirus infection, host cell membranes are rigorously rearranged and modified. One ubiquitously expressed lipid-modifying enzyme that might contribute to these alterations is phospholipase D (PLD). Here, we investigated PLD activity in coxsackievirus-infected cells. We show that PLD activ

  20. Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons.

    Science.gov (United States)

    Tan, Charlene Siew-Hon; Ho, Christabel Fung-Yih; Heng, Swan-Ser; Wu, Jui-Sheng; Tan, Benny Kwong-Huat; Ng, Yee-Kong; Sun, Grace Y; Lin, Teng-Nan; Ong, Wei-Yi

    2016-09-01

    Clinacanthus nutans Lindau (C. nutans), commonly known as Sabah Snake Grass in southeast Asia, is widely used in folk medicine due to its analgesic, antiviral, and anti-inflammatory properties. Our recent study provided evidence for the regulation of cytosolic phospholipase A2 (cPLA2) mRNA expression by epigenetic factors (Tan et al. in Mol Neurobiol. doi: 10.1007/s12035-015-9314-z , 2015). This enzyme catalyzes the release of arachidonic acid from glycerophospholipids, and formation of pro-inflammatory eicosanoids or toxic lipid peroxidation products such as 4-hydroxynonenal. In this study, we examined the effects of C. nutans ethanol leaf extracts on epigenetic regulation of cPLA2 mRNA expression in SH-SY5Y human neuroblastoma cells and mouse primary cortical neurons. C. nutans modulated induction of cPLA2 expression in SH-SY5Y cells by histone deacetylase (HDAC) inhibitors, MS-275, MC-1568, and TSA. C. nutans extracts also inhibited histone acetylase (HAT) activity. Levels of cPLA2 mRNA expression were increased in primary cortical neurons subjected to 0.5-h oxygen-glucose deprivation injury (OGD). This increase was significantly inhibited by C. nutans treatment. Treatment of primary neurons with the HDAC inhibitor MS-275 augmented OGD-induced cPLA2 mRNA expression, and this increase was modulated by C. nutans extracts. OGD-stimulated increase in cPLA2 mRNA expression was also reduced by a Tip60 HAT inhibitor, NU9056. In view of a key role of cPLA2 in the production of pro-inflammatory eicosanoids and free radical damage, and the fact that epigenetic effects on genes are often long-lasting, results suggest a role for C. nutans and phytochemicals to inhibit the production of arachidonic acid-derived pro-inflammatory eicosanoids and chronic inflammation, through epigenetic regulation of cPLA2 expression. PMID:27319010

  1. Differential requirement for phospholipase D/Spo14 and its novel interactor Sma1 for regulation of exocytotic vesicle fusion in yeast meiosis

    NARCIS (Netherlands)

    Riedel, Christian G; Mazza, Massimiliano; Maier, Peter; Körner, Roman; Knop, Michael

    2005-01-01

    During sporulation and meiosis of budding yeast a developmental program determines the formation of the new plasma membranes of the spores. This process of prospore membrane (PSM) formation leads to the formation of meiotic daughter cells, the spores, within the lumen of the mother cell. It is initi

  2. G protein activation stimulates phospholipase D signaling in plants

    NARCIS (Netherlands)

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  3. Phospholipase C delta regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Van Dijken, P.; Van Haastert, PJM

    2001-01-01

    Background: Many eukaryotes including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth cell movement and differentiation. In this report we show that PLC i

  4. Changes of phospholipase D activity of rat peritoneal mast cells in degranulation%大鼠腹腔肥大细胞脱颗粒过程中磷脂酶D活性的变化

    Institute of Scientific and Technical Information of China (English)

    卢韵碧; 吴明; 周汉良

    2004-01-01

    AIM: To study the changes of phospholipase D (PLD) activity of actively sensitized rat peritoneal mast cells (RPMC) in degranulation. METHODS: Degranulation of RPMC was determined by measurement of β-hexosaminidase release. PLD activity assay was carried out by measurement of PLD product, choline, with chemiluminescent oxidation of luminol. RESULTS: Actively sensitized RPMC challenged with ovalbumin (0.5-8 mg/L for 120 s, 4 mg/L for 15-120 s) resulted in significant activation of PLD accompanied with the increment of β-hexosaminidase release. PLD activity of sensitized RPMC was increased by more than 2-fold compared with that of unsensitized RPMC which contained low levels of PLD activity [(35+ 13) pmol choline/min in 1 x 106cells], but β-hexosaminidase releases of the sensitized cells were as low as spontaneous releases. After challenge with ovalbumin 4 mg/L for 120 s, PLD activity of sensitized RPMC was increased to (155+43) pmol choline/min in lx 106cells and β-hexosaminidase release was also elevated significantly (4.5-fold of spontaneous release, n=6, P<0.05). When unsensitized RPMC were stimulated with antigen, PLD activity and β-hexosaminidase release of the cells were hardly changed.Sensitized RPMC were treated with 1% 1-butanol or 2,3- disphosphoglycerate l0 mmol/L before challenge with ovalbumin, these drugs induced an inhibition of PLD activity and a reduction of β-hexosaminidase release to basal level. 1-Butanol 0.1% also worked. CONCLUSION: Phospholipase D plays an important role in the regulation of β-hexosaminidase release in actively sensitized rat peritoneal mast cells.

  5. Melittin stimulates phosphoinositide hydrolysis and placental lactogen release: Arachidonic acid as a link between phospholipase A sub 2 and phospholipase C signal-transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, P.; Handwerger, S. (Univ. of Cincinnati College of Medicine, OH (USA)); Wu, Y.Q. (Duke Univ. Medical Center, Durham, NC (USA))

    1991-01-01

    Previous investigations from this laboratory have implicated both phospholipase A{sub 2} and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A{sub 2} and the relationship between phospholipase A{sub 2} activation and phosphoinositide metabolism, the authors examined hPL and ({sup 3}H)-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and ({sup 3}H)-inositol. Mepacrine inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and ({sup 3}H)-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoionsitide metabolism and hPL release is mediated by initial activation of phospholipase A{sub 2}. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A{sub 2} activation, can act as a second messenger linking the two phospholipase pathways.

  6. Role of Phospholipases in Fungal Fitness, Pathogenicity and Drug Development- Lessons from Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Julianne eDjordjevic

    2010-11-01

    Full Text Available Many pathogenic microbes, including many fungi, produce phospholipases which facilitate survival of the pathogen in vivo, invasion and dissemination throughout the host, expression of virulence traits and evasion of host immune defense mechanisms. These phospholipases are either secreted or produced intracellularly and act by physically disrupting host membranes, and/or by affecting fungal cell signaling and production of immunomodulatory effectors. Many of the secreted phospholipases acquire a glycosylphosphatidylinositol (GPI sorting motif to facilitate membrane and/or cell wall association and secretion. This review focuses primarily on the role of two members of the phospholipase enzyme family, phospholipase B (Plb and phosphatidylinositol (PI-specific phospholipase C (PI-PLC/Plc, in fungal pathogenesis and in particular, what has been learnt about their function from studies performed in the model pathogenic yeast, Cryptococcus neoformans. These studies have revealed how Plb has adapted to become an important part of the virulence repertoire of pathogenic fungi and how its secretion is regulated. They have also provided valuable insight into how the intracellular enzyme, Plc1, contributes to fungal fitness and pathogenicity - via a putative role in signal transduction pathways that regulate the production of stress-protecting pigments, polysaccharide capsule, cell wall integrity and adaptation to growth at host temperature. Finally, this review will address the role fungal phospholipases have played in the development of a new class of antifungal drugs, which mimic their phospholipid substrates.

  7. Disruption of the Phospholipase D Gene Attenuates the Virulence of Aspergillus fumigatus

    NARCIS (Netherlands)

    Li, Xianping; Gao, Meihua; Han, Xuelin; Tao, Sha; Zheng, Dongyu; Cheng, Ying; Yu, Rentao; Han, Gaige; Schmidt, Martina; Han, Li

    2012-01-01

    Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge o

  8. Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    OpenAIRE

    Vázquez-Manrique, Rafael P.; Nagy, Anikó I.; Legg, James C.; Bales, Olivia A.M.; Ly, Sung; Baylis, Howard A.

    2008-01-01

    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore sur...

  9. Schwann cell myelination requires Dynein function

    Directory of Open Access Journals (Sweden)

    Langworthy Melissa M

    2012-11-01

    Full Text Available Abstract Background Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. Results By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1, which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. Conclusion Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.

  10. Insulin-stimulated Plasma Membrane Fusion of Glut4 Glucose Transporter-containing Vesicles Is Regulated by Phospholipase D1D⃞

    OpenAIRE

    Huang, Ping; Altshuller, Yelena M.; Hou, June Chunqiu; Jeffrey E Pessin; Frohman, Michael A.

    2005-01-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insu...

  11. A neurotoxic phospholipase A2 impairs yeast amphiphysin activity and reduces endocytosis.

    Directory of Open Access Journals (Sweden)

    Mojca Mattiazzi

    Full Text Available BACKGROUND: Presynaptically neurotoxic phospholipases A(2 inhibit synaptic vesicle recycling through endocytosis. PRINCIPAL FINDINGS: Here we provide insight into the action of a presynaptically neurotoxic phospholipase A(2 ammodytoxin A (AtxA on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin. CONCLUSIONS: We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein-protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A(2 work can open new ways to regulate endocytosis.

  12. Disruption of phospholipase B gene, PLB1, increases the survival of baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Watanabe, Y; Imai, K; Oishi, H; Tamai, Y

    1996-12-15

    An uracil auxotrophic mutant of baker's yeast Torulaspora delbrueckii, which is resistant to 5-fluoro-orotic acid, was complemented by transformation with YEp24 which harbors 2 microns origin and URA3 derived from Saccharomyces cerevisiae. The phospholipase B in T. delbrueckii cells is active in both acidic and alkaline conditions. However, activity of phospholipase B gene (PLB1) in cells of disruption mutant (plb1:: URA3) was lost in both conditions, which indicates that all phospholipase B activity is encoded by a single gene (or a single polypeptide) in these yeast cells. Over-expression of PLB1 with YEp plasmid vector in T. delbrueckii cells showed approximately 2.5-fold increase in phospholipase B activity, comparing with that in wild-type cells. Cells of plb1 delta mutant showed increased survival when cells of plb1 delta mutant and wild-type strain were incubated in water at 30 degrees C. Cells of PLB1-over-expressed strain died rapidly even during the cultivation period, indicating that phospholipase B activity may be a determinant for the survival of this yeast.

  13. Phospholipase gene expression during Paracoccidioides brasiliensis morphological transition and infection

    Directory of Open Access Journals (Sweden)

    Deyze Alencar Soares

    2013-09-01

    Full Text Available Phospholipase is an important virulence factor for pathogenic fungi. In this study, we demonstrate the following: (i the Paracoccidioides brasiliensis pld gene is preferentially expressed in mycelium cells, (ii the plb1 gene is mostly up-regulated by infection after 6 h of co-infection of MH-S cells or during BALB/c mice lung infection, (iii during lung infection, plb1, plc and pld gene expression are significantly increased 6-48 h post-infection compared to 56 days after infection, strongly suggesting that phospholipases play a role in the early events of infection, but not during the chronic stages of pulmonary infection by P. brasiliensis.

  14. Novel Lipid-Soluble Thiol-Redox Antioxidant and Heavy Metal Chelator, N,N′-bis(2-Mercaptoethyl)Isophthalamide (NBMI) and Phospholipase D-Specific Inhibitor, 5-Fluoro-2-Indolyl Des-Chlorohalopemide (FIPI) Attenuate Mercury-Induced Lipid Signaling Leading to Protection Against Cytotoxicity in Aortic Endothelial Cells

    OpenAIRE

    Secor, Jordan D.; Kotha, Sainath R.; Gurney, Travis O.; Patel, Rishi B.; Kefauver, Nicholas R.; Gupta, Niladri; Morris, Andrew J.; Haley, Boyd E.; Parinandi, Narasimham L.

    2011-01-01

    Here, we investigated thiol-redox-mediated phospholipase D (PLD) signaling as a mechanism of mercury cytotoxicity in mouse aortic endothelial cell (MAEC) in vitro model utilizing the novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N′-bis(2-mercaptoethyl)isophthalamide (NBMI) and the novel PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). Our results demonstrated (i) mercury in the form of mercury(II) chloride, methylmercury, and thimerosal induced...

  15. Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C.

    Science.gov (United States)

    Sleight, R; Kent, C

    1980-11-25

    Cultures of embryonic chick muscle cells grown in medium containing phospholipase C from Clostridium perfringens incorporated [3H]choline into lipid at a rate 3- to 5-fold higher than control cultures. To determine the mechanism by which stimulation of phosphatidylcholine synthesis occurred in phospholipase C-treated cells, activities of enzymes and levels of intermediates in the biosynthetic pathway for phosphatidylcholine were examined. Activities of choline kinase, choline phosphotransferase, glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, acylglycerol-3-phosphate acyltransferase, and phosphatidic acid phosphatase in phospholipase C-treated cells were the same or only slightly higher than in control cells. CTP:phosphocholine cytidylyltransferase, on the other hand, was 3 times as active in homogenates from phospholipase C-treated cells. Levels of phosphocholine decreased and levels of CDP-choline increased in phospholipase C-treated cells, and a calculation of the disequilibrium ratio indicated that the cytidylyltransferase reaction was not at equilibrium. The cytidylyltransferase was, thus, identified as the regulatory enzyme for choline flux in these cells. The cytidylyltransferase was located in both the cytosolic and particulate fractions from cultured muscle cells and a much larger portion of enzyme activity was associated with the particulate fraction in cells treated with phospholipase C. Sonicated preparations of total chick lipids, phosphatidylethanolamine, and phosphatidylserine greatly stimulated the cytosolic cytidylyltransferase activity but had no effect on the particulate enzyme. Neither stimulation of incorporation of [3H]choline into lipid nor activation of the cytidylyltransferase was dependent on protein synthesis. A model for the mechanism of regulation of phosphatidylcholine synthesis in embryonic chick muscle is presented.

  16. Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response.

    Directory of Open Access Journals (Sweden)

    Kazue Kanehara

    2015-09-01

    Full Text Available Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2 is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response.

  17. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

    Directory of Open Access Journals (Sweden)

    Fabian Runkel

    Full Text Available BACKGROUND: Inositol 1,4,5trisphosphate (IP(3 and diacylglycerol (DAG are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia, whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab that resulted from the insertion of an intracisternal A particle (IAP into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab alleles are phenotypically normal. However, the presence of one Plcd3(mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9olt1Pas and the Plcd3(mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.

  18. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells.

    Science.gov (United States)

    Wakita, Masahiro; Edamatsu, Hironori; Li, Mingzhen; Emi, Aki; Kitazawa, Sohei; Kataoka, Tohru

    2016-06-10

    Phospholipase Cϵ (PLCϵ), an effector of Ras and Rap small GTPases, plays a crucial role in inflammation by augmenting proinflammatory cytokine expression. This proinflammatory function of PLCϵ is implicated in its facilitative role in tumor promotion and progression during skin and colorectal carcinogenesis, although their direct link remains to be established. Moreover, the molecular mechanism underlying these functions of PLCϵ remains unknown except that PKD works downstream of PLCϵ. Here we show by employing the colitis-induced colorectal carcinogenesis model, where Apc(Min) (/+) mice are administered with dextran sulfate sodium, that PLCϵ knock-out alleviates the colitis and suppresses the following tumorigenesis concomitant with marked attenuation of proinflammatory cytokine expression. In human colon epithelial Caco2 cells, TNF-α induces sustained expression of proinflammatory molecules and sustained activation of nuclear factor-κB (NF-κB) and PKD, the late phases of which are suppressed by not only siRNA-mediated PLCϵ knockdown but also treatment with a lysophosphatidic acid (LPA) receptor antagonist. Also, LPA stimulation induces these events in an early time course, suggesting that LPA mediates TNF-α signaling in an autocrine manner. Moreover, PLCϵ knockdown results in inhibition of phosphorylation of IκB by ribosomal S6 kinase (RSK) but not by IκB kinases. Subcellular fractionation suggests that enhanced phosphorylation of a scaffolding protein, PEA15 (phosphoprotein enriched in astrocytes 15), downstream of the PLCϵ-PKD axis causes sustained cytoplasmic localization of phosphorylated RSK, thereby facilitating IκB phosphorylation in the cytoplasm. These results suggest the crucial role of the TNF-α-LPA-LPA receptor-PLCϵ-PKD-PEA15-RSK-IκB-NF-κB pathway in facilitating inflammation and inflammation-associated carcinogenesis in the colon. PMID:27053111

  19. Cytosolic phospholipase A2 in hypoxic pulmonary vasoconstriction

    OpenAIRE

    Ichinose, Fumito; Ullrich, Roman; Sapirstein, Adam; Jones, Rosemary C; Bonventre, Joseph V.; Serhan, Charles N.; Bloch, Kenneth D.; Zapol, Warren M.

    2002-01-01

    Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid (AA) from phospholipids in cell membranes. To assess the role of cPLA2 in hypoxic pulmonary vasoconstriction (HPV), we measured the increase in left lung pulmonary vascular resistance (LPVR) before and during hypoxia produced by left main stem bronchus occlusion (LMBO) in mice with and without a targeted deletion of the PLA2g4a gene that encodes cPLA2α. LMBO increased LPVR in cPLA2α+/+ mice but not in cPLA2α–/– mice. cPLA2α+/+ mice ...

  20. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.

    Science.gov (United States)

    Flores-Díaz, Marietta; Monturiol-Gross, Laura; Naylor, Claire; Alape-Girón, Alberto; Flieger, Antje

    2016-09-01

    Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases. PMID:27307578

  1. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    Science.gov (United States)

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  2. Dual Activation of Phospholipase C-ε by Rho and Ras GTPases*

    OpenAIRE

    Seifert, Jason P.; Zhou, Yixing; Hicks, Stephanie N.; Sondek, John; Harden, T. Kendall

    2008-01-01

    Phospholipase C-ε (PLC-ε) is a highly elaborated PLC required for a diverse set of signaling pathways. Here we use a combination of cellular assays and studies with purified proteins to show that activated RhoA and Ras isoforms directly engage distinct regions of PLC-ε to stimulate its phospholipase activity. Purified PLC-ε was activated in a guanine nucleotide- and concentration-dependent fashion by purified lipidated K-Ras reconstituted in PtdIns(4,5)P2-containing ph...

  3. Cellular volume regulation by anoctamin 6: Ca²⁺, phospholipase A2 and osmosensing.

    Science.gov (United States)

    Sirianant, Lalida; Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Schreiber, Rainer; Kunzelmann, Karl

    2016-02-01

    During cell swelling, Cl(-) channels are activated to lower intracellular Cl(-) concentrations and to reduce cell volume, a process termed regulatory volume decrease (RVD). We show that anoctamin 6 (ANO6; TMEM16F) produces volume-regulated anion currents and controls cell volume in four unrelated cell types. Volume regulation is compromised in freshly isolated intestinal epithelial cells from Ano6-/- mice and also in lymphocytes from a patient lacking expression of ANO6. Ca(2+) influx is activated and thus ANO6 is stimulated during cell swelling by local Ca(2+) increase probably in functional nanodomains near the plasma membrane. This leads to stimulation of phospholipase A2 (PLA2) and generation of plasma membrane lysophospholipids, which activates ANO6. Direct application of lysophospholipids also activates an anion current that is inhibited by typical ANO6 blocker. An increase in intracellular Ca(2+) supports activation of ANO6, but is not required when PLA2 is fully activated, while re-addition of arachidonic acid completely blocked ANO6. Moreover, ANO6 is activated by low intracellular Cl(-) concentrations and may therefore operate as a cellular osmosensor. High intracellular Cl(-) concentration inhibits ANO6 and activation by PLA2. Taken together, ANO6 supports volume regulation and volume activation of anion currents by action as a Cl(-) channel or by scrambling membrane phospholipids. Thereby, it may support the function of LRRC8 proteins.

  4. Requirements for anthrax toxin entry into cells

    OpenAIRE

    Ryan, Patricia Lynn

    2010-01-01

    Bacillus anthracis secretes a harmful exotoxin called anthrax toxin. Anthrax toxin has deleterious effects on several host cell types and is a significant contributor to anthrax pathogenesis. Toxin-deleted strains of B. anthracis are highly attenuated and many of the symptoms of anthrax can be replicated with anthrax toxin alone. Anthrax toxin is an AB-type toxin with two catalytic A moieties. PA, the B moiety, is responsible for receptor binding, pore formation and translocation of the catal...

  5. PROFILIN ACTIVATES BACILLUS THURINGIENSIS PHOSPHOINOSITIDE SPECIFIC PHOSPHOLIPASE C

    Directory of Open Access Journals (Sweden)

    Sandeepta Burgula

    2012-08-01

    Full Text Available Many extracellular signaling molecules including hormones, growth factors, neurotransmitters andimmunoglobulins elicit intracellular responses by activating phosphatidylinositol-specific phospholipase C (PI-PLCupon binding to their cell surface receptors. Activated PLC catalyses the hydrolysis of Phosphotidylinositol 4,5-bisphosphate (PIP2 to generate DAG and IP3 , which act as signaling molecules that control various cellular processes.Exploring the mechanism of regulation of PLC activity may lead to understanding various signaling events thatregulate cell growth and differentiation. One of the dramatic effects of profilin is inhibition of PIP2 hydrolysis by PLC-γ in eukaryotic cells. In the present study, the effect of profilin on Phosphotidylinositol specific phospholipase C (PI-PLC purified from Bacillus thuringiensis (Bt was examined. Assay of PI-PLC activity indicated that Bovine profilinactivated the hydrolysis of phosphotidylinositol (PI by BtPI-PLC in a concentration dependent manner under in vitroconditions. A 250 % increase in activity was noted in the presence of profilin but not in presence of phosphoprofilin. Inthe presence of profilin more proteins are observed in the soluble fraction. In conclusion it can be stated that thatprofilin activates bacterial PLC activity towards PI hydrolysis

  6. A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids

    DEFF Research Database (Denmark)

    Petersen, G.; Hansen, Harald S.; Chapman, K.D.

    2000-01-01

    Activation of phospholipase D (PLD) is involved in a number of signal transduction pathways in eukaryotic cells. The most common method for determination of PLD activity in vitro involves incubation with a radiolabeled substrate and lipid extraction followed by thin-layer chromatography in order...

  7. Bactericidal properties of group IIA and group V phospholipases A2

    NARCIS (Netherlands)

    Grönroos, J.O.; Laine, V.J.O.; Janssen, M.J.W.; Egmond, M.R.; Nevalainen, T.J.

    2010-01-01

    Group V phospholipase A2 (PLA2) is a recently characterized 14-kDa secretory PLA2 of mammalian heart and macrophage-derived cells. Group IIA PLA2, which is structurally close to group V PLA2, has been shown to kill Gram-positive bacteria in vitro and to prevent symptoms of Gram-positive infection in

  8. Reassessing the role of phospholipase D in the Arabidopsis wounding response

    NARCIS (Netherlands)

    B.O.R. Bargmann; A.M. Laxalt; B. ter Riet; C. Testerink; E. Merquiol; A. Mosblech; A. Leon-Reyes; C.M.J. Pieterse; M.A. Haring; I. Heilmann; D. Bartels; T. Munnik

    2009-01-01

    Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDα1 has been proposed to be activated in intact cells, and the phosph

  9. Reassessing the role of phospholipase D in the Arabidopsis wounding response

    NARCIS (Netherlands)

    Bargmann, Bastiaan O.R.; Laxalt, Ana M.; Riet, Bas ter; Testerink, Christa; Merquiol, Emmanuelle; Mosblech, Alina; Leon Reyes, H.A.; Pieterse, C.M.J.; Haring, Michel A.; Heilmann, Ingo; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDa1 has been proposed to be activated in intact cells, and the phosph

  10. The role of phosphatidylinositol-specific phospholipase-C in plant defense signaling

    NARCIS (Netherlands)

    Abd-El-Haliem, A.M.

    2014-01-01

    Plant innate immunity requires immune receptors that sense the presence of microbes and activate defense reactions. Phosphatidylinositol-phospholipase C (PI-PLC) activity was previously shown to be important for several types of plant defenses although its signaling mechanism is not fully understood

  11. Reminiscence of phospholipase B in Penicillium notatum

    OpenAIRE

    SAITO, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospho...

  12. Imidazoline NNC77-0074 stimulates Ca2+-evoked exocytosis in INS-1E cells by a phospholipase A2-dependent mechanism

    DEFF Research Database (Denmark)

    Olsen, Hervør L; Nørby, Peder L; Høy, Marianne;

    2003-01-01

    We have previously demonstrated that the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)-pyridine (NNC77-0074) increases insulin secretion from pancreatic beta-cells by stimulation of Ca(2+)-dependent exocytosis. Using capacitance measurements, we now show...

  13. Soybean phospholipase D activity determination. A comparison of two methods

    Directory of Open Access Journals (Sweden)

    Ré, E.

    2007-09-01

    Full Text Available Due to a discrepancy between previously published results, two methods to determine the soybean phospholipase D activity were evaluated. One method is based on the extraction of the enzyme from whole soybean flour, quantifying the enzyme activity on the extract. The other method quantifies the enzymatic activity on whole soybean flour without enzyme extraction. In the extraction-based-method, both the extraction time and the number of extractions were optimized. The highest phospholipase D activity values were obtained from the method without enzyme extraction. This method is less complex, requires less running-time and the conditions of the medium in which phospholipase D acts resemble the conditions found in the oil industrySe evaluaron dos métodos para determinar la actividad de la fosfolipasa D en soja debido a que existe discrepancia entre los resultados publicados. Un método se basa en la extracción de la enzima de la harina resultante de la molienda del grano de soja entero, cuantificando la actividad sobre el extracto. En el otro método, la cuantificación se realiza sobre la harina del grano entero molido, sin extraer la enzima. En el método de extracción se optimizaron tanto el tiempo como el número de extracciones. Los mayores valores de actividad de la fosfolipasa D se obtuvieron por el método sin extracción de la enzima. Este método es más simple, exige menos tiempo de ejecución y las condiciones del medio en que actúa la fosfolipasa D se asemejan a las condiciones encontradas en la industria aceitera.

  14. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Grazia M. Borrelli

    2015-09-01

    Full Text Available Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  15. Research progress in phospholipase%磷脂酶研究进展

    Institute of Scientific and Technical Information of China (English)

    梁丽; 常明; 刘睿杰; 刘元法; 王兴国; 金青哲

    2013-01-01

    The phospholipases.including phospholipase A1,A2,B,C and D.that are a complex and crucially important group of enzymes that exit in organism and can specifically hydrolyze the intramolecular ester bond of p-hosphoglycerides releasing different products. Thus,phospholipases are widely used in phosphoglycerides transformation. The extraction of phospholipases from animal organs by the traditional means cannot meet the current industry requirements,however,the study of microbial source phospholipases and the rapid development of gene engineering not only broaden the sources of them but also improve their properties effectively. The paper reviewed the progress in the screening of the high yield strain and phospholipases molecular modification and transformation.%磷脂酶是在生物体内存在的可以水解甘油磷脂的一类酶,其中主要包括磷脂酶A1、AC、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物,被广泛用于甘油磷脂的改造.依靠传统手段从动物脏器中提取的磷脂酶已经不能满足目前生产的需求,而微生物来源磷脂酶的筛选及其基因工程发展迅速,显著拓宽了磷脂酶的来源,同时又有效地改善了磷脂酶的性质本文综述了近年磷脂酶高产微生物菌株的选育、磷脂酶的分子改造以及修饰方面取得的进展.

