WorldWideScience

Sample records for cells require phospholipase

  1. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    International Nuclear Information System (INIS)

    Bulleit, R.F.; Zimmerman, E.F.

    1984-01-01

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with [3H]arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity

  2. Substance P receptor desensitization requires receptor activation but not phospholipase C

    International Nuclear Information System (INIS)

    Sugiya, Hiroshi; Putney, J.W. Jr.

    1988-01-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37 degree C results in activation of phospholipase C, formation of [ 3 H]inositol 1,4,5-trisphosphate (IP 3 ), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to ∼20% of control values, IP 3 formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to ∼5% of control values, and both IP 3 formation and desensitization were blocked. A series of substance P-related peptides increased the formation of [ 3 H]IP 3 and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, [D-Pro 2 , D-Try 7,9 ]-substance P, inhibited substance P-induced IP 3 formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP 3 formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization

  3. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  4. Cell Swelling Activates Phospholipase A2 in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Thoroed, S.M.; Lauritzen, L.; Lambert, I.H.

    1997-01-01

    Ehrlich ascites tumor cells! loaded with H-labeled arachidonic acid and C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo......-osmotic exposure the rate of H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A is activated by cell swelling in the Ehrlich...... cells. Within the same time frame there is no swelling-induced increase in C-labeled stearic acid release nor in the synthesis of phosphatidyl C-butanol in the presence of C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of C...

  5. Characterization of antigen association with accessory cells: specific removal of processed antigens from the cell surface by phospholipases

    International Nuclear Information System (INIS)

    Falo, L.D. Jr.; Haber, S.I.; Herrmann, S.; Benacerraf, B.; Rock, K.L.

    1987-01-01

    To characterize the basis for the cell surface association of processed antigen with the antigen-presenting cell (APC) the authors analyzed its sensitivity to enzymatic digestion. Antigen-exposed APC that are treated with phospholipase and then immediately fixed lose their ability to stimulate antigen-plus-Ia-specific T-T hybridomas. This effect is seen with highly purified phospholipase A 2 and phospholipase C. In addition it is observed with three distinct antigens - ovalbumin, bovine insulin, and poly(LGlu 56 LLys 35 LPhe 9 )[(GluLysPhe)/sub n/]. The effect of phospholipases is highly specific. Identically treated APC are equivalent to control in their ability to stimulate alloreactive hybridomas specific for precisely the same Ia molecule that is corecognized by antigen-plus-Ia-specific hybrids. Furthermore, the antigen-presenting function of enzyme-treated, fixed APC can be reconstituted by the addition of exogenous in vitro processed or processing independent antigens. In parallel studies 125 I-labeled avidin was shown to specifically bind to APC that were previously exposed and allowed to process biotin-insulin. Biotin-insulin-exposed APC that are pretreated with phospholipase bind significantly less 125 I-labeled avidin than do untreated, exposed APC. Identical enzyme treatment does not reduce the binding of avidin to a biotinylated antibody already bound to class II major histocompatibility complex molecules of APC. These studies demonstrate that phospholipase effectively removes processed cell surface antigen

  6. InlB-mediated Listeria monocytogenes internalization requires a balanced phospholipase D activity maintained through phospho-cofilin

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Ji, Lei; Zhen, Dongyu; Tao, Sha; Li, Shuai; Sun, Yansong; Huang, Liuyu; Feng, Zhe; Li, Xianping; Han, Gaige; Schmidt, Martina; Han, Li

    Internalization of Listeria monocytogenes into non-phagocytic cells is tightly controlled by host cell actin dynamics and cell membrane alterations. However, knowledge about the impact of phosphatidylcholine cleavage driven by host cell phospholipase D (PLD) on Listeria internalization into

  7. Calcium-independent phospholipase A₂, group VIA, is critical for RPE cell survival

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vohra, Rupali; Westlund, Barbro S.

    2014-01-01

    PURPOSE: To investigate the significance of calcium-independent phospholipase A₂, group VIA (iPLA2-VIA), in RPE cell survival following responses to sodium iodate (SI) in cell cultures. METHODS: The human retinal pigment epithelium (RPE) cell line (ARPE-19) cells and primary mouse-RPE cultures were...

  8. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2

    International Nuclear Information System (INIS)

    Slivka, S.R.; Insel, P.A.

    1987-01-01

    alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2

  9. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  10. Phospholipase C-β in immune cells.

    Science.gov (United States)

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-09-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Stalling autophagy: a new function for Listeria phospholipases

    Directory of Open Access Journals (Sweden)

    Ivan Tattoli

    2014-01-01

    Full Text Available Listeria monocytogenes is a Gram-positive bacterial pathogen that induces its own uptake in non-phagocytic cells. Following invasion, Listeria escapes from the entry vacuole through the secretion of a pore-forming toxin, listeriolysin O (LLO that acts to damage and disrupt the vacuole membrane. Listeria then replicates in the cytosol and is able to spread from cell-to-cell using actin-based motility. In addition to LLO, Listeria produces two phospholipase toxins, a phosphatidylinositol-specific phospholipase C (PI-PLC, encoded by plcB and a broad-range phospholipase C (PC-PLC, encoded by plcA, which contribute to bacterial virulence. It has long been recognized that secretion of PI- and PC-PLC enables the disruption of the double membrane vacuole during cell-to-cell spread, and those phospholipases have also been shown to augment LLO-dependent escape from the entry endosome. However, a specific role for Listeria phospholipases during the cytosolic stage of infection has not been previously reported. In a recent study, we demonstrated that Listeria PI-PLC and PC-PLC contribute to the bacterial escape from autophagy through a mechanism that involves direct inhibition of the autophagic flux in the infected cells [Tattoli et al. EMBO J (2013, 32, 3066-3078].

  12. Role of phospholipase C in Dictyostelium : Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity

    NARCIS (Netherlands)

    Drayer, A. Lyndsay; Kaay, Jeroen van der; Mayr, Georg W.; Haastert, Peter J.M. van

    1994-01-01

    The micro-organism Dictyostelium uses extracellular cAMP to induce chemotaxis and cell differentiation. Signals are transduced via surface receptors, which activate G proteins, to effector enzymes. The deduced protein sequence of Dictyostelium discoideum phosphabidylinositol-specific phospholipase C

  13. Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells)

    International Nuclear Information System (INIS)

    Winkler, H.H.; Miller, E.T.

    1982-01-01

    L-929 cells were killed when approximately 50 viable Rickettsia prowazekii organisms per L-cell were centrifuged onto a monolayer. The glycerophospholipids of the L-cell were hydrolyzed to lysophosphatides and free fatty acids. Concomitantly, there was a loss of membrane integrity as shown by release of lactate dehydrogenase and 86Rb and permeability to trypan blue dye. No glycerophospholipid hydrolysis or cytotoxicity occurred when the rickettsiae were inactivated by heat, UV irradiation, N-ethylmaleimide, or metabolic inhibitors before their addition to the L-929 cells. On the other hand, treatment of the L929 cells with the cytoskeleton agents colchicine or cytochalasin B or with N-ethylmaleimide inhibited neither the phospholipase A activity nor the loss of membrane integrity. Cytochalasin B-treated cells could be damaged by even small numbers of rickettsiae. We suggest that this phospholipase A activity is used by the rickettsiae to escape from the phagosomes into the cytoplasm of host cells

  14. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  15. Hemolytic potency and phospholipase activity of some bee and wasp venoms.

    Science.gov (United States)

    Watala, C; Kowalczyk, J K

    1990-01-01

    1. The action of crude venoms of four aculeate species: Apis mellifera, Vespa crabro, Vespula germanica and Vespula vulgaris on human erythrocytes was investigated in order to determine the lytic and phospholipase activity of different aculeate venoms and their ability to induce red blood cell hemolysis. 2. Bee venom was the only extract to completely lyse red blood cells at the concentration of 2-3 micrograms/ml. 3. Phospholipase activity in all of the examined vespid venoms was similar and the highest value was recorded in V. germanica. 4. Vespid venoms exhibited phospholipase B activity, which is lacking in honeybee venom. 5. In all membrane phospholipids but lecithin, lysophospholipase activity of vespid venoms was 2-6 times lower than the relevant phospholipase activity. 6. The incubation of red blood cells with purified bee venom phospholipase A2 was not accompanied by lysis and, when supplemented with purified melittin, the increase of red blood cell lysis was approximately 30%.

  16. Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures

    NARCIS (Netherlands)

    Iakimova, E.T.; Michaeli, R.; Woltering, E.J.

    2013-01-01

    Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge,

  17. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  18. Phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma

    International Nuclear Information System (INIS)

    Low, M.G.; Prasad, A.R.S.

    1988-01-01

    An enzyme activity capable of degrading the glycosyl-phosphatidylinositol membrane anchor of cell-surface proteins has previously been reported in a number of mammalian tissues. The experiments reported here demonstrate that this anchor-degrading activity is also abundant in mammalian plasma. The activity was inhibited by EGTA or 1,10-phenanthroline. It was capable of removing the anchor from alkaline phosphatase, 5'-nucleotidase, and variant surface glycoprotein but had little or no activity toward phosphatidylinositol or phosphatidylcholine. Phosphatidic acid was the only 3 H-labeled product when this enzyme hydrolyzed [ 3 H]myristate-labeled variant surface glycoprotein. It could be distinguished from the Ca 2 =-dependent inositol phospholipid-specific phospholipase C activity in several rat tissues on the basis of its molecular size and its sensitivity to 1,10-phenanthroline. The data therefore suggest that this activity is due to a phospholipase D with specificity for glycosylphosphatidylinositol structures. Although the precise physiological function of this anchor-specific phospholipase D remains to be determined, these findings indicate that it could play an important role in regulating the expression and release of cell-surface proteins in vivo

  19. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Science.gov (United States)

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Regulation of cytosolic Phospholipase A2 activity plays a central role in cell responses

    NARCIS (Netherlands)

    Rossum, Gerarda Sophia Agnes Theodora van

    2001-01-01

    Phospholipases A2 are enzymes that hydrolyse fatty acids from the sn-2 position of phospholipids, resulting in the release of free fatty acids and lysophospholipids. The sn-2 position of phospholipids in mammalian cells is enriched with arachidonic acid, which is a substrate for cyclooxygenases,

  1. Phospholipase D function in Saccharomyces cerevisiae.

    Science.gov (United States)

    Mendonsa, Rima; Engebrecht, JoAnne

    2009-09-01

    Phosphatidylinositol 4,5-bisphosphate-regulated phosphatidylcholine-specific phospholipase D is conserved from yeast to man. The essential role of this enzyme in yeast is to mediate the fusion of Golgi and endosome-derived vesicles to generate the prospore membrane during the developmental program of sporulation, through the production of the fusogenic lipid phosphatidic acid. In addition to recruiting proteins required for fusion, phosphatidic acid is believed to lower the energy barrier to stimulate membrane curvature. During mitotic growth, phospholipase D activity is dispensable unless the major phosphatidylinositol/phosphatidylcholine transfer protein is absent; it also appears to play a nonessential role in the mating signal transduction pathway. The regulation of phospholipase D activity during both sporulation and mitotic growth is still not fully understood and awaits further characterization.