  16. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  17. Overexpression of phospholipase cβ1 improves glucose-stimulated insulin secretion in INS cells%磷脂酶Cβ1过表达对葡萄糖刺激胰岛素分泌的影响

    Institute of Scientific and Technical Information of China (English)

    周恒宇; 邓华聪; 郑宏庭; 蒋文; 南静; 陈丹燕

    2009-01-01

    Objective To investigate the role of phospholipase Cβ1 (PLCβ1) in the glucose-stimulated mmoL/L was used to treat INS-1 cells respectively for 40 min. The content of insulin in the INS-1 supernatant was detected for the optimal concentration of glucose. Then the decided concentration was used to the cells for pression vector PCMV-HA-PLCβ1 was constrcted and then transiently transfeeted into INS-1 cells under the op-lin ELISA kit was used to detect the content of insulin in the INS-1 supernatant. Results Exposed to INS-1 cells to 40 mmoL/L glucose for 60 min, the content of insulin secretion reached the maximum and RT-PCR indi-cated the expression of PLCβ1 was raised. Compared to the control [(0.740±0.091) ng/ml], the insulin's content in the supernatant of INS-1 cells with overexpressed PLCβ1 was raised [(1.906±0.080) ng/ml](P <0.01). Conclusion Transient overexpression of PLCβ1 in INS-1 cells improves the insulin secretion, so PLCβ1 probably participates in the signal transduction pathway of GSIS in INS-1 cells.%目的 观察过表达磷脂酶Cβ1(phospholipaae C β1,PLCβ1)对葡萄糖刺激胰岛素分泌(glucose-stimulated insulin secretion,GSIS)的影响.方法 ①设定葡萄糖浓度梯度:10、20、40、80、100 mmol/L,分别刺激INS-1细胞40 min,检测细胞培养上清液中胰岛素含量,确定最适的葡萄糖刺激浓度;设定时间梯度:20、40、60、80、120 min,以最适葡萄糖浓度刺激,检测胰岛素含量,确定最适的刺激时间.②以最适葡萄糖浓度刺激INS-1细胞适当时间后,RT-PCR检测PLCβ1表达变化.③构建PLCβ1真核表达载体(PCMV-HA-PLCβ1),转染INS-1细胞,Western blot检测INS-1细胞中PLCβ1蛋白的表达.④收集转染后INS-1细胞培养上清液,检测胰岛素含量.结果 用40 mmol/L葡萄糖刺激60 min,INS-1细胞的胰岛素分泌量最大;RT-PCR观察刺激后PLCβ1表达显著升高;过表达PLCβ1的INS-1细胞培养上清液中胰岛素含量为(1.906±0.080)ng/ml,

  18. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death

    Institute of Scientific and Technical Information of China (English)

    Shan Wang; Zhen Guo; Peng Xia; Tingting Liu; Jufang Wang; Shan Li; Lihua Sun; Jianxin Lu; Qian Wen; Mingqian Zhou; Li Ma; Xia Ding; Xiaoning Wang; Xuebiao Yao

    2009-01-01

    Cytotoxic lymphocytes are key players in the orchestration of immune response and elimination of defective cells. We have previously reported that natural killer (NK) cells enter target tumor cells, leading to either target cell death or self-destruction within tumor cells. However, it has remained elusive as to the fate of NK cells after internaliza-tion and whether the heterotypic cell-in-cell process is different from that of the homotypic cell-in-cell event recently named entosis. Here, we show that NK cells undergo a cell-in-cell process with the ultimate fate of apoptosis within tumor cells and reveal that the internalization process requires the actin cytoskeletal regulator, ezrin. To visualize how NK cells enter into tumor cells, we carried out real-time dual color imaging analyses of NK cell internalization into tumor cells. Surprisingly, most NK cells commit to programmed cell death after their entry into tumor cells, which is distinctively different from entosis observed in the homotypic cell-in-cell process. The apoptotic cell death of the internalized NK cells was evident by activation of caspase 3 and DNA fragmentation. Furthermore, NK cell death after internalization is attenuated by the caspase inhibitor, Z-VAD-FMK, confirming apoptosis as the mode of NK cell death within tumor cells. To determine protein factors essential for the entry of NK cells into tumor cells, we car-ried out siRNA-based knockdown analysis and discovered a critical role of ezrin in NK cell internalization. Impor-tantly, PKA-mediated phosphorylation of ezrin promotes the NK cell internalization process. Our findings suggest a novel regulatory mechanism by which ezrin governs NK cell internalization into tumor cells.

  19. Neuronal damage by secretory phospholipase A2

    DEFF Research Database (Denmark)

    Rodriguez de Turco, Elena B; Diemer, Nils H; Bazan, Nicolas G;

    2003-01-01

    Activation of cytosolic phospholipase A(2) (cPLA(2)) is an early event in brain injury, which leads to the formation and accumulation of bioactive lipids: platelet-activating factor (PAF), free arachidonic acid, and eicosanoids. A cross-talk between secretory PLA(2) (sPLA(2)) and cPLA(2) in neura...

  20. Auxin requirements of sycamore cells in suspension culture.

    Science.gov (United States)

    Moloney, M M; Hall, J F; Robinson, G M; Elliott, M C

    1983-04-01

    Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this ;auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 10(6) cells) on day 2 followed by a decline to 45 nanograms per 10(6) cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 10(6) cells) rises slowly to a peak of 1.4 nanograms per 10(6) cells by day 9 then decreases rapidly to 0.2 nanograms per 10(6) cells by day 15 (early declining phase) and 0.08 nanograms per 10(6) cells by day 23 (early stationary phase).

  1. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  2. 植物细胞中磷酸肌醇和磷脂酶C介导的信号转导%Signal Transduction by Phosphoinositides and Phospholipase C in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    李莉; 井文; 章文华

    2015-01-01

    磷酸肌醇(PIs)是磷脂酰肌醇(PtdIns)单、双、三磷酸化产物的总称。磷脂酶C (PLC)水解磷脂酰肌醇-4,5-二磷酸[Pt-dIns(4,5)P2]产生二酰甘油(DAG)和肌醇三磷酸(InsP3),此双信使系统的靶蛋白分别是蛋白激酶C (PKC)和InsP3受体(钙通道蛋白)。此经典的信号途径是从动物细胞中发现的。到目前为止,植物中没有发现PKC或InsP3受体,但有其独特的磷酸肌醇信号组分和途径。与动物不同,植物PI含量最高的是磷脂酰肌醇-4-磷酸(PtdIns4P),最多可达PtdIns(4,5)P2的100倍;而DAG磷酸化产物磷脂酸(PA)和InsP3磷酸化产物肌醇六磷酸(InsP6)也被证明是植物中重要的信号分子。本文通过比较动、植物细胞中PI和PLC信号途径的差异,综述了植物细胞中PI和PLC途径的独特作用和调控机理。%Phosphoinositides (PIs) are mono-, bis-, or tris-phosphorylated derivatives of phosphatidylinositol (PtdIns). Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] can be hydrolyzed by phospholipase C (PLC) to produce diacylglycerol (DAG) and inositol trisphosphates (InsP3). In animal cells, DAG and InsP3 are important second messengers that activate protein kinase C (PKC) and InsP3 receptor (Ca2+ channel), respectively. How-ever, neither PKC nor InsP3 receptor has been found in plant cells. Instead, there are unique phosphoinositide signaling pathways in plant cells. In plants, PtdIns4P is the most abundant PI, and the ratio of phosphatidyli-nositol 4-phosphate (PtdIns4P) to PtdIns(4,5)P2 is as high as 100 to 1. The phosphorylated products of DAG and InsP3, phosphatidic acid (PA) and inositol hexakisphosphate (InsP6), respectively, are as signaling mole-cules in plants. This paper compared the PI and PLC signalings between plant and animal cells, and summa-rized the unique mechanism of PI and PLC pathways in plant cells.

  3. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Feveile Young, Jette; Oksbjerg, Niels;

    2003-01-01

    C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2......C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2...

  4. Role of beta-endorphin on phospholipase production in Malassezia pachydermatis in dogs: new insights into the pathogenesis of this yeast.

    Science.gov (United States)

    Cafarchia, C; Dell'Aquila, M E; Capelli, G; Minoia, P; Otranto, D

    2007-02-01

    Malassezia spp. are lipophilic yeasts that are part of the normal cutaneous microflora and sometimes act as pathogens causing dermatitis. This study investigated the interactions occurring between beta-endorphin and phospholipase activity in isolates of M. pachydermatis in dogs presenting cutaneous lesions. Phospholipase production was evaluated and quantified on 144 isolates suspended in Dixon broth to which different beta-endorphin concentrations (from 600 to 0.6 pM) were added. The isolates were divided into three groups: group A comprised isolates from lesional skin of dogs with dermatitis confined to one site, group B consisted of isolates from the healthy skin of the same dogs with localized lesions, and group C was made up of isolates from assorted skin sites of healthy dogs. A statistically higher phospholipase activity than that of the controls was recorded in group B at all tested beta-endorphin concentrations. In groups A (Pz=0.62) and C (Pz=0.62) phospholipase activity was statistically higher than the controls only at a concentration of 600 pM. This study suggests that beta-endorphin plays an important role in the production of phospholipase in M. pachydermatis isolates and provides evidence that beta-endorphin concentrations affect the number but not the Pz value of phospholipase-producing isolates. B-endorphin concentrations may play a relevant role in inducing M. pachydermatis cell differentiation towards the production or non-production of phospholipase. PMID:17325939

  5. A role for phospholipase D3 in myotube formation.

    Directory of Open Access Journals (Sweden)

    Mary Osisami

    Full Text Available Phospholipase D3 (PLD3 is a non-classical, poorly characterized member of the PLD superfamily of signaling enzymes. PLD3 is a type II glycoprotein associated with the endoplasmic reticulum, is expressed in a wide range of tissues and cells, and undergoes dramatic upregulation in neurons and muscle cells during differentiation. Using an in vitro skeletal muscle differentiation system, we define the ER-tethering mechanism and report that increased PLD3 expression enhances myotube formation, whereas a putatively dominant-negative PLD3 mutant isoform reduces myotube formation. ER stress, which also enhances myotube formation, is shown here to increase PLD3 expression levels. PLD3 protein was observed to localize to a restricted set of subcellular membrane sites in myotubes that may derive from or constitute a subdomain of the endoplasmic reticulum. These findings suggest that PLD3 plays a role in myogenesis during myotube formation, potentially in the events surrounding ER reorganization.

  6. Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C.

    OpenAIRE

    Disatnik, M H; Hernandez-Sotomayor, S M; G. Jones; Carpenter, G.; Mochly-Rosen, D

    1994-01-01

    Phospholipase C-gamma 1 (PLC-gamma 1; EC 3.1.4.11) hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol 1,4,5-trisphosphate and is activated in response to growth factor stimulation and tyrosine phosphorylation. Concomitantly, the enzyme translocates from the cytosol to the particulate cell fraction. A similar process of activation-induced translocation from the cytosol to the cell particulate fraction has also been described for protein kinase C (PKC). We ...

  7. Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C beta 1.

    OpenAIRE

    Pai, J K; Dobek, E A; Bishop, W R

    1991-01-01

    Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of pho...

  8. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Irina Borodina

    Full Text Available Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A. All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST. Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy.

  9. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane spanning proteins

    OpenAIRE

    Keith, Dove J; Eshleman, Amy J; Janowsky, Aaron

    2010-01-01

    Phospholipase A2 releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A2 stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [3H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic a...

  10. Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: CELL SIGNALING RECEPTORS, GPI STRUCTURAL REQUIREMENT, AND REGULATION OF GPI ACTIVITY*

    Science.gov (United States)

    Krishnegowda, Gowdahalli; Hajjar, Adeline M.; Zhu, Jianzhong; Douglass, Erika J.; Uematsu, Satoshi; Akira, Shizuo; Woods, Amina S.; Gowda, D. Channe

    2016-01-01

    SUMMARY The proinflammatory cytokines produced by the innate immune system in response to pathogenic infection protect the host by controlling microbial growth. However, excessive proinflammatory responses could disrupt the host’s vital physiological functions, causing severe pathological conditions. In the case of Plasmodium falciparum, the protozoan parasite that causes fatal malaria in man, the glycosylphosphatidylinositol (GPI) anchors are thought to be the major factors that contribute to malaria pathogenesis through their ability to induce proinflammatory responses. In this study, we identified the receptors for P. falciparum GPI-induced cell signaling that leads to proinflammatory responses, and studied the GPI structure-activity relationship. The data show that GPI-signaling is mediated mainly through recognition by TLR2 and to a lesser extent by TLR4. The activity of sn-2 lyso GPIs is comparable to that of the intact GPIs, whereas the activity of Man3-GPIs is about 80% that of the intact GPIs. The GPIs with three (intact GPIs and Man3-GPIs) and two fatty acids (sn-2 lyso GPIs) appear to differ considerably in the requirement of the auxiliary receptor, TLR1 or TLR6, for recognition by TLR2. The former are preferentially recognized by TLR2/TLR1, whereas the latter are favored by TLR2/TLR6. However, the signaling pathways initiated by all three GPI types are similar, involving the MyD88-dependent activation of ERK, JNK and p38, and NF-κB signaling pathways. The signaling molecules of these pathways differentially contribute to the production of various cytokines and nitric oxide (Zhu, J., et al. (2004) J. Biol. Chem., accompanying manuscript). Our data also show that GPIs are degraded by the macrophage surface phospholipases, predominantly into inactive species, indicating that the host can regulate GPI activity, at least in part, by this mechanism. These results imply that macrophage surface phospholipases play important roles in the GPI-induced innate

  11. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  12. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  13. Synergistic Effects of Secretory Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus with Cancer Chemotherapeutic Agents

    OpenAIRE

    Jennifer Nelson; Kristen Barlow; D. Olin Beck; Amanda Berbert; Nathan Eshenroder; Lyndee Francom; Mark Pruitt; Kina Thompson; Kyle Thompson; Brian Thurber; Celestine H.-Y. Yeung; Allan M. Judd; Bell, John D.

    2013-01-01

    Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antine...

  14. Platelet-derived growth factor increases the in vivo activity of phospholipase C-gamma 1 and phospholipase C-gamma 2.

    OpenAIRE

    Sultzman, L; Ellis, C; Lin, L. L.; T. Pawson; Knopf, J. (Prof. Dr. )

    1991-01-01

    Upon binding to its cell surface receptor, platelet-derived growth factor (PDGF) causes the tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) and stimulates the production of diacylglycerol and inositol 1,4,5-triphosphate. We showed that following stimulation by PDGF, rat-2 cells overexpressing PLC-gamma 1 display an increase in the levels of both tyrosine-phosphorylated PLC-gamma 1 and inositol phosphates compared with the parental rat-2 cells. This increased responsiveness t...

  15. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim;

    2011-01-01

    and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...... on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H...

  16. Reliable in vitro studies require appropriate ovarian cancer cell lines.

    Science.gov (United States)

    Jacob, Francis; Nixdorf, Sheri; Hacker, Neville F; Heinzelmann-Schwarz, Viola A

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  17. Secretory Phospholipase A2-IIA and Cardiovascular Disease

    DEFF Research Database (Denmark)

    Holmes, Michael V; Simon, Tabassome; Exeter, Holly J;

    2013-01-01

    This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.......This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease....

  18. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators

    OpenAIRE

    Miki, Yoshimi; Yamamoto, Kei(Department of Physics, Niigata University, Niigata 950-2181, Japan); Taketomi, Yoshitaka; Sato, Hiroyasu; Shimo, Kanako; Kobayashi, Tetsuyuki; Ishikawa, Yukio; Ishii, Toshiharu; NAKANISHI, Hiroki; Ikeda, Kazutaka; Taguchi, Ryo; Kabashima, Kenji; Arita, Makoto; Arai, Hiroyuki; Lambeau, Gérard

    2013-01-01

    Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro...

  19. Immunocytochemical localization of phospholipase C-gamma in rat embryo fibroblasts.

    OpenAIRE

    McBride, K; Rhee, S G; Jaken, S

    1991-01-01

    Rat embryo fibroblasts (REF52) exhibit a distinctive, transformation-sensitive distribution of alpha-protein kinase C (alpha-PKC). Receptor-mediated activation of phospholipase C (PLC)-gamma generates diacylglycerol, the major cellular activator of PKC. Immunofluorescence techniques were used to investigate the subcellular localization of two PLC isozymes (PLC-gamma and PLC-delta) in normal and simian virus 40-transformed REF52 cells to determine (i) if PLC colocalizes with alpha-PKC and (ii)...

  20. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration

    OpenAIRE

    Teng, Shuzhi; Stegner, David; Qin CHEN; Hongu, Tsunaki; Hasegawa, Hiroshi; Li CHEN; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A.; Huang, Ping

    2015-01-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and tha...

  1. Evidence that phospholipase D mediates ADP ribosylation factor- dependent formation of Golgi coated vesicles

    OpenAIRE

    1996-01-01

    Formation of coatomer-coated vesicles from Golgi-enriched membranes requires the activation of a small GTP-binding protein, ADP ribosylation factor (ARF). ARF is also an efficacious activator of phospholipase D (PLD), an activity that is relatively abundant on Golgi- enriched membranes. It has been proposed that ARF, which is recruited onto membranes from cytosolic pools, acts directly to promote coatomer binding and is in a 3:1 stoichiometry with coatomer on coated vesicles. We present evide...

  2. Requirements for Peptide-induced T Cell Receptor Downregulation on Naive CD8+ T Cells

    OpenAIRE

    Cai, Zeling; Kishimoto, Hidehiro; Brunmark, Anders; Jackson, Michael R.; Peterson, Per A.; Sprent, Jonathan

    1997-01-01

    The requirements for inducing downregulation of α/β T cell receptor (TCR) molecules on naive major histocompatibility complex class I–restricted T cells was investigated with 2C TCR transgenic mice and defined peptides as antigen. Confirming previous results, activation of 2C T cells in response to specific peptides required CD8 expression on the responder cells and was heavily dependent upon costimulation provided by either B7-1 or ICAM-1 on antigen-presenting cells (APC). These stringent re...

  3. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  4. Evidence for the presence of phospholipase A1 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The cause of the autolysis of pressed Baker's yeast was examined. Softened pressed yeast cells (Saccharomyces cerevisiae), after about 10 days of storage at 30 deg C, was subjected to a series of extraction: the extraction with acetone was made to the supernatant after the centrifugation of the water-suspended yeast cell at 1000 x g for 10 min, and the obtained precipitation was mechanically (with a Potter teflon homogenizer) homogenized. After removing the residues by centrifugation, the protein was salted out with ammonium sulfate up to 0.6 saturation. An enzyme, phospholipase A1 was thus obtained from the softened yeast cells. The activity of the enzyme thus obtained was assayed using L-α-phosphatidylethanolamine as the substrate. It was previously found that 14C-labelled free fatty acids liberated from phosphatidylcholine (PC) accumulated in the softened yeast packed cake. The enzyme was identified as phospholipase A1 having the optimal pH at around 8. Another evidence, obtained previously, together with the present finding suggest that the softening of the pressed Baker's yeast may be caused by the degradation of phospholipid by the combined action of phospholipase A1 and lysophospholipase L2. (Yamashita, S.)

  5. Synthesis of tocopheryl succinate phospholipid conjugates and monitoring of phospholipase A2 activity

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Viart, Helene Marie-France; Melander, Fredrik;

    2012-01-01

    Tocopheryl succinates (TOSs) are, in contrast to tocopherols, highly cytotoxic against many cancer cells. In this study the enzyme activity of secretory phospholipase A2 towards various succinate-phospholipid conjugates has been investigated. The synthesis of six novel phospholipids is described,...

  6. Diverse Functions of Secretory Phospholipases A2

    OpenAIRE

    Preetha Shridas; Webb, Nancy R.

    2014-01-01

    Phospholipase A2 enzymes (PLA2s) catalyze the hydrolysis of glycerophospholipids at their sn-2 position releasing free fatty acids and lysophospholipids. Mammalian PLA2s are classified into several categories of which important groups include secreted PLA2s (sPLA2s) and cytosolic PLA2s (cPLA2s) that are calcium-dependent for their catalytic activity and calcium-independent cytosolic PLA2s (iPLA2s). Platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA2s, and adipose-specific ...

  7. "Self" and "non-self" in the control of phytoalexin biosynthesis: plant phospholipases A2 with alkaloid-specific molecular fingerprints.

    Science.gov (United States)

    Heinze, Michael; Brandt, Wolfgang; Marillonnet, Sylvestre; Roos, Werner

    2015-02-01

    The overproduction of specialized metabolites requires plants to manage the inherent burdens, including the risk of self-intoxication. We present a control mechanism that stops the expression of phytoalexin biosynthetic enzymes by blocking the antecedent signal transduction cascade. Cultured cells of Eschscholzia californica (Papaveraceae) and Catharanthus roseus (Apocynaceae) overproduce benzophenanthridine alkaloids and monoterpenoid indole alkaloids, respectively, in response to microbial elicitors. In both plants, an elicitor-responsive phospholipase A2 (PLA2) at the plasma membrane generates signal molecules that initiate the induction of biosynthetic enzymes. The final alkaloids produced in the respective plant inhibit the respective PLA, a negative feedback that prevents continuous overexpression. The selective inhibition by alkaloids from the class produced in the "self" plant could be transferred to leaves of Nicotiana benthamiana via recombinant expression of PLA2. The 3D homology model of each PLA2 displays a binding pocket that specifically accommodates alkaloids of the class produced by the same plant, but not of the other class; for example, C. roseus PLA2 only accommodates C. roseus alkaloids. The interaction energies of docked alkaloids correlate with their selective inhibition of PLA2 activity. The existence in two evolutionary distant plants of phospholipases A2 that discriminate "self-made" from "foreign" alkaloids reveals molecular fingerprints left in signal enzymes during the evolution of species-specific, cytotoxic phytoalexins. PMID:25670767

  8. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    International Nuclear Information System (INIS)

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A1 and A2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field

  9. Reminiscence of phospholipase B in Penicillium notatum.

    Science.gov (United States)

    Saito, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospholipids). Further, it also has a monoacyllipase activity. The purified PLB is a glycoprotein with m.w. of 91,300. The sugar moiety is M9 only and the protein moiety consists of 603 amino acids. PLB, different from PLA2, shows other enzymatic activities, such as transacylase, lipase and acylesterase. PLB activity is influenced by various substances, e.g. detergents, deoxycholate, diethylether, Fe(3+), and endogenous protease. Therefore, PLB might have broader roles than PLA2 in vivo. The database shows an extensive sequence similarity between P. notatum PLB and fungal PLB, cPLA2 and patatin, suggesting a homologous relationship. The catalytic triad of cPLA2, Ser, Asp and Arg, is also present in P. notatum PLB. Other related PLBs, PLB/Lipases are discussed. PMID:25391318

  10. The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis.

    Science.gov (United States)

    Gardiner, John; Collings, David A; Harper, John D I; Marc, Jan

    2003-07-01

    The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed seeds and young seedlings of Arabidopsis to 1-butanol, a specific inhibitor of PLD-dependent production of the signalling molecule phosphatidic acid (PA). When added to agar growth media, 0.2% 1-butanol strongly inhibited the emergence of the radicle and cotyledons, while 0.4% 1-butanol effectively blocked germination. When normal seedlings were transferred onto media containing 0.2% and 0.4% 1-butanol, the inhibitor retarded root growth by about 40% and 90%, respectively, by reducing cell elongation. Inhibited plants showed significant swelling in the root elongation zone, bulbous or branched root hairs, and modified cotyledon morphology. Confocal immunofluorescence microscopy of root tips revealed that 1-butanol disrupted the organisation of interphase cortical microtubules. Butanol isomers that do not inhibit PLD-dependent PA production, 2- and 3-butanol, had no effect on seed germination, seedling growth, or microtubule organisation. We propose that production of PA by PLD may be required for normal microtubule organisation and hence normal growth in Arabidopsis.

  11. Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium.

    OpenAIRE

    Wahl, M I; Nishibe, S; Suh, P G; Rhee, S G; Carpenter, G.

    1989-01-01

    Epidermal growth factor (EGF) rapidly stimulates the formation of inositol 1,4,5-trisphosphate in a variety of cell types. Previously we have found that in intact cells stimulation of phospholipase C (PLC) activity by EGF is correlated with the retention of increased amounts of PLC activity by a phosphotyrosine immunoaffinity matrix, suggesting that the EGF-receptor tyrosine kinase phosphorylates PLC. We now define parameters of the mechanism by which EGF addition to A-431 cells stimulates ph...

  12. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

    Science.gov (United States)

    Aurass, Philipp; Oates, Clare V.; Tate, Edward W.; Hartland, Elizabeth L.; Flieger, Antje

    2015-01-01

    Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo. PMID:26216420

  13. Materials requirements for high-efficiency silicon solar cells

    Science.gov (United States)

    Wolf, M.

    1985-01-01

    To achieve higher Si solar cell efficiencies (greater than 20%), better single-crystal Si must be produced. It is believed possible to bring Cz (Czochralski) Si up to the same low recombination level as FZ (Float Zone) Si. It is also desirable that solar cell Si meet the following requirements: long minority carrier lifetime (0.2 ohm-cm p-type with tau less than 500 microsec); repeatedly uniform lifetime (not spread from 50 to 1000 microsec); a lifetime that does not decrease during normal device processing; a silicon wafer sheet that is flat and stays throughout normal device processing; uniform and reasonable mechanical strength; and, manufacture at low cost (less than $50/sq m).

  14. Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Rafael P Vázquez-Manrique

    2008-03-01

    Full Text Available Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP(3-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP(3 production is stimulated is unknown. IP(3 is produced by the action of phospholipase C (PLC. We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-epsilon produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753 embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP(3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-gamma and EGL-8/PLC-beta can compensate for reduced PLC-1 activity. Our work places PLC-epsilon into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-epsilon.

  15. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP2 but not plasma membrane-localized PIP2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has anti-cancer activity in several colon cancers. 1α,25(OH)2D3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH)2D3-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH)2D3. These results indicate that PIPKIIβ-mediated PI(4,5)P2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  16. Primary phospholipase C and brain disorders.

    Science.gov (United States)

    Yang, Yong Ryoul; Kang, Du-Seock; Lee, Cheol; Seok, Heon; Follo, Matilde Y; Cocco, Lucio; Suh, Pann-Ghill

    2016-05-01

    In the brain, the primary phospholipase C (PLC) proteins, PLCβ, and PLCγ, are activated primarily by neurotransmitters, neurotrophic factors, and hormones through G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Among the primary PLC isozymes, PLCβ1, PLCβ4, and PLCγ1 are highly expressed and differentially distributed, suggesting a specific role for each PLC subtype in different regions of the brain. Primary PLCs control neuronal activity, which is important for synapse function and development. In addition, dysregulation of primary PLC signaling is linked to several brain disorders including epilepsy, schizophrenia, bipolar disorder, Huntington's disease, depression and Alzheimer's disease. In this review, we included current knowledge regarding the roles of primary PLC isozymes in brain disorders. PMID:26639088

  17. Oligomerization Inhibits Legionella pneumophila PlaB Phospholipase A Activity*

    OpenAIRE

    Kuhle, Katja; Krausze, Joern; Curth, Ute; Rössle, Manfred; Heuner, Klaus; Lang, Christina; Flieger, Antje

    2014-01-01

    The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity withi...

  18. Association between phospholipase production by Malassezia pachydermatis and skin lesions.

    Science.gov (United States)

    Cafarchia, C; Otranto, D

    2004-10-01

    An evaluation was made of the phospholipase activities of Malassezia pachydermatis strains isolated from healthy dogs versus those from dogs with dermatitis and otitis. A high percentage of strains of M. pachydermatis obtained from lesion sites (93.9%) produced phospholipase, compared to the strains obtained from healthy skin of the same dog with localized lesions (41.4%) and healthy dogs (10.6%). PMID:15472366

  19. Association between Phospholipase Production by Malassezia pachydermatis and Skin Lesions

    OpenAIRE

    Cafarchia, C.; OTRANTO, D.

    2004-01-01

    An evaluation was made of the phospholipase activities of Malassezia pachydermatis strains isolated from healthy dogs versus those from dogs with dermatitis and otitis. A high percentage of strains of M. pachydermatis obtained from lesion sites (93.9%) produced phospholipase, compared to the strains obtained from healthy skin of the same dog with localized lesions (41.4%) and healthy dogs (10.6%).

  20. Structure, function, and control of phosphoinositide-specific phospholipase C.

    Science.gov (United States)

    Rebecchi, M J; Pentyala, S N

    2000-10-01

    Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function. PMID:11015615

  1. Protein kinase Cζ regulates phospholipase D activity in rat-1 fibroblasts expressing the α1A adrenergic receptor

    Directory of Open Access Journals (Sweden)

    Bourgoin Sylvain G

    2004-01-01

    Full Text Available Abstract Background Phenylephrine (PHE, an α1 adrenergic receptor agonist, increases phospholipase D (PLD activity, independent of classical and novel protein kinase C (PKC isoforms, in rat-1 fibroblasts expressing α1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCζ to PLD activation in response to PHE in these cells. Results PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCζ translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCζ activity was reduced at 2 and 5 min and returned to a sub-basal level within 10–15 min. Ectopic expression of kinase-dead PKCζ, but not constitutively active PKCζ, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCζ reduced basal PKCζ activity and abolished PHE-induced PLD activation. Conclusion α1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCζ; Our data also suggest that catalytic activation of PKCζ is not required for PLD stimulation.

  2. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches.

    Science.gov (United States)

    Reboldi, Andrea; Arnon, Tal I; Rodda, Lauren B; Atakilit, Amha; Sheppard, Dean; Cyster, Jason G

    2016-05-13

    Immunoglobulin A (IgA) induction primarily occurs in intestinal Peyer's patches (PPs). However, the cellular interactions necessary for IgA class switching are poorly defined. Here we show that in mice, activated B cells use the chemokine receptor CCR6 to access the subepithelial dome (SED) of PPs. There, B cells undergo prolonged interactions with SED dendritic cells (DCs). PP IgA class switching requires innate lymphoid cells, which promote lymphotoxin-β receptor (LTβR)-dependent maintenance of DCs. PP DCs augment IgA production by integrin αvβ8-mediated activation of transforming growth factor-β (TGFβ). In mice where B cells cannot access the SED, IgA responses against oral antigen and gut commensals are impaired. These studies establish the PP SED as a niche supporting DC-B cell interactions needed for TGFβ activation and induction of mucosal IgA responses. PMID:27174992

  3. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  4. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  5. CONTROL OF ANGIOGENESIS BY INHIBITOR OF PHOSPHOLIPASE A2

    Institute of Scientific and Technical Information of China (English)

    Chen Wenming(陈文明); Li Lihong(李利红); Zhu Jiazhi(朱嘉芷); Liu Jinwei(刘晋玮); Soria Jeannette; Soria Claudine; Yedgar Saul

    2004-01-01

    Objective To investigate the potential effects of angiogenic process by secretory phospholipase A2(sPLA2) inhibitor-HyPE (linking N-derivatized phosphatidyl-ethanolamine to hyaluronic acid) on human bone marrow endothelial cell line (HBME-1). Methods In order to examine the suppressing effects of HyPE on HBME-1 proliferation, migration, and capillary-like tube formation, HBME-1 were activated by angiogenic factor, specifically by basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), and oncostatin M (OSM) (at a final concentration of 25, 20, and 2.5 ng/mL, respectively), then HBME-1 proliferation, migration, and tube formation were studied in the absence or presence of HyPE. HBME-1 tube formation was specially analyzed in fibrin gel. Results HyPE effectively inhibited HBME-1 proliferation and migration as a dose-dependent manner,whatever HBME-1 were grown in the control culture medium or stimulated with b-FGF, VEGF, or OSM.In fibrin, the formations of HBME-1 derived tube-like structures were enhanced by all angiogenic factors,but these were strongly suppressed by HyPE. Conclusions The results support the involvement of sPLA2 in angiogenesis. It is proposed that sPLA2inhibitor introduces a novel approach in the control of cancer development.