  2. Purification of lysosomal phospholipase A and demonstration of proteins that inhibit phospholipase A in a lysosomal fraction from rat kidney cortex

    International Nuclear Information System (INIS)

    Hostetler, K.Y.; Gardner, M.F.; Giordano, J.R.

    1986-01-01

    Phospholipase A has been isolated from a crude lysosomal fraction from rat kidney cortex and purified 7600-fold with a recovery of 9.8% of the starting activity. The purified enzyme is a glycoprotein having an isoelectric point of pH 5.4 and an apparent molecular weight of 30,000 by high-pressure liquid chromatography gel permeation. Naturally occurring inhibitors of lysosomal phospholipase A are present in two of the lysosomal-soluble protein fractions obtained in the purification. They inhibit hydrolysis of 1,2-di[1- 14 C]oleoylphosphatidylcholine by purified phospholipase A 1 with IC 50 values of 7-11 μg. The inhibition is abolished by preincubation with trypsin at 37 0 C, but preincubation with trypsin at 4 0 C has no effect, providing evidence that the inhibitors are proteins. The results suggest that the activity of lysosomal phospholipase A may be regulated in part by inhibitory proteins. Lysosomal phospholipase A from rat kidney hydrolyzes the sn-1 acyl group of phosphatidylcholine, does not require divalent cations for full activity, and is not inhibited by ethylenediaminetetraacetic acid. It has an acid pH optimum of 3.6-3.8. Neither rho-bromophenacyl bromide, diisopropyl fluorophosphate, nor mercuric ion inhibits phospholipase A 1 . In contrast to rat liver, which has two major isoenzymes of acid phospholipase A 1 , kidney cortex has only one isoenzyme of lysosomal phospholipase A 1

  3. Purification of lysosomal phospholipase A and demonstration of proteins that inhibit phospholipase A in a lysosomal fraction from rat kidney cortex

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, K.Y.; Gardner, M.F.; Giordano, J.R.

    1986-10-21

    Phospholipase A has been isolated from a crude lysosomal fraction from rat kidney cortex and purified 7600-fold with a recovery of 9.8% of the starting activity. The purified enzyme is a glycoprotein having an isoelectric point of pH 5.4 and an apparent molecular weight of 30,000 by high-pressure liquid chromatography gel permeation. Naturally occurring inhibitors of lysosomal phospholipase A are present in two of the lysosomal-soluble protein fractions obtained in the purification. They inhibit hydrolysis of 1,2-di(1-/sup 14/C)oleoylphosphatidylcholine by purified phospholipase A/sub 1/ with IC/sub 50/ values of 7-11 ..mu..g. The inhibition is abolished by preincubation with trypsin at 37/sup 0/C, but preincubation with trypsin at 4/sup 0/C has no effect, providing evidence that the inhibitors are proteins. The results suggest that the activity of lysosomal phospholipase A may be regulated in part by inhibitory proteins. Lysosomal phospholipase A from rat kidney hydrolyzes the sn-1 acyl group of phosphatidylcholine, does not require divalent cations for full activity, and is not inhibited by ethylenediaminetetraacetic acid. It has an acid pH optimum of 3.6-3.8. Neither rho-bromophenacyl bromide, diisopropyl fluorophosphate, nor mercuric ion inhibits phospholipase A/sub 1/. In contrast to rat liver, which has two major isoenzymes of acid phospholipase A/sub 1/, kidney cortex has only one isoenzyme of lysosomal phospholipase A/sub 1/.

  4. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-01-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G M1 ), di-sialoganglioside (G D1a ) and tri-sialoganglioside (G T1b ). In contrast, honeybee venom-derived phospholipase A 2 induced the net degranulation directly without cytotoxicity, which was not inhibited by G M1 , G D1a and G T1b . For analysis of distribution of Gα q and Gα i protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα q and Gα i at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A 2 -induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A 2 -induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  5. Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation

    DEFF Research Database (Denmark)

    Varela, Diego; Simon, Felipe; Olivero, Pablo

    2007-01-01

    )R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation......Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel...... activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src...

  6. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  7. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells.

    Science.gov (United States)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  9. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins[S

    Science.gov (United States)

    Subra, Caroline; Grand, David; Laulagnier, Karine; Stella, Alexandre; Lambeau, Gérard; Paillasse, Michael; De Medina, Philippe; Monsarrat, Bernard; Perret, Bertrand; Silvente-Poirot, Sandrine; Poirot, Marc; Record, Michel

    2010-01-01

    Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA2-IVA, the calcium-independent iPLA2-VIA, and the secreted sPLA2-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPγS triggered activation of phospholipase A2 (PLA2)and PLD2. A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E2 (PGE2) and 15-deoxy-Δ12,14-prostaglandinJ2 (15-d PGJ2), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell. PMID:20424270

  10. Phospholipases A2 in ocular homeostasis and diseases

    DEFF Research Database (Denmark)

    Wang, Jinmei; Kolko, Miriam; Kolko, Miriam

    2010-01-01

    Phospholipases A(2) (PLA(2)s) and its generation of second messengers play an important role in signal transduction, cell proliferation, cell survival and gene expression. At low concentrations mediators of PLA(2) activity have a variety of physiological effects whereas high levels of PLA(2) and ...

  11. Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists.

    Science.gov (United States)

    Purkiss, J. R.; West, D.; Wilkes, L. C.; Scott, C.; Yarrow, P.; Wilkinson, G. F.; Boarder, M. R.

    1994-01-01

    1. Cultures of endothelial cells derived from the microvasculature of human frontal lobe have been investigated for phospholipase C (PLC) responses to histamine, endothelins and purinoceptor agonists. 2. Using cells prelabelled with [3H]-inositol and measuring total [3H]-inositol (poly)phosphates, histamine acting at H1 receptors stimulated a substantial response with an EC50 of about 10 microM. 3. Endothelin-1 also gave a clear stimulation of phosphoinositide-specific phospholipase C. Both concentration-response curves and binding curves showed effective responses and binding in the rank order of endothelin-1 > sarafotoxin S6b > endothelin-3, suggesting an ETA receptor. 4. Assay of total [3H]-inositol (poly)phosphates showed no response to the purinoceptor agonists, 2-methylthioadenosine 5'-trisphosphate (2MeSATP), adenosine 5'-O-(3-thiotrisphosphate) (ATP gamma S) or beta,gamma-methylene ATP. Both ATP and UTP gave a small PLC response. 5. Similarly, when formation of [32P]-phosphatidic acid from cells prelabelled with 32Pi was used as an index of both PLC and phospholipase D, a small response to ATP and UTP was seen but there was no response to the other purinoceptor agonists tested. 6. Study by mass assay of stimulation by ATP of inositol (1,4,5) trisphosphate accumulation revealed a transient response in the first few seconds, a decline to basal, followed by a small sustained response. 7. These results show that human brain endothelial cells in culture are responsive to histamine and endothelins in a manner which may regulate brain capillary permeability. Purines exert a lesser influence. PMID:8032588

  12. Activities of native and tyrosine-69 mutant phospholipases A2 on phospholipid analogues. A reevaluation of the minimal substrate requirements.

    Science.gov (United States)

    Kuipers, O P; Dekker, N; Verheij, H M; de Haas, G H

    1990-06-26

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69. Modifications in the phospholipids included introduction of a sulfur at the phosphorus (thionophospholipids), removal of the negative charge at phosphorus (phosphatidic acid dimethyl ester), and reduction (phosphonolipids) or extension (diacylbutanetriol choline phosphate) of the distance between the phosphorus and the acyl ester bond. Replacement of Tyr-69 by Lys reduces enzymatic activity, but the mutant enzyme retains both the stereospecificity and positional specificity of native phospholipase A2. The Phe-69 mutant not only hydrolyzes the Rp isomer of thionophospholipids more efficiently than the wild-type enzyme, but the Sp thiono isomer is hydrolyzed too, although at a low (approximately 4%) rate. Phosphonolipids are hydrolyzed by native phospholipase A2 about 7 times more slowly than natural phospholipids, with retention of positional specificity and a (partial) loss of stereospecificity. The dimethyl ester of phosphatidic acid is degraded efficiently in a calcium-dependent and positional-specific way by native phospholipase A2 and by the mutants, indicating that a negative charge at phosphorus is not an absolute substrate requirement. The activities on the phosphatidic acid dimethyl ester of native enzyme and the Lys-69 mutant are lower than those on the corresponding lecithin, in contrast to the Phe-69 mutant, which has equal activities on both substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  14. Evidence for the presence of phospholipase A1 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Watanabe, Yasuo; Murakami, Masako; Takakuwa, Masayoshi

    1983-01-01

    The cause of the autolysis of pressed Baker's yeast was examined. Softened pressed yeast cells (Saccharomyces cerevisiae), after about 10 days of storage at 30 deg C, was subjected to a series of extraction: the extraction with acetone was made to the supernatant after the centrifugation of the water-suspended yeast cell at 1000 x g for 10 min, and the obtained precipitation was mechanically (with a Potter teflon homogenizer) homogenized. After removing the residues by centrifugation, the protein was salted out with ammonium sulfate up to 0.6 saturation. An enzyme, phospholipase A 1 was thus obtained from the softened yeast cells. The activity of the enzyme thus obtained was assayed using L-α-phosphatidylethanolamine as the substrate. It was previously found that 14 C-labelled free fatty acids liberated from phosphatidylcholine (PC) accumulated in the softened yeast packed cake. The enzyme was identified as phospholipase A 1 having the optimal pH at around 8. Another evidence, obtained previously, together with the present finding suggest that the softening of the pressed Baker's yeast may be caused by the degradation of phospholipid by the combined action of phospholipase A 1 and lysophospholipase L 2 . (Yamashita, S.)

  15. Identification and characterization of phospholipase A2 (PLA2) in bovine pulmonary endothelial cells (BPEC)

    International Nuclear Information System (INIS)

    Martin, T.W.; Wysolmerski, R.B.; Lagunoff, D.

    1986-01-01

    Phosphatidylcholine labeled in the sn-2 position with 3 H-oleic acid was used to measure PLA 2 in cell sonicates (CS) prepared from confluent cultures of BPEC. Substrate at 10-200 μM was incubated with 5-30 μg of CS protein in HEPES buffer at 37 0 C. A plot of 3 H-oleic acid release vs time was linear and proportional to the amount of CS protein. Lineweaver-Burk plots of the data were linear with V/sub max/ = 22.2 nmole/mg protein/hr and K/sub d/ = 121 μM. Under these conditions, phospholipase C activity was 20-fold lower, and phospholipase A 1 activity was not detectable. PLA 2 activity was pH-dependent with optima at 4.5 and 7.5. Ca ++ was not required for activity, and addition of up to 10 mM Ca ++ to CS in EDTA increased activity by only 10-20%. After centrifugation of CS at 100,000 g for 90 min, 62% of the PLA 2 activity was recovered in the particular fraction. Triton X-100 (0.006-0.4%) inhibited PLA 2 up to 90%, whereas 2 mM deoxycholate produced nearly 3-fold activation. Of several agents tested, bromophenacylbromide (BPB) was the most effective inhibitor. Treatment of CS with BPB at 37 0 C for 30 min produced up to 9% inhibition (K/sub i/ = 5 μM). Phenylmethanesulfonyl fluoride at 200 μm produced 41% inhibition. Quinacrine at 1 mM inhibited PLA 2 by 18%. These data define characteristics of BPEC PLA 2 that should prove useful in studies of the role of this enzyme in specific cellular functions

  16. beta-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Zhen, Dongyu; Tao, Sha; Schmidt, Martina; Han, Li

    2011-01-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of

  17. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    Science.gov (United States)

    2011-01-01

    Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids. PMID:21631952

  18. Assay strategies and methods for phospholipases

    International Nuclear Information System (INIS)

    Reynolds, L.J.; Washburn, W.N.; Deems, R.A.; Dennis, E.A.

    1991-01-01

    Of the general considerations discussed, the two issues which are most important in choosing an assay are (1) what sensitivity is required to assay a particular enzyme and (2) whether the assay must be continuous. One can narrow the options further by considering substrate availability, enzyme specificity, assay convenience, or the presence of incompatible side reactions. In addition, the specific preference of a particular phospholipase for polar head group, micellar versus vesicular substrates, and anionic versus nonionic detergents may further restrict the options. Of the many assays described in this chapter, several have limited applicability or serious drawbacks and are not commonly employed. The most commonly used phospholipase assays are the radioactive TLC assay and the pH-stat assay. The TLC assay is probably the most accurate, sensitive assay available. These aspects often outweigh the disadvantages of being discontinuous, tedious, and expensive. The radioactive E. coli assay has become popular recently as an alternative to the TLC assay for the purification of the mammalian nonpancreatic phospholipases. The assay is less time consuming and less expensive than the TLC assay, but it is not appropriate when careful kinetics are required. Where less sensitivity is needed, or when a continuous assay is necessary, the pH-stat assay is often employed. With purified enzymes, when free thiol groups are not present, a spectrophotometric thiol assay can be used. This assay is ∼ as sensitive as the pH-stat assay but is more convenient and more reproducible, although the substrate is not available commercially. Despite the many assay choices available, the search continues for a convenient, generally applicable assay that is both sensitive and continuous

  19. Identification and measurement of rat eosinophil phospholipase D. Its activity on schistosomula phospholipids

    International Nuclear Information System (INIS)

    Lempereur, C.; Capron, M.; Capron, A.

    1980-01-01

    A sensitive assay, using [ 14 C]lecithin as a substrate, has been developed for the measurement of phospholipase activity in rat peritoneal polymorphonuclear leukocytes. Cell extracts were found to contain a phospholipase D activity and indirect evidence suggested that eosinophils are responsible for the cleavage of lecithin. Intact peritoneal cells were also able to hydrolyze exogenous [ 14 C]lecithin in vitro. When [ 3 H]choline-labeled schistosomula were used as targets in antibody-dependent cytotoxicity experiments, the radioactivity of lecithin decreased more rapidly in a complete cytotoxicity system than in controls, suggesting that hydrolysis of schistosomula phospholipids occurred during the killing process. (Auth.)

  20. Functional Independence and Interdependence of the Src Homology Domains of Phospholipase C-γ1 in B-Cell Receptor Signal Transduction

    Science.gov (United States)

    DeBell, Karen E.; Stoica, Bogdan A.; Verí, Maria-Concetta; Di Baldassarre, Angela; Miscia, Sebastiano; Graham, Laurie J.; Rellahan, Barbara L.; Ishiai, Masamichi; Kurosaki, Tomohiro; Bonvini, Ezio

    1999-01-01

    B-cell receptor (BCR)-induced activation of phospholipase C-γ1 (PLCγ1) and PLCγ2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCγ activation, the mechanism coupling PLCγ to the BCR remains undefined. The role of PLCγ1 SH2 and SH3 domains at different steps of BCR-induced PLCγ1 activation was examined by reconstitution in a PLCγ-negative B-cell line. PLCγ1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCγ1 with the adapter protein, BLNK. Forcing PLCγ1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCγ1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCγ1 activation. PMID:10523627

  1. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  2. Structural basis of the phospholipase C activity in neutral sphingomyelinase from Bacillus cereus

    International Nuclear Information System (INIS)

    Ago, Hideo; Miyano, Masashi

    2007-01-01

    Degradation of cell membrane and mucosa, of which phospholipids are major components, and production of lipid mediators are roles of phospholipases from pathogenic bacteria to grow, survive and spread in the host organism. The studies on the enzymes the important for the pathobiology of bacterial infectious disease. The crystal structure of Sphingomyelinase from Bacillus cereus revealed the structure basis of the phospholipase C and hemolysis activities in a divalent cation dependent manner. The water-bridged double divalent cations were concluded to be the catalytic architecture to the phospholipase C activity. In addition, the β-hairpin structure with aromatic amino acid residues was shown to be involved in the membrane binding of the enzyme as a part of the hemolysis activity. (author)

  3. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  4. A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii

    Science.gov (United States)

    Soragni, Elisabetta; Bolchi, Angelo; Balestrini, Raffaella; Gambaretto, Claudio; Percudani, Riccardo; Bonfante, Paola; Ottonello, Simone

    2001-01-01

    Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca2+-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A2 to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A2 is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A2 in the organization of multicellular filamentous structures in bacteria and fungi. PMID:11566873

  5. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    Science.gov (United States)

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS. (c) 2009 Wiley-Liss, Inc.

  6. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    Science.gov (United States)

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  7. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Grazia M. Borrelli

    2015-09-01

    Full Text Available Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  8. Inhibition of phospholipase cgamma1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla.

    Science.gov (United States)

    Lee, J S; Kim, J; Kim, B Y; Lee, H S; Ahn, J S; Chang, Y S

    2000-06-01

    Investigation of the hooks of Uncaria rhynchophylla resulted in isolation of six phospholipase Cgamma1 (PLCgamma1) inhibitors (1-6). The structures of these compounds were elucidated as pentacyclic triterpene esters by spectroscopic and chemical analysis. Three of them, namely uncarinic acids C (1), D (2), and E (3), are newly reported as natural products. All the compounds showed dose-dependent inhibitory activities against PLCgamma1 in vitro with IC(50) values of 9.5-44.6 microM and inhibited the proliferation of human cancer cells with IC(50) values of 0.5-6.5 microg/mL.

  9. Unconventional Trafficking of Mammalian Phospholipase D3 to Lysosomes

    Directory of Open Access Journals (Sweden)

    Adriana Carolina Gonzalez

    2018-01-01

    Full Text Available Variants in the phospholipase D3 (PLD3 gene have genetically been linked to late-onset Alzheimer's disease. We present a detailed biochemical analysis of PLD3 and reveal its endogenous localization in endosomes and lysosomes. PLD3 reaches lysosomes as a type II transmembrane protein via a (for mammalian cells uncommon intracellular biosynthetic route that depends on the ESCRT (endosomal sorting complex required for transport machinery. PLD3 is sorted into intraluminal vesicles of multivesicular endosomes, and ESCRT-dependent sorting correlates with ubiquitination. In multivesicular endosomes, PLD3 is subjected to proteolytic cleavage, yielding a stable glycosylated luminal polypeptide and a rapidly degraded N-terminal membrane-bound fragment. This pathway closely resembles the delivery route of carboxypeptidase S to the yeast vacuole. Our experiments reveal a biosynthetic route of PLD3 involving proteolytic processing and ESCRT-dependent sorting for its delivery to lysosomes in mammalian cells.

  10. Superantigen and HLA-DR ligation induce phospholipase-C gamma 1 activation in class II+ T cells

    DEFF Research Database (Denmark)

    Kanner, S B; Odum, Niels; Grosmaire, L

    1992-01-01

    Bacterial enterotoxin superantigens bind directly to HLA class II molecules (HLA-DR) expressed on both APC and activated human T cells, and simultaneously bind to certain V beta chains of the TCR. In this report, we compared early T cell signaling events in human alloantigen-stimulated T cells when...... activated by HLA-DR ligation through antibody cross-linking or by direct enterotoxin superantigen binding. Both types of stimuli induced tyrosine phosphorylation of phosphatidylinositol-specific phospholipase C gamma 1 (PLC gamma 1) and an increase in intracellular calcium concentration; however......, superantigen-induced signaling was stronger than class II ligation alone. Antibody-mediated ligation of HLA-DR with CD3 resulted in augmented PLC gamma 1 activation and increased calcium mobilization, consistent with a mechanism of superantigen activity through a combination of class II and CD3/Ti signals...

  11. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Irina Borodina

    Full Text Available Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A. All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST. Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy.

  12. Inhibition of [3H]nitrendipine binding by phospholipase A2

    International Nuclear Information System (INIS)

    Goldman, M.E.; Pisano, J.J.