  6. Critical role for cytosolic group IVA phospholipase A2 in early adipocyte differentiation and obesity.

    Science.gov (United States)

    Peña, Lucía; Meana, Clara; Astudillo, Alma M; Lordén, Gema; Valdearcos, Martín; Sato, Hiroyasu; Murakami, Makoto; Balsinde, Jesús; Balboa, María A

    2016-09-01

    Adipogenesis is the process of differentiation of immature mesenchymal stem cells into adipocytes. Elucidation of the mechanisms that regulate adipocyte differentiation is key for the development of novel therapies for the control of obesity and related comorbidities. Cytosolic group IVA phospholipase A2 (cPLA2α) is the pivotal enzyme in receptor-mediated arachidonic acid (AA) mobilization and attendant eicosanoid production. Using primary multipotent cells and cell lines predetermined to become adipocytes, we show here that cPLA2α displays a proadipogenic function that occurs very early in the adipogenic process. Interestingly, cPLA2α levels decrease during adipogenesis, but cPLA2α-deficient preadipocytes exhibit a reduced capacity to differentiate into adipocytes, which affects early and terminal adipogenic transcription factors. Additionally, the absence of the phospholipase alters proliferation and cell-cycle progression that takes place during adipogenesis. Preconditioning of preadipocytes with AA increases the adipogenic capacity of these cells. Moreover, animals deficient in cPLA2α show resistance to obesity when fed a high fat diet that parallels changes in the expression of adipogenic transcription factors of the adipose tissue. Collectively, these results show that preadipocyte cPLA2α activation is a hitherto unrecognized factor for adipogenesis in vitro and in vivo. PMID:27317983

  7. Phospholipase C-related catalytically inactive protein participates in the autophagic elimination of Staphylococcus aureus infecting mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kae Harada-Hada

    Full Text Available Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3, a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the involvement of PRIP in the autophagic elimination of Staphylococcus aureus in infected mouse embryonic fibroblasts (MEFs. We observed significantly more LC3-positive autophagosome-like vacuoles enclosing an increased number of S. aureus cells in PRIP-deficient MEFs than control MEFs, 3 h and 4.5 h post infection, suggesting that S. aureus proliferates in LC3-positive autophagosome-like vacuoles in PRIP-deficient MEFs. We performed autophagic flux analysis using an mRFP-GFP-tagged LC3 plasmid and found that autophagosome maturation is significantly inhibited in PRIP-deficient MEFs. Furthermore, acidification of autophagosomes was significantly inhibited in PRIP-deficient MEFs compared to the wild-type MEFs, as determined by LysoTracker staining and time-lapse image analysis performed using mRFP-GFP-tagged LC3. Taken together, our data show that PRIP is required for the fusion of S. aureus-containing autophagosome-like vacuoles with lysosomes, indicating that PRIP is a novel modulator in the regulation of the innate immune system in non-professional phagocytic host cells.

  8. Molecular diversity of phospholipase D in angiosperms

    Directory of Open Access Journals (Sweden)

    Cvrčková Fatima

    2002-02-01

    Full Text Available Abstract Background The phospholipase D (PLD family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. Results Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features-catalytically inactive or independent on Ca2+. The second subfamily (denoted PXPH-PLD is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. Conclusions The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions.

  9. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  10. Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus cells.

    Science.gov (United States)

    Erwin, C; Brown, D T

    1983-02-01

    The ability of Sindbis virus to grow in enucleated BHK-21 (vertebrate) and Aedes albopictus (invertebrate) cells was tested to determine the dependence of this virus upon nuclear function in these two phylogenetically unrelated hosts. Although both cell types could be demonstrated to produce viable cytoplasts (enucleated cells) which produced virus-specific antigen subsequent to infection. BHK cytoplasts produced a significant number of progeny virions, whereas mosquito cytoplasts did not. The production of vesicular stomatitis virus in mosquito cells was not significantly reduced by enucleation. That such a host function was not essential for vesicular stomatitis virus growth in insect cells is supported by the observation that the production of this virus by mosquito cells is not actinomycin D sensitive. This result agrees with a previously published report in which it was shown that Sindbis virus maturation in invertebrate cells is inhibited by actinomycin D, indicating a possible requirement for host cell nuclear function (Scheefers-Borchel et al., Virology, 110:292-301, 1981).

  11. New Concepts in Phospholipase D Signaling in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Julian Gomez-Cambronero

    2010-01-01

    Full Text Available Phospholipase D (PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y179 and Y511. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y296, Y415, and Y511 and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y296 is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF, DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K. A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down

  12. Implication of lipoprotein associated phospholipase A2 activity in oxLDL uptake by macrophages

    OpenAIRE

    Markakis, Konstantinos P.; Koropouli, Maria K.; Grammenou-Savvoglou, Stavroula; van Winden, Ewoud C.; Dimitriou, Andromaxi A.; Demopoulos, Constantinos A.; Tselepis, Alexandros D; Kotsifaki, Eleni E.

    2010-01-01

    Recognition and uptake of oxidized LDL (oxLDL) by scavenger receptors of macrophages and foam cell formation are mediated by the oxidatively modified apolipoprotein B (ApoB) and lipid moiety of oxLDL. A great amount of oxidized phosphatidylcholine (oxPC) of oxLDL is hydrolyzed at the sn-2 position by lipoprotein associated phospholipase A2 (Lp-PLA2) to lysophosphatidylcholine and small oxidation products. This study examines the involvement of Lp-PLA2 in the uptake of oxLDL by mouse peritonea...

  13. Group X secretory phospholipase A2 negatively regulates adipogenesis in murine models

    OpenAIRE

    Li, Xia; Shridas, Preetha; Forrest, Kathy; Bailey, William; Webb, Nancy R.

    2010-01-01

    Studies in vitro indicate that group X secretory phospholipase A2 (GX sPLA2) potently releases arachidonic acid (AA) and lysophosphatidylcholine from mammalian cell membranes. To define the function of GX sPLA2 in vivo, our laboratory recently generated C57BL/6 mice with targeted deletion of GX sPLA2 (GX−/− mice). When fed a normal rodent diet, GX−/− mice gained significantly more weight and had increased adiposity compared to GX+/+ mice, which was not attributable to alterations in food cons...

  14. Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1[S

    OpenAIRE

    Chen, Frank; Ghosh, Ayantika; Shneider, Benjamin L.

    2013-01-01

    Functional defects in ATPase class I type 8B membrane 1 (ATP8B1 or familial intrahepatic cholestasis 1, FIC1) lead to cholestasis by mechanism(s) that are not fully understood. One proposed pathophysiology involves aberrant signaling to the bile acid sensor, the farnesoid X receptor (FXR), via protein kinase C ζ (PKCζ). The following cell line-based studies investigated whether phospholipase D2 may transduce a signal from FIC1 to FXR. PLD2 gain of function led to activation of the bile salt e...

  15. 5-Hydroxytryptamine stimulation of phospholipase D activity in the rabbit isolated mesenteric artery

    OpenAIRE

    Hinton, J. M.; ADAMS, D.; Garland, C J

    1999-01-01

    The involvement of phospholipase D (PLD) in the 5-hydroxytryptamine 5-HT1B/5-HT1D-signalling pathway was assessed in the rabbit isolated mesenteric artery.RT–PCR analysis of mesenteric smooth muscle cells revealed a strong signal corresponding to mRNA transcript for the 5-HT1B receptor. The PCR fragment corresponded to the known sequence for the 5-HT1B receptor. No signal corresponding to 5-HT1D mRNA was detected.Neither 5-HT (3 μM) nor KCl (45 mM) individually stimulated any significant incr...

  16. ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae

    OpenAIRE

    Laabs, Tracy L.; Markwardt, David D.; Slattery, Matthew G.; Newcomb, Laura L.; Stillman, David J.; Heideman, Warren

    2003-01-01

    Saccharomyces cerevisiae cells reproduce by budding to yield a mother cell and a smaller daughter cell. Although both mother and daughter begin G1 simultaneously, the mother cell progresses through G1 more rapidly. Daughter cell G1 delay has long been thought to be due to a requirement for attaining a certain critical cell size before passing the commitment point in the cell cycle known as START. We present an alternative model in which the daughter cell-specific Ace2 ...

  17. LSD1 is Required for Hair Cell Regeneration in Zebrafish.

    Science.gov (United States)

    He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei

    2016-05-01

    Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss. PMID:26008620

  18. Secretory Phospholipase A2 Enzymes as Pharmacological Targets for Treatment of Disease

    OpenAIRE

    Nhat D Quach; Arnold, Robert D.; Cummings, Brian S.

    2014-01-01

    Phospholipase A2 (PLA2) cleave phospholipids preferentially at the sn-2 position, liberating free fatty acids and lysophospholipids. They are classified into six main groups based on size, location, function, substrate specificity and calcium requirement. These classes include secretory PLA2 (sPLA2), cytosolic (cPLA2), Ca2+-independent (iPLA2), platelet activating factor acetylhydrolases (PAF-AH), lysosomal PLA2 (LyPLA2) and adipose specific PLA2 (AdPLA2). It is hypothesized that PLA2 can ser...

  19. In Vitro Antiplasmodial Activity of Phospholipases A2 and a Phospholipase Homologue Isolated from the Venom of the Snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alarcón Pérez

    2012-12-01

    Full Text Available The antimicrobial and antiparasite activity of phospholipase A2 (PLA2 from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A2 (PLA2 (fraction V and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI. The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA2 and its homologue have antiplasmodial potential.

  20. Phospholipase C-gamma 1 can induce DNA synthesis by a mechanism independent of its lipase activity.

    OpenAIRE

    Smith, M. R.; Liu, Y.L.; Matthews, N T; Rhee, S G; Sung, W K; Kung, H F

    1994-01-01

    Inositol phospholipid-specific phospholipase C (PLC) is involved in several signaling pathways leading to cellular growth and differentiation. Our previous studies reported the induction of DNA synthesis in quiescent NIH 3T3 cells after microinjection of PLC and the inhibition of serum- or Ras-stimulated DNA synthesis by a mixture of monoclonal antibodies to PLC-gamma 1. In the course of our investigation of anti-PLC-gamma 1 monoclonal antibodies, we found that each antibody exerts different ...

  1. Large stationary fuel cell systems: Status and dynamic requirements

    Science.gov (United States)

    Bischoff, Manfred

    Molten carbonate fuel cell demonstrations to-date, have been able to show the highest fuel-to-electricity conversion efficiencies (>50%) of any stand-alone fuel cell type. The primary developer of this type of fuel cell in United States is Fuel Cell Energy Corporation (FCE), the developer and manufacturer of the Direct FuelCell ™ concept. FCE and MTU CFC Solutions in Germany, a licensee of FCE have demonstrated carbonate fuel cells from 10 kW to 2 MW of electrical output on a variety of fuels. IHI in Japan are also developing carbonate fuel cells for stationary power and have recently successfully demonstrated the technology in Kawagoe, Japan. In Italy, Ansaldo fuel cell have demonstrated a 100 kW carbonate fuel cell in Milan. In Korea, the Ministry of Commerce, Industry and Energy has committed to install 300 fuel cell units, sized 250 kW to 1 MW, for distributed power generation by 2012. Carbonate fuel cell technology is more fuel flexible than lower temperature fuel cell technologies and is well suited for on-site stationary CHP applications as well as to marine, military, and traction applications. The present paper gives an overview about the commercialisation efforts for the molten carbonate fuel cell technology.

  2. Phospholipid Synthesis by Staphylococcus aureus during (Sub)Lethal Attack by Mammalian 14-Kilodalton Group IIA Phospholipase A2

    OpenAIRE

    Foreman-Wykert, Amy K.; Weiss, Jerrold; Elsbach, Peter

    2000-01-01

    Killing of gram-positive bacteria by mammalian group IIA phospholipases A2 (PLA2) requires the catalytic activity of the enzyme. However, nearly complete degradation of the phospholipids can occur with little effect on bacterial viability, suggesting that PLA2-treated bacteria can biosynthetically replace phospholipids that are lost due to PLA2 action. In the presence of albumin, phospholipid degradation products are quantitatively sequestered extracellularly. In the absence of albumin, the b...

  3. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  4. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A(2).

    Science.gov (United States)

    Barbour, S E; Marciano-Cabral, F

    2001-02-26

    Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis. Previous reports have demonstrated that N. fowleri expresses one or more forms of phospholipase A(2) (PLA(2)) and that a secreted form of this enzyme is involved in pathogenesis. However, the molecular nature of these phospholipases remains largely unknown. This study was initiated to determine whether N. fowleri expresses analogs of the well-characterized PLA(2)s that are expressed by mammalian macrophages. Amoeba cell homogenates contain a PLA(2) activity that hydrolyzes the substrate that is preferred by the 85 kDa calcium-dependent cytosolic PLA(2), cPLA(2). However, unlike the cPLA(2) enzyme in macrophages, this activity is largely calcium-independent, is constitutively associated with membranes and shows only a modest preference for phospholipids that contain arachidonate. The amoeba PLA(2) activity is sensitive to inhibitors that block the activities of cPLA(2)-alpha and the 80 kDa calcium-independent PLA(2), iPLA(2), that are expressed by mammalian cells. One of these compounds, methylarachidonyl fluorophosphonate, partially inhibits the constitutive release of [(3)H]arachidonic acid from pre-labeled amoebae. Together, these data suggest that N. fowleri expresses a constitutively active calcium-independent PLA(2) that may play a role in the basal phospholipid metabolism of these cells.

  5. Phospholipase A2 activation by hydrogen peroxide during in vitro capacitation of buffalo spermatozoa.

    Science.gov (United States)

    Shit, Sanjoy; Atreja, S K

    2004-05-01

    Progressively motile, washed buffalo spermatozoa (50 x 10(6) cells in 0.5 ml) were in vitro capacitated in HEPES containing Bovine Gamete Medium 3 (BGM3) in presence of heparin (10 microg/ml), and different concentrations of hydrogen peroxide (10 to 100 microM). Spermatozoa (60%) were capacitated in presence of heparin compared to 56% in presence of 25 microM H2O2 (optimally found suitable for capacitation). The extent of capacitation was measured in terms of acrosome reaction (AR) induced by lysophosphatidyl choline (100 microg/ml). The acrosome reacted cells were counted after triple staining. Catalase (100 microg/ml) significantly reduced the sperm capacitation to 16-18% when added with H2O2, or alone in the capacitation medium. Phospholipase A2 activity of spermatozoa increased linearly up to 50 microM H2O2 concentration included in the assay system. Moreover, significant increase in phospholipase A2 activity was observed after capacitation by both, the heparin and 25 microM H2O2. The activity was always higher in acrosome reacted cells. PMID:15233473

  6. Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy

    NARCIS (Netherlands)

    Dahnrich, C.; Komorowski, L.; Probst, C.; Seitz-Polski, B.; Esnault, V.; Wetzels, J.F.M.; Hofstra, J.M.; Hoxha, E.; Stahl, R.A.K.; Lambeau, G.; Stocker, W.; Schlumberger, W.

    2013-01-01

    BACKGROUND: Autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) are specific markers for primary membranous nephropathy (pMN) and anti-PLA2R1 serum levels may be useful to monitor disease activity. So far, a recombinant cell-based indirect immunofluorescence assay (RC-IFA) using rec

  7. cPLA2alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha...... dose dependently (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules...

  8. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently...... (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules from 70...

  9. Proteolytic Pathways of Activation and Degradation of a Bacterial Phospholipase C during Intracellular Infection by Listeria monocytogenes

    OpenAIRE

    Marquis, Hélène; Goldfine, Howard; Portnoy, Daniel A.

    1997-01-01

    Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes meta...

  10. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    Science.gov (United States)

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  11. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    Science.gov (United States)

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. PMID:26105052

  12. Overexpression of Patatin-Related Phospholipase AIIIβ Altered the Content and Composition of Sphingolipids in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Maoyin eLi

    2014-10-01

    Full Text Available In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As (PLAs have been implicated in the trafficking of fatty acids from plastids to the endoplasmic reticulum. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the content and composition of sphingolipids in pPLAIIIβ-knockout and overexpression plants (pPLAIIIβ-KO and -OE. 3-keto-sphinganine, the product of the first step of sphingolipid synthesis, had a 26% decrease in leaves of pPLAIIIβ-KO while a 52% increase in pPLAIIIβ-OE compared to wild type (WT. The levels of free long-chain base species, dihydroxy-C18:0 and trihydroxy-18:0 (d18:0 and t18:0, were 38% and 97% higher, respectively, in pPLAIIIβ-OE than in WT. The level of complex sphingolipids ceramide d18:0-16:0 and t18:1-16:0 had a 2-fold increase in pPLAIIIβ-OE. The level of hydroxyceramide d18:0-h16:0 was 72% higher in pPLAIIIβ-OE compared to WT. The levels of several species of glucosylceramide and glycosylinositolphosphoceramide tended to be higher in pPLAIIIβ-OE than in WT. The total content of the complex sphingolipids showed a slightly higher in pPLAIIIβ-OE than in WT. These results revealed an involvement of phospholipase-mediated lipid homeostasis in plant growth.

  13. Crystallization and preliminary crystallographic studies of a phospholipase A2 from the venom of the Brazilian snake Bothrops moojeni.

    Science.gov (United States)

    Nonato, M C; Garratt, R C; Mascarenhas, Y P; Jesus, W D; Assakura, M T; Serrano, S M; Oliva, G

    2001-04-01

    A phospholipase A(2) purified from the venom of the snake Bothrops moojeni has been crystallized by vapour-diffusion techniques in hanging drops at 291 K. The crystals, which were grown in the absence of Ca(2+), belong to the cubic system, space group P432, with unit-cell parameters a = b = c = 91.86 A, and contain one molecule in the asymmetric unit (V(M) = 2.71 A(3) Da(-1)). X-ray diffraction experiments provide data to 2.35 A resolution collected on a rotating-anode home source at cryogenic temperatures. The structure has been solved via molecular-replacement techniques using a single monomer of the crystallographic structure of the phospholipase from the Western diamondback rattlesnake (Crotalus atrox) as a search model. PMID:11264594

  14. Rab24 is required for normal cell division.

    Science.gov (United States)

    Militello, Rodrigo D; Munafó, Daniela B; Berón, Walter; López, Luis A; Monier, Solange; Goud, Bruno; Colombo, María I

    2013-05-01

    Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co-localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i.e., chromatin bridges). Furthermore, in CHO cells stably transfected with GFP-Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules. PMID:23387408

  15. Renin secretion from permeabilized juxtaglomerular cells requires a permeant cation

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1999-01-01

    The cytosolic concentration of chloride correlates directly with renin secretion from renal juxtaglomerular granular (JG) cells. In the present study, the mechanism by which chloride stimulates renin release was investigated in a preparation of permeabilized rat glomeruli with attached JG cells. ...

  16. Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases

    Directory of Open Access Journals (Sweden)

    Kaushlendra Tripathi

    2015-01-01

    Full Text Available Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases, alkaline SMases (alk-SMASES, and neutral SMases (nSMases. The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.

  17. Phospholipase PlaB is a new virulence factor of Legionella pneumophila.

    Science.gov (United States)

    Schunder, Eva; Adam, Patrick; Higa, Futoshi; Remer, Katharina A; Lorenz, Udo; Bender, Jennifer; Schulz, Tino; Flieger, Antje; Steinert, Michael; Heuner, Klaus

    2010-06-01

    We previously identified Legionella pneumophila PlaB as the major cell-associated phospholipase A/lysophospholipase A with contact-dependent hemolytic activity. In this study, we further characterized this protein and found it to be involved in the virulence of L. pneumophila. PlaB was mainly expressed and active during exponential growth. Active PlaB was outer membrane-associated and at least in parts surface-exposed. Transport to the outer membrane was not dependent on the type I (T1SS), II (T2SS), IVB (T4BSS) or Tat secretion pathways. Furthermore, PlaB activity was not dependent on the presence of the macrophage infectivity potentiator (Mip) or the major secreted zinc metalloproteinase A (MspA). Despite the fact that PlaB is not essential for replication in protozoa or macrophage cell lines, we found that plaB mutants were impaired for replication in the lungs and dissemination to the spleen in the guinea pig infection model. Histological sections monitored less inflammation and destruction of the lung tissue after infection with the plaB mutants compared to L. pneumophila wild type. Taken together, PlaB is the first phospholipase A/lysophospholipase A with a confirmed role in the establishment of Legionnaires' disease. PMID:20153694

  18. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    Science.gov (United States)

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  19. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  20. Secretory Phospholipase A(2) Activity toward Diverse Substrates

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Linderoth, Lars; Subramanian, Arun Kumar;

    2011-01-01

    We have studied secretory phospholipase A(2)-IIA (sPLA(2)) activity toward different phospholipid analogues by performing biophysical 1 characterizations and molecular dynamics simulations. The phospholipids were natural substrates, triple alkyl phospholipids, a prodrug anticancer etherlipid, and...... charged residues, but relatively large fluctuations are observed, suggesting that these interactions are not necessarily important for stabilizing substrate binding to the enzyme....

  1. Characterization and partial purification of phospholipase D from human placenta

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1995-01-01

    We report the existence in the human placenta of a phosphatidylcholine- hydrolyzing phospholipase D (PLD) activity, which has been characterized and partially purified. Triton X-100 effectively solubilized PLD from the particulate fraction of human placenta in a dose-dependent manner. However...

  2. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola;

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...

  3. Secretory Phospholipase A(2)-IIA and Cardiovascular Disease

    NARCIS (Netherlands)

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; Van Iperen, Erik P. A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J. W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M. A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, Andre G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N. M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C. M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A. A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Pare, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    Objectives This study sought to investigate the role of secretory phospholipase A(2) (sPLA(2))-IIA in cardiovascular disease. Background Higher circulating levels of sPLA(2)-IIA mass or sPLA(2) enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clea

  4. PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling

    NARCIS (Netherlands)

    T. Munnik

    2014-01-01

    Historically, phosphoinositide-specific phospholipase C (PI-PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to generate the second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG), which release Ca2+ from intracellular stores and activate member

  5. Substrate-enzyme interactions and catalytic mechanism in phospholipase C

    DEFF Research Database (Denmark)

    Byberg, J R; Jørgensen, Flemming Steen; Hansen, S;

    1992-01-01

    Based on the high-resolution X-ray crystallographic structure of phospholipase C from Bacillus cereus, the orientation of the phosphatidylcholine substrate in the active site of the enzyme is proposed. The proposal is based on extensive calculations using the GRID program and molecular mechanics...

  6. Folliculostellate Cells Are Required for Laminin Release from Gonadotrophs in Rat Anterior Pituitary

    International Nuclear Information System (INIS)

    The anterior pituitary gland is organized tissue comprising hormone-producing cells and folliculostellate (FS) cells. FS cells interconnect to form a meshwork, and their cytoplasmic processes are anchored by a basement membrane containing laminin. Recently, we developed a three-dimensional (3D) cell culture that reproduces this FS cell architecture. In this study of the novel function of FS cells, we used transgenic rats that express green fluorescent protein in FS cells for the 3D culture. Anterior pituitary cells were cultured with different proportions of FS cells (0%, 5%, 10%, and 20%). Anterior pituitary cells containing 5–20% FS cells formed round/oval cell aggregates, whereas amorphous cell aggregates were formed in the absence of FS cells. Interestingly, immunohistochemistry showed laminin-immunopositive cells instead of extracellular laminin deposition in FS cell-deficient cell aggregates. Double-immunostaining revealed that these laminin-immunopositive cells were gonadotrophs. Laminin mRNA expression did not differ in relation to the presence or absence of FS cells. When anterior pituitary cells with no FS cells were cultured with FS cell-conditioned medium, the proportion of laminin-immunopositive cells was lower than in control. These results suggest that a humoral factor from FS cells is required for laminin release from gonadotrophs

  7. Regulation of retinal angiogenesis by phospholipase C-β3 signaling pathway

    Science.gov (United States)

    Ha, Jung Min; Baek, Seung Hoon; Kim, Young Hwan; Jin, Seo Yeon; Lee, Hye Sun; Kim, Sun Ja; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae; Bae, Sun Sik

    2016-01-01

    Angiogenesis has an essential role in many pathophysiologies. Here, we show that phospholipase C-β3 (PLC-β3) isoform regulates endothelial cell function and retinal angiogenesis. Silencing of PLC-β3 in human umbilical vein endothelial cells (HUVECs) significantly delayed proliferation, migration and capillary-like tube formation. In addition, mice lacking PLC-β3 showed impaired retinal angiogenesis with delayed endothelial proliferation, reduced endothelial cell activation, abnormal vessel formation and hemorrhage. Finally, tumor formation was significantly reduced in mice lacking PLC-β3 and showed irregular size and shape of blood vessels. These results suggest that regulation of endothelial function by PLC-β3 may contribute to angiogenesis. PMID:27311705

  8. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Fujiwara, Yuki [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Yamaguchi, Hideki [Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-city, Saitama 332-0012 (Japan); Nakamura, Yoshikazu; Fukami, Kiyoko [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan)

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  9. Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia.

    Directory of Open Access Journals (Sweden)

    Fumio Yoshikawa

    Full Text Available BACKGROUND: Phospholipase D (PLD catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x(4-Asp (HKD motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4. METHODOLOGY/PRINCIPAL FINDINGS: PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity. CONCLUSIONS/SIGNIFICANCE: Results showed that PLD4 is a non

  10. Trypanocidal efficacy of two indigeneous ethanolic plant extracts (Mimosa pigra and Ipomoea asarifolia) against Trypanosoma evansi phospholipase A2 activity

    Institute of Scientific and Technical Information of China (English)

    Yusuf Alkali; A K Gana; Abdulkadir A; Nzelibe C Humphrey

    2015-01-01

    Objective:To study the inhibitory activity of ethanolic extract from Mimosa pigra and Ipomoea asarifolia against Trypanosoma evansi (T. evansi) calcium dependent phospholipase A2. Methods: The calcium dependent phospholipase A2 (E C 3.1.1.4) enzyme was isolated from T. evansi and purified to electrophoretic homogeneity under non denaturing conditions. It was solubilized from T. evansi cells recovered from white albino rats which were previously inoculated by intraperitoneal injection of infected camel blood. Two indigeneous ethanolic plant extracts used locally for treatment of trypanosomiasis were tested for the inhibition of phospholipases A2. Results: Double reciprocal plots of the initial velocity data of the inhibition by the indigenous plant extracts revealed a noncompetitive pattern of inhibition for the Ipomoea asarifolia and a competitive inhibition for Mimosa pigra in a dose dependent fashion. The extrapolated inhibition binding constant (Ki) of these extracts were found to be 2.0í102μg/mL and 1.12í102μg/mL respectively. Conclusions:The low Ki values obtained for these extracts towards this enzyme are an indication of high affinity of the extract or the active components (present in the plants) are for these enzyme and therefore, could be explored to serve as a cheap source of T. evansi PLA2 antidote and as well help in designing a novel drug with high efficiency.

  11. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline.

    Science.gov (United States)

    Rahier, Renaud; Noiriel, Alexandre; Abousalham, Abdelkarim

    2016-01-01

    Through its production of phosphatidic acid (PA), phospholipase D (PLD) is strongly involved in vesicular trafficking and cell signaling, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released during PLD-catalyzed phosphatidylcholine hydrolysis, making its kinetic characterization difficult. We present here the development of a direct, specific, and continuous PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline (8HQ) following Ca(2+) complexation with PLD-generated PA. The real-time fluorescence intensity from 8HQ/Ca(2+)/PA complexes can be converted to concentrations of product using a calibration curve, with a detection limit of 1.2 μM of PA on a microplate scale, thus allowing measurement of the PLD-catalyzed reaction rate parameters. Hence, this assay is well adapted for studying the substrate specificity of PLD, together with its kinetic parameters, using natural phospholipids with various headgroups. In addition, the assay was found to be effective in monitoring the competitive inhibition of PA formation in the production of phosphatidylalcohols following the addition of primary alcohols, such as ethanol, propan-1-ol, or butan-1-ol. Finally, this assay was validated using the purified recombinant Vigna unguiculata PLD, as well as the PLD from Streptomyces chromofuscus, cabbage, or peanuts, and no PA production could be detected using phospholipase A1, phospholipase A2, or phospholipase C, allowing for a reliable determination of PLD activity in crude protein extract samples. This easy to handle PLD assay constitutes, to our knowledge, the first direct and continuous PA determination method on a microplate scale. PMID:26636829

  12. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells.

    Science.gov (United States)

    Berga-Bolaños, Rosa; Zhu, Wandi S; Steinke, Farrah C; Xue, Hai-Hui; Sen, Jyoti Misra

    2015-12-01

    Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.

  13. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells.

    Science.gov (United States)

    Yakimova, E T; Kapchina-Toteva, V M; Laarhoven, L-J; Harren, F M; Woltering, E J

    2006-10-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO(4). Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2-3 days which indicates the existence of an adaptation mechanism. Cadmium-induced cell death was alleviated by the addition of sub muM concentrations of peptide inhibitors specific to human caspases indicating that cell death proceeds through a mechanism with similarities to animal programmed cell death (PCD, apoptosis). Cadmium-induced cell death was accompanied by an increased production of hydrogen peroxide (H(2)O(2)) and simultaneous addition of antioxidants greatly reduced cell death. Inhibitors of phospholipase C (PLC) and phospholipase D (PLD) signalling pathway intermediates reduced cadmium-induced cell death. Treatment with the G-protein activator mastoparan and a cell permeable analogue of the lipid signal second messenger phosphatidic acid (PA) induced cell death. Ethylene, while not inducing cell death when applied alone, stimulated cadmium-induced cell death. Application of the ethylene biosynthesis inhibitor aminoethoxy vinylglycine (AVG) reduced cadmium-induced cell death, and this effect was alleviated by simultaneous treatment with ethylene. Together the results show that cadmium induces PCD exhibiting apoptotic-like features. The cell death process requires increased H(2)O(2) production and activation of PLC, PLD and ethylene signalling pathways.

  14. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels.

    Science.gov (United States)

    Stallings, Jonathan D; Zeng, Yue X; Narvaez, Francisco; Rebecchi, Mario J

    2008-05-16

    We previously reported that phospholipase C-delta1 (PLC-delta1) accumulates in the nucleus at the G1/S transition, which is largely dependent on its binding to phosphatidylinositol 4,5-bisphosphate ( Stallings, J. D., Tall, E. G., Pentyala, S., and Rebecchi, M. J. (2005) J. Biol. Chem. 280, 22060-22069 ). Here, using small interfering RNA (siRNA) that specifically targets rat PLC-delta1, we investigated whether this enzyme plays a role in cell cycle control. Inhibiting expression of PLC-delta1 significantly decreased proliferation of rat C6 glioma cells and altered S phase progression. [3H]Thymidine labeling and fluorescence-activated cell sorting analysis indicated that the rates of G1/S transition and DNA synthesis were enhanced. On the other hand, knockdown cultures released from the G1/S boundary were slower to reach full G2/M DNA content, consistent with a delay in S phase. The levels of cyclin E, a key regulator of the G1/S transition and DNA synthesis, were elevated in asynchronous cultures as well as those blocked at the G1/S boundary. Epifluorescence imaging showed that transient expression of human phospholipase C-delta1, resistant to these siRNA, suppressed expression of cyclin E at the G1/S boundary despite treatment of cultures with rat-specific siRNA. Although whole cell levels of phosphatidylinositol 4,5-bisphosphate were unchanged, suppression of PLC-delta1 led to a significant rise in the nuclear levels of this phospholipid at the G1/S boundary. These results support a role for PLC-delta1 and nuclear phospholipid metabolism in regulating cell cycle progression.

  15. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  16. Design requirements for high-efficiency high concentration ratio space solar cells

    Science.gov (United States)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  17. Phospholipase Cgamma1 inhibitory principles from the sarcotestas of Ginkgo biloba.

    Science.gov (United States)

    Lee, J S; Cho, Y S; Park, E J; Kim, J; Oh, W K; Lee, H S; Ahn, J S

    1998-07-01

    Ten phenolic compounds were isolated from the CHCl3 extract of Ginkgo biloba sarcotestas (Ginkgoaceae) as a new class of phosphatidylinositol-specific phospholipase Cgamma1 (PI-PLCgamma1) inhibitors. The substances without the long chain were ineffective. On the other hand, the activities of these compounds were dramatically decreased by acetylation of aromatic hydroxyl groups of cardanol, phenolic acid, and bilobol and by methylation of the aromatic carboxyl group of phenolic acid. The unsaturated long chain as well as the aromatic hydroxyl and carboxyl groups might play a key role for the PI-PLCgamma1 inhibitory activity. These compounds also inhibited the growth of a number of human cancer cell lines, but were less cytotoxic against a human normal colon cell line. PMID:9677265

  18. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys.

    Science.gov (United States)

    Sugahara, Go; Kamiie, Junichi; Kobayashi, Ryosuke; Mineshige, Takayuki; Shirota, Kinji

    2016-06-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R.

  19. Mind bomb 1 is required for pancreatic ß-cell formation

    DEFF Research Database (Denmark)

    Horn, Signe; Kobberup, Sune; Jørgensen, Mette C;

    2012-01-01

    the insulin producing ß-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of ß-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and ß-cell formation. We found that endoderm...

  20. Atomic force microscope visualization of lipid bilayer degradation due to action of phospholipase A(2) and Humicola lanuginosa lipase

    DEFF Research Database (Denmark)

    Balashev, Konstantin; DiNardo, N. John; Callisen, Thomas H.;

    2007-01-01

    at the surface of a supported lipid bilayer. In particular, the time course of the degradation of lipid bilayers by Phospholipase A(2) (PLA(2)) and Humicola Lanuginosa Lipase (HLL) has been investigated. Contact mode imaging allows visualization of enzyme activity on the substrate with high lateral resolution....... Lipid bilayers were prepared by the Langmuir-Blodgett technique and transferred to an AFM liquid cell. Following injection of the enzyme into the liquid cell, a sequence of images was acquired at regular time intervals to allow the identification of substrate structure, preferred sites of enzyme...

  1. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  2. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    Directory of Open Access Journals (Sweden)

    Fabian Lacramioara

    2007-05-01

    Full Text Available Abstract Background Phosphatidylinositol 4,5-bisphosphate (PIP2 is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG and inositol trisphosphate (IP3, which in turn induces calcium (Ca2+ release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM. In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.

  3. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.

    Science.gov (United States)

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T; Lorenzo, Oscar; Revuelta, José L; McCabe, Paul F; Arellano, Juan B

    2014-07-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.

  4. Activation of phospholipase A2 by Hsp70 in vitro

    DEFF Research Database (Denmark)

    Mahalka, Ajay K; Code, Christian; Rezaijahromi, Behnam;

    2011-01-01

    We recently suggested a novel mechanism for the activation of phospholipase A2 (PLA2), with a (catalytically) highly active oligomeric state, which subsequently becomes inactivated by conversion into amyloid. This process can be activated by lysophosphatidylcholine which promotes both oligomeriza......We recently suggested a novel mechanism for the activation of phospholipase A2 (PLA2), with a (catalytically) highly active oligomeric state, which subsequently becomes inactivated by conversion into amyloid. This process can be activated by lysophosphatidylcholine which promotes both...... oligomerization and amyloid activation/inactivation. The heat shock protein 70 (Hsp70), has been demonstrated to be able to revert the conversion of a-synuclein and Alzheimer ß-peptide to amyloid fibrils in vitro. Accordingly, we would expect Hsp70 to sustain the lifetime of the active state of the enzyme...

  5. Secretory phospholipase A2 in patients with coronary artery disease.

    Science.gov (United States)

    Lima, Luciana Moreira; Carvalho, Maria das Graças; da Fonseca Neto, Cirilo Pereira; Garcia, José Carlos Faria; Sousa, Marinez Oliveira

    2010-04-01

    This study investigated the correlation of sPLA2 (secretory phospholipase A2) activity with the atheromatosis extent in subjects with coronary artery disease (CAD) undergoing coronary angiography. We analyzed 123 patients, including 35 subjects with angiographically normal coronary arteries (controls), 31 with mild/moderate atheromatosis (stenosis of 30-70% of the luminal diameter in one or more coronary arteries) and 57 with severe atheromatosis (>70% stenosis). Plasma sPLA2 activity was significantly higher in subjects with severe [127.7 U/ml (102.3-162.7); p tabagism, hypertension, sedentarism, family history for coronary artery disease, diabetes mellitus, total cholesterol, HDLc, LDLc, triglycerides, high sensitivity C-reactive protein and phospholipase A2, only sPLA2 was observed to be independently associated with severe CAD (>70% of stenosis) (p < 0.0001). PMID:19449149

  6. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation

    Science.gov (United States)

    Kirkby, Nicholas S.; Reed, Daniel M.; Edin, Matthew L.; Rauzi, Francesca; Mataragka, Stefania; Vojnovic, Ivana; Bishop-Bailey, David; Milne, Ginger L.; Longhurst, Hilary; Zeldin, Darryl C.; Mitchell, Jane A.; Warner, Timothy D.

    2016-01-01

    Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.—Kirkby, N. S., Reed, D. M., Edin, M. L., Rauzi, F., Mataragka, S., Vojnovic, I., Bishop-Bailey, D., Milne, G. L., Longhurst, H., Zeldin, D. C., Mitchell, J. A., Warner, T. D. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation. PMID:26183771

  7. Continuous requirement for the T cell receptor for regulatory T cell function

    OpenAIRE

    Levine, Andrew G; Arvey, Aaron; Jin, Wei; Rudensky, Alexander Y.

    2014-01-01

    Foxp3+ regulatory T cells (Treg cells) maintain immunological tolerance and their deficiency results in fatal multi-organ autoimmunity. Although heightened T cell receptor (TCR) signaling is critical for the differentiation of Treg cells, the role of TCR signaling in Treg cell function remains largely unknown. Here we demonstrate inducible ablation of the TCR results in Treg cell dysfunction which cannot be attributed to impaired Foxp3 expression, decreased expression of Treg cell signature g...

  8. Calcium-independent phospholipase A2 in rat tissue cytosols

    NARCIS (Netherlands)

    Pierik, A.J.; Nijssen, J.G.; Aarsman, A.J.; Bosch, H. van den

    1988-01-01

    Cytosols (105000 X g supernatant) from seven rat tissues were assayed for Ca²⁺-independent phospholipase A₂ activity with either 1-acyl-2-[1-¹⁴C]linoleoyl-sn-glycero-3-phosphocholine, 1-acyl-2-[l-¹⁴C]linoleoyl-snglycero- 3-phosphoethanohunine or 1-0-hexadecyl-2-[9,10-³H₂]oleoyl-sn-glycero-3-phosphoc

  9. Assessing Phospholipase A2 Activity toward Cardiolipin by Mass Spectrometry

    OpenAIRE

    Yuan-Hao Hsu; Dumlao, Darren S.; Jian Cao; Dennis, Edward A.

    2013-01-01

    Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and...

  10. Differential regulation of renal phospholipase C isoforms by catecholamines.

    OpenAIRE

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  11. Aberrant accumulation of phospholipase C-delta in Alzheimer brains.

    OpenAIRE

    Shimohama, S.; Homma, Y.; Suenaga, T.; Fujimoto, S; Taniguchi, T; Araki, W.; Yamaoka, Y; Takenawa, T.; Kimura, J

    1991-01-01

    Since phosphoinositide-specific phospholipase C (PLC) is one of the key molecules in signal transduction, the authors assessed its involvement in Alzheimer's disease (AD). Immunostaining of a specific antibody against the PLC isozyme, PLC-delta, demonstrated that this enzyme was abnormally accumulated in neurofibrillary tangles (NFT), the neurites surrounding senile plaque (SP) cores, and neuropil threads in AD brains. Western blot analysis confirmed that PLC-delta was concentrated in the pai...

  12. Enzymkinetik von Phospholipase C und Aggregationsverhalten von Gentransfer-Komplexen

    OpenAIRE

    Galneder, Reinhard Josef

    2007-01-01

    Im Rahmen dieser Arbeit wurde ein Experiment zur Laserfallen-kontrollierten Mikroelektrophorese aufgebaut und getestet, das zeitaufgelöste Messungen des Oberflächenpotentials an einzelnen kolloidalen Teilchen ermöglichte. Mit dieser Methode konnte im folgenden die Enzymkinetik von Phospholipase C mit einer bisher nicht erreichten Zeitauflösung von ca. 1 sec gemessen werden. Dazu wurden Silika-Kugeln mit einem Radius von 500 nm mit einer Lipidmembran aus neutralem Phosphatidylcholin und dem ne...

  13. Fuel cell systems for passenger cars - opportunities and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Tachtler, J. [BMW, Munich (Germany); Bourne, C. [Rover Group, Coventry (United Kingdom)

    1996-12-31

    From the point of view of energy density, handling and economy, present-day motor fuels are superior to all known alternatives. The internal combustion engine powered by them satisfies the requirements of customers to an excellent degree. The search for alternatives can therefore only be justified if emissions can be avoided totally and non-fossil primary energy sources can be used or at least partially our dependence on mineral oil can be reduced. What was long suspected has been increasingly confirmed, not least by developments at BMW: electricity (stored in batteries) and hydrogen offer the best prerequisites for achieving these goals in the long term. These forms of energy can be produced in sufficient quantities and with relatively little effect on the environment. They promise to produce an absolute minimum of pollutants when used in vehicles. Natural gas, which is very similar to hydrogen, and hybrid systems, that would compensate for battery risks, could perform a valuable function in the transitional phase.

  14. Phospholipase C in Beijing strains of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    N Faramarzi

    2010-12-01

    Full Text Available Background and Objectives: Phospholipase of Mycobacterium tuberculosis plays an important role in pathogenesis through breaking up phospholipids and production of diacylglycerol. In this study, we examined the Beijing strains of Mycobacterium tuberculosis isolated from Iranian patients for the genes encoding this enzyme."nMaterials and Methods: DNA extraction was performed using CTAB (cetyltrimethylammonium bromide from positive culture specimens in tuberculosis patients. PCR was then used to amplify the plcA, plcB, plcC genes of Beijing strain, and non-Beijing strains were identified by spoligotyping."nResults: Of 200 specimens, 19 (9.5% were Beijing strain and 181 (90.5% were non-Beijing strains. The results of PCR for Beijing strains were as follows: 16 strains (84.2% were positive for plcA, 17 (89.4% were positive for plcB and 17 (89.4% were positive for plcC genes. The standard strain (H37RV was used as control."nConclusion: The majority of Beijing strains have phospholipase C genes which can contribute to their pathogenesis but we need complementary studies to confirm the role of phospholipase C in pathogenecity of Mycobacterium tuberculosis.

  15. Phospholipase C in Beijing strains of Mycobacterium tuberculosis

    Science.gov (United States)

    Mirsamadi, ES; Farnia, P; Jahani Sherafat, S; Esfahani, M; Faramarzi, N

    2010-01-01

    Background and Objectives Phospholipase of Mycobacterium tuberculosis plays an important role in pathogenesis through breaking up phospholipids and production of diacylglycerol. In this study, we examined the Beijing strains of Mycobacterium tuberculosis isolated from Iranian patients for the genes encoding this enzyme. Materials and Methods DNA extraction was performed using CTAB (cetyltrimethylammonium bromide) from positive culture specimens in tuberculosis patients. PCR was then used to amplify the plcA, plcB, plcC genes of Beijing strain, and non-Beijing strains were identified by spoligotyping. Results Of 200 specimens, 19 (9.5%) were Beijing strain and 181 (90.5%) were non-Beijing strains. The results of PCR for Beijing strains were as follows: 16 strains (84.2%) were positive for plcA, 17 (89.4%) were positive for plcB and 17 (89.4%) were positive for plcC genes. The standard strain (H37RV) was used as control. Conclusion The majority of Beijing strains have phospholipase C genes which can contribute to their pathogenesis but we need complementary studies to confirm the role of phospholipase C in pathogenecity of Mycobacterium tuberculosis. PMID:22347572

  16. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina.

    Science.gov (United States)

    Kelly, Michelle N; Zheng, Mingquan; Ruan, Sanbao; Kolls, Jay; D'Souza, Alain; Shellito, Judd E

    2013-01-01

    Little is known about the role of NK cells or their interplay with other immune cells during opportunistic infections. Using our murine model of Pneumocystis pneumonia, we found that loss of NK cells during immunosuppression results in substantial Pneumocystis lung burden. During early infection of C57B/6 CD4(+) T cell-depleted mice, there were significantly fewer NK cells in the lung tissue compared with CD4(+) T cell-intact animals, and the NK cells present demonstrated decreased upregulation of the activation marker NKp46 and production of the effector cytokine, IFN-γ. Furthermore, coincubation studies revealed a significant increase in fungal killing when NK cells were combined with CD4(+) T cells compared with either cell alone, which was coincident with a significant increase in perforin production by NK cells. Finally, however, we found through adoptive transfer that memory CD4(+) T cells are required for significant NK cell upregulation of the activation marker NK group 2D and production of IFN-γ, granzyme B, and perforin during Pneumocystis infection. To the best of our knowledge, this study is the first to demonstrate a role for NK cells in immunity to Pneumocystis pneumonia, as well as to establish a functional relationship between CD4(+) T cells and NK cells in the host response to an opportunistic fungal pathogen.

  17. Steroids are required for epidermal cell fate establishment in Arabidopsis roots.

    Science.gov (United States)

    Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L

    2009-05-12

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.

  18. Novel Metagenome-Derived, Cold-Adapted Alkaline Phospholipase with Superior Lipase Activity as an Intermediate between Phospholipase and Lipase

    OpenAIRE

    Lee, Mi-Hwa; Oh, Ki-Hoon; Kang, Chul-Hyung; Kim, Ji-Hoon; Oh, Tae-Kwang; Ryu, Choong-Min; Yoon, Jung-Hoon

    2012-01-01

    A novel lipolytic enzyme was isolated from a metagenomic library obtained from tidal flat sediments on the Korean west coast. Its putative functional domain, designated MPlaG, showed the highest similarity to phospholipase A from Grimontia hollisae CIP 101886, though it was screened from an emulsified tricaprylin plate. Phylogenetic analysis showed that MPlaG is far from family I.6 lipases, including Staphylococcus hyicus lipase, a unique lipase which can hydrolyze phospholipids, and is more ...

  19. Sensitization to autoimmune hepatitis in group VIA calcium-independent phospholipase A2-null mice led to duodenal villous atrophy with apoptosis, goblet cell hyperplasia and leaked bile acids.

    Science.gov (United States)

    Jiao, Li; Gan-Schreier, Hongying; Tuma-Kellner, Sabine; Stremmel, Wolfgang; Chamulitrat, Walee

    2015-08-01

    Chronic bowel disease can co-exist with severe autoimmune hepatitis (AIH) in an absence of primary sclerosing cholangitis. Genetic background may contribute to this overlap syndrome. We previously have shown that the deficiency of iPLA2β causes an accumulation of hepatocyte apoptosis, and renders susceptibility for acute liver injury. We here tested whether AIH induction in iPLA2β-null mice could result in intestinal injury, and whether bile acid metabolism was altered. Control wild-type (WT) and female iPLA2β-null (iPLA2β(-/-)) mice were intravenously injected with 10mg/kg concanavalinA (ConA) or saline for 24h. ConA treatment of iPLA2β(-/-) mice caused massive liver injury with increased liver enzymes, fibrosis, and necrosis. While not affecting WT mice, ConA treatment of iPLA2β(-/-) mice caused severe duodenal villous atrophy concomitant with increased apoptosis, cell proliferation, globlet cell hyperplasia, and endotoxin leakage into portal vein indicating a disruption of intestinal barrier. With the greater extent than in WT mice, ConA treatment of iPLA2β(-/-) mice increased jejunal expression of innate response cytokines CD14, TNF-α, IL-6, and SOCS3 as well as chemokines CCL2 and the CCL3 receptor CCR5. iPLA2β deficiency in response to ConA-induced AIH caused a significant decrease in hepatic and biliary bile acids, and this was associated with suppression of hepatic Cyp7A1, Ntcp and ABCB11/Bsep and upregulation of intestinal FXR/FGF15 mRNA expression. The suppression of hepatic Ntcp expression together with the loss of intestinal barrier could account for the observed bile acid leakage into peripheral blood. Thus, enteropathy may result from acute AIH in a susceptible host such as iPLA2β deficiency. PMID:25957555

  20. Characterization of FKGK18 as inhibitor of group VIA Ca2+-independent phospholipase A2 (iPLA2β: candidate drug for preventing beta-cell apoptosis and diabetes.

    Directory of Open Access Journals (Sweden)

    Tomader Ali

    Full Text Available Ongoing studies suggest an important role for iPLA2β in a multitude of biological processes and it has been implicated in neurodegenerative, skeletal and vascular smooth muscle disorders, bone formation, and cardiac arrhythmias. Thus, identifying an iPLA2βinhibitor that can be reliably and safely used in vivo is warranted. Currently, the mechanism-based inhibitor bromoenol lactone (BEL is the most widely used to discern the role of iPLA2β in biological processes. While BEL is recognized as a more potent inhibitor of iPLA2 than of cPLA2 or sPLA2, leading to its designation as a "specific" inhibitor of iPLA2, it has been shown to also inhibit non-PLA2 enzymes. A potential complication of its use is that while the S and R enantiomers of BEL exhibit preference for cytosol-associated iPLA2β and membrane-associated iPLA2γ, respectively, the selectivity is only 10-fold for both. In addition, BEL is unstable in solution, promotes irreversible inhibition, and may be cytotoxic, making BEL not amenable for in vivo use. Recently, a fluoroketone (FK-based compound (FKGK18 was described as a potent inhibitor of iPLA2β. Here we characterized its inhibitory profile in beta-cells and find that FKGK18: (a inhibits iPLA2β with a greater potency (100-fold than iPLA2γ, (b inhibition of iPLA2β is reversible, (c is an ineffective inhibitor of α-chymotrypsin, and (d inhibits previously described outcomes of iPLA2β activation including (i glucose-stimulated insulin secretion, (ii arachidonic acid hydrolysis; as reflected by PGE2 release from human islets, (iii ER stress-induced neutral sphingomyelinase 2 expression, and (iv ER stress-induced beta-cell apoptosis. These findings suggest that FKGK18 is similar to BEL in its ability to inhibit iPLA2β. Because, in contrast to BEL, it is reversible and not a non-specific inhibitor of proteases, it is suggested that FKGK18 is more ideal for ex vivo and in vivo assessments of iPLA2β role in biological functions.

  1. Gene cloning, expression, purification and characterization of lipoprotein- associated phospholipase A2 in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Fu-junZHANG; Yi-pingWANG

    2005-01-01

    AIM To express and purify Lipoprotein -associated phospholipase A2 (Lp-PLA2), and to establish a screening model for Lp-PLA2 inhibitors through the recombinant Lp-PLA2. METHODS The full-length gene of Lp-PLA2 was cloned from the differentiated THP-1 cells by RT-PCR and PCR. The Lp-PLA2 gene was subcloned into the Pichia expression vector pPIC9 and introduced a sequence encoding a C-terminal stretch of six histidine residues at the same time. The recombinant plasmid was transformed into Pichia pastoris GS115 by spheroplasting and the gene was then integrated into the GS115 genome. Lp- PLA2 was expressed in the yeast strain GS115 by inducing with 0.5% methanol.

  2. AGN 190383, a novel phospholipase inhibitor with topical anti-inflammatory activity.

    Science.gov (United States)

    De Vries, G W; Lee, G; Amdahl, L; Wenzel, M; Garst, M; Wheeler, L A

    1991-09-01

    AGN 190383 is a 5-hydroxy-2(5H)-furanone ring analog of the marine natural product manoalide. When applied topically, AGN 190383 inhibits phorbol ester induced mouse ear edema. It is a potent inhibitor of bee venom phospholipase A2 and blocks the release of arachidonic acid from calcium ionophore A23187 stimulated human neutrophils. AGN 190383 also inhibits both hormone-operated and depolarization-dependent calcium mobilization in GH3 cells, as well as fMLP stimulated increases in free cytosolic calcium in human PMNs. Furthermore, it is also able to block the release of the neutral protease elastase from stimulated neutrophils. The effects of AGN 190383 on arachidonic acid metabolism and leukocyte function may account, in part, for its anti-inflammatory activity in vivo.

  3. Langerhans cells are not required for epidermal V gamma 3 T cell homeostasis and function

    NARCIS (Netherlands)

    Taveirne, Sylvie; De Colvenaer, Veerle; Van Den Broeck, Tina; Van Ammel, Els; Bennett, Clare L.; Taghon, Tom; Vandekerckhove, Bart; Plum, Jean; Clausen, Bjorn E.; Kaplan, Daniel H.; Leclercq, Georges

    2011-01-01

    This study tested the hypothesis that V gamma 3 TCR-bearing T cells are influenced by LCs. V gamma 3 T cells and LCs are located in the epidermis of mice. V gamma 3 T cells represent the main T cell population in the skin epithelium and play a crucial role in maintaining the skin integrity, whereas

  4. Phospholipase A2 Receptor-Positive Idiopathic Membranous Glomerulonephritis with Onset at 95 Years: Case Report

    Science.gov (United States)

    Kubota, Keiichi; Hoshino, Junichi; Ueno, Toshiharu; Mise, Koki; Hazue, Ryo; Sekine, Akinari; Yabuuchi, Junko; Yamanouchi, Masayuki; Suwabe, Tatsuya; Kikuchi, Koichi; Sumida, Keiichi; Hayami, Noriko; Sawa, Naoki; Takaichi, Kenmei; Fujii, Takeshi; Ohashi, Kenichi; Akiyama, Shinichi; Maruyama, Shoichi; Ubara, Yoshifumi

    2016-01-01

    A 95-year-old woman was admitted to our hospital for evaluation of bilateral lower-limb edema persisting for 3 months. Serum creatinine was 1.55 mg/dl, and urinary protein excretion was 9.1 g/day. Renal biopsy revealed stage 1 membranous glomerulonephritis (MGN) with immunoglobulin G4-dominant staining. This patient did not have any underlying disease such as infection with hepatitis B or C virus or malignancy, and anti-phospholipase A2 receptor (PLA2R) antibody was detected in the serum. Accordingly, idiopathic MGN was diagnosed. Corticosteroid therapy was avoided, but hemodialysis was required to treat generalized edema. The patient is currently doing well. This is the oldest reported case of idiopathic MGN with positivity for anti-PLA2R antibody. PMID:27390744

  5. TORC1 is required to balance cell proliferation and cell death in planarians

    OpenAIRE

    Tu, Kimberly C; Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2012-01-01

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell de...

  6. Phospholipase C-related catalytically inactive protein (PRIP controls KIF5B-mediated insulin secretion

    Directory of Open Access Journals (Sweden)

    Satoshi Asano

    2014-05-01

    Full Text Available We previously reported that phospholipase C-related catalytically inactive protein (PRIP-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6 cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP, a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms.

  7. Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation.

    Science.gov (United States)

    Mah, In Kyoung; Soloff, Rachel; Izuhara, Audrey K; Lakeland, Daniel L; Wang, Charles; Mariani, Francesca V

    2016-08-01

    Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization. PMID:27312576

  8. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana.

    OpenAIRE

    Hirayama, T.; Ohto, C; Mizoguchi, T; Shinozaki, K

    1995-01-01

    A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structu...

  9. The polycomb group protein Suz12 is required for embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Hansen, Jacob Bo Højberg;

    2007-01-01

    results in early lethality of mouse embryos. Here, we demonstrate that Suz12(-/-) mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12(-/-) ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation......-specific genes. Moreover, Suz12(-/-) ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which...... despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different...

  10. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz;

    2015-01-01

    aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys...

  11. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  12. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  13. Identification of the immunodominant epitope region in phospholipase A2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy.

    Science.gov (United States)

    Kao, Liyo; Lam, Vinson; Waldman, Meryl; Glassock, Richard J; Zhu, Quansheng

    2015-02-01

    Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Recent clinical studies established that >70% of patients with idiopathic (also called primary) MN (IMN) possess circulating autoantibodies targeting the M-type phospholipase A2 receptor-1 (PLA2R) on the surface of glomerular visceral epithelial cells (podocytes). In situ, these autoantibodies trigger the formation of immune complexes, which are hypothesized to cause enhanced glomerular permeability to plasma proteins. Indeed, the level of autoantibody in circulation correlates with the severity of proteinuria in patients. The autoantibody only recognizes the nonreduced form of PLA2R, suggesting that disulfide bonds determine the antigenic epitope conformation. Here, we identified the immunodominant epitope region in PLA2R by probing isolated truncated PLA2R extracellular domains with sera from patients with IMN that contain anti-PLA2R autoantibodies. Patient sera specifically recognized a protein complex consisting of the cysteine-rich (CysR), fibronectin-like type II (FnII), and C-type lectin-like domain 1 (CTLD1) domains of PLA2R only under nonreducing conditions. Moreover, absence of either the CysR or CTLD1 domain prevented autoantibody recognition of the remaining domains. Additional analysis suggested that this three-domain complex contains at least one disulfide bond required for conformational configuration and autoantibody binding. Notably, the three-domain complex completely blocked the reactivity of autoantibodies from patient sera with the full-length PLA2R, and the reactivity of patient sera with the three-domain complex on immunoblots equaled the reactivity with full-length PLA2R. These results indicate that the immunodominant epitope in PLA2R is exclusively located in the CysR-FnII-CTLD1 region.

  14. c-di-GMP induction of Dictyostelium cell death requires the polyketide DIF-1.

    Science.gov (United States)

    Song, Yu; Luciani, Marie-Françoise; Giusti, Corinne; Golstein, Pierre

    2015-02-15

    Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP-induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms.

  15. Zebrafish neural tube morphogenesis requires Scribble-dependent oriented cell divisions.

    Science.gov (United States)

    Žigman, Mihaela; Trinh, Le A; Fraser, Scott E; Moens, Cecilia B

    2011-01-11

    How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.

  16. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.

    Science.gov (United States)

    Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David

    2016-09-01

    Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion. PMID:27583450

  17. Cytosolic phospholipase A2-α expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2011-01-18

    The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)α (cPLA(2)α) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)α expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines.

  18. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase.