    1985-01-01

    Phospholipase A 2 from several sources inhibited [ 3 H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC 50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A 2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A 2 enzymatic activity, shifted the bee venom phospholipase A 2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A 2 (10 ng/ml) for 15 min caused a 2-fold increase in the K/sub d/ without changing the B/sub max/ compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the K/sub d/ but significantly decreased the B/sub max/ to 71% the value for untreated membranes. [ 3 H]Nitrendipine, preincubated with bee venom phospholipase A 2 , was recovered and found to be fully active, indicating that the phospholipase A 2 did not modify the ligand. It is concluded that phospholipase A 2 acts on the membrane at or near the [ 3 H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site. 33 references, 3 figures, 1 table

  13. Reassessing the role of phospholipase D in the Arabidopsis wounding response

    NARCIS (Netherlands)

    Bargmann, Bastiaan O.R.; Laxalt, Ana M.; Riet, Bas ter; Testerink, Christa; Merquiol, Emmanuelle; Mosblech, Alina; Leon Reyes, H.A.; Pieterse, C.M.J.; Haring, Michel A.; Heilmann, Ingo; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDa1 has been proposed to be activated in intact cells, and the

  14. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Manpreet S. Chahal

    2010-07-01

    Full Text Available Phospholipase D2 (PLD2 generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  15. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  16. Secretory Phospholipase A2-IIA and Cardiovascular Disease

    DEFF Research Database (Denmark)

    Holmes, Michael V; Simon, Tabassome; Exeter, Holly J

    2013-01-01

    This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.......This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease....

  17. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  18. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  19. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Maoxi; Fu, Zhongxue; Wu, Xingye; Du, Kunli; Zhang, Shouru; Zeng, Li

    2016-05-01

    Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

  20. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.

    Science.gov (United States)

    Raykova, D; Blagoev, B

    1986-01-01

    In order to find out the aggregation state of the substrate, preferred by bee venom phospholipase A2 (EC 3.1.1.4), its action on short-chain phosphatidylcholines with two identical (C6-C10) fatty acids has been tested. The rate of hydrolysis as a function of acyl chain length showed a maximum at dioctanoylphosphatidylcholine. The effects of alcohols, NaCl and Triton X-100, which affect the aggregation state of phospholipids in water, were also studied. The addition of n-alcohol led to a significant inhibition of the hydrolysis of the substrates present in micellar form and activated the hydrolysis of substrates which form liposomes. The inhibitory effect increased with increasing length of the aliphatic carbon chain of the alcohol. Triton X-100 at low Triton/phospholipid molar ratios enhanced enzyme activity. These results do not agree with the accepted idea that bee venom phospholipase A2 hydrolyzes short-chain lecithins in their molecularly dispersed form and that micelles cannot act as substrates. The data indicate that short-chain lecithins in the aggregated state are hydrolyzed and that the requirements of bee venom phospholipase A2 for the aggregation state of the substrate are not strict.

  1. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Neale Harrison

    Full Text Available N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368, but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.

  2. Bradykinin and vasopressin activate phospholipase D in rat Leydig cells by a protein kinase C-dependent mechanism

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1993-01-01

    of PMA and vasopressin (AVP), PMA and bradykinin, or AVP and bradykinin produced no additive phosphatidylethanol or choline response, suggesting that AVP, bradykinin and PMA stimulated phospholipase D catalysed phosphatidylcholine hydrolysis by a similar protein kinase C-dependent mechanism. Furthermore......, LH (10 ng/ml), insulin (500 nmol/l), GH (100 ng/ml), interleukin-1ß (5 U/ml) and platelet-activating factor (200 nmol/l) were found not to activate phospholipase D, whereas the Ca ionophore A23187 (10 µmol/l) stimulated phosphatidylethanol formation, suggesting that Ca might be a regulator...

  3. Crystallization and preliminary X-ray diffraction analysis of a class II phospholipase D from Loxosceles intermedia venom

    International Nuclear Information System (INIS)

    Ullah, Anwar; Giuseppe, Priscila Oliveira de; Murakami, Mario Tyago; Trevisan-Silva, Dilza; Wille, Ana Carolina Martins; Chaves-Moreira, Daniele; Gremski, Luiza Helena; Silveira, Rafael Bertoni da; Sennf-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches; Arni, Raghuvir Krishnaswamy

    2011-01-01

    Wild-type and H12A-mutant class II phospholipase D from L. intermedia venom were crystallized; the crystals diffracted to maximum resolutions of 1.95 and 1.60 Å, respectively. Phospholipases D are the major dermonecrotic component of Loxosceles venom and catalyze the hydrolysis of phospholipids, resulting in the formation of lipid mediators such as ceramide-1-phosphate and lysophosphatidic acid which can induce pathological and biological responses. Phospholipases D can be classified into two classes depending on their catalytic efficiency and the presence of an additional disulfide bridge. In this work, both wild-type and H12A-mutant forms of the class II phospholipase D from L. intermedia venom were crystallized. Wild-type and H12A-mutant crystals were grown under very similar conditions using PEG 200 as a precipitant and belonged to space group P12 1 1, with unit-cell parameters a = 50.1, b = 49.5, c = 56.5 Å, β = 105.9°. Wild-type and H12A-mutant crystals diffracted to maximum resolutions of 1.95 and 1.60 Å, respectively

  4. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  5. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as lecithins...

  6. Characterization of secretory phospholipase A₂ with phospholipase A₁ activity in tobacco, Nicotiana tabacum (L.).

    Science.gov (United States)

    Fujikawa, Yukichi; Fujikawa, Ritsuko; Iijima, Noriaki; Esaka, Muneharu

    2012-03-01

    A cDNA encoding protein with homology to plant secretory phospholipase A₂ (sPLA₂), denoted as Nt1 PLA₂, was isolated from tobacco (Nicotiana tabacum). The cDNA encodes a mature protein of 118 amino acid residues with a putative signal peptide of 29 residues. The mature form of Nt1 PLA₂ has 12 cysteines, Ca²⁺ binding loop and catalytic site domain that are commonly conserved in plant sPLA₂s. The recombinant Nt1 PLA₂ was expressed as a fusion protein with thioredoxin in E. coli BL21 cells and was purified by an ion exchange chromatography after digestion of the fusion proteins by Factor Xa protease to obtain the mature form. Interestingly, Nt1 PLA₂ could hydrolyze the ester bond at the sn-1 position of glycerophospholipids as well as at the sn-2 position, when the activities were determined using mixed-micellar phospholipids with sodium cholate. Both activities for the sn-1 and -2 positions of glycerophospholipids required Ca²⁺ essentially, and maximal activities were found in an alkaline region when phosphatidylcholine, phosphatidylglycerol or phosphatidylethanolamine was used as a substrate. The level of Nt1 PLA₂ mRNA was detected at a higher level in tobacco flowers than stem, leaves and roots, and was induced by salicylic acid.

  7. Wasp venom proteins: phospholipase A1 and B.

    Science.gov (United States)

    King, T P; Kochoumian, L; Joslyn, A

    1984-04-01

    Three major venom proteins from different species of wasps have been isolated and characterized. They are hyaluronidase, phospholipase, and antigen 5 of as yet unknown biochemical function. These three proteins are allergens in wasp venom-sensitive persons. The species of wasps studied, of the genus Polistes, were annularis, carolina, exclamans, fuscatus, and instabilis. Antigen 5 and phospholipase from wasp venoms were shown to be antigenically distinct from homologous proteins of yellowjacket venoms. The venom phospholipase from wasp, as well as that from yellowjacket (Vespula germanica), appears to have dual enzymatic specificities of the A1 and B types. That is, hydrolysis takes place at the 1-acyl residue of phosphatidylcholine and at the 1- or 2-acyl residue of lysophosphatidylcholine.

  8. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell

    International Nuclear Information System (INIS)

    Petrovic, Uros; Sribar, Jernej; Paris, Alenka; Rupnik, Marjan; Krzan, Mojca; Vardjan, Nina; Gubensek, Franc; Zorec, Robert; Krizaj, Igor

    2004-01-01

    Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A 2 acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable there to interact with them. Using laser scanning confocal microscopy we show here that Alexa-labelled ammodytoxin entered the cytoplasm of the rat hippocampal neuron and subsequently also its nucleus. The transport of proteins into the nucleus proceeds via the cytosol of a cell, therefore, ammodytoxin passed the cytosol of the neuron on its way to the nucleus. Although it is not yet clear how ammodytoxin is translocated into the cytosol of the neuron, our results demonstrate that its stability in the cytosol is not in question, providing the evidence that the toxin can act in this cellular compartment

  9. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form.

    Science.gov (United States)

    Van der Wiele, F C; Atsma, W; Roelofsen, B; van Linde, M; Van Binsbergen, J; Radvanyi, F; Raykova, D; Slotboom, A J; De Haas, G H

    1988-03-08

    Long-chain lecithins present in bilayer structures like vesicles or membranes are only very poor substrates for pancreatic phospholipases A2. This is probably due to the fact that pancreatic phospholipases A2 cannot penetrate into the densely packed bilayer structures. To improve the weak penetrating properties of pancreatic phospholipases A2, we prepared and characterized a number of pancreatic phospholipase A2 mutants that have various long acyl chains linked covalently to Lys116 in porcine and to Lys10 in bovine phospholipase A2 [Van der Wiele, F.C., Atsma, W., Dijkman, R., Schreurs, A.M.M., Slotboom, A.J., & De Haas, G.H. (1988) Biochemistry (preceding paper in this issue)]. When monomolecular surface layers of L- and D-didecanoyllecithin were used, it was found that the introduction of caprinic, lauric, palmitic, and oleic acid at Lys116 in the porcine enzyme increases its penetrating power from 13 to about 17, 20, 32, and 22 dyn/cm, respectively, before long lag periods were obtained. Incorporation of a palmitoyl moiety at Lys10 in the bovine enzyme shifted the penetrating power from 11 to about 25 dyn/cm. Only the best penetrating mutant, viz., porcine phospholipase A2 having a palmitoyl moiety at Lys116, was able to cause complete leakage of 6-carboxyfluorescein entrapped in small unilamellar vesicles of egg lecithin under nonhydrolytic conditions. Similarly, only this latter palmitoylphospholipase A2 completely hydrolyzed all lecithin in the outer monolayer of the human erythrocyte at a rate much faster than Naja naja phospholipase A2, the most powerful penetrating snake venom enzyme presently known.

  10. Inhibition of (/sup 3/H)nitrendipine binding by phospholipase A/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M.E.; Pisano, J.J.

    1985-10-07

    Phospholipase A/sub 2/ from several sources inhibited (/sup 3/H)nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC/sub 50/ values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A/sub 2/ was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A/sub 2/ enzymatic activity, shifted the bee venom phospholipase A/sub 2/ dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A/sub 2/ (10 ng/ml) for 15 min caused a 2-fold increase in the K/sub d/ without changing the B/sub max/ compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the K/sub d/ but significantly decreased the B/sub max/ to 71% the value for untreated membranes. (/sup 3/H)Nitrendipine, preincubated with bee venom phospholipase A/sub 2/, was recovered and found to be fully active, indicating that the phospholipase A/sub 2/ did not modify the ligand. It is concluded that phospholipase A/sub 2/ acts on the membrane at or near the (/sup 3/H)nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site. 33 references, 3 figures, 1 table.

  11. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  12. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  13. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C.

    OpenAIRE

    Wilkinson, G. F.; Purkiss, J. R.; Boarder, M. R.

    1993-01-01

    1. We have examined the phospholipase C responses in bovine aortic endothelial cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. The cells responded to purines in a manner consistent with the presence of P2y purinoceptors; both 2-methylthioadenosine 5'-triphosphate (2MeSATP) and adenosine 5'-0-(2-thiodiphosphate) (ADP beta S) were potent agonists (EC50 0.41 microM and 0.85 microM respectively) while beta, gamma-methylene ATP at 300 microM was not. 3....

  14. A MIDGUT DIGESTIVE PHOSPHOLIPASE A2 IN LARVAL MOSQUITOES, AEDES ALBOPICTUS AND CULEX QUINQUEFASCIATUS

    Science.gov (United States)

    Phospholipase A2 (PLA2) is a secretory digestive enzyme that hydrolyzes ester bond at sn-2 position of dietary phospholipids, creating free fatty acid and lysophopholipid. The free fatty acids (arachidonic acid) are absorbed into midgut cells. Aedes albopictus and Culex quinquefasciatus digestive PL...

  15. Effect of phospholipase A treatment of low density lipoproteins on the dextran sulfate--lipoprotein interaction.

    Science.gov (United States)

    Nishida, T

    1968-09-01

    The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.

  16. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    OpenAIRE

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile bioc...

  17. Quercetin modulates activities of Taiwan cobra phospholipase A 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 37; Issue 2. Quercetin modulates activities of Taiwan cobra phospholipase A2 via its effects on membrane structure and membrane-bound mode of phospholipase A2. Yi-Ling Chiou Shinne-Ren Lin Wan-Ping Hu Long-Sen Chang. Articles Volume 37 Issue 2 June 2012 pp ...

  18. Elevation of oleate-activated phospholipase D activity during thymic atrophy

    Science.gov (United States)

    Lee, Youngkyun; Song, Soo-Mee; Park, Heung Soon; Kim, Sungyeol; Koh, Eun-Hee; Choi, Myung Sun; Choi, Myung-Un

    2002-01-01

    Various phospholipases are thought to be associated with the in vitro apoptosis of thymocytes. In the present study, the in vivo phospholipase D (PLD) activity of rat thymus was studied after whole-body X-irradiation or injection of dexamethasone (DEX). Using exogenous [14C]dipalmitoyl phosphatidylcholine (PC) as the substrate, an elevation of oleate-activated PLD activity was observed during thymic atrophy. The activity increases were sevenfold at 48 hr after 5-Gy irradiation and fourfold at 72 hr after injection of 5 mg/kg DEX. The elevation of PLD activity appeared to parallel extensive thymus shrinkage. An increased level of thymic phosphatidic acid (PA), the presumed physiological product of PLD action on PC, was also detected. By comparing the acyl chains of PA with those of other phospholipids, PA appeared to originate from PC. To assess the role of PLD during thymic atrophy, thymocytes and stromal cells were isolated. Although thymocytes themselves exhibited significant PLD activation, the major elevation in PLD activity (greater than fourfold) was found in isolated stromal cells. PLD was also activated during in vitro phagocytosis of apoptotic thymocytes by the macrophage-like cell line P388D1. This in vitro phagocytosis was significantly inhibited by PLD action blockers, such as 2,3-diphosphoglycerate and 1-butanol. These observations strongly suggest that the alteration of oleate-activated PLD activity is part of an in vivo event in the progression of thymic atrophy, including phagocytic clearance of apoptotic thymocytes. PMID:12460188

  19. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells

    OpenAIRE

    1992-01-01

    Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody- dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5- trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibit...

  20. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    International Nuclear Information System (INIS)

    Garibova, L.S.; Avetisyan, T.O.; Ajrapetyan, S.N.

    2000-01-01

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A 1 and A 2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field [ru

  1. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells

    DEFF Research Database (Denmark)

    Nyegaard, Steffen; Novakovic, Valerie A.; Rasmussen, Jan Trige

    2013-01-01

    Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quies...

  2. Phospholipase B activity of a purified phospholipase A from Vipera palestinae venom.

    Science.gov (United States)

    Shiloah, J; Klibansky, C; de Vries, A; Berger, A

    1973-05-01

    Phospholipase was isolated (in two fractions) from Vipera palestinae venom and it was shown to possess phospholipase A activity (hydrolyzing diacyl-sn-glycerophosphorylcholines, e.g., lecithin, in the 2-position) as well as lysophospholipase (phospholipase B) activity (hydrolyzing 1-monoacyl-sn-glycerophosphorylcholines, e.g., lysolecithin, yielding free fatty acid and glycerophosphorylcholine). Each of the two purified enzyme fractions was homogeneous as judged by electrophoresis on acrylamide gel and by immunodiffusion and immunoelectrophoresis, and both had essentially equal activities. The ratio of the specific activity, at various purification stages, to the specific activity of the whole venom was the same for A activity (substrate lecithin) as for B activity (substrate lysolecithin). The enzyme has a molecular weight of 16,000, six S-S bridges, and no free thiol groups. At pH 7, dimerization was observed in the ultracentrifuge. A dissociation constant of about 10(-5) m was estimated. The amino acid composition for both fractions (140 amino acid residues) was found to be essentially the same. The A activity had a pH optimum at 9; B activity was low at this pH but increased steadily beyond pH 10.5. For the hydrolysis of lysolecithin the Lineweaver-Burk plot was found to be linear, giving K(m) = 1.1 mm and k(cat) = 0.55 sec(-1) at 37 degrees C and pH 10. 2-Deoxylysolecithin was also hydrolyzed by the enzyme at pH 10, with k(cat) = 0.01 sec(-1) (zero-order kinetics in the range 0.5-2.5 mm). For lecithin these constants could not be determined, but at 0.25 mm substrate the hydrolysis rate (at pH 9) of lecithin was about 1000 times the hydrolysis rate of lysolecithin (at pH 10).

  3. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Purification of phospholipase A2 from Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    B. Quevedo

    1999-01-01

    Full Text Available Phospholipase A2 (PLA2 from Bothrops atrox (Sensu lato venom, from Chiriguaná (Colombia was purified using exclusión chromatography on Sephadex G-75, obtaining five fractions one of which showed phospholipase A2 activity. After further purification on Mono S cationic exchange column, eight fractions with PLA2 activity, measured using the hemolytic method, were obtained.

  5. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  6. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification. Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  7. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  8. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C.

    Science.gov (United States)

    Wilkinson, G F; Purkiss, J R; Boarder, M R

    1993-03-01

    1. We have examined the phospholipase C responses in bovine aortic endothelial cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. The cells responded to purines in a manner consistent with the presence of P2y purinoceptors; both 2-methylthioadenosine 5'-triphosphate (2MeSATP) and adenosine 5'-0-(2-thiodiphosphate) (ADP beta S) were potent agonists (EC50 0.41 microM and 0.85 microM respectively) while beta, gamma-methylene ATP at 300 microM was not. 3. The cells also responded to UTP. The maximal response to UTP was less than that for either 2MeSATP and ADP beta S while adenosine 5'-0-(3-thiotriphosphate) (ATP gamma S) gave the largest maximal response. 4. The concentration-effect curve to UTP was additive in the presence of either 2MeSATP or ADP beta S. However, the concentration-effect curves to ATP gamma S reached the same maximum in the presence or absence of UTP. 5. Suramin, at concentrations between 10 microM and 100 microM was a competitive antagonist for the response to ADP beta S and 2MeSATP but not the response to UTP. 6. The results show that there are two separate, co-existing, receptor populations: P2y-purinoceptors (responding to purines) and nucleotide receptors (responding to both purines and pyrimidines). We conclude that purines such as ATP/ADP may regulate aortic endothelial cells by interacting with two phospholipase C-linked receptors.

  9. Purification and characterization of a phospholipase by Photobacterium damselae subsp. piscicida from cobia Rachycentron canadum.

    Science.gov (United States)

    Hsu, Po-Yuan; Lee, Kuo-Kau; Hu, Chih-Chuang; Liu, Ping-Chung

    2014-09-01

    Toxicity of the extracellular products (ECPs) and the lethal attributes of phospholipase secreted by pathogenic Photobacterium damselae subsp. piscicida from cobia Rachycentron canadum was studied. An extracellular lethal toxin in the ECPs was partially purified by using Fast Protein Liquid Chromatography system. A protein band (27 kDa) exhibited phospholipase activity on Native-PAGE (by 0.3% egg yolk agar-overlay), was excised and eluted. The pI value of the purified phospholipase was determined as 3.65 and was determined as a phospholipase C by using the Amplex™ Red phosphatidylcholine -Specific phospholipase C Assay kit. The phospholipase showed maximum activity at temperature around 4-40 °C and maximal activity at pH between 8 and 9. The enzyme was inhibited by ethylenediamine-tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS); but was activated by Ca(2+) and Mg(2+) and inactivated by Zn(2+) and Cu(2+) . Both the ECPs and phospholipase were hemolytic against erythrocytes of cobia and lethal to the fish with LD50 values of 3.25 and 0.91 µg protein g(-1) fish, respectively. In toxicity neutralization test, the rabbit antisera against the phospholipase could neutralize the toxicity of ECPs, indicating that the phospholipase is a major extracellular toxin produced by the bacterium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Imidazoline NNC77-0074 stimulates Ca2+-evoked exocytosis in INS-1E cells by a phospholipase A2-dependent mechanism

    DEFF Research Database (Denmark)

    Olsen, Hervør L; Nørby, Peder L; Høy, Marianne

    2003-01-01

    We have previously demonstrated that the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)-pyridine (NNC77-0074) increases insulin secretion from pancreatic beta-cells by stimulation of Ca(2+)-dependent exocytosis. Using capacitance measurements, we now show...... that NNC77-0074 stimulates exocytosis in clonal INS-1E cells. NNC77-0074-stimulated exocytosis was antagonised by the cytoplasmic phospholipase A(2) (cPLA(2)) inhibitors ACA and AACOCF(3) and in cells treated with antisense oligonucleotide against cPLA(2)alpha. NNC77-0074-evoked insulin secretion...... was likewise inhibited by ACA, AACOCF(3), and cPLA(2)alpha antisense oligonucleotide treatment. In pancreatic islets NNC77-0074 stimulated PLA(2) activity. We propose that cPLA(2)alpha plays an important role in the regulation of NNC77-0074-evoked exocytosis in insulin secreting beta-cells....