    OpenAIRE

    Lereclus, D.; Agaisse, H; Gominet, M; Salamitou, S; Sanchis, V

    1996-01-01

    A transcriptional analysis of the phosphatidylinositol-specific phospholipase C (plcA) gene of Bacillus thuringiensis indicated that its transcription was activated at the onset of the stationary phase in B. thuringiensis but was not activated in B. subtilis. The B. thuringiensis gene encoding a transcriptional activator required for plcA expression was cloned by using a B. subtilis strain carrying a chromosomal plcA'-'lacZ fusion as a heterologous host for selection. This trans activator (de...

  19. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation

    Science.gov (United States)

    Cidado, Justin; Wong, Hong Yuen; Rosen, D. Marc; Cimino-Mathews, Ashley; Garay, Joseph P.; Fessler, Abigail G.; Rasheed, Zeshaan A.; Hicks, Jessica; Cochran, Rory L.; Croessmann, Sarah; Zabransky, Daniel J.; Mohseni, Morassa; Beaver, Julia A.; Chu, David; Cravero, Karen; Christenson, Eric S.; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M.; Argani, Pedram; Chawla, Ajay; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2016-01-01

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies. PMID:26823390

  20. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  1. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2.

    Science.gov (United States)

    Casais-E-Silva, Luciana L; Teixeira, Catarina F P; Lebrun, Ivo; Lomonte, Bruno; Alape-Girón, Alberto; Gutiérrez, José María

    2016-08-22

    The venom of Micrurus lemniscatus, a coral snake of wide geographical distribution in South America, was fractionated by reverse-phase HPLC and the fractions screened for phospholipase A2 (PLA2) activity. The major component of the venom, a PLA2, here referred to as 'Lemnitoxin', was isolated and characterized biochemically and toxicologically. It induces myotoxicity upon intramuscular or intravenous injection into mice. The amino acid residues Arg15, Ala100, Asn108, and a hydrophobic residue at position 109, which are characteristic of myotoxic class I phospholipases A2, are present in Lemnitoxin. This PLA2 is antigenically related to M. nigrocinctus nigroxin, Notechis scutatus notexin, Pseudechis australis mulgotoxin, and Pseudonaja textilis textilotoxin, as demonstrated with monoclonal and polyclonal antibodies. Lemnitoxin is highly selective in its targeting of cells, being cytotoxic for differentiated myotubes in vitro and muscle fibers in vivo, but not for undifferentiated myoblasts or endothelial cells. Lemnitoxin is not lethal after intravenous injection at doses up to 2μg/g in mice, evidencing its lack of significant neurotoxicity. Lemnitoxin displays anticoagulant effect on human plasma and proinflammatory activity also, as it induces paw edema and mast cell degranulation. Thus, the results of this work demonstrate that Lemnitoxin is a potent myotoxic and proinflammatory class I PLA2. PMID:27282409

  2. Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom.

    Science.gov (United States)

    Borges, Isabela Pacheco; Castanheira, Letícia Eulalio; Barbosa, Bellisa Freitas; de Souza, Dayane Lorena Naves; da Silva, Rafaela José; Mineo, José Roberto; Tudini, Kelly Aparecida Yoneyama; Rodrigues, Renata Santos; Ferro, Eloísa Amália Vieira; de Melo Rodrigues, Veridiana

    2016-09-01

    Toxoplasmosis affects a third of the global population and presents high incidence in tropical areas. Its great relevance in public health has led to a search for new therapeutic approaches. Herein, we report the antiparasitic effects of BnSP-7 toxin, a Lys49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on Toxoplasma gondii. In an MTT assay, BnSP-7 presented significant cytotoxicity against host HeLa cells at higher doses (200 μg/mL to 50 μg/mL), whereas lower doses (25 μg/mL to 1.56 μg/mL) produced low cytotoxicity. Furthermore, the toxin showed no effect on T. gondii tachyzoite viability when evaluated by trypan blue exclusion, but decreased both adhesion and parasite proliferation when tachyzoites were treated before infection. We also measured cytokines in supernatants collected from HeLa cells infected with T. gondii tachyzoites previously treated with RPMI or BnSP-7, which revealed enhancement of only MIF and IL-6 cytokines levels in supernatants of HeLa cells after BnSP-7 treatment. Our results showed that the BnSP-7 PLA2 exerts an anti-Toxoplasma effect at a lower dose than that required to induce cytotoxicity in HeLa cells, and also modulates the immune response of host cells. In this sense, the anti-parasitic effect of BnSP-7 PLA2 demonstrated in the present study opens perspectives for use of this toxin as a tool for future studies on toxoplasmosis. PMID:27212627

  3. Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom.

    Science.gov (United States)

    Borges, Isabela Pacheco; Castanheira, Letícia Eulalio; Barbosa, Bellisa Freitas; de Souza, Dayane Lorena Naves; da Silva, Rafaela José; Mineo, José Roberto; Tudini, Kelly Aparecida Yoneyama; Rodrigues, Renata Santos; Ferro, Eloísa Amália Vieira; de Melo Rodrigues, Veridiana

    2016-09-01

    Toxoplasmosis affects a third of the global population and presents high incidence in tropical areas. Its great relevance in public health has led to a search for new therapeutic approaches. Herein, we report the antiparasitic effects of BnSP-7 toxin, a Lys49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on Toxoplasma gondii. In an MTT assay, BnSP-7 presented significant cytotoxicity against host HeLa cells at higher doses (200 μg/mL to 50 μg/mL), whereas lower doses (25 μg/mL to 1.56 μg/mL) produced low cytotoxicity. Furthermore, the toxin showed no effect on T. gondii tachyzoite viability when evaluated by trypan blue exclusion, but decreased both adhesion and parasite proliferation when tachyzoites were treated before infection. We also measured cytokines in supernatants collected from HeLa cells infected with T. gondii tachyzoites previously treated with RPMI or BnSP-7, which revealed enhancement of only MIF and IL-6 cytokines levels in supernatants of HeLa cells after BnSP-7 treatment. Our results showed that the BnSP-7 PLA2 exerts an anti-Toxoplasma effect at a lower dose than that required to induce cytotoxicity in HeLa cells, and also modulates the immune response of host cells. In this sense, the anti-parasitic effect of BnSP-7 PLA2 demonstrated in the present study opens perspectives for use of this toxin as a tool for future studies on toxoplasmosis.

  4. Messenger molecules of the phospholipase signaling system have dual effects on vascular smooth muscle contraction.

    Science.gov (United States)

    Vidulescu, Cristina; Mironneau, J.; Mironneau, Chantal; Popescu, L. M.

    2000-01-01

    Background and methods. In order to investigate the role of phospholipases and their immediately derived messengers in agonist-induced contraction of portal vein smooth muscle, we used the addition in the organ bath of exogenous molecules such as: phospholipases C, A(2), and D, diacylglycerol, arachidonic acid, phosphatidic acid, choline. We also used substances modulating activity of downstream molecules like protein kinase C, phosphatidic acid phosphohydrolase, or cyclooxygenase. Results. a) Exogenous phospholipases C or A(2), respectively, induced small agonist-like contractions, while exogenous phospholipase D did not. Moreover, phospholipase D inhibited spontaneous contractions. However, when added during noradrenaline-induced plateau, phospholipase D shortly potentiated it. b) The protein kinase C activator, phorbol dibutyrate potentiated both the exogenous phospholipase C-induced contraction and the noradrenaline-induced plateau, while the protein kinase C inhibitor 1-(-5-isoquinolinesulfonyl)-2-methyl-piperazine relaxed the plateau. c) When added before noradrenaline, indomethacin inhibited both phasic and tonic contractions, but when added during the tonic contraction shortly potentiated it. Arachidonic acid strongly potentiated both spontaneous and noradrenaline-induced contractions, irrespective of the moment of its addition. d) In contrast, phosphatidic acid inhibited spontaneous contractile activity, nevertheless it was occasionally capable of inducing small contractions, and when repetitively added during the agonist-induced tonic contraction, produced short potentiations of the plateau. Pretreatment with propranolol inhibited noradrenaline-induced contractions and further addition of phosphatidic acid augmented this inhibition. Choline augmented the duration and amplitude of noradrenaline-induced tonic contraction and final contractile oscillations. Conclusions. These data suggest that messengers produced by phospholipase C and phospholipase A(2

  5. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Giansanti

    2015-11-01

    Full Text Available Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr and funnel cakes (fun encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.

  6. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila.

    Science.gov (United States)

    Giansanti, Maria Grazia; Vanderleest, Timothy E; Jewett, Cayla E; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C; Brill, Julie A; Loerke, Dinah; Fuller, Margaret T; Blankenship, J Todd

    2015-11-01

    Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720

  7. Phospholipase C associated with particulate fractions of bovine brain.

    OpenAIRE

    Lee, K Y; Ryu, S H; Suh, P G; Choi, W C; Rhee, S G

    1987-01-01

    We previously reported that cytosolic fractions of bovine brain contain two immunologically distinct phosphoinositide-specific phospholipases C (PLCs), PLC-I and PLC-II. In this report the subcellular distribution of PLC-I and PLC-II in brain homogenates was measured using RIA. Significant differences were found in the distribution of the two forms of PLC in 100,000 X g supernatants (cytosolic fraction) of brain homogenized in hypotonic buffer and 2 M KCl extracts of washed pellets (particula...

  8. Phospholipase C Is Involved in Kinetochore Function in Saccharomyces cerevisiae

    OpenAIRE

    Lin, Hongyu; Choi, Jae H.; Hasek, Jiri; DeLillo, Nicholas; Lou, Willard; Vancura, Ales

    2000-01-01

    The budding yeast PLC1 gene encodes a homolog of the δ isoform of mammalian phosphoinositide-specific phospholipase C. Here, we present evidence that Plc1p associates with the kinetochore complex CBF3. This association is mediated through interactions with two established kinetochore proteins, Ndc10p and Cep3p. We show by chromatin immunoprecipitation experiments that Plc1p resides at centromeric loci in vivo. Deletion of PLC1, as well as plc1 mutations which abrogate the interaction of Plc1p...

  9. Gestational alterations in phospholipase c coupled muscarinic response

    Energy Technology Data Exchange (ETDEWEB)

    Varol, F.G.; Hadjiconstantinou, M.; Zuspan, F.P.; Neff, N.H. (Ohio State Univ. college of Medicine, Columbus (USA))

    1989-01-01

    In the pregnant rat, carbachol-induced phosphoinositol hydrolysis by myometrium at the placental attachment region progressively decreased toward term, whereas hydrolysis was relatively stable in the myometrium of the non-attachment region. Tritium-quinuclidinyl benzilate binding increased in the myometrium of non-attachment regions as pregnancy progressed. At placental attachment sites binding remained relatively stable until parturition when it increased. Apparently the myometrium associated with the placental attachment site is less sensitive to cholinergic influence during pregnancy compared with the non-attachment site when evaluated by muscarinic activation of phospholipase C or ligand binding.

  10. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival.

    Directory of Open Access Journals (Sweden)

    Erica L Sanchez

    2015-07-01

    Full Text Available Kaposi's Sarcoma-associated Herpesvirus (KSHV is the etiologic agent of Kaposi's Sarcoma (KS. KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings

  11. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    Science.gov (United States)

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. PMID:26896920

  12. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping;

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which......, stem cell mobilization with the CXCR4 antagonist AMD3100 did not alter the donor T cell's ability to induce acute GVHD. These studies provide an explanation for the effects of G-CSF on T cell function and demonstrate that IL-10 is required to license regulatory function but T cell production of IL-10...... is not itself required for the attenuation GVHD. Although administration of CXCR4 antagonists is an efficient means of stem cell mobilization, this fails to evoke the immunomodulatory effects seen during G-CSF mobilization. These data provide a compelling rationale for considering the immunological benefits...

  13. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    Science.gov (United States)

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.

  14. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  15. Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors.

    Science.gov (United States)

    Manning, Alyssa J; Kimelman, David

    2015-10-15

    The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT. Mesodermal cells in these embryos are unable to perform the EMT necessary to leave the most posterior end of the body (the tailbud) and join the pre-somitic mesoderm, a process that is conserved in all vertebrates. It has previously been very difficult to study this EMT in vertebrates because of the multiple cell types in the tailbud and the morphogenetic changes the whole embryo undergoes. Here, we describe a novel tissue explant system for imaging the mesodermal cell EMT in vivo that allows us to investigate the requirements for cells to acquire migratory properties during the EMT with high spatio-temporal resolution. This method revealed that, despite the inability of tbx16;msgn1-deficient cells to leave the tailbud, actin-based protrusions form surprisingly normally in these cells and they become highly motile. However, tbx16;msgn1-deficient cells have specific cell-autonomous defects in the persistence and anterior direction of migration because the lamellipodia they form are not productive in driving anteriorward migration. Additionally, we show that mesoderm morphogenesis and differentiation are separable and that there is a migratory cue that directs mesodermal cell migration that is independent of Tbx16 and Msgn1. This work defines changes that cells undergo as they complete the EMT and provides new insight into the mechanisms required in vivo for cells to become mesenchymal.

  16. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    Directory of Open Access Journals (Sweden)

    María Almuedo-Castillo

    2014-06-01

    Full Text Available Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

  17. p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture.

    Science.gov (United States)

    Gonzalez-Cano, L; Fuertes-Alvarez, S; Robledinos-Anton, N; Bizy, A; Villena-Cortes, A; Fariñas, I; Marques, M M; Marin, Maria C

    2016-07-01

    The adult subventricular zone (SVZ) is a highly organized microenvironment established during the first postnatal days when radial glia cells begin to transform into type B-cells and ependymal cells, all of which will form regenerative units, pinwheels, along the lateral wall of the lateral ventricle. Here, we identify p73, a p53 homologue, as a critical factor controlling both cell-type specification and structural organization of the developing mouse SVZ. We describe that p73 deficiency halts the transition of the radial glia into ependymal cells, leading to the emergence of immature cells with abnormal identities in the ventricle and resulting in loss of the ventricular integrity. p73-deficient ependymal cells have noticeably impaired ciliogenesis and they fail to organize into pinwheels, disrupting SVZ niche structure and function. Therefore, p73 is essential for appropriate ependymal cell maturation and the establishment of the neurogenic niche architecture. Accordingly, lack of p73 results in impaired neurogenesis. Moreover, p73 is required for translational planar cell polarity establishment, since p73 deficiency results in profound defects in cilia organization in individual cells and in intercellular patch orientation. Thus, our data reveal a completely new function of p73, independent of p53, in the neurogenic architecture of the SVZ of rodent brain and in the establishment of ependymal planar cell polarity with important implications in neurogenesis. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 730-747, 2016. PMID:26482843

  18. IL-2 inducible T cell kinase (ITK) tunes T regulatory cell development and is required for suppressive function1

    OpenAIRE

    Huang, Weishan; Jeong, Ah-Reum; Kannan, Arun K.; Huang, Lu; August, Avery

    2014-01-01

    ITK is a key signaling mediator downstream of TcR, mediating T cell positive selection, innate T cell and CD4+ Th2/Th17 differentiation. Here we show that ITK also negatively tunes IL-2-induced expansion of Foxp3+ regulatory T cells (Treg). In vivo, Treg abundance is inversely correlated with ITK expression, and iTreg development is inversely dependent on ITK kinase activity. While Treg development normally requires both hematopoietic and thymic MHC class 2 (MHC2) expression, the absence of I...

  19. An alternative method to isolate protease and phospholipase A2 toxins from snake venoms based on partitioning of aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    GN Gómez

    2012-01-01

    Full Text Available Snake venoms are rich sources of active proteins that have been employed in the diagnosis and treatment of health disorders and antivenom therapy. Developing countries demand fast economical downstream processes for the purification of this biomolecule type without requiring sophisticated equipment. We developed an alternative, simple and easy to scale-up method, able to purify simultaneously protease and phospholipase A2 toxins from Bothrops alternatus venom. It comprises a multiple-step partition procedure with polyethylene-glycol/phosphate aqueous two-phase systems followed by a gel filtration chromatographic step. Two single bands in SDS-polyacrylamide gel electrophoresis and increased proteolytic and phospholipase A2 specific activities evidence the homogeneity of the isolated proteins.

  20. The Histone H2B Monoubiquitination Regulatory Pathway Is Required for Differentiation of Multipotent Stem Cells

    DEFF Research Database (Denmark)

    Karpiuk, Oleksandra; Najafova, Zeynab; Kramer, Frank;

    2012-01-01

    Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly...... understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of...... during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation....

  1. Nutritional requirements for methyl orange decolourisation by freely suspended cells and growing cells of Lactobacillus casei TISTR 1500

    Directory of Open Access Journals (Sweden)

    Phisit Seesuriyachan

    2011-01-01

    Full Text Available Lactobacillus casei TISTR 1500 possesses cytoplasmic azoreductase and can breakdown azo bonds under microaerophilic condition. It was found previously that a growing culture is more tolerant to a high initial dye concentration than freely suspended cells supplied only with sucrose. The present study is aimed at investigating the nutritive requirements for decolourisation by the growing cells and the freely suspended cells using Plackett-Burmann experimental design. In this study, the composition of the medium was found to play an important role in methyl orange decolourisation and biomass production. Sucrose, meat extract and peptone increased methyl orange decolourisation by freely suspended cells, whereas sodium acetate exerted a negative effect on decolourisation. In addition, it was observed that the yeast and meat extracts enhanced the degradation of the dye by the growing cells. Sucrose was an important factor in biomass production by freely suspended cells and growing cells. On the other hand, dipotassium hydrogen phosphate and sodium acetate decreased the biomass production. These findings promote the understanding and knowledge about the requirements of azo dye decolourisation by Lactobacillus casei.

  2. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects. PMID:27339657

  3. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  4. Innate lymphoid cell development requires TOX-dependent generation of a common ILC progenitor

    OpenAIRE

    Seehus, Corey R.; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D.; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-01-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined, based on effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways leading to ILC lineage specification remain poorly characterized. Here we demonstrate that transcriptional regulator TOX is required for the in vivo differentiation of common lymphoid progenitors to ILC lineage-restricted cells. In vitro modeling demonstrates that TOX deficiency result...

  5. Transparent conducting oxide electrodes requirements for high efficiency micromorph solar cells

    OpenAIRE

    Boccard, Mathieu; Cuony, Peter; SöDerströM, Karin; Bugnon, Grégory; Despeisse, Matthieu; Battaglia, Corsin; Ding, Laura; NICOLAY, Sylvain; Ballif, Christophe

    2010-01-01

    The requirements for a micromorph tandem cell front transparent conductive oxide (TCO) are multiple. This essential layer needs a high transparency, excellent conduction, strong light scattering into silicon and good surface morphology for the subsequent growth of silicon cells. These parameters are all linked and trade-offs have to be found for optimal layer. The optimum combination, taking into account current achievable materials properties, is still unclear. Concerning transparency, we st...

  6. Ethanolamine requirement of mammary epithelial cells is due to reduced activity of base exchange enzyme

    International Nuclear Information System (INIS)

    Epithelial cells and some of their transformed derivatives require ethanolamine (Etn) to proliferate normally in defined culture medium. The amount of cellular phosphatidylethanolamine (PtdEtn) is considerably reduced when these cells are cultured without Etn. Using Etn-responsive and -nonresponsive rat mammary carcinoma cell lines, the biochemical mechanism of Etn-responsiveness of investigated. The incorporation of [3H]serine into phosphatidylserine (PtdSer) and PtdEtn in Etn-responsive cells was 60 and 37%, respectively, of those in Etn-nonresponsive cells. There was no significant difference between the two cell types in the activities of enzymes involved in PtdEtn synthesis via CDP-Etn. The activity of PtdSer decarboxylase was also very similar in these two cell types. When these cells were cultured in the presence of [32P]PtdEtn, the rate of accumulation of [32P]-labeled PtdSer from the radioactive PtdEtn was considerably reduced in Etn-responsive cells as compared to Etn-nonresponsive cells. Whereas there was no significant difference in the accumulation of the labeled PtdSer from [32P]phosphatidylcholine. These results demonstrate that the Etn-responsiveness is due to a limited ability to synthesize PtdSer resulting from a limited base exchange activity utilizing PtdEtn

  7. Cell-to-Cell Transmission of HIV-1 Is Required to Trigger Pyroptotic Death of Lymphoid-Tissue-Derived CD4 T Cells

    Directory of Open Access Journals (Sweden)

    Nicole L.K. Galloway

    2015-09-01

    Full Text Available The progressive depletion of CD4 T cells underlies clinical progression to AIDS in untreated HIV-infected subjects. Most dying CD4 T cells correspond to resting nonpermissive cells residing in lymphoid tissues. Death is due to an innate immune response against the incomplete cytosolic viral DNA intermediates accumulating in these cells. The viral DNA is detected by the IFI16 sensor, leading to inflammasome assembly, caspase-1 activation, and the induction of pyroptosis, a highly inflammatory form of programmed cell death. We now show that cell-to-cell transmission of HIV is obligatorily required for activation of this death pathway. Cell-free HIV-1 virions, even when added in large quantities, fail to activate pyroptosis. These findings underscore the infected CD4 T cells as the major killing units promoting progression to AIDS and highlight a previously unappreciated role for the virological synapse in HIV pathogenesis.

  8. Cell-to-Cell Transmission of HIV-1 Is Required to Trigger Pyroptotic Death of Lymphoid-Tissue-Derived CD4 T Cells.

    Science.gov (United States)

    Galloway, Nicole L K; Doitsh, Gilad; Monroe, Kathryn M; Yang, Zhiyuan; Muñoz-Arias, Isa; Levy, David N; Greene, Warner C

    2015-09-01

    The progressive depletion of CD4 T cells underlies clinical progression to AIDS in untreated HIV-infected subjects. Most dying CD4 T cells correspond to resting nonpermissive cells residing in lymphoid tissues. Death is due to an innate immune response against the incomplete cytosolic viral DNA intermediates accumulating in these cells. The viral DNA is detected by the IFI16 sensor, leading to inflammasome assembly, caspase-1 activation, and the induction of pyroptosis, a highly inflammatory form of programmed cell death. We now show that cell-to-cell transmission of HIV is obligatorily required for activation of this death pathway. Cell-free HIV-1 virions, even when added in large quantities, fail to activate pyroptosis. These findings underscore the infected CD4 T cells as the major killing units promoting progression to AIDS and highlight a previously unappreciated role for the virological synapse in HIV pathogenesis.

  9. [Phospholipase, proteinase and hemolytic activities of Candida albicans isolates obtained from clinical specimens].

    Science.gov (United States)

    Yenişehirli, Gülgün; Bulut, Yunus; Tunçoglu, Ebru

    2010-01-01

    This study was aimed to determine the phospholipase, proteinase and hemolytic activities of Candida albicans strains isolated from clinical specimens. A total of 147 C. albicans strains isolated from blood (n = 29), respiratory specimens (n = 44), urine (n = 52), pus (n = 17) and stool (n = 5) were included in the study. Proteinase and phospholipase activities were determined in 81% and 76% of C. albicans isolates, respectively. All C. albicans isolates revealed beta-hemolytic activity on Sabouraud dextrose agar supplemented with 7% fresh sheep blood and 3% glucose. Phospholipase and proteinase positivity were highest among the respiratory isolates. Proteinase activity of respiratory (93%) and blood (83%) isolates were statistically significantly higher than that of urine (77%; p = 0.032), pus (65%; p = 0.007) and stool isolates (60%; p = 0.026). While phospholipase activity showed statistically significant difference between respiratory (84%) and pus (53%) isolates (p = 0.014), no statistically significant difference was determined for blood (79%), urine (75%) and stool (80%) isolates (p > 0.05). Two blood isolates with 4+ proteinase activity and 3 urine isolates with 3+ proteinase activity were phospholipase negative. One urine isolate with 4+ phospholipase activity and 4 with 3+ phospholipase activity were proteinase negative. Phospholipase and proteinase negative 1 isolate from stool and 1 isolate from pus were found to have 4+ hemolytic activity. In conclusion, besides proteinase and phospholipase enzyme activities, hemolytic activity may play an important role for the C.albicans infections. The pathogenetic role of these virulence factors should be evaluated by further clinical studies.

  10. Bmi1 is required for hepatic progenitor cell expansion and liver tumor development.

    Directory of Open Access Journals (Sweden)

    Lingling Fan

    Full Text Available Bmi1 is a polycomb group transcriptional repressor and it has been implicated in regulating self-renewal and proliferation of many types of stem or progenitor cells. In addition, Bmi1 has been shown to function as an oncogene in multiple tumor types. In this study, we investigated the functional significance of Bmi1 in regulating hepatic oval cells, the major type of bipotential progenitor cells in adult liver, as well as the role of Bmi1 during hepatocarcinogenesis using Bmi1 knockout mice. We found that loss of Bmi1 significantly restricted chemically induced oval cell expansion in the mouse liver. Concomitant deletion of Ink4a/Arf in Bmi1 deficient mice completely rescued the oval cell expansion phenotype. Furthermore, ablation of Bmi1 delayed hepatocarcinogenesis induced by AKT and Ras co-expression. This antineoplastic effect was accompanied by the loss of hepatic oval cell marker expression in the liver tumor samples. In summary, our data demonstrated that Bmi1 is required for hepatic oval cell expansion via deregulating the Ink4a/Arf locus in mice. Our study also provides the evidence, for the first time, that Bmi1 expression is required for liver cancer development in vivo, thus representing a promising target for innovative treatments against human liver cancer.

  11. CRTC2 is required for β-cell function and proliferation.

    Science.gov (United States)

    Eberhard, Chandra E; Fu, Accalia; Reeks, Courtney; Screaton, Robert A

    2013-07-01

    Previous work in insulinoma cell lines has established that calcineurin plays a critical role in the activation of cAMP-responsive element binding protein (Creb), a key transcription factor required for β-cell function and survival, by dephosphorylating the Creb coactivator Creb-regulated transcription coactivator (Crtc)2 at 2 regulatory sites, Ser171 and Ser275. Here, we report that Crtc2 is essential both for glucose-stimulated insulin secretion and cell survival in the β-cell. Endogenous Crtc2 activation is achieved via increasing glucose levels to the physiological feeding range, indicating that Crtc2 is a sensor that couples ambient glucose concentrations to Creb activity in the β-cell. Immunosuppressant drugs such as cyclosporin A and tacrolimus that target the protein phosphatase calcineurin are commonly administered after organ transplantation. Chronic use is associated with reduced insulin secretion and new onset diabetes, suggestive of pancreatic β-cell dysfunction. Importantly, we show that overexpression of a Crtc2 mutant rendered constitutively active by introduction of nonphosphorylatable alanine residues at Ser171 and Ser275 permits Creb target gene activation under conditions when calcineurin is inhibited. Taken together, these data suggest that promoting Crtc2-Creb activity is required for β-cell function and proliferation and promoting this pathway could ameliorate symptoms of new onset diabetes after transplantation.

  12. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint.

    Science.gov (United States)

    Wu, Juan; Huang, Yu-Fan; Zhou, Xin-Ke; Zhang, Wei; Lian, Yi-Fan; Lv, Xiao-Bin; Gao, Xiu-Rong; Lin, Hui-Kuan; Zeng, Yi-Xin; Huang, Jian-Qing

    2015-01-01

    The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.

  13. The phosphatase domains of CD45 are required for ligand induced T-cell receptor downregulation

    DEFF Research Database (Denmark)

    Kastrup, J; Lauritsen, Jens Peter Holst; Menné, C;

    2000-01-01

    Down-regulation of the T-cell receptor (TCR) plays an important role in modulating T-cell responses, both during T-cell development and in mature T cells. At least two distinct pathways exist for TCR down-regulation: down-regulation following TCR ligation; and down-regulation following activation...... of protein kinase C (PKC). Ligand-induced TCR down-regulation is dependent on protein tyrosine kinase (PTK) activity and seems to be closely related to T-cell activation. In addition, previous studies have indicated that ligand-induced TCR down-regulation is dependent on the expression of CD45, a...... transmembrane protein tyrosine phosphatase. The role of the different domains of CD45 in TCR down-regulation was investigated in this study. We found that the phosphatase domains of CD45 are required for efficient ligand-induced TCR down-regulation. In contrast, the extracellular domain of CD45 is dispensable...

  14. Lineage-Specific Early Differentiation of Human Embryonic Stem Cells Requires a G2 Cell Cycle Pause.

    Science.gov (United States)

    Van Oudenhove, Jennifer J; Grandy, Rodrigo A; Ghule, Prachi N; Del Rio, Roxana; Lian, Jane B; Stein, Janet L; Zaidi, Sayyed K; Stein, Gary S

    2016-07-01

    Human embryonic stem cells (hESCs) have an abbreviated G1 phase of the cell cycle that allows rapid proliferation and maintenance of pluripotency. Lengthening of G1 corresponds to loss of pluripotency during differentiation. However, precise mechanisms that link alterations in the cell cycle and early differentiation remain to be defined. We investigated initial stages of mesendodermal lineage commitment in hESCs, and observed a cell cycle pause. Transcriptome profiling identified several genes with known roles in regulation of the G2/M transition that were differentially expressed early during lineage commitment. WEE1 kinase, which blocks entry into mitosis by phosphorylating CDK1 at Y15, was the most highly expressed of these genes. Inhibition of CDK1 phosphorylation by a specific inhibitor of WEE1 restored cell cycle progression by preventing the G2 pause. Directed differentiation of hESCs revealed that cells paused during commitment to the endo- and mesodermal, but not ectodermal, lineages. Functionally, WEE1 inhibition during meso- and endodermal differentiation selectively decreased expression of definitive endodermal markers SOX17 and FOXA2. Our findings identify a novel G2 cell cycle pause that is required for endodermal differentiation and provide important new mechanistic insights into early events of lineage commitment. Stem Cells 2016;34:1765-1775. PMID:26946228

  15. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease

    OpenAIRE

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Yoon, Moon Sik; Yu, A. Ram; Kim, Jin Su; Hwang, Deok-Sang; Shim, Insop; Bae, Hyunsu

    2016-01-01

    Background Alzheimer’s disease (AD) is a severe neuroinflammatory disease. CD4+Foxp3+ regulatory T cells (Tregs) modulate various inflammatory diseases via suppressing Th cell activation. There are increasing evidences that Tregs have beneficial roles in neurodegenerative diseases. Previously, we found the population of Treg cells was significantly increased by bee venom phospholipase A2 (bvPLA2) treatment in vivo and in vitro. Methods To examine the effects of bvPLA2 on AD, bvPLA2 was admini...