  11. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  12. Some aspects of rat platelet and serum phospholipase A2 activities

    NARCIS (Netherlands)

    Aarsman, A.J.; Roosenboom, C.F.P.; Geffen, G.E.W. van; Bosch, H. van den

    1985-01-01

    Rat platelet lysate contained appreciable phospholipase A2 activity. In agreement with literature data this enzymatic activity eluted in the void volume of a Sephadex G-100 column. When the void volume peak was chromatographed over a Matrex gel blue A column, part of the phospholipase A2 activity

  13. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    Science.gov (United States)

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  14. Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A2

    International Nuclear Information System (INIS)

    Liu, J.; Blumenthal, K.M.

    1988-01-01

    A study on the interaction between bee venom phospholipase A 2 and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A 2 from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A 2 -dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysis is not a major phospholipase A 2 -activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A 2 . Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A 2 . Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of [ 14 C]oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher α-helix content and a greater activity than the monomer

  15. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2

    International Nuclear Information System (INIS)

    Burch, R.M.; Axelrod, J.

    1987-01-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E 2 (PGE 2 ) synthesis. The EC 50 values for stimulation of PGE 2 synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-[γ-thio]triphosphate stimulated PGE 2 synthesis and InsP formation, and guanosine-5'-[β-thio]diphosphate inhibited both PGE 2 synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE 2 synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE 2 synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE 2 synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE 2 synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with [ 3 H] choline, the phospholipase A 2 products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A 2 and that phospholipase A 2 is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis

  16. Generation of N-Acylphosphatidylethanolamine by Members of the Phospholipase A/Acyltransferase (PLA/AT) Family*

    Science.gov (United States)

    Uyama, Toru; Ikematsu, Natsuki; Inoue, Manami; Shinohara, Naoki; Jin, Xing-Hua; Tsuboi, Kazuhito; Tonai, Takeharu; Tokumura, Akira; Ueda, Natsuo

    2012-01-01

    Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1–5 as phospholipase A/acyltransferase (PLA/AT)-1–5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [14C]NAPE and [14C]NAE when cells were metabolically labeled with [14C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo. PMID:22825852

  17. Soybean phospholipase D activity determination. A comparison of two methods

    Directory of Open Access Journals (Sweden)

    Ré, E.

    2007-09-01

    Full Text Available Due to a discrepancy between previously published results, two methods to determine the soybean phospholipase D activity were evaluated. One method is based on the extraction of the enzyme from whole soybean flour, quantifying the enzyme activity on the extract. The other method quantifies the enzymatic activity on whole soybean flour without enzyme extraction. In the extraction-based-method, both the extraction time and the number of extractions were optimized. The highest phospholipase D activity values were obtained from the method without enzyme extraction. This method is less complex, requires less running-time and the conditions of the medium in which phospholipase D acts resemble the conditions found in the oil industrySe evaluaron dos métodos para determinar la actividad de la fosfolipasa D en soja debido a que existe discrepancia entre los resultados publicados. Un método se basa en la extracción de la enzima de la harina resultante de la molienda del grano de soja entero, cuantificando la actividad sobre el extracto. En el otro método, la cuantificación se realiza sobre la harina del grano entero molido, sin extraer la enzima. En el método de extracción se optimizaron tanto el tiempo como el número de extracciones. Los mayores valores de actividad de la fosfolipasa D se obtuvieron por el método sin extracción de la enzima. Este método es más simple, exige menos tiempo de ejecución y las condiciones del medio en que actúa la fosfolipasa D se asemejan a las condiciones encontradas en la industria aceitera.

  18. Enhanced Activity and Altered Specificity of Phospholipase A2 by Deletion of a Surface Loop

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Thunnissen, Marjolein M.G.M.; Geus, Pieter de; Dijkstra, Bauke W.; Drenth, Jan; Verheij, Hubertus M.; Haas, Gerard H. de

    1989-01-01

    Protein engineering and x-ray crystallography have been used to study the role of a surface loop that is present in pancreatic phospholipases but is absent in snake venom phospholipases. Removal of residues 62 to 66 from porcine pancreatic phospholipase A2 does not change the binding constant for

  19. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions.

    Science.gov (United States)

    Liu, Maoxi; Du, Kunli; Fu, Zhongxue; Zhang, Shouru; Wu, Xingye

    2015-01-01

    Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that phospholipase D2 (PLD2) plays significant roles in cancer progression. In this study, correlation between the expression of PLD2 and the change in the protein level of hypoxia-inducible factor 1-alpha (HIF1-α) was studied. Thirty human colon cancer tissues were examined for the expression of HIF1-α and PLD2 protein, and mRNA levels. SW480 and SW620 cells were exposed to normoxia (20 %) or hypoxia (Hypoxic stress induced PLD2 mRNA and protein expression in SW480 and SW620 cells. Cells transfected with HIF1-α siRNA showed attenuation of hypoxia stress-induced PLD2 expression. In vivo growth decreased in response to HIF1-α and PLD2 inhibition. These results suggest that PLD2 expression in colon cancer cells is up-regulated via HIF1-α in response to hypoxic stress and underscores the crucial role of HIF1-α-induced PLD2 in tumor growth.

  20. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells

    Czech Academy of Sciences Publication Activity Database

    Kolesnikov, Y. S.; Nokhrina, K. P.; Kretynin, S. V.; Volotovski, I. D.; Martinec, Jan; Romanov, G. A.; Kravets, V. S.

    2012-01-01

    Roč. 77, č. 1 (2012), s. 1-14 ISSN 0006-2979 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional research plan: CEZ:AV0Z50380511 Keywords : phospholipase D * domains * calcium Subject RIV: CE - Biochemistry Impact factor: 1.149, year: 2012

  1. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  2. Yeast phospholipase C is required for stability of casein kinase I Yck2p and expression of hexose transporters

    Czech Academy of Sciences Publication Activity Database

    Zhang, T.; Galdieri, L.; Hašek, Jiří; Vančura, A.

    2017-01-01

    Roč. 364, č. 22 (2017), č. článku fnx227. ISSN 0378-1097 R&D Projects: GA ČR(CZ) GA16-05497S Institutional support: RVO:61388971 Keywords : phospholipase C * casein kinase I * hexose transporters Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.765, year: 2016

  3. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D.

    Science.gov (United States)

    Wilkie, N; Morton, C; Ng, L L; Boarder, M R

    1996-12-13

    Activation of the mitogen-activated protein kinase (MAPK) cascade has been widely associated with cell proliferation; previous studies have shown that angiotensin II (AII), acting on 7-transmembrane G protein-coupled receptors, stimulates the MAPK pathway. In this report we investigate whether the MAPK pathway is required for the mitogenic response to AII stimulation of vascular smooth muscle cells derived from the hypertensive rat (SHR-VSM). AII stimulates the phosphorylation of MAPK, as determined by Western blot specific for the tyrosine 204 phosphorylated form of the protein. This MAPK phosphorylation was inhibited by the presence of the inhibitor of MAPK kinase activation, PD 098059. Using a peptide kinase assay shown to measure the p42 and p44 isoforms of MAPK, the stimulated response to AII was inhibited by PD 098059 with an IC50 of 15.6 +/- 1.6 microM. The AII stimulation of [3H]thymidine incorporation was inhibited by PD 098059 with an IC50 of 17.8 +/- 3.1 microM. PD 098059 had no effect on AII-stimulated phospholipase C or phospholipase D (PLD) activity. When the SHR-VSM cells were stimulated with phorbol ester, there was an activation of MAPK similar in size and duration to the response to AII, but there was no significant enhancement of [3H]thymidine incorporation. There was also no activation of PLD by phorbol ester, while AII produced a robust PLD response. Diversion of the product of the PLD reaction by 1-butanol caused a partial loss of the [3H]thymidine response; this did not occur with tertiary butanol, which did not interfere with the PLD reaction. These results show that in these cells the MAPK cascade is required but not sufficient for the mitogenic response to AII, and suggest that the full mitogenic response requires both MAPK in conjunction with other signaling components, one of which is PLD.

  4. The secretory phospholipase A2 group IIA: a missing link between inflammation, activated renin-angiotensin system, and atherogenesis?

    Directory of Open Access Journals (Sweden)

    Dimitar Divchev

    2008-06-01

    Full Text Available Dimitar Divchev, Bernhard SchiefferDepartment of Cardiology and Angiology, Medizinische Hochschule Hannover, GermanyAbstract: Inflammation, lipid peroxidation and chronic activation of the renin–angiotensin system (RAS are hallmarks of the development of atherosclerosis. Recent studies have suggested the involvement of the pro-inflammatory secretory phospholipase A2 (sPLA2-IIA in atherogenesis. This enzyme is produced by different cell types through stimulation by proinflammatory cytokines. It is detectable in the intima and in media smooth muscle cells, not only in atherosclerotic lesions but also in the very early stages of atherogenesis. sPLA2-IIA can hydrolyse the phospholipid monolayers of low density lipoproteins (LDL. Such modified LDL show increased affinity to proteoglycans. The modified particles have a greater tendency to aggregate and an enhanced ability to insert cholesterol into cells. This modification may promote macrophage LDL uptake leading to the formation of foam cells. Furthermore, sPLA2-IIA is not only a mediator for localized inflammation but may be also used as an independent predictor of adverse outcomes in patients with stable coronary artery disease or acute coronary syndromes. An interaction between activated RAS and phospholipases has been indicated by observations showing that inhibitors of sPLA2 decrease angiotensin (Ang II-induced macrophage lipid peroxidation. Meanwhile, various interactions between Ang II and oxLDL have been demonstrated suggesting a central role of sPLA2-IIA in these processes and offering a possible target for treatment. The role of sPLA2-IIA in the perpetuation of atherosclerosis appears to be the missing link between inflammation, activated RAS and lipidperoxidation.Keywords: secretory phospholipase A2, lipoproteins, renin-angiotensin system, inflammation, atherosclerosis

  5. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Science.gov (United States)

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  6. Phospholipase A2 is involved in galactosylsphingosine-induced astrocyte toxicity, neuronal damage and demyelination.