  16. A rapid phospholipase A2 bioassay using 14C-oleate-labelled E. coli bacterias.

    Science.gov (United States)

    Meyer, T; von Wichert, P; Weins, D

    1989-02-01

    Two methods of phospholipase A2 determination using 14C-labelled E. coli bacterias as substrate were compared. One method works with a filter membrane for separation of cleaved 14C-oleate from remaining phospholipids, the other uses the well-known thin-layer chromatography for lipid analysis. Some features of human serum phospholipase A2 regarding pH and Ca2+ dependency were investigated. Possible sources of errors were discussed. It was shown that either method can differentiate between normal and pathologically elevated phospholipase A2 levels, but that the filter method is superior in terms of sensitivity and workload.

  17. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    Science.gov (United States)

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  18. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  19. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells.

    Science.gov (United States)

    Olkhanud, Purevdorj B; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-07-15

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we show that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4-mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by natural killer (NK) cells. Lung metastasis required CCR4(+) regulatory T cells (Treg), which directly killed NK cells using beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4(+) cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  20. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  1. 14-3-3ε Is required for germ cell migration in Drosophila.

    Directory of Open Access Journals (Sweden)

    K Kirki Tsigkari

    Full Text Available Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.

  2. Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes

    DEFF Research Database (Denmark)

    Mohrmann, Ralf; de Wit, Heidi; Verhage, Matthijs;

    2010-01-01

    relationship for fast (synchronous) fusion and a near-linear relationship for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, while slower release might occur with fewer. Heterogeneity in SNARE-complex number may...

  3. Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Angueyra

    Full Text Available Melanopsin, the receptor molecule that underlies light sensitivity in mammalian 'circadian' receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A G(q was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP₃ receptor antagonists, highlighting the importance of IP₃ receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG, as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP₃-sensitive channels may fulfill a key role in conveying--directly or indirectly--the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.

  4. Molecular cloning and characterization of a venom phospholipase A2 from the bumblebee Bombus ignitus.

    Science.gov (United States)

    Xin, Yu; Choo, Young Moo; Hu, Zhigang; Lee, Kwang Sik; Yoon, Hyung Joo; Cui, Zheng; Sohn, Hung Dae; Jin, Byung Rae

    2009-10-01

    Phospholipase A(2) (PLA(2)) is one of the main components of bee venom. Here, we identify a venom PLA(2) from the bumblebee, Bombus ignitus. Bumblebee venom PLA(2) (Bi-PLA(2)) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA(2) gene. Bi-PLA(2) is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA(2) (136 amino acids) possesses features consistent with other bee PLA(2)s, including ten conserved cysteine residues, as well as a highly conserved Ca(2+)-binding site and active site. Phylogenetic analysis of bee PLA(2)s separated the bumblebee and honeybee PLA(2) proteins into two groups. The mature Bi-PLA(2) purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA(2). Immunofluorescence staining of Bi-PLA(2)-treated insect Sf9 cells revealed that Bi-PLA(2) binds at the cell membrane and induces apoptotic cell death. PMID:19539776

  5. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D

    Directory of Open Access Journals (Sweden)

    Nataliya A. Babenko

    2015-01-01

    Full Text Available Background. The role of phospholipase D (PLD as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase (wortmannin, LY294002 or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.

  6. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    Directory of Open Access Journals (Sweden)

    Dinesh Thotala

    Full Text Available Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2 is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549 co-cultured with endothelial cells (bEND3 and HUVEC and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3 and induced cell death and attenuated invasion by tumor cells (LLC &A549. In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  7. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

    Science.gov (United States)

    Seehus, Corey R; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-06-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.

  8. Possible involvement of phospholipase C and protein kinase C in stimulatory actions of L-leucine and its keto acid, alpha-ketoisocaproic acid, on protein synthesis in RLC-16 hepatocytes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki-Tsuji, Naoko; Miura, Atsuhito; Funabiki, Ryuhei

    2002-11-01

    Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [(3)H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A(2) and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A(2), cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. PMID:19003115

  9. Differential requirement for MEK Partner 1 in DU145 prostate cancer cell migration

    Directory of Open Access Journals (Sweden)

    Bailey Evangeline M

    2009-11-01

    Full Text Available Abstract ERK signaling regulates focal adhesion disassembly during cell movement, and increased ERK signaling frequently contributes to enhanced motility of human tumor cells. We previously found that the ERK scaffold MEK Partner 1 (MP1 is required for focal adhesion disassembly in fibroblasts. Here we test the hypothesis that MP1-dependent ERK signaling regulates motility of DU145 prostate cancer cells. We find that MP1 is required for motility on fibronectin, but not for motility stimulated by serum or EGF. Surprisingly, MP1 appears not to function through its known binding partners MEK1 or PAK1, suggesting the existence of a novel pathway by which MP1 can regulate motility on fibronectin. MP1 may function by regulating the stability or expression of paxillin, a key regulator of motility.

  10. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard;

    2003-01-01

    , and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell...... localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells......, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics....

  11. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells.

    Science.gov (United States)

    Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori

    2013-12-01

    The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.

  12. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    Science.gov (United States)

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice.

  13. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-01-01

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. PMID:26114597

  14. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  15. Requirement for HIV-1 TAR sequences for Tat activation in rodent cells.

    Science.gov (United States)

    Sutton, J A; Braddock, M; Kingsman, A J; Kingsman, S M

    1995-01-10

    HIV-1 gene expression is activated via an interaction between the virally encoded Tat protein and a target RNA, TAR. TAR is located at the immediate 5' end of all viral mRNAs and comprises a partially base-paired stem with a tripyrimidine bulge in the upper stem and a hexanucleotide loop. In vitro, Tat binds specifically to the bulge and upper stem region with no requirement for the loop. In contrast, when Tat activation is analyzed in primate cells, mutations in the loop abolish activation, suggesting a critical role for loop binding cellular factors. However, in rodent cells the reverse is true. Messages with a mutation in the TAR loop are activated whereas messages harboring a wild-type TAR sequence are not activated. By testing the effect of mutations in the bulge and stem in the context of mutation in the loop we now show that this loop-independent activation by Tat in rodent cells requires the critical bulge-stem sequences needed for Tat binding in vitro. These data suggest that in rodent cells, as in vitro, Tat does not require a loop binding cofactor. In rodent cells containing human chromosome 12 (CHO12), however, Tat activation is both bulge and loop dependent. It appears that rodent cells, but not CHO12 cells, are refractory to the normal Tat/TAR activation pathway not by virtue of lacking a loop binding cofactor, but rather by the presence of a loop binding inhibitor of either Tat binding or the activation process. PMID:7530399

  16. Atomic resolution (0.97 Å) structure of the triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2

    International Nuclear Information System (INIS)

    The crystal structure of a triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2 has been solved at atomic resolution (0.97 Å) and the refined model features the presence of a second calcium ion and a chloride ion. The enzyme phospholipase A2 catalyzes the hydrolysis of the sn-2 acyl chain of phospholipids, forming fatty acids and lysophospholipids. The crystal structure of a triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2 in which the lysine residues at positions 53, 56 and 121 are replaced recombinantly by methionines has been determined at atomic resolution (0.97 Å). The crystal is monoclinic (space group P2), with unit-cell parameters a = 36.934, b = 23.863, c = 65.931 Å, β = 101.47°. The structure was solved by molecular replacement and has been refined to a final R factor of 10.6% (Rfree = 13.4%) using 63 926 unique reflections. The final protein model consists of 123 amino-acid residues, two calcium ions, one chloride ion, 243 water molecules and six 2-methyl-2,4-pentanediol molecules. The surface-loop residues 60–70 are ordered and have clear electron density

  17. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity.

    Science.gov (United States)

    Buerth, Christoph; Kovacic, Filip; Stock, Janpeter; Terfrüchte, Marius; Wilhelm, Susanne; Jaeger, Karl-Erich; Feldbrügge, Michael; Schipper, Kerstin; Ernst, Joachim F; Tielker, Denis

    2014-06-01

    CalB of Pseudozyma aphidis (formerly named Candida antarctica) is one of the most widely applied enzymes in industrial biocatalysis. Here, we describe a protein with 66 % sequence identity to CalB, designated Ustilago maydis lipase 2 (Uml2), which was identified as the product of gene um01422 of the corn smut fungus U. maydis. Sequence analysis of Uml2 revealed the presence of a typical lipase catalytic triad, Ser-His-Asp with Ser125 located in a Thr-Xaa-Ser-Xaa-Gly pentapeptide. Deletion of the uml2 gene in U. maydis diminished the ability of cells to hydrolyse fatty acids from tributyrin or Tween 20/80 substrates, thus demonstrating that Uml2 functions as a lipase that may contribute to nutrition of this fungal pathogen. Uml2 was heterologously produced in Pichia pastoris and recombinant N-glycosylated Uml2 protein was purified from the culture medium. Purified Uml2 released short- and long-chain fatty acids from p-nitrophenyl esters and Tween 20/80 substrates. Furthermore, phosphatidylcholine substrates containing long-chain saturated or unsaturated fatty acids were effectively hydrolysed. Both esterase and phospholipase A activity of Uml2 depended on the Ser125 catalytic residue. These results indicate that Uml2, in contrast to CalB, exhibits not only esterase and lipase activity but also phospholipase A activity. Thus, by genome mining, we identified a novel CalB-like lipase with different substrate specificities.

  18. Discrete Role for Cytosolic Phospholipase A2α in Platelets

    OpenAIRE

    Wong, Dennis A.; Kita, Yoshihiro; Uozumi, Naonori; Shimizu, Takao

    2002-01-01

    Among several different types of phospholipase A2 (PLA2), cytosolic PLA2 (cPLA2)α and group IIA (IIA) secretory PLA2 (sPLA2) have been studied intensively. To determine the discrete roles of cPLA2α in platelets, we generated two sets of genetically engineered mice (cPLA2α−/−/sPLA2-IIA−/− and cPLA2α−/−/sPLA2-IIA+/+) and compared their platelet function with their respective wild-type C57BL/6J mice (cPLA2α+/+/sPLA2-IIA−/−) and C3H/HeN (cPLA2α+/+/sPLA2-IIA+/+). We found that cPLA2α is needed for...

  19. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells

    Directory of Open Access Journals (Sweden)

    Stella Suyong Lee

    2015-11-01

    Full Text Available Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.

  20. Oct1 and OCA-B are selectively required for CD4 memory T cell function.

    Science.gov (United States)

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean

    2015-11-16

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory. PMID:26481684

  1. Memory CD8(+) T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function.

    Science.gov (United States)

    Balmer, Maria L; Ma, Eric H; Bantug, Glenn R; Grählert, Jasmin; Pfister, Simona; Glatter, Timo; Jauch, Annaïse; Dimeloe, Sarah; Slack, Emma; Dehio, Philippe; Krzyzaniak, Magdalena A; King, Carolyn G; Burgener, Anne-Valérie; Fischer, Marco; Develioglu, Leyla; Belle, Réka; Recher, Mike; Bonilla, Weldy V; Macpherson, Andrew J; Hapfelmeier, Siegfried; Jones, Russell G; Hess, Christoph

    2016-06-21

    How systemic metabolic alterations during acute infections impact immune cell function remains poorly understood. We found that acetate accumulates in the serum within hours of systemic bacterial infections and that these increased acetate concentrations are required for optimal memory CD8(+) T cell function in vitro and in vivo. Mechanistically, upon uptake by memory CD8(+) T cells, stress levels of acetate expanded the cellular acetyl-coenzyme A pool via ATP citrate lyase and promoted acetylation of the enzyme GAPDH. This context-dependent post-translational modification enhanced GAPDH activity, catalyzing glycolysis and thus boosting rapid memory CD8(+) T cell responses. Accordingly, in a murine Listeria monocytogenes model, transfer of acetate-augmented memory CD8(+) T cells exerted superior immune control compared to control cells. Our results demonstrate that increased systemic acetate concentrations are functionally integrated by CD8(+) T cells and translate into increased glycolytic and functional capacity. The immune system thus directly relates systemic metabolism with immune alertness. PMID:27212436

  2. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus.

    Science.gov (United States)

    Möll, Andrea; Schlimpert, Susan; Briegel, Ariane; Jensen, Grant J; Thanbichler, Martin

    2010-07-01

    In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C-terminal lysostaphin-like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.

  3. TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection

    Directory of Open Access Journals (Sweden)

    Tuoqi Wu

    2015-09-01

    Full Text Available T follicular helper (TFH and T helper 1 (Th1 cells generated after viral infections are critical for the control of infection and the development of immunological memory. However, the mechanisms that govern the differentiation and maintenance of these two distinct lineages during viral infection remain unclear. We found that viral-specific TFH and Th1 cells showed reciprocal expression of the transcriptions factors TCF1 and Blimp1 early after infection, even before the differential expression of the canonical TFH marker CXCR5. Furthermore, TCF1 was intrinsically required for the TFH cell response to viral infection; in the absence of TCF1, the TFH cell response was severely compromised, and the remaining TCF1-deficient TFH cells failed to maintain TFH-associated transcriptional and metabolic signatures, which were distinct from those in Th1 cells. Mechanistically, TCF1 functioned through forming negative feedback loops with IL-2 and Blimp1. Our findings demonstrate an essential role of TCF1 in TFH cell responses to viral infection.

  4. Synergistic Effects of Secretory Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus with Cancer Chemotherapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jennifer Nelson

    2013-01-01

    Full Text Available Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antineoplastic drugs: methotrexate, daunorubicin, actinomycin D, and paclitaxel. In each case, a substantial population of treated cells was still alive yet vulnerable to attack by the enzyme. Induction of cell death by these agents also perturbed the biophysical properties of the membrane as detected by merocyanine 540 and trimethylammonium-diphenylhexatriene. These results suggest that exposure of lymphoma cells to these drugs universally causes changes to the cell membrane that render it susceptible to enzymatic attack. The data also argue that the snake venom enzyme is not only capable of clearing cell corpses but can aid in the demise of tumor cells that have initiated but not yet completed the death process.

  5. Identification and Functional Characterization of Adipose-specific Phospholipase A2 (AdPLA)*S⃞

    OpenAIRE

    Duncan, Robin E.; Sarkadi-Nagy, Eszter; Jaworski, Kathy; Ahmadian, Maryam; Sul, Hei Sook

    2008-01-01

    Phospholipases A2 (PLA2s) catalyze hydrolysis of fatty acids from the sn-2 position of phospholipids. Here we report the identification and characterization of a membrane-associated intracellular calcium-dependent, adipose-specific PLA2 that we named AdPLA (adipose-specific phospholipase A2). We found that AdPLA was highly expressed specifically in white adipose tissue and was induced during preadipocyte differentiation into adipocytes. Clearance of AdPLA by immuno...

  6. Phylogenetic and structural analysis of the phospholipase A2 gene family in vertebrates

    OpenAIRE

    Huang, Qi; Wu, Yuan; Qin, Chao; HE, WENWU; Wei, Xing

    2014-01-01

    The phospholipase A (PLA)2 family is the most complex gene family of phospholipases and plays a crucial role in a number of physiological activities. However, the phylogenetic background of the PLA2 gene family and the amino acid residues of the PLA2G7 gene following positive selection gene remain undetermined. In this study, we downloaded 49 genomic data sets of PLA from different species, including the human, house mouse, Norway rat, pig, dog, chicken, cattle, African clawed frog, Sumatran ...

  7. Oxidative stress and redox regulation of phospholipase D in myocardial disease.

    Science.gov (United States)

    Tappia, Paramjit S; Dent, Melissa R; Dhalla, Naranjan S

    2006-08-01

    Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress. PMID:16843818

  8. Reduced fertilization after ICSI and abnormal phospholipase C zeta presence in spermatozoa from the wobbler mouse.

    Science.gov (United States)

    Heytens, Elke; Schmitt-John, Thomas; Moser, Jakob M; Jensen, Nanna Mandøe; Soleimani, Reza; Young, Claire; Coward, Kevin; Parrington, John; De Sutter, Petra

    2010-12-01

    Failed fertilization after intracytoplasmic sperm injection (ICSI) can be due to a reduced oocyte-activation capacity caused by reduced concentrations and abnormal localization of the oocyte-activation factor phospholipase C (PLC) zeta. Patients with this condition can be helped to conceive by artificial activation of oocytes after ICSI with calcium ionophore (assisted oocyte activation; AOA). However some concern still exists about this approach. Mouse models could help to identify potential oocyte-activation strategies and evaluate their safety. In this study, the fertilizing capacity of wobbler sperm cells was tested and the efficiency of AOA with two exposures to ionomycin to restore fertilization and embryo development was studied. The quality of the obtained blastocysts was assessed and embryo transfer was performed to evaluate post-implantation development. The presence of PLCzeta in the spermatozoa and testis of the wobbler mouse was evaluated by PLCzeta immunostaining and quantitative reverse-transcription polymerase chain reaction. Sperm cells from wobbler mice had reduced fertilizing capacity and abnormalities in PLCzeta localization, but not in its expression. Artificially activating the oocytes restored fertilization and embryo development. Therefore, the wobbler mouse can be a model for failed fertilization after ICSI to study PLCzeta dynamics and aid in optimization of the AOA method.

  9. Group IVA phospholipase A2 participates in the progression of hepatic fibrosis.

    Science.gov (United States)

    Ishihara, Keiichi; Miyazaki, Akira; Nabe, Takeshi; Fushimi, Hideaki; Iriyama, Nao; Kanai, Shiho; Sato, Takashi; Uozumi, Naonori; Shimizu, Takao; Akiba, Satoshi

    2012-10-01

    Group IVA phospholipase A2 (IVA-PLA2) is an enzyme that intiates the arachidonic acid pathway and plays an important role in inflammation. We demonstrate that IVA-PLA2 deficiency suppresses lipid deposition in the liver, which was induced by administration of a high-fat and -cholesterol diet (HFCD) for 16 wk in mice. Herein, we performed 2-dimensional gel-based comparative proteomics to further define the suppressive effect of IVA-PLA2 deficiency on fatty liver formation. In comparisons among 4 groups, wild-type (WT)/normal diet (ND), IVA-PLA2-deficient knockout (KO)/ND, WT/HFCD, and KO/HFCD, 4 proteins, 3 of which are associated with hepatic fibrosis, were identified as molecules, of which altered expression by HFCD was suppressed in KO mice compared to WT mice. Therefore, we assessed the effect of IVA-PLA2 deficiency on hepatic fibrosis induced by HFCD or carbon tetrachloride (CCl4) in mouse models. Biochemical and histological analyses revealed that IVA-PLA2 deficiency markedly reduced overall collagen accumulation in the liver of HFCD- and CCl4-derived mouse models. We found that IVA-PLA2 deficiency prevented activation of hepatic stellate cells and infiltration of F4/80-positive macrophages without affecting other immunocytes such as CD8+ lymphocytes and natural killer cells. In summary, IVA-PLA2 deficiency attenuates not only lipid deposition in the liver but also hepatic fibrosis formation.

  10. The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction

    Directory of Open Access Journals (Sweden)

    Abdelkafi Slim

    2011-11-01

    Full Text Available Abstract Background Phospholipase D (PLD belongs to a lipolytic enzyme subclass which catalyzes the hydrolysis and transesterification of glycerophospholipids at the terminal phosphodiester bond. Results In this work, we have studied the substrate specificity of PLDs from germinating sunflower seeds and cultured-soybean cells, using their capacity of transphosphatidylation. In the presence of a nucleophilic acceptor, such as [14C]ethanol, PLD catalyzes the production of phosphatidyl-[14C]-ethanol. The resulting product is easily identified since it is well separated from the other lipids by thin-layer chromatography. The main advantage of this assay is that the phospholipid used as substrate does not need to be radiolabelled and thus allow us a large choice of polar heads and fatty acids. In vitro, we observed that sunflower and soybean cell PLD show the following decreasing order of specificity: phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol; while phosphatidylserine and phosphatidylinositol are utilized much less efficiently. Conclusions The substrate specificity is modulated by the fatty acid composition of the phosphatidylcholine used as well as by the presence of other charged phospholipids.

  11. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    Science.gov (United States)

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  12. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    Science.gov (United States)

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  13. Computational identification of a p38SAPK regulated transcription factor network required for tumor cell quiescence

    OpenAIRE

    Adam, Alejandro P.; George, Ajish; Schewe, Denis; Bragado, Paloma; Iglesias, Bibiana V.; Ranganathan, Aparna C.; Kourtidis, Antonis; Conklin, Douglas S.; Julio A Aguirre-Ghiso

    2009-01-01

    The stress activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools we identified a transcription factor (TF) network regulated by p38α/β and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and...

  14. Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Morales Torres, Cristina; Laugesen, Anne; Helin, Kristian

    2013-01-01

    for the activation of lineage choice genes in response to developmental signals. To further understand the function of Utx in pluripotency and differentiation we generated Utx knockout embryonic stem cells (ESCs). Here we show that Utx is not required for the proliferation of ESCs, however, Utx contributes......Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important...

  15. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Science.gov (United States)

    Trombetta, Mark; Packard, Matthew; Velosa, Claudia; Silverman, Jan; Werts, Day; Parda, David

    2011-03-30

    Merkel's cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  16. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Directory of Open Access Journals (Sweden)

    David Parda

    2011-03-01

    Full Text Available Merkel’s cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  17. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    Science.gov (United States)

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  18. Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk.

    OpenAIRE

    Law, C L; Chandran, K A; Sidorenko, S P; Clark, E. A.

    1996-01-01

    Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The abi...

  19. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Alice W Yewdall

    Full Text Available Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.

  20. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  1. A Dosage-Dependent Requirement for Sox9 in Pancreatic Endocrine Cell Formation

    OpenAIRE

    Seymour, Philip A.; Freude, Kristine K.; Dubois, Claire L.; Shih, Hung-Ping; Patel, Nisha A.; Sander, Maike

    2008-01-01

    We have previously shown the transcription factor SOX9 to be required for the maintenance of multipotential pancreatic progenitor cells in the early embryonic pancreas. However, the association of pancreatic endocrine defects with the Sox9-haploinsufficiency syndrome campomelic dysplasia (CD) implies additional later roles for Sox9 in endocrine development. Using short-term lineage tracing in mice, we demonstrate here that SOX9 marks a pool of multipotential pancreatic progenitors throughout ...

  2. DREF Is Required for Efficient Growth and Cell Cycle Progression in Drosophila Imaginal Discs

    OpenAIRE

    Hyun, Joogyung; Jasper, Heinrich; Bohmann, Dirk

    2005-01-01

    Based on overexpression studies and target gene analyses, the transcription factor DNA replication-related element factor (DREF) has been proposed to regulate growth and replication in Drosophila melanogaster. Here we present loss-of-function experiments to analyze the contribution of DREF to these processes. RNA interference-mediated extinction of DREF function in vivo demonstrates a requirement for the protein for normal progression through the cell cycle and consequently for growth of imag...

  3. Sensor Needs and Requirements for Fuel Cells and CIDI/SIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Glass, R.S.

    2000-03-01

    To reduce U.S. dependence on imported oil, improve urban air quality, and decrease greenhouse gas emissions, the Department of Energy (DOE) is developing advanced vehicle technologies and fuels. Enabling technologies for fuel cell power systems and direct-injection engines are being developed by DOE through the Partnership for a New Generation of Vehicles (PNGV), a government-industry collaboration to produce vehicles having up to three times the fuel economy of conventional mid-size automobiles. Sensors have been identified as a research and development need for both fuel cell and direct-injection systems, because current sensor technologies do not adequately meet requirements. Sensors are needed for emission control, for passenger safety and comfort, to increase system lifetime, and for system performance enhancement through feedback and control. These proceedings document the results of a workshop to define sensor requirements for proton exchange membrane (PEM) fuel cell systems and direct-injection engines for automotive applications. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies. The objectives of the workshop were to: define the requirements for sensors; establish R&D priorities; identify the technical targets and technical barriers; and facilitate collaborations among participants. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies.

  4. A novel isoform of MAP4 organises the paraxial microtubule array required for muscle cell differentiation.

    Science.gov (United States)

    Mogessie, Binyam; Roth, Daniel; Rahil, Zainab; Straube, Anne

    2015-01-01

    The microtubule cytoskeleton is critical for muscle cell differentiation and undergoes reorganisation into an array of paraxial microtubules, which serves as template for contractile sarcomere formation. In this study, we identify a previously uncharacterised isoform of microtubule-associated protein MAP4, oMAP4, as a microtubule organising factor that is crucial for myogenesis. We show that oMAP4 is expressed upon muscle cell differentiation and is the only MAP4 isoform essential for normal progression of the myogenic differentiation programme. Depletion of oMAP4 impairs cell elongation and cell-cell fusion. Most notably, oMAP4 is required for paraxial microtubule organisation in muscle cells and prevents dynein- and kinesin-driven microtubule-microtubule sliding. Purified oMAP4 aligns dynamic microtubules into antiparallel bundles that withstand motor forces in vitro. We propose a model in which the cooperation of dynein-mediated microtubule transport and oMAP4-mediated zippering of microtubules drives formation of a paraxial microtubule array that provides critical support for the polarisation and elongation of myotubes. PMID:25898002

  5. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.

    Science.gov (United States)

    Castanheira, Sónia; Pérez-Martín, José

    2015-01-01

    Many of the most important plant diseases are caused by fungal pathogens that form specialized cell structures to breach the leaf surface as well as to proliferate inside the plant. To initiate pathogenic development, the fungus responds to a set of inductive cues. Some of them are of extracellular nature (environmental signals) while others respond to intracellular conditions (developmental signals). These signals have to be integrated into a single response that has as a major outcome changes in the morphogenesis of the fungus. The cell cycle regulation is pivotal during these cellular differentiations, and we hypothesized that cell cycle regulation would be likely to provide control points for infection development by fungal pathogens. Although efforts have been done in various fungal systems, there is still limited information available regarding the relationship of these processes with the induction of the virulence programs. Hence, the role of fungal cell cycle regulators -which are wide conserved elements- as true virulence factors, has yet to be defined. Here we discuss the recent finding that the formation of the appressorium, a structure required for plant penetration, in the corn smut fungus Ustilago maydis seems to be incompatible with an active cell cycle and, therefore genetic circuits evolved in this fungus to arrest the cell cycle during the growth of this fungus on plant surface, before the appressorium-mediated penetration into the plant tissue.

  6. Autophagy is Required for the Maintenance of Liver Progenitor Cell Functionality

    Directory of Open Access Journals (Sweden)

    Yiji Cheng

    2015-06-01

    Full Text Available Background: Liver progenitor cells (LPCs are bipotent stem cells existing in the adult liver, which could be activated upon massive liver injury and contribute to liver regeneration. However, mechanisms of maintenance of LPC functionality remain poorly understood. Previous studies found that autophagy was required for the self-renewal and differentiation of several tissue stem cells. Methods: The study compared the level of autophagic activity in LPCs and differentiated hepatocytes. Then, autophagic activity was inhibited in LPCs by lentivirus-mediated autophagy-related gene 5 or Beclin 1 knockdown. Clonogenic assay, cell viability assays, hepatic differentiation assay, and senescence analysis were conducted to assess the role of autophagy in regulating self-renewal, hepatic differentiation and senescence of LPCs. Results: We observed high autophagic activity in LPCs compared with differentiated hepatocytes. We found that inhibition of autophagy impaired the self-renewal, proliferation, and hepatic differentiation capability of LPCs under normal cultural condition, but had little impact on cell viability. Interestingly, while wild-type LPCs remained rarely affected by the toxin, etoposide, inhibition of autophagy induced the senescent phenotype of LPCs. Overexpression of Beclin 1 in Beclin 1-knockdown LPCs restored the functionality of stem cells. Conclusion: Our findings indicate that autophagy may function as a critical regulator of LPC functionality under both physiological and pathological condition.

  7. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  8. Nicotinamide phosphoribosyl transferase (Nampt is required for de novo lipogenesis in tumor cells.

    Directory of Open Access Journals (Sweden)

    Sarah C Bowlby

    Full Text Available Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+, a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+ in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt in maintaining de novo lipogenesis in prostate cancer (PCa cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK and phosphorylation of acetyl-CoA carboxylase (ACC. In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.