    Directory of Open Access Journals (Sweden)

    Cedric Misslin

    Full Text Available Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC. Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine, which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2 may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP, myelin oligodendrocyte glycoprotein (MOG and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.

  7. Activities of Native and Tyrosine-69 Mutant Phospholipases A2 on Phospholipid Analogues. A Reevaluation of the Minimal Substrate Requirements

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Dekker, Nicolaas; Verheij, Hubertus M.; Haas, Gerard H. de

    1990-01-01

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69.

  8. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia.

    Directory of Open Access Journals (Sweden)

    Matthieu M Vermeren

    Full Text Available Phospholipase D2 (PLD2 is an enzyme that produces phosphatidic acid (PA, a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

  9. Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Blumenthal, K.M.

    1988-05-15

    A study on the interaction between bee venom phospholipase A/sub 2/ and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A/sub 2/ from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A/sub 2/-dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysis is not a major phospholipase A/sub 2/-activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A/sub 2/. Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A/sub 2/. Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of (/sup 14/C)oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher ..cap alpha..-helix content and a greater activity than the monomer.

  10. Phospholipase and proteinase activities of Candida spp. isolates from vulvovaginitis in Iran.

    Science.gov (United States)

    Shirkhani, S; Sepahvand, A; Mirzaee, M; Anbari, K

    2016-09-01

    This study aims to characterize phospholipase and proteinase activities of Candida isolates from 82 vulvovaginal candidiasis (VVC) and to study the relationship of these activities with vulvovaginitis. Totally 82 Candida isolates from vagina samples of VVC patients were randomly collected over the period between September and December 2014 from hospitalized patients at the general hospitals of Lorestan province, Iran. Isolates were previously identified by conventional mycological methods. The phospholipase and proteinase activities were evaluated by Egg yolk agar, Tween 80 opacity medium and agar plate methods. The most common Candida species was identified Candida albicans (n=34, 41.5%), followed by Candida famata (n=13, 15.8%), Candida tropicalis (n=11, 13.4%), and Candida parapsilosis (n=9, 11%). The most phospholipase activity was observed in Candida colliculosa (40%), followed by C. famata (38.5%), and Candida krusei (33.3%). The findings revealed that the correlation between phospholipase production by Candida spp. and the presence of VVC was not found to be statistically significant (P=0.91). All Candida spp. exhibited considerable proteinase activity; so that 100% of C. colliculosa, C. parapsilosis, Candida kefyr, and Candida intermedia isolates produced high proteinase activity with Pz 4+ scores. There was a significant correlation between proteinase production by Candida spp. and the presence of VVC (P=0.009). The obtained findings revealed that Candida spp. isolates may produce both virulence factors, phospholipase and proteinase. Although the phospholipase production was only observed in <40% of the isolates; however there was a significant association between proteinase production by Candida spp. and VVC. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    Science.gov (United States)

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  12. Angiogenin activates phospholipase C and elicits a rapid incorporation of fatty acid into cholesterol esters in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moore, F.; Riordan, J.F.

    1990-01-01

    Angiogenin activates the phosphoinositide-specific phospholipase C (PLC) in cultured rat aortic smooth muscle cells to yield a transient (30 s) peak of 1,2-diacylglycerol (DG) and inositol trisphosphate. Within 1 min, the DG level falls below that of the control and remains so for at least 20 min. A transient increase in monoacylglycerol indicates that depletion of DG may be the consequence of hydrolysis by DG lipase. In addition to these changes in second messengers, a rapid increase in incorporating of radiolabeled tracer into cellular cholesterol esters is observed. Stimulated cholesterol ester labeling is inhibited by preincubation with either the DG lipase inhibitor RHC 80267 or the acyl coenzyme A:cholesterol acyltransferase inhibitor Sandoz 58035. Cells prelabeled with [ 3 H]arachidonate show a sustained increase in labeling of cholesterol esters following exposure to angiogenin. In contrast, cells prelabeled with [ 3 H]oleate show only a transient elevation that returns to the basal level by 5 min. This suggests initial cholesterol esterification by oleate followed by arachidonate that is released by stimulation of the PLC/DG lipase pathway

  13. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  14. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

    Directory of Open Access Journals (Sweden)

    Fabian Runkel

    Full Text Available BACKGROUND: Inositol 1,4,5trisphosphate (IP(3 and diacylglycerol (DAG are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia, whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab that resulted from the insertion of an intracisternal A particle (IAP into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab alleles are phenotypically normal. However, the presence of one Plcd3(mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9olt1Pas and the Plcd3(mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.

  15. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  16. [Inhibition of phospholipase A2 of peritoneal macrophages in rats by 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine].

    Science.gov (United States)

    Boucrot, P; Khettab, E N; Petit, J Y; Welin, L

    1993-01-01

    The 1-O-stearoyl-2-O-[3H] arachidonyl-sn-glycero-3-phosphocholine, introduced in the culture medium, was taken up by the peritoneal macrophages activated by the ionophore A 23187. After intracellular phospholipase A2 activity, the [3H] arachidonic acid was found in cells and in extracellular fluids. It also reached the eicosanoid synthesis. When it was introduced in the culture medium with the tritiated phospholipid, the 1, 2 di-O-hexadecyl-rac-glycero-3-phosphocholine, which has a non hydrolysable alkylated structure in the 2 position of the glycerol, inhibited the intracellular phospholipase A2, then contributed to lower the eicosanoid synthesis.

  17. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  18. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells

    International Nuclear Information System (INIS)

    Yoon, Mee-Sup; Cho, Chan Ho; Lee, Ki Sung; Han, Joong-Soo

    2006-01-01

    We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth

  19. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  20. Characterization and partial purification of phospholipase D from human placenta

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1995-01-01

    We report the existence in the human placenta of a phosphatidylcholine- hydrolyzing phospholipase D (PLD) activity, which has been characterized and partially purified. Triton X-100 effectively solubilized PLD from the particulate fraction of human placenta in a dose-dependent manner. However......, Triton X-100 caused decreasing enzyme activities. Maximum transphosphatidylation was obtained with 2% ethanol. The enzyme was found to have a pH optimum of 7.0-7.5 and an apparent K(m) of 33 mol% (or 0.8 mM). Ca and Mg was not required for the enzyme activity. Addition of phosphatidyl-4,5-bisphosphate...

  1. Phospholipase A2 from Bothrops alternatus (víbora de la cruz) venom. Purification and some characteristic properties.

    Science.gov (United States)

    Nisenbom, H E; Seki, C; Vidal, J C

    1986-01-01

    One single protein species with phospholipase activity has been isolated from Bothrops alternatus venom by a procedure involving gel-filtration on Sephadex G-50 (Step 1), chromatography on SP-Sephadex C-50 (Step 2) and gel-filtration on Sephadex G-75 (Step 3). The purified sample behaved as a homogeneous, monodisperse protein with a molecular weight of 15,000 and isoelectric point of 5.04. The yield in enzyme activity was 48% of the starting material and the apparent purification was 51-fold. When assayed on 1,2-diheptanoyl- or 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine, fatty acids and lysolecithins were the only reaction products, in accordance with the predicted stoichiometry. Studies on positional specificity suggested that the enzyme is a phospholipase A2. The enzyme requires Ca2+ ions for activity and exhibited stereochemical specificity, since the enantiomeric 2, 3-diheptanoyl-sn-glycero-1-phosphorylcholine was not hydrolyzed. Under the experimental conditions employed, reaction products representative of either phospholipase B or C activities could not be detected. After Step 1, the phospholipase activity recovered was higher than the total activity in the crude venom sample, which is explained by the separation of an inhibitor during enzyme purification. The inhibitor was responsible for the initial lag period that characterized the kinetics of the enzyme reaction with crude venom acting on aggregated substrates (lipoprotein, vesicles or micelles), while the rate of hydrolysis of monomeric lecithins was not affected.

  2. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    International Nuclear Information System (INIS)

    Menschikowski, Mario; Platzbecker, Uwe; Hagelgans, Albert; Vogel, Margot; Thiede, Christian; Schönefeldt, Claudia; Lehnert, Renate; Eisenhofer, Graeme; Siegert, Gabriele

    2012-01-01

    The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis

  3. Phospholipase C δ4 regulates cold sensitivity in mice.

    Science.gov (United States)

    Yudin, Yevgen; Lutz, Brianna; Tao, Yuan-Xiang; Rohacs, Tibor

    2016-07-01

    The cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels are thought to be regulated by phospholipase C (PLC), but neither the specific PLC isoform nor the in vivo relevance of this regulation has been established. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 channels in vivo. We show that in small PLCδ4(-/-) TRPM8-positive dorsal root ganglion neurons cold, menthol and WS-12, a selective TRPM8 agonist, evoked significantly larger currents than in wild-type neurons, and action potential frequencies induced by menthol or by current injections were also higher in PLCδ4(-/-) neurons. PLCδ4(-/-) mice showed increased behavioural responses to evaporative cooling, and this effect was inhibited by a TRPM8 antagonist; behavioural responses to heat and mechanical stimuli were not altered. We provide evidence for the involvement of a specific PLC isoform in the regulation of cold sensitivity in mice by regulating TRPM8 activity. The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental low temperatures. Ca(2+) -induced activation of phospholipase C (PLC) has been implied in the regulation of TRPM8 channels during menthol- and cold-induced desensitization in vitro. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 in sensory dorsal root ganglion (DRG) neurons. We identified two TRPM8-positive neuronal subpopulations, based on their cell body size. Most TRPM8-positive small neurons also responded to capsaicin, and had significantly larger menthol-induced inward current densities than medium-large cells, most of which did not respond to capsaicin. Small, but not medium-large, PLCδ4(-/-) neurons showed significantly larger currents induced by cold, menthol or WS-12, a specific TRPM8 agonist, compared to wild-type (WT) neurons, but TRPM8 protein levels were not different between the two groups. In current-clamp experiments small neurons

  4. Human eosinophils express, relative to other circulating leukocytes, large amounts of secretory 14-kD phospholipase A2

    NARCIS (Netherlands)

    Blom, M.; Tool, A. T.; Wever, P. C.; Wolbink, G. J.; Brouwer, M. C. [=Maria Clara; Calafat, J.; Egesten, A.; Knol, E. F.; Hack, C. E.; Roos, D.; Verhoeven, A. J.