  9. High specificity of human secretory class II phospholipase A2 for phosphatidic acid.

    Science.gov (United States)

    Snitko, Y; Yoon, E T; Cho, W

    1997-02-01

    Lysophosphatidic acid (LPA) is a potent lipid second messenger which stimulates platelet aggregation, cell proliferation and smooth-muscle contraction. The phospholipase A2 (PLA2)-catalysed hydrolysis of phosphatidic acid (PA) is thought to be a primary synthetic route for LPA. Of the multiple forms of PLA2 present in human tissues, human secretory class-II PLA2 (hs-PLA2) has been implicated in the production of LPA from platelets and whole blood cells challenged with inflammatory stimuli. To explore further the possibility that hs-PLA2 is involved in the production of LPA, we rigorously measured the phospholipid head group specificity of hs-PLA2 by a novel PLA2 kinetic system using polymerized mixed liposomes. Kinetic analysis of recombinant hs-PLA2 demonstrates that hs-PLA2 strongly prefers PA as substrate over other phospholipids found in the mammalian plasma membrane including phosphatidylserine (PS), phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The order of preference is PA > PE approximately PS > PC. To identify amino acid residues of hs-PLA2 that are involved in its unique substrate specificity, we mutated two residues, Glu-56 and Lys-69, which were shown to interact with the phospholipid head group in the X-ray-crystallographic structure of the hs-PLA2-transition-state-analogue complex. The K69Y mutant showed selective inactivation toward PA whereas the E56K mutant displayed a most pronounced inactivation to PE. Thus it appears that Lys-69 is at least partially involved in the PA specificity of hs-PLA2 and Glu-56 in the distinction between PE and PC. In conjunction with a recent cell study [Fourcade, Simon, Viode, Rugani, Leballe, Ragab, Fournie, Sarda and Chap (1995) Cell 80, 919-927], these studies suggest that hs-PLA2 can rapidly hydrolyse PA molecules exposed to the outer layer of cell-derived microvesicles and thereby produce LPA.

  10. Expression and purification of lipoprotein-associated phospholipase A2, a key enzyme involved in atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Fu-jun ZHANG; Mao-jun CAI; Jing-kang SHEN; Yi-ping WANG

    2006-01-01

    Aim: To express and purify lipoprotein-associated phospholipase A2 (Lp-PLA2), and to establish a screening model for Lp-PLA2 inhibitors using the expressed Lp-PLA2. Methods: We cloned the full-length cDNA of Lp-PLA2 from differentiated THP-1 cells, and subcloned the cDNA into the baculovirus transfer vector pFastBacl. In addition, we introduced an N-terminal Kozak sequence for highlevel translation initiation and a C-terminal sequence of 6 histidine residues for purification. The fusion enzyme was expressed in Sf9 insect cells and purified by Ni2+ affinity chromatography. Recombinant Lp-PLA2 activity was measured using [3H]PAF as a substrate, and we examined the enzyme activity of recombinant Lp-PLA2 pretreated with the known Lp-PLA2 inhibitor SB435495. Results: We successfully cloned the full-length Lp-PLA2 gene from differentiated THP-1 cells. The fusion enzyme was expressed in Sf9 insect cells at a high level and purified efficiently through a 2-step procedure. The recombinant Lp-PLA2 activity was measured using [3H]PAF as a substrate, and proved to be enzymatically active. Lp-PLA2 inhibitor SB435495 produced a good inhibition curve for inhibition of recombinant Lp-PLA2 with an IC50 of 57±1 μmol/L. Conclusion: We expressed and purified Lp-PLA2 at a high level in insect cell-baculovirus expression system. The yield ratio was much greater than that obtained from human plasma and we established a screening model for Lp-PLA2 inhibitors using the expressed Lp-PLA2.

  11. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Directory of Open Access Journals (Sweden)

    Andrew R. Mullen

    2014-06-01

    Full Text Available Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG via NADPH-dependent isocitrate dehydrogenase (IDH. It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.

  12. Activation of resting human T cells requires prolonged stimulation of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Berry, N.; Ase, K.; Kishimoto, A.; Nishizuka, Y. (Kobe Univ. School of Medicine (Japan))

    1990-03-01

    Purified resting human T cells can be induced to express the {alpha} subunit of the interleukin 2 receptor and to proliferate by treatment with 12-0-tetradecanoylphorbol-13-acetate plus ionomycin but not with 1,2-dioctanoylglycerol plus ionomycin. Determination of the translocation of protein kinase C showed that 12-0-tetradecanoylphorbol-13-acetate plus ionomycin caused a prolonged membrane association of the enzyme for more than 4 hr, whereas 1,2-dioctanoylglycerol plus ionomycin induced a transient membrane association, which was maximal at 20 min. Delivery of multiple additions of 1,2-dioctanoylglycerol plus ionomycin to the T cells resulted in progressively increased expression of the {alpha} subunit of the interleukin 2 receptor and proliferation commensurate with the number of multiple additions delivered, suggesting that prolonged protein kinase C activity is required for T-cell activation.

  13. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation of arachidonic acid relea...ation. Gijon MA, Leslie CC. J Leukoc Biol. 1999 Mar;65(3):330-6. (.png) (.svg) (.html) (.csml) Show Regulati...se and cytosolic phospholipase A2activation. Authors Gij

  14. Hydrogen Monitoring Requirements in the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William; Rivkin, Carl; Burgess, Robert; Hartmann, Kevin; Bubar, Max; Post, Matthew; Boon-Brett, Lois; Weidner, Eveline; Moretto, Pietro

    2016-07-01

    The United Nations Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular fuel cell electric vehicles (FCEV). GTR Number 13 has been formally implemented and will serve as the basis for the national regulatory standards for FCEV safety in North America (Canada, United States), Japan, Korea, and the European Union. The GTR defines safety requirement for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, in order to be binding, methods to verify compliance to the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance to the hydrogen release requirement as specified in the GTR.

  15. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509 (Japan); Tanimoto, Keiji; Murakami, Tomoki; Morinaga, Takeshi [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Hosoi, Yoshio, E-mail: hosoi@med.tohoku.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)

    2014-01-24

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  16. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    International Nuclear Information System (INIS)

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  17. Solar cell development requires effective metrology: lock-in thermography can help

    International Nuclear Information System (INIS)

    The environmental and political benefits of renewable energy sources are understood by any informed observer with an interest in the future sustainability of our planet. Solar cells are getting a lot of attention - not only because they are a clean source of renewable energy, but also because their energy input is essentially free. Through the use of photovoltaic (PV) technology, solar cells convert the sun's rays directly into electricity. According to John Boyd, a technology analyst at Semiconductor Insights, 'a solar array 150 x 150 km could, in principle, meet all of North America's energy needs.' Assuming adequate installation space, and a solution for power grid load balancing, the main problem remaining to be solved is achieving grid parity - the point at which the cost of generating PV power is competitive with that of generating power using existing power plants. Currently, the cost of generating PV power is approximately $0.20/kWh globally. This is still roughly twice the rate of coal-based alternatives. The current generation of silicon solar cells typically achieves conversion efficiencies between 15% and 25%, while typical metallic thin film cells have efficiencies in the 5% to 20% range, depending on materials used. R and D efforts are aimed at increasing the efficiency of both solar cell technologies and reducing PV cell power generation costs to around $0.05/kWh. The primary challenges in reducing the cost of PV power generation exist in the production phase of the development cycle. Too many defects in the semiconducting material structure go undetected before solar cells are put into use. Identifying these defects requires efficient, cost effective test and measurement methods for characterizing a cell's performance and its electronic structure.(author)

  18. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter;

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  19. Analysis of dynamic requirements for fuel cell systems for vehicle applications

    Science.gov (United States)

    Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen

    Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative

  20. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays.

    Science.gov (United States)

    Djakpa, Helene; Kulkarni, Aditya; Barrows-Murphy, Scheneque; Miller, Greg; Zhou, Weihong; Cho, Hyejin; Török, Béla; Stieglitz, Kimberly

    2016-05-01

    Phospholipase D enzymes cleave phospholipid substrates generating choline and phosphatidic acid. Phospholipase D from Streptomyces chromofuscus is a non-HKD (histidine, lysine, and aspartic acid) phospholipase D as the enzyme is more similar to members of the diverse family of metallo-phosphodiesterase/phosphatase enzymes than phospholipase D enzymes with active site HKD repeats. A highly efficient library of phospholipase D inhibitors based on 1,3-disubstituted-4-amino-pyrazolopyrimidine core structure was utilized to evaluate the inhibition of purified S. chromofuscus phospholipase D. The molecules exhibited inhibition of phospholipase D activity (IC50 ) in the nanomolar range with monomeric substrate diC4 PC and micromolar range with phospholipid micelles and vesicles. Binding studies with vesicle substrate and phospholipase D strongly indicate that these inhibitors directly block enzyme vesicle binding. Following these compelling results as a starting point, sequence searches and alignments with S. chromofuscus phospholipase D have identified potential new drug targets. Using AutoDock, inhibitors were docked into the enzymes selected from sequence searches and alignments (when 3D co-ordinates were available) and results analyzed to develop next-generation inhibitors for new targets. In vitro enzyme activity assays with several human phosphatases demonstrated that the predictive protocol was accurate. The strategy of combining sequence comparison, docking, and high-throughput screening assays has helped to identify new drug targets and provided some insight into how to make potential inhibitors more specific to desired targets. PMID:26691755

  1. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells.

    Directory of Open Access Journals (Sweden)

    Leah M Okumura

    Full Text Available In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.

  2. Deletion of antigen-specific immature thymocytes by dendritic cells requires LFA-1/ICAM interactions.

    Science.gov (United States)

    Carlow, D A; van Oers, N S; Teh, S J; Teh, H S

    1992-03-15

    An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.

  3. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    Science.gov (United States)

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  4. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  5. Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein α subunit in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2009-05-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways. Results In this work we describe a new G protein α subunit gene in S. schenckii, ssg-2. The cDNA sequence of ssg-2 revealed a predicted open reading frame of 1,065 nucleotides encoding a 355 amino acids protein with a molecular weight of 40.9 kDa. When used as bait in a yeast two-hybrid assay, a cytoplasmic phospholipase A2 catalytic subunit was identified as interacting with SSG-2. The sspla2 gene, revealed an open reading frame of 2538 bp and encoded an 846 amino acid protein with a calculated molecular weight of 92.62 kDa. The principal features that characterize cPLA2 were identified in this enzyme such as a phospholipase catalytic domain and the characteristic invariable arginine and serine residues. A role for SSPLA2 in the control of dimorphism in S. schenckii is suggested by observing the effects of inhibitors of the enzyme on the yeast cell cycle and the yeast to mycelium transition in this fungus. Phospholipase A2 inhibitors such as AACOCF3 (an analogue of archidonic acid and isotetrandrine (an inhibitor of G protein

  6. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    Science.gov (United States)

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes. PMID:25428992

  7. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    Science.gov (United States)

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.

  8. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Science.gov (United States)

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  9. Preventive Effects of Bee Venom Derived Phospholipase A₂ on Oxaliplatin-Induced Neuropathic Pain in Mice.

    Science.gov (United States)

    Li, Dongxing; Kim, Woojin; Shin, Dasom; Jung, Yongjae; Bae, Hyunsu; Kim, Sun Kwang

    2016-01-01

    Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A₂ (bvPLA₂) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were observed at three days after an injection of oxaliplatin (6 mg/kg, i.p.) and then decreased gradually to a normal level on days 7-9. The oxaliplatin injection also induced infiltration of macrophages and upregulated levels of the pro-inflammatory cytokine interleukin (IL)-1β in the lumbar dorsal root ganglia (DRG). Daily treatment with bvPLA₂ (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA₂ were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA₂ may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs. PMID:26797636

  10. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  11. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  12. Potent and selective fluoroketone inhibitors of group VIA calcium-independent phospholipase A2.

    Science.gov (United States)

    Kokotos, George; Hsu, Yuan-Hao; Burke, John E; Baskakis, Constantinos; Kokotos, Christoforos G; Magrioti, Victoria; Dennis, Edward A

    2010-05-13

    Group VIA calcium-independent phospholipase A(2) (GVIA iPLA(2)) has recently emerged as a novel pharmaceutical target. We have now explored the structure-activity relationship between fluoroketones and GVIA iPLA(2) inhibition. The presence of a naphthyl group proved to be of paramount importance. 1,1,1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one (FKGK18) is the most potent inhibitor of GVIA iPLA(2) (X(I)(50) = 0.0002) ever reported. Being 195 and >455 times more potent for GVIA iPLA(2) than for GIVA cPLA(2) and GV sPLA(2), respectively, makes it a valuable tool to explore the role of GVIA iPLA(2) in cells and in vivo models. 1,1,1,2,2,3,3-Heptafluoro-8-(naphthalene-2-yl)octan-4-one inhibited GVIA iPLA(2) with a X(I)(50) value of 0.001 while inhibiting the other intracellular GIVA cPLA(2) and GV sPLA(2) at least 90 times less potently. Hexa- and octafluoro ketones were also found to be potent inhibitors of GVIA iPLA(2); however, they are not selective. PMID:20369880

  13. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Directory of Open Access Journals (Sweden)

    Fluharty Eric

    2003-09-01

    Full Text Available Abstract Background Phospholipase D (PLD is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.

  14. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jian Zhao

    Full Text Available Aluminum (Al toxicity is the major stress in acidic soil that comprises about 50% of the world's arable land. The complex molecular mechanisms of Al toxicity have yet to be fully determined. As a barrier to Al entrance, plant cell membranes play essential roles in plant interaction with Al, and lipid composition and membrane integrity change significantly under Al stress. Here, we show that phospholipase Dγs (PLDγs are induced by Al stress and contribute to Al-induced membrane lipid alterations. RNAi suppression of PLDγ resulted in a decrease in both PLDγ1 and PLDγ2 expression and an increase in Al resistance. Genetic disruption of PLDγ1 also led to an increased tolerance to Al while knockout of PLDγ2 did not. Both RNAi-suppressed and pldγ1-1 mutants displayed better root growth than wild-type under Al stress conditions, and PLDγ1-deficient plants had less accumulation of callose, less oxidative damage, and less lipid peroxidation compared to wild-type plants. Most phospholipids and glycolipids were altered in response to Al treatment of wild-type plants, whereas fewer changes in lipids occurred in response to Al stress in PLDγ mutant lines. Our results suggest that PLDγs play a role in membrane lipid modulation under Al stress and that high activities of PLDγs negatively modulate plant tolerance to Al.

  15. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  16. Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9.

    Science.gov (United States)

    Atif, Shaikh M; Lee, Seung-Joo; Li, Lin-Xi; Uematsu, Satoshi; Akira, Shizuo; Gorjestani, Sara; Lin, Xin; Schweighoffer, Edina; Tybulewicz, Victor L J; McSorley, Stephen J

    2015-02-01

    Toll-like receptors (TLRs) can recognize microbial patterns and utilize adaptor molecules, such as-MyD88 or (TRIF TIR-domain-containing adapter-inducing interferon-β), to initiate downstream signaling that ultimately affects the initiation of adaptive immunity. In addition to this inflammatory role, TLR5 expression on dendritic cells can favor antigen presentation of flagellin peptides and thus increase the sensitivity of flagellin-specific T-cell responses in vitro and in vivo. Here, we examined the role of alternative signaling pathways that might regulate flagellin antigen presentation in addition to MyD88. These studies suggest a requirement for spleen tyrosine kinase, a noncanonical TLR-signaling adaptor molecule, and its downstream molecule CARD9 in regulating the sensitivity of flagellin-specific CD4(+) T-cell responses in vitro and in vivo. Thus, a previously unappreciated signaling pathway plays an important role in regulating the dominance of flagellin-specific T-cell responses. PMID:25430631

  17. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  18. Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells

    Directory of Open Access Journals (Sweden)

    Naranjo Victoria

    2007-09-01

    Full Text Available Abstract Background The tick-borne intracellular pathogen, Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae causes human granulocytic anaplasmosis after infection of polymorphonuclear leucocytes. The human Sp110 gene is a member of the nuclear body (NB components that functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that Sp110 may be involved in the infection of human promyelocytic HL-60 cells with A. phagocytophilum. Methods The human Sp110 and A. phagocytophilum msp4 mRNA levels were evaluated by real-time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-infection. The effect of Sp110 expression on A. phagocytophilum infection was determined by RNA interference (RNAi. The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg, MD, USA. The A. phagocytophilum infection levels were evaluated in HL-60 cells after RNAi by real-time PCR of msp4 and normalizing against human Alu sequences. Results While Sp110 mRNA levels increased concurrently with A. phagocytophilum infections in HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection levels. Conclusion These results demonstrated that Sp110 expression is required for A. phagocytophilum infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by which A. phagocytophilum modulates Sp110 mRNA levels to facilitate establishment of infection of human HL-60 cells.

  19. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential.

    Directory of Open Access Journals (Sweden)

    Verline Justilien

    Full Text Available Matrix metalloproteinases (Mmps stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2 in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC. Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10(-/- mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.

  20. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  1. No requirement of HCV 5'NCR for HCV-like particles assembly in insect cells

    Institute of Scientific and Technical Information of China (English)

    Wei Zhao; Guo-Yang Liao; Yah-Jun Jiang; Shu-De Jiang

    2003-01-01

    AIM: To express all three HCV structural proteins in the presence or absence of HCV 5'NCR to investigate the requirement of 5'NCR for the assembly of HCV-like particles in insect cells.METHODS: HCV structural protein encoding sequences CE1E2 and 5'NCR-CE1E2 were amplified with PCR.Recombinant baculovirus were constructed with recombinant DNA techniques. HCV structural proteins expressed in insect cells were analyzed by immunofluorescence and SDS-PAGE.Immunoprecipitation experiment of insect cell lysates with anti-E2 monodonal antibody (Mab) was carried out and the immunoprecipitated proteins were subjected to SDS-PAGE and immunoblotting with anti-C, anti-E2 Mabs and HCV positive serum. The virus-like particles in insect cells were visualized by electron microscopy (EM). The HCV-like particles were purified by sucrose gradient centrifugation and identified by EM and immune aggregation EM.RESULTS: The recombinant baculovirus reBV/CE1E2containing HCV C, E1, E2 genes and reBV/CS containing the same structural protein genes plus 5'NCR were constructed. The insect cells infected with either reBV/CE1E2or reBV/CS expressed HCV C, E1 and E2 proteins with a molecular weight of 20 kD, 35 kD and 66 kD respectively.The results of immunoprecipitation and the immunoblotting revealed the coimmunoprecipitation of C, E1, and E2proteins, indicating the interaction of HCV structural proteins expressed in insect cells. Electron microscopy of insect cells infected with reBV/CE1E2 or reBV/CS demonstrated spherical particles (40 to 60 nm in diameter)similar to the HCV virions from sera or hepatic tissues of HCV infected humans. The HCV-like particles were partially purified by sucrose gradient centrifugation, and the purified VLPs showed immuno-reactivity with anti-HCV antibodies.CONCLUSION: HCV 5'NCR is not required for the assembly of HCV-like particles in insect cells, HCV core and envelope proteins are sufficient for viral particle formation.

  2. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    Science.gov (United States)

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  3. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance.

    Science.gov (United States)

    Chaturvedi, Vandana; Collison, Lauren W; Guy, Clifford S; Workman, Creg J; Vignali, Dario A A

    2011-06-15

    Human regulatory T cells (T(reg)) are essential for the maintenance of immune tolerance. However, the mechanisms they use to mediate suppression remain controversial. Although IL-35 has been shown to play an important role in T(reg)-mediated suppression in mice, recent studies have questioned its relevance in human T(reg). In this study, we show that human T(reg) express and require IL-35 for maximal suppressive capacity. Substantial upregulation of EBI3 and IL12A, but not IL10 and TGFB, was observed in activated human T(reg) compared with conventional T cells (T(conv)). Contact-independent T(reg)-mediated suppression was IL-35 dependent and did not require IL-10 or TGF-β. Lastly, human T(reg)-mediated suppression led to the conversion of the suppressed T(conv) into iTr35 cells, an IL-35-induced T(reg) population, in an IL-35-dependent manner. Thus, IL-35 contributes to human T(reg)-mediated suppression, and its conversion of suppressed target T(conv) into IL-35-induced T(reg) may contribute to infectious tolerance.

  4. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells.

    Science.gov (United States)

    Farr, Christine J; Antoniou-Kourounioti, Melissa; Mimmack, Michael L; Volkov, Arsen; Porter, Andrew C G

    2014-04-01

    As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.

  5. Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments

    DEFF Research Database (Denmark)

    Kolko, Miriam; Wang, Jinmei; Zhan, Chen;

    2007-01-01

    PURPOSE: To identify intracellular phospholipases A(2) (PLA(2)) in the human retina and to explore the role of these enzymes in human retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS). METHODS: PCR amplification and Western blot analysis were used to identify m......RNA and protein expression of intracellular PLA(2) subtypes in the retinal pigment epithelial cell line ARPE-19. Immunohistochemical staining of normal human eye sections was performed to reveal the cellular location of the enzymes. A model of RPE phagocytosis of POS was used to explore the role of...... intracellular PLA(2) in phagocytosis. An activity assay was used to evaluate PLA(2) activity, and inhibitors of specific PLA(2) were applied to evaluate the role of PLA(2) in RPE phagocytosis. RESULTS: Genes encoding calcium-independent (i)PLA(2), group VIA; calcium-dependent cytosolic (c)PLA(2), groups IVA...

  6. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  7. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  8. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Science.gov (United States)

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  9. Anti-phospholipase A2 receptor antibody in membranous nephropathy.

    Science.gov (United States)

    Qin, Weisong; Beck, Laurence H; Zeng, Caihong; Chen, Zhaohong; Li, Shijun; Zuo, Ke; Salant, David J; Liu, Zhihong

    2011-06-01

    The M-type phospholipase A2 receptor (PLA2R) is a target autoantigen in adult idiopathic membranous nephropathy (MN), but the prevalence of autoantibodies against PLA2R is unknown among Chinese patients with MN. Here, we measured anti-PLA2R antibody in the serum of 60 patients with idiopathic MN, 20 with lupus-associated MN, 16 with hepatitis B (HBV)-associated MN, and 10 with tumor-associated MN. Among patients with idiopathic MN, 49 (82%) had detectable anti-PLA2R autoantibodies using a Western blot assay; an assay with greater sensitivity detected very low titers of anti-PLA2R in 10 of the remaining 11 patients. Using the standard assay, we detected anti-PLA2R antibody in only 1 patient with lupus, 1 with HBV, and 3 with cancer, producing an overall specificity of 89% in this cohort limited to patients with secondary MN. The enhanced assay detected low titers of anti-PLA2R in only 2 additional samples of HBV-associated MN. In summary, these results suggest that PLA2R is a major target antigen in Chinese idiopathic MN and that detection of anti-PLA2R is a sensitive test for idiopathic MN.

  10. The galactolipase activity of Fusarium solani (phospho)lipase.

    Science.gov (United States)

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.

  11. Dual Functions of Phospholipase in Plant Response to Drought

    Institute of Scientific and Technical Information of China (English)

    Yueyun Hong; Suqin Zheng; Xuemin Wang

    2008-01-01

    Phospholipase Dα1 (PLDα1) has been shown to mediate the abscisic acid regulation of stomatal movements.Arabidopsis plants deficient in PLDα1 increased,whereas PLDoLl-overexpressing tobacco decreased,transpirational water loss.In the early stage of drought,the decrease in water loss was associated with a rapid stomatal closure caused by a high level of PLD in PLDα1-overexpressing plants.However,in the late stage of drought,the overexpressing plants displayed more susceptibility to drought than control plants.PLDα1 activity in the overexpressing plants was much higher than that of control plants in which drought also induced an increase in PLDα1 activity.The high level of PLDα1 activity was correlated to membrane degradation in late stages of drought,as demonstrated by ionic leakage and lipid peroxidation.These findings indicate that a high level of PLDα1 expression has different effects on plant response to water deficits.It promotes stomatal closure at earlier stages,but disrupts membranes in prolonged drought stress.These findings are discussed in relation to the understanding of PLD functions and potential applications.

  12. Effects of Phospholipase C on Fusarium graminearum Growth and Development.

    Science.gov (United States)

    Zhu, Qili; Zhou, Benguo; Gao, Zhengliang; Liang, Yuancun

    2015-12-01

    Phospholipase C (PLC) plays important roles in regulating various biological processes in eukaryotes. Currently, little is known about the function of PLC in filamentous fungi, especially the plant pathogenic fungi. Fusarium graminearum is the causal agent of Fusarium head blight in many cereal crops. BLAST search revealed that Fusarium genome contains six FgPLC genes. Using quantitative RT-PCR, different FgPLC gene expressions in mycelia were analyzed. To investigate the role of FgPLC in F. graminearum biology, a pharmacological study using a known inhibitor of PLC (U73122) was conducted. Results showed that inhibition of FgPLC resulted in significant alterations of mycelial growth, conidiation, conidial germination, perithecium formation, and expressions of Tri5 and Tri6 genes. As expected, the treatment of F. graminearum with U73343, an inactive analog of U73122, showed no effect on F. graminearum biology. Our results suggested strongly that FgPLC plays important roles in F. graminearum growth and development.

  13. The galactolipase activity of Fusarium solani (phospho)lipase.

    Science.gov (United States)

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests. PMID:25529980

  14. Identification of a new phospholipase D in Carica papaya latex.

    Science.gov (United States)

    Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2012-05-15

    Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.

  15. Inhibitory effects of Swietenia macrophylla on myotoxic phospholipases A2

    Directory of Open Access Journals (Sweden)

    Jaime A. Pereañez

    2013-12-01

    Full Text Available Activity-guided fractionation of an ethanol-soluble extract of the leaves of Swietenia macrophylla King, Meliaceae, led to several fractions. As a result, sample Sm13-16, 23 had the most promising activity against phospholipases A2 (PLA2, Asp49 and Lys49 types. This fraction inhibited PLA2 activity of the Asp49 PLA2, when aggregated substrate was used. On the other hand, this activity was weakly neutralized when monodispersed substrate was used. In addition, Sm13-16, 23 inhibited, in a dose dependent manner, the cytotoxicity, myotoxicity and edema induced by PLA2s, as well as the anticoagulant activity of Asp49 PLA2. Overall, this fraction exhibited a better inhibition of the toxic activities induced by the Lys49 PLA2than those caused by the Asp49 PLA2. The spectral data of Sm13-16, 23 suggested the presence of aromatic compounds (UV λ max (nm 655, 266, and 219; IR λ max KBr (cm-1: ~ 3600-3000 (OH, 2923.07 and 1438.90 (C-H, 1656.69 (C = O, 1618.63 and 1607.67 (C-O, 1285.47772.60. We suggest that phenolic compounds could interact and inhibit the toxins by several mechanisms. Further analysis of the compounds present in the active fraction could be a relevant contribution in the treatment of accidents caused by snake envenomation.

  16. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Directory of Open Access Journals (Sweden)

    Gaëlle Demarre

    2010-05-01

    Full Text Available DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  17. PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis.

    Science.gov (United States)

    Samanta, Debangshu; Park, Youngrok; Andrabi, Shaida A; Shelton, Laura M; Gilkes, Daniele M; Semenza, Gregg L

    2016-08-01

    Intratumoral hypoxia stimulates enrichment of breast cancer stem cells (BCSC), which are critical for metastasis and patient mortality. Here we report a metabolic adaptation that is required for hypoxia-induced BCSC enrichment and metastasis. Hypoxia-inducible factors coordinately regulate expression of genes encoding phosphoglycerate dehydrogenase (PHGDH) and five downstream enzymes in the serine synthesis pathway and mitochondrial one-carbon (folate) cycle. RNAi-mediated silencing of PHGDH expression in both estrogen receptor-positive and negative breast cancer cells led to decreased NADPH levels, disturbed mitochondrial redox homeostasis, and increased apoptosis, which abrogated BCSC enrichment under hypoxic conditions. PHGDH-deficient cells exhibited increased oxidant levels and apoptosis, as well as loss of BCSC enrichment, in response to treatment with carboplatin or doxorubicin. PHGDH-deficient cells were relatively weakly tumorigenic and tumors that did form were deficient in BCSCs, abolishing metastatic capacity. Our findings highlight a role for PHGDH in the formation of secondary (recurrent or metastatic) tumors, with potential implications for therapeutic targeting of advanced cancers. Cancer Res; 76(15); 4430-42. ©2016 AACR. PMID:27280394

  18. The necessary length of carbon nanotubes required to optimize solar cells

    Directory of Open Access Journals (Sweden)

    Barghi Tirdad

    2007-10-01

    Full Text Available Abstract Background In recent years scientists have been trying both to increase the efficiency of solar cells, whilst at the same time reducing dimensions and costs. Increases in efficiency have been brought about by implanting carbon nanotubes onto the surface of solar cells in order to reduce the reflection of sunrays, as well as through the insertion of polymeric arrays into the intrinsic layer for charge separation. Results The experimental results show power rising linearly for intrinsic layer thicknesses between 0–50 nm. Wider thicknesses increase the possibility of recombination of electrons and holes, leading to perturbation of the linear behaviour of output power. This effect is studied and formulated as a function of thickness. Recognition of the critical intrinsic layer thickness can permit one to determine the length of carbon nanotube necessary for optimizing solar cells. Conclusion In this study the behaviour of output power as a function of intrinsic layer thicknesses has been described physically and also simulated. In addition, the implantation of carbon nanotubes into the intrinsic layer and the necessary nanotube length required to optimize solar cells have been suggested.

  19. Recurrent invasive squamous cell carcinoma of the ocular surface requiring penetrating therapeutic sclerokeratoplasty

    Directory of Open Access Journals (Sweden)

    Mark J. Mannis

    2012-12-01

    Full Text Available Purpose: We review a case of invasive squamous cell carcinoma invading the cornea to discuss optimal management. Methods:  Observational case report with histopathologic analysis. Results: Histopathology demonstrates corneal invasion by the tumor that appears to have been completely excised with a large therapeutic keratoplasty and adjuvant cryotherapy. Conclusions: Successful management of ocular surface squamous neoplasia (OSSN requires removal of identifiably abnormal tissue without disruption of normal protective architecture, careful histopathologic analysis, and the employment of adjuvant therapy at the time of or subsequent to surgical excision.

  20. Genes of pyelonephritogenic E. coli required for digalactoside-specific agglutination of human cells.

    OpenAIRE

    Lindberg, F P; Lund, B; Normark, S

    1984-01-01

    Most pyelonephritic Escherichia coli strains bind to digalactoside-containing glycolipids on uroepithelial cells. Purified Pap pili (pili associated with pyelonephritis) show the same binding specificity. A non-polar mutation early in the papA pilin gene abolishes formation of Pap pili but does not affect the degree of digalactoside-specific hemagglutination. Three novel pap genes, papE , papF and papG are defined in this report. The papF and papG gene products are both required for digalacto...

  1. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw;

    2005-01-01

    The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination......, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51...

  2. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    Science.gov (United States)

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  3. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection.

    Science.gov (United States)

    Sommers, Connie L; Lee, Jan; Steiner, Kevin L; Gurson, Jordan M; Depersis, Corinne L; El-Khoury, Dalal; Fuller, Claudette L; Shores, Elizabeth W; Love, Paul E; Samelson, Lawrence E

    2005-04-01

    Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-gamma1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8(hi) HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus.

  4. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction

    International Nuclear Information System (INIS)

    The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells

  5. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pietilä, Mika [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu University Hospital, Aapistie 5a, P.O. Box 5000, FIN-90014 (Finland); Kuvaja, Paula [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Department of Pathology, Oulu University Hospital, P.O. Box 50, FIN-90029 OYS, Oulu (Finland); Kaakinen, Mika [Biocenter Oulu, University of Oulu, P.O. Box 5000, FI-90014 (Finland); Kaul, Sunil C.; Wadhwa, Renu [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Uemura, Toshimasa, E-mail: t.uemura@aist.go.jp [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan)

    2013-11-01

    The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells.

  6. Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors.

    Directory of Open Access Journals (Sweden)

    Khalid Amari

    2011-10-01

    Full Text Available Cell-to-cell movement of plant viruses occurs via plasmodesmata (PD, organelles that evolved to facilitate intercellular communications. Viral movement proteins (MP modify PD to allow passage of the virus particles or nucleoproteins. This passage occurs via several distinct mechanisms one of which is MP-dependent formation of the tubules that traverse PD and provide a conduit for virion translocation. The MP of tubule-forming viruses including Grapevine fanleaf virus (GFLV recruit the plant PD receptors called Plasmodesmata Located Proteins (PDLP to mediate tubule assembly and virus movement. Here we show that PDLP1 is transported to PD through a specific route within the secretory pathway in a myosin-dependent manner. This transport relies primarily on the class XI myosins XI-K and XI-2. Inactivation of these myosins using dominant negative inhibition results in mislocalization of PDLP and MP and suppression of GFLV movement. We also found that the proper targeting of specific markers of the Golgi apparatus, the plasma membrane, PD, lipid raft subdomains within the plasma membrane, and the tonoplast was not affected by myosin XI-K inhibition. However, the normal tonoplast dynamics required myosin XI-K activity. These results reveal a new pathway of the myosin-dependent protein trafficking to PD that is hijacked by GFLV to promote tubule-guided transport of this virus between plant cells.

  7. Male Mice That Do Not Express Group VIA Phospholipase A2 Produce Spermatozoa with Impaired Motility and Have Greatly Reduced Fertility*

    OpenAIRE

    Bao, Shunzhong; Miller, David J.; Ma, Zhongmin; Wohltmann, Mary; Eng, Grace; Ramanadham, Sasanka; Moley, Kelle; Turk, John

    2004-01-01

    The Group VIA Phospholipase A2 (iPLA2β) is the first recognized cytosolic Ca2+-independent PLA2 and has been proposed to participate in arachidonic acid (20:4) incorporation into glycerophosphocholine lipids, cell proliferation, exocytosis, apoptosis, and other processes. To study iPLA2β functions, we disrupted its gene by homologous recombination to generate mice that do not express iPLA2β. Heterozygous iPLA2β+/− breeding pairs yield a Mendelian 1:2:1 ratio of iPLA2β+/+, iPLA2β+/−, and iPLA2...

  8. Rap2B-Dependent Stimulation of Phospholipase C-ɛ by Epidermal Growth Factor Receptor Mediated by c-Src Phosphorylation of RasGRP3

    OpenAIRE

    Stope, Matthias B.; vom Dorp, Frank; Szatkowski, Daniel; Böhm, Anja; Keiper, Melanie; Nolte, Jan; Oude Weernink, Paschal A; Rosskopf, Dieter; Evellin, Sandrine; Jakobs, Karl H; Schmidt, Martina

    2004-01-01

    Receptor tyrosine kinase regulation of phospholipase C-ɛ (PLC-ɛ), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca2+ signaling by the EGF receptor, which activated both PLC-γ1 and PLC-ɛ, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap...

  9. The histone variant His2Av is required for adult stem cell maintenance in the Drosophila testis.

    Directory of Open Access Journals (Sweden)

    Jose Rafael Morillo Prado

    2013-11-01

    Full Text Available Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.

  10. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  11. Conductimetric assays for the hydrolase and transferase activities of phospholipase D enzymes.

    Science.gov (United States)

    Mezna, M; Lawrence, A J

    1994-05-01

    Measurement of solution electrical conductance (conductimetry) is a simple direct assay method for the protogenic, hydrolytic reactions catalyzed by all phospholipase enzymes. The technique is especially suitable for assay of phospholipase D (PLD) enzymes where cleavage of zwitterionic substrates reinforces the pH dependent conductance change and allows the method to be used over a much wider pH range than the equivalent titrimetric assay. The ability to detect zwitterion cleavage enables the method to assay reactions in which phospholipase D transfers neutral, or anionic, alcohol species to the zwitterionic substrates phosphatidyl choline and phosphatidyl ethanolamine. The method can follow the sequential attack by different phospholipases and provides a simple technique for investigating the effect of substrate structure on susceptibility to various phospholipase enzymes. The results confirm that PLD from Streptomyces chromofuscus can attack lysophospholipids, but cannot transfer primary alcohols to the phosphatidyl residue, while the PLD from savoy cabbage is an efficient transferase, but cannot attack lysophospholipids. The data suggest that the bacterial PLD fails to act as a transferase because it hydrolyzes the transphosphatidylation products. Some phosphatidyl alcohols are more highly susceptible to PLA2 attack than the parent phosphatidyl choline derivatives.

  12. Differential requirement for the CD45 splicing regulator hnRNPLL for accumulation of NKT and conventional T cells.

    Directory of Open Access Journals (Sweden)

    Mehmet Yabas

    Full Text Available Natural killer T (NKT cells represent an important regulatory T cell subset that develops in the thymus and contains immature (NK1.1(lo and mature (NK1.1(hi cell subsets. Here we show in mice that an inherited mutation in heterogeneous ribonucleoprotein L-like protein (hnRNPLL(thunder, that shortens the survival of conventional T cells, has no discernible effect on NKT cell development, homeostasis or effector function. Thus, Hnrpll deficiency effectively increases the NKT∶T cell ratio in the periphery. However, Hnrpll mutation disrupts CD45RA, RB and RC exon silencing of the Ptprc mRNA in both NKT and conventional T cells, and leads to a comparably dramatic shift to high molecular weight CD45 isoforms. In addition, Hnrpll mutation has a cell intrinsic effect on the expression of the developmentally regulated cell surface marker NK1.1 on NKT cells in the thymus and periphery but does not affect cell numbers. Therefore our results highlight both overlapping and divergent roles for hnRNPLL between conventional T cells and NKT cells. In both cell subsets it is required as a trans-acting factor to regulate alternative splicing of the Ptprc mRNA, but it is only required for survival of conventional T cells.

  13. Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways1

    OpenAIRE

    Jacobs, Sarah R.; Herman, Catherine E.; MacIver, Nancie J.; Wofford, Jessica A.; Wieman, Heather L.; Hammen, Jeremy J.; Rathmell, Jeffrey C.

    2008-01-01

    T cell activation potently stimulates cellular metabolism to support the elevated energetic and biosynthetic demands of growth, proliferation, and effector function. We show that glucose uptake is limiting in T cell activation and that CD28 costimulation is required to allow maximal glucose uptake following TCR stimulation by up-regulating expression and promoting the cell surface trafficking of the glucose transporter Glut1. Regulation of T cell glucose uptake and Glut1 was critical, as low ...

  14. Kinetics of C-reactive protein, interleukin-6 and -10, and phospholipase A2-II in severely traumatized septic patients

    Directory of Open Access Journals (Sweden)

    Laušević Željko

    2010-01-01

    Full Text Available Background/Aim. Injury-induced anergy is one of the key factors contributing to trauma victims' high susceptibility to sepsis. This group of patients is mostly of young age and it is therefore essential to be able to predict as accurately as possible the development of septic complications, so appropriate treatment could be provided. The aim of this study was to assess kinetics of interleukin (IL -6 and -10, phospholipase A2- II and C-reactive protein (CRP in severely traumatized patients and explore the possibilities for early detection of potentially septic patients. Methods. This prospective study included 65 traumatized patients with injury severity score (ISS > 18, requiring treatment at surgical intensive care units, divided into two groups: 24 patients without sepsis and 41 patients with sepsis. C-reactive protein, IL-6 and -10 and phospholipase A2 group II, were determined within the first 24 hours, and on the second, third and seventh day of hospitalization. Results. Mean values of IL-6 and phospholipase A2-II in the patients with and without sepsis did not show a statistically significant difference on any assessed time points. In the septic patients with ISS 29-35 and > 35 on the days two and seven a statistically significantly lower level of IL-10 was found, compared with those without sepsis and with the same ISS. C-reactive protein levels were significantly higher in septic patients with ISS 18-28 on the first day. On the second, third and seventh day CRP levels were significantly lower in the groups of septic patients with ISS 29-35 and > 35, than in those with the same ISS but without sepsis. Conclusion. Mean levels of CRP on the first day after the injury may be useful predictor of sepsis development in traumatized patients with ISS score 18-28. Mean levels of CRP on the days two, three and seven after the injury may be a useful predictor of sepsis development in traumatized patients with ISS score more than 28. Mean levels of

  15. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available Tuberous sclerosis syndrome (TSC is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM. LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR, and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2 is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16 in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2 and prostacyclin (PGI2 in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs, rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP, a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an

  16. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis.

    Science.gov (United States)

    Li, Chenggang; Zhang, Erik; Sun, Yang; Lee, Po-Shun; Zhan, Yongzhong; Guo, Yanan; Osorio, Juan C; Rosas, Ivan O; Xu, Kai-Feng; Kwiatkowski, David J; Yu, Jane J

    2014-01-01

    Tuberous sclerosis syndrome (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR), and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2) is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16) in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2) and prostacyclin (PGI2) in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs), rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP), a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an important role

  17. Jun is required in Isl1-expressing progenitor cells for cardiovascular development.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.

  18. Plasma Lipoprotein-associated Phospholipase A(2) Is Inversely Correlated with Proprotein Convertase Subtilisin-kexin Type 9

    NARCIS (Netherlands)

    Constantinides, Alexander; Kappelle, Paul J. W. H.; Lambert, Gilles; Dullaart, Robin P. F.

    2012-01-01

    Background and Aims. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a proatherogenic phospholipase A(2), which is predominantly complexed to low-density lipoprotein (LDL) particles. Proprotein convertase subtilisin-kexin type 9 (PCSK9) provides a key step in LDL metabolism by stimulating L

  19. Adaptation of Cholesterol Requiring NS0 Cells to Serum Free Culture Conditions

    Directory of Open Access Journals (Sweden)

    Junaid Muneer Raja

    2011-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Colorectal cancer is the third most common form of cancer and the second leading cause of cancer-related death in the Western world. The answers to such life threatening diseases and cancers are monoclonal antibodies (MAb's which are widely used as therapeutic agents. World demand for currently approved MAb's is on the order of a few kilograms per year. However, new therapeutic MAb's are under development and require doses of several hundred milligrams to a gram over the course of therapy. Very often to cater for the special requirements for the growth of mammalian cells, serum is added to the cell culture medium. However, removal of serum from the cell culture medium is often carried out, especially if the end product is to be used for human consumption, in order to eliminate various disadvantages such as high physiological variability, high batch to batch variability, risk of contamination and high cost, and challenges posed in the downstream processing of the product. In this paper, the adaptation of cholesterol requiring NS0 cells to commercially available serum free media is presented. ABSTRAK: Kanser kolorektum merupakan kanser ketiga paling umum dan kini berada di tempat kedua penyebab kematian berkaitan kanser di negara Barat. Jawapan kepada penyakit yang mengancam nyawa dan penyakit kanser adalah antibodi monoklon (monoclonal antibodies ((MAb's yang digunakan sebagai agen terapeutik. Permintaan dunia terhadap MAb's yang diluluskan adalah dalam bilangan beberapa kilogram setahun. Namun, terapeutik MAb's yang baru adalah di bawah penyelidikan dan memerlukan beberapa ratus dos milligram hingga satu gram dalam satu peringkat terapi. Sering kali untuk memenuhi permintaan terhadap tumbesaran sel mamalia, serum dicampurkan dengan sel kultur perantara. Walaupun begitu, pemindahan serum dari sel kultur perantara sering dilakukan, terutamanya jika produk akhir digunakan untuk kegunaan manusia; untuk

  20. Mind bomb-1 in dendritic cells is specifically required for Notch-mediated T helper type 2 differentiation.

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Jeong

    Full Text Available In dendritic cell (DC-CD4(+ T cell interaction, Notch signaling has been implicated in the CD4(+ T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1, a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+ T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+ T cells, suggesting that Notch activation in CD4(+ T cells is not required for these processes. Intriguingly, stimulation of CD4(+ T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+ T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+ T cells.

  1. Régulation des la voie mTOR par la phospholipase D dans le muscle squelettique : implication dans le contrôle de la différenciation myogénique et de la taille des myocytes

    OpenAIRE

    Jaafar, Rami

    2011-01-01

    Phospholipase D (PLD) hydrolyzes phosphatidylcholine of cell membranes, releasing the lipid messenger phosphatidic acid. The ability of PLD to affect mTOR signaling pathway, a central actor in the control of muscle tissue, prompted us to study its role in this tissue. My thesis aims at investigating how PLD is involved in myogenic differentiation, and how it regulates muscle mass. We first showed that the mechanism by which PLD controls differentiation of L6 myoblasts involves the activation ...

  2. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available BACKGROUND: Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS. The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair. METHODS: We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots. RESULTS: rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2. CONCLUSION: Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.

  3. Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria.

    Directory of Open Access Journals (Sweden)

    Heather A Feaga

    2016-03-01

    Full Text Available Bacteria use trans-translation and the alternative rescue factors ArfA (P36675 and ArfB (Q9A8Y3 to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197 is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans.

  4. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  5. Autophagy-associated alpha-arrestin signaling is required for conidiogenous cell development in Magnaporthe oryzae

    Science.gov (United States)

    Dong, Bo; Xu, Xiaojin; Chen, Guoqing; Zhang, Dandan; Tang, Mingzhi; Xu, Fei; Liu, Xiaohong; Wang, Hua; Zhou, Bo

    2016-01-01

    Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites. PMID:27498554

  6. ATRX is required for maintenance of the neuroprogenitor cell pool in the embryonic mouse brain

    Directory of Open Access Journals (Sweden)

    Kieran Ritchie

    2014-11-01

    Full Text Available Mutations in the alpha-thalassemia mental retardation X-linked (ATRX gene cause a spectrum of abnormalities including intellectual disability, developmental delay, seizures, and microcephaly. The ATRX protein is highly enriched at heterochromatic repetitive sequences adjacent to the centromere, and ATRX depletion results in chromosome congression, segregation, and cohesion defects. Here, we show that Cre-mediated inactivation of Atrx in the embryonic mouse (Mus musculus brain results in expansion of cerebral cortical layer VI, and a concurrent thinning of layers II–IV. We observed increased cell cycle exit during early-mid neurogenesis, and a depletion of apical progenitors by late neurogenesis in the Atrx-null neocortex, explaining the disproportionate layering. Premature differentiation was associated with an increased generation of outer radial glia (oRG and TBR2-expressing basal progenitors, as well as increased generation of early-born post-mitotic projection neurons. Atrx deletion also reduced the fidelity of mitotic spindle orientation in apical progenitors, where mutant cells were often oriented at non-parallel angles of division relative to the ventricular surface. We conclude that ATRX is required for correct lamination of the mouse neocortex by regulating the timing of neuroprogenitor cell differentiation.

  7. A Bruno-like gene is required for stem cell maintenance in planarians.

    Science.gov (United States)

    Guo, Tingxia; Peters, Antoine H F M; Newmark, Phillip A

    2006-08-01

    The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance. PMID:16890156

  8. Zebrafish vasa is required for germ-cell differentiation and maintenance.

    Science.gov (United States)

    Hartung, Odelya; Forbes, Meredyth M; Marlow, Florence L

    2014-10-01

    Vasa is a universal marker of the germ line in animals, yet mutations disrupting vasa cause sexually dimorphic infertility, with impaired development of the ovary in some animals and the testis in others. The basis for this sexually dimorphic requirement for Vasa is not clear; in most animals examined, both the male and female gonad express vasa throughout the life of the germ line. Here we characterized a loss-of-function mutation disrupting zebrafish vasa. We show that maternally provided Vasa is stable through the first ten days of development in zebrafish, and thus likely fulfills any early roles for Vasa during germ-line specification, migration, survival, and maintenance. Although zygotic Vasa is not essential for the development of juvenile gonads, vasa mutants develop exclusively as sterile males. Furthermore, phenotypes of vasa;p53 compound mutants are indistinguishable from those of vasa mutants, therefore the failure of vasa mutants to differentiate as females and to support germ-cell development in the testis is not due to p53-mediated apoptosis. Instead, we found that failure to progress beyond the pachytene stage of meiosis causes the loss of germ-line stem cells, leaving empty somatic tubules. Our studies provide insight into the function of zebrafish vasa during female meiosis, differentiation, and maintenance of germ-line stem cells.

  9. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation.

    Science.gov (United States)

    Tamaru, Shun; Mishina, Hideto; Watanabe, Yosuke; Watanabe, Kazuhiro; Fujioka, Daisuke; Takahashi, Soichiro; Suzuki, Koji; Nakamura, Takamitsu; Obata, Jun-Ei; Kawabata, Kenichi; Yokota, Yasunori; Murakami, Makoto; Hanasaki, Kohji; Kugiyama, Kiyotaka

    2013-08-01

    Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.

  10. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators

    Science.gov (United States)

    Miki, Yoshimi; Yamamoto, Kei; Taketomi, Yoshitaka; Sato, Hiroyasu; Shimo, Kanako; Kobayashi, Tetsuyuki; Ishikawa, Yukio; Ishii, Toshiharu; Nakanishi, Hiroki; Ikeda, Kazutaka; Taguchi, Ryo; Kabashima, Kenji; Arita, Makoto; Arai, Hiroyuki; Lambeau, Gérard; Bollinger, James M.; Hara, Shuntaro; Gelb, Michael H.

    2013-01-01

    Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d−/−), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d−/− mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-Δ12,14-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a “resolving sPLA2” that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders. PMID:23690440

  11. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction.

    Science.gov (United States)

    Usatyuk, Peter V; Kotha, Sainath R; Parinandi, Narasimham L; Natarajan, Viswanathan

    2013-01-01

    Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

  12. Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability.

    Directory of Open Access Journals (Sweden)

    Mayanka Awasthi

    Full Text Available BACKGROUND: Phospholipase C (PLC is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS: We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE: This study helps in establishing the role of CrPLC (or similar proteins in the quaternary structure of the molecule its affinities during lipid interactions.

  13. Biochemical and biological properties of phospholipases A(2) from Bothrops atrox snake venom.

    Science.gov (United States)

    Kanashiro, Milton M; de Cássia M Escocard, Rita; Petretski, Jorge H; Prates, Maura V; Alves, Elias W; Machado, Olga L T; da Silva, Wilmar Dias; Kipnis, Thereza L

    2002-10-01

    Phospholipases A(2) (PLA(2)s), of molecular mass 13-15kDa, are commonly isolated from snake venom. Two myotoxins with PLA(2) activity, BaPLA(2)I and BaPLA(2)III, with estimated molecular masses of 15kDa were isolated from the venom of Bothrops atrox using Sephacryl S-100-HR and reverse-phase chromatography. BaPLA(2)I was basic, with a pI of 9.1, while BaPLA(2)III was neutral with a pI of 6.9. On a molecular basis, BaPLA(2)III exhibited higher catalytic activity on synthetic substrates than BaPLA(2)I. Comparison of the N-terminal residues of BaPLA(2)I with other PLA(2) proteins from snake venoms showed that it has the highest homology (94%) with B. asper myotoxin II and homology with a PLA(2) Lys(49) from B. atrox (89%). In contrast, BaPLA(2)III demonstrated 75, 72, and 71% homology with PLA(2) from Vipera ammodytes meridionalis, B. jararacussu, and B. jararaca, respectively. BaPLA(2)I and BaPLA(2)III were capable, in vitro, of inducing mast cell degranulation and, in vivo, of causing creatine kinase release, edema, and myonecrosis typical of PLA(2)s from snake venoms, characterized by rapid disruption of the plasma membrane as indicated by clumping of myofilaments and necrosis of affected skeletal muscle cells. BaPLA(2)I- and BaPLA(2)III-specific monoclonal and polyclonal antibodies, although incapable of neutralizing PLA(2) edematogenic activity, blocked myonecrosis efficiently in an in vivo neutralization assay. The results presented herein suggest that the biological active site responsible for edema induction by these two PLA(2) enzymes is distinct from the myonecrosis active site and is not dependent upon the catalytic activity of the PLA(2) enzyme. PMID:12234622

  14. The Protrusive Phase and Full Development of Integrin-Dependent Adhesions in Colon Epithelial Cells Require FAK- and ERKMediated Actin Spike Formation: Deregulation in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Valerie G. Brunton

    2001-01-01

    Full Text Available Integrins play an important role in tumour progression by influencing cellular responses and matrix-dependent adhesion. However, the regulation of matrix-dependent adhesion assembly in epithelial cells is poorly understood. We have investigated the integrin and signalling requirements of cell-matrix adhesion assembly in colon carcinoma cells after plating on fibronectin. Adhesion assembly in these, and in the adenoma cells from which they were derived, was largely dependent on αvβ6 integrin and required phosphorylation of FAK on tyrosine-397. The rate of fibronectin-induced adhesion assembly and the expression of both αvβ6 integrin and FAK were increased during the adenoma-to-carcinoma transition. The matrix-dependent adhesion assembly process, particularly the final stages of complex protrusion that is required for optimal cell spreading, required the activity of extracellular signal-regulated kinase (ERK. Furthermore, phosphorylated ERK was targeted to newly forming cell-matrix adhesions in the carcinoma cells but not the adenoma cells, and inhibition of FAK-tyrosine-397 phosphorylation or MEK suppressed the appearance of phosphorylated ERK at peripheral sites. In addition, inhibition of MEK-ERK activation blocked the formation of peripheral actin microspikes that were necessary for the protrusive phase of cell-matrix adhesion assembly. Thus, MEK-ERK-dependent peripheral actin re-organization is required for the full development of integrin-induced adhesions and this pathway is stimulated in an in vitro model of colon cancer progression.

  15. Anti-phospholipase A₂ receptor antibodies in recurrent membranous nephropathy.

    Science.gov (United States)

    Kattah, A; Ayalon, R; Beck, L H; Sethi, S; Sandor, D G; Cosio, F G; Gandhi, M J; Lorenz, E C; Salant, D J; Fervenza, F C

    2015-05-01

    About 70% of patients with primary membranous nephropathy (MN) have circulating anti-phospholipase A2 receptor (PLA2R) antibodies that correlate with disease activity, but their predictive value in post-transplant (Tx) recurrent MN is uncertain. We evaluated 26 patients, 18 with recurrent MN and 8 without recurrence, with serial post-Tx serum samples and renal biopsies to determine if patients with pre-Tx anti-PLA2R are at increased risk of recurrence as compared to seronegative patients and to determine if post-Tx changes in anti-PLA2R correspond to the clinical course. In the recurrent group, 10/17 patients had anti-PLA2R at the time of Tx versus 2/7 patients in the nonrecurrent group. The positive predictive value of pre-Tx anti-PLA2R for recurrence was 83%, while the negative predictive value was 42%. Persistence or reappearance of post-Tx anti-PLA2R was associated with increasing proteinuria and resistant disease in 6/18 cases; little or no proteinuria occurred in cases with pre-Tx anti-PLA2R and biopsy evidence of recurrence in which the antibodies resolved with standard immunosuppression. Some cases with positive pre-Tx anti-PLA2R were seronegative at the time of recurrence. In conclusion, patients with positive pre-Tx anti-PLA2R should be monitored closely for recurrent MN. Persistence or reappearance of antibody post-Tx may indicate a more resistant disease.

  16. Schistosoma mansoni-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells.

    Directory of Open Access Journals (Sweden)

    Laura E Layland

    Full Text Available The continual rise of asthma in industrialised countries stands in strong contrast to the situation in developing lands. According to the modified Hygiene Hypothesis, helminths play a major role in suppressing bystander immune responses to allergens, and both epidemiological and experimental studies suggest that the tropical parasitic trematode Schistosoma mansoni elicits such effects. The focus of this study was to investigate which developmental stages of schistosome infection confer suppression of allergic airway inflammation (AAI using ovalbumin (OVA as a model allergen. Moreover, we assessed the functional role and localization of infection-induced CD4(+Foxp3(+ regulatory T cells (Treg in mediating such suppressive effects. Therefore, AAI was elicited using OVA/adjuvant sensitizations with subsequent OVA aerosolic challenge and was induced during various stages of infection, as well as after successful anti-helminthic treatment with praziquantel. The role of Treg was determined by specifically depleting Treg in a genetically modified mouse model (DEREG during schistosome infection. Alterations in AAI were determined by cell infiltration levels into the bronchial system, OVA-specific IgE and Th2 type responses, airway hyper-sensitivity and lung pathology. Our results demonstrate that schistosome infection leads to a suppression of OVA-induced AAI when mice are challenged during the patent phase of infection: production of eggs by fecund female worms. Moreover, this ameliorating effect does not persist after anti-helminthic treatment, and depletion of Treg reverts suppression, resulting in aggravated AAI responses. This is most likely due to a delayed reconstitution of Treg in infected-depleted animals which have strong ongoing immune responses. In summary, we conclude that schistosome-mediated suppression of AAI requires the presence of viable eggs and infection-driven Treg cells. These data provide evidence that helminth derived products

  17. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    Science.gov (United States)

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

  18. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis.

    Science.gov (United States)

    Stremmel, Wolfgang; Staffer, Simone; Wannhoff, Andreas; Pathil, Anita; Chamulitrat, Walee

    2014-07-01

    Excess hepatic fat accumulation leads to nonalcoholic steatohepatitis (NASH), a serious threat to health for which no effective treatment is available. However, the mechanism responsible for fatty acid uptake by hepatocytes remains unclear. Using the human hepatocyte-derived tumor cell line HepG2, we found that fatty acid influx is mediated by a heterotetrameric plasma membrane protein complex consisting of plasma membrane fatty acid-binding protein, caveolin-1, CD36, and calcium-independent membrane phospholipase A2 (iPLA2β). Blocking iPLA2β with the bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) caused the dissociation of the complex, thereby inhibiting fatty acid influx (IC50 47 μM), and suppressed the synthesis of all subunits through a reduction in lysophosphatidylcholine from 8.0 to 3.5 μmol/mg of protein and corresponding depletion of phosphorylated c-Jun N-terminal kinase. These findings were substantiated by an observed 56.5% decrease in fatty acid influx in isolated hepatocytes derived from iPLA2β-knockout mice. Moreover, steatosis and inflammation were abrogated by UDCA-LPE treatment in a cellular model of NASH. Thus, iPLA2β acts as an upstream checkpoint for mechanisms that regulate fatty acid uptake, and its inhibition by UDCA-LPE qualifies this nontoxic compound as a therapeutic candidate for the treatment of NASH.-Stremmel, W., Staffer, S., Wannhoff, A., Pathil, A., Chamulitrat, W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis. PMID:24719358

  19. Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C.

    OpenAIRE

    Ryu, S H; Suh, P G; Cho, K. S.; Lee, K Y; Rhee, S G

    1987-01-01

    We previously reported that cytosolic fractions of bovine brain contain two immunologically distinct forms of phospholipase C (PLC), PLC-I and PLC-II. We now report the purification of another form of inositolphospholipid-specific phospholipase C from bovine brain cytosol, designated PLC-III, and the comparison of the catalytic properties of the three isozymes. Approximately 450 micrograms of pure PLC-III was obtained from 36 bovine brains, and it had a final specific activity of 30-40 mumol ...

  20. Tenidap sodium inhibits secretory non-pancreatic phospholipase A2 synthesis by foetal rat calvarial osteoblasts

    OpenAIRE

    Pruzanski, W; Kennedy, B P; van den Bosch, H; Stefanski, E.; M. Wloch; Vadas, P.

    1995-01-01

    Tenidap (TD) was initially defined as a dual inhibitor of cyclooxygenase and lipoxygenase. This study was designed to assess its inhibitory activity against proinflammatory phospholipase A2. This study shows that TD inhibits the synthesis of pro-inflammatory secretory non-pancreatic phospholipase A2 (sPLA2). Concentrations as low as 0.25 μg/ml (0.725 μM) reduced the release of sPLA2 by 40% from foetal rat calvarial osteoblasts stimulated with IL-1β and TNFα, whereas a concentration of 2.5 μg/...