    1998-01-01

    Human eosinophils perform several functions dependent on phospholipase A2 (PLA2) activity, most notably the synthesis of platelet-activating factor (PAF) and leukotriene C4 (LTC4). Several forms of PLA2 have been identified in mammalian cells. In the present study, the 14-kD, secretory form of PLA2

  5. Study of phospholipases D and C in maturing and germinating seeds of Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Valentová, O.; Martinec, Jan; Feltl, Tomáš; Nokhrina, K.

    2000-01-01

    Roč. 28, - (2000), s. 817-818 ISSN 0300-5127 R&D Projects: GA ČR GA522/00/1332 Institutional research plan: CEZ:AV0Z5038910 Keywords : phospholipase C * phospholipase D Subject RIV: EF - Botanics Impact factor: 0.975, year: 2000

  6. Inhibitory Effect of Chinese Propolis on Phosphatidylcholine-Specific Phospholipase C Activity in Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2011-01-01

    Full Text Available To understand the mechanisms underlying the anti-inflammatory action of Chinese propolis, we investigated its effect on the activity of phosphatidylcholine-specific phospholipase C (PC-PLC that plays critical roles in control of vascular endothelial cell (VEC function and inflammatory responses. Furthermore, p53 and reactive oxygen species (ROS levels and mitochondrial membrane potential (Δψm were investigated. Our data indicated that treatment of Chinese propolis 6.25 and 12.5 μg/ml for 12 hours increased VEC viability obviously. Exposure to Chinese propolis 6.25, 12.5, and 25 μg/ml for 6 and 12 hours significantly decreased PC-PLC activity and p53 level, and ROS levels were depressed by Chinese propolis 12.5 μg/ml and 25 μg/ml dramatically. The Δψm of VECs was not affected by Chinese propolis at low concentration but disrupted by the propolis at 25 μg/ml significantly, which indicated that Chinese propolis depressed PC-PLC activity and the levels of p53 and ROS in VECs but disrupted Δψm at a high concentration.

  7. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).

    Science.gov (United States)

    Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J

    2009-09-01

    Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold

  8. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  9. Kinetic characterization of Escherichia coli outer membrane phospholipase A using mixed detergent-lipid micelles.

    Science.gov (United States)

    Horrevoets, A J; Hackeng, T M; Verheij, H M; Dijkman, R; de Haas, G H

    1989-02-07

    The substrate specificity of Escherichia coli outer membrane phospholipase A was analyzed in mixed micelles of lipid with deoxycholate or Triton X-100. Diglycerides, monoglycerides, and Tweens 40 and 85 in Triton X-100 are hydrolyzed at rates comparable to those of phospholipids and lysophospholipids. p-Nitrophenyl esters of fatty acids with different chain lengths and triglycerides are not hydrolyzed. The minimal substrate characteristics consist of a long acyl chain esterified to a more or less hydrophilic headgroup as is the case for the substrate monopalmitoylglycol. Binding occurs via the hydrocarbon chain of the substrate; diacyl compounds are bound three to five times better than monoacyl compounds. When acting on lecithins, phospholipase A1 activity is six times higher than phospholipase A2 activity or 1-acyl lysophospholipase activity. Activity on the 2-acyl lyso compound is about two times less than that on the 1-acyl lysophospholipid. The enzyme therefore has a clear preference for the primary ester bond of phospholipids. In contrast to phospholipase A1 activity, phospholipase A2 activity is stereospecific. Only the L isomer of a lecithin analogue in which the primary acyl chain was replaced by an alkyl ether group is hydrolyzed. The D isomer of this analogue is a competitive inhibitor, bound with the same affinity as the L isomer. On these ether analogues the enzyme shows the same preference for the primary acyl chain as with the natural diester phospholipids. Despite its broad specificity, the enzyme will initially act as a phospholipase A1 in the E. coli envelope where it is embedded in phospholipids.

  10. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases.

    Science.gov (United States)

    Boynton, Tye O'Hara; Shimkets, Lawrence Joseph

    2015-09-15

    Myxococcus xanthus development requires CsgA, a member of the short-chain alcohol dehydrogenase (SCAD) family of proteins. We show that CsgA and SocA, a protein that can replace CsgA function in vivo, oxidize the 2'-OH glycerol moiety on cardiolipin and phosphatidylglycerol to produce diacylglycerol (DAG), dihydroxyacetone, and orthophosphate. A lipid extract enriched in DAGs from wild-type cells initiates development and lipid body production in a csgA mutant to bypass the mutational block. This novel phospholipase C-like reaction is widespread. SCADs that prevent neurodegenerative disorders, such as Drosophila Sniffer and human HSD10, oxidize cardiolipin with similar kinetic parameters. HSD10 exhibits a strong preference for cardiolipin with oxidized fatty acids. This activity is inhibited in the presence of the amyloid β peptide. Three HSD10 variants associated with neurodegenerative disorders are inactive with cardiolipin. We suggest that HSD10 protects humans from reactive oxygen species by removing damaged cardiolipin before it induces apoptosis. © 2015 Boynton and Shimkets; Published by Cold Spring Harbor Laboratory Press.

  11. A rapid phospholipase A2 bioassay using 14C-oleate-labelled E. coli bacterias.

    Science.gov (United States)

    Meyer, T; von Wichert, P; Weins, D

    1989-02-01

    Two methods of phospholipase A2 determination using 14C-labelled E. coli bacterias as substrate were compared. One method works with a filter membrane for separation of cleaved 14C-oleate from remaining phospholipids, the other uses the well-known thin-layer chromatography for lipid analysis. Some features of human serum phospholipase A2 regarding pH and Ca2+ dependency were investigated. Possible sources of errors were discussed. It was shown that either method can differentiate between normal and pathologically elevated phospholipase A2 levels, but that the filter method is superior in terms of sensitivity and workload.

  12. Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom

    International Nuclear Information System (INIS)

    Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.

    2012-01-01

    Two myotoxic and noncatalytic Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A 2 (braziliantoxin-III) from B. brazili were crystallized. X-ray diffraction data sets were collected and molecular-replacement solutions were obtained. Two myotoxic and noncatalytic Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A 2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3 1 21 (braziliantoxin-II), P6 5 22 (braziliantoxin-III) and P2 1 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A 2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A 2

  13. Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells.

    Directory of Open Access Journals (Sweden)

    Lorena Brito de Souza

    Full Text Available Phospholipase D (PLD has been implicated in many cellular functions, such as vesicle trafficking, exocytosis, differentiation, and proliferation. The aim of this study was to characterize the role of PLD in HSY cells, a human cell line originating from the intercalated duct of the parotid gland. As the function and intracellular localization of PLD varies according to cell type, initially, the intracellular localization of PLD1 and PLD2 was determined. By immunofluorescence, PLD1 and PLD2 both showed a punctate cytoplasmic distribution with extensive co-localization with TGN-46. PLD1 was also found in the nucleus, while PLD2 was associated with the plasma membrane. Treatment of cells with the primary alcohol 1-butanol inhibits the hydrolysis of phosphatidylcoline by PLD thereby suppressing phosphatidic acid (PA production. In untreated HSY cells, there was only a slight co-localization of PLD with the clathrin coated vesicles. When HSY cells were incubated with 1-butanol the total number of clathrin coated vesicles increased, especially in the juxtanuclear region and the co-localization of PLD with the clathrin coated vesicles was augmented. Transmission electron microscopy confirmed that the number of Golgi-associated coated vesicles was greater. Treatment with 1-butanol also affected the Golgi apparatus, increasing the volume of the Golgi saccules. The decrease in PA levels after treatment with 1-butanol likewise resulted in an accumulation of enlarged lysosomes in the perinuclear region. Therefore, in HSY cells PLD appears to be involved in the formation of Golgi associated clathrin coated vesicles as well as in the structural maintenance of the Golgi apparatus.

  14. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation

    Science.gov (United States)

    Kirkby, Nicholas S.; Reed, Daniel M.; Edin, Matthew L.; Rauzi, Francesca; Mataragka, Stefania; Vojnovic, Ivana; Bishop-Bailey, David; Milne, Ginger L.; Longhurst, Hilary; Zeldin, Darryl C.; Mitchell, Jane A.; Warner, Timothy D.

    2016-01-01

    Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.—Kirkby, N. S., Reed, D. M., Edin, M. L., Rauzi, F., Mataragka, S., Vojnovic, I., Bishop-Bailey, D., Milne, G. L., Longhurst, H., Zeldin, D. C., Mitchell, J. A., Warner, T. D. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation. PMID:26183771

  15. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots.

    Science.gov (United States)

    Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan

    2010-10-01

    The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.

  16. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells.

    Science.gov (United States)

    Knoepp, Stewart M; Chahal, Manpreet S; Xie, Yuhuan; Zhang, Zhihong; Brauner, Daniel J; Hallman, Mark A; Robinson, Stephanie A; Han, Shujie; Imai, Masaki; Tomlinson, Stephen; Meier, Kathryn E

    2008-09-01

    The phosphatidylcholine-using phospholipase D (PLD) isoform PLD2 is widely expressed in mammalian cells and is activated in response to a variety of promitogenic agonists. In this study, active and inactive hemagglutinin-tagged human PLD2 (HA-PLD2) constructs were stably expressed in an EL4 cell line lacking detectable endogenous PLD1 or PLD2. The overall goal of the study was to examine the roles of PLD2 in cellular signal transduction and cell phenotype. HA-PLD2 confers PLD activity that is activated by phorbol ester, ionomycin, and okadaic acid. Proliferation and Erk activation are unchanged in cells transfected with active PLD2; proliferation rate is decreased in cells expressing inactive PLD2. Basal tyrosine phosphorylation of focal adhesion kinase (FAK) is increased in cells expressing active PLD2, as is phosphorylation of Akt; inactive PLD2 has no effect. Expression of active PLD2 is associated with increased spreading and elongation of cells on tissue culture plastic, whereas inactive PLD2 inhibits cell spreading. Inactive PLD2 also inhibits cell adhesion, migration, and serum-induced invasion. Cells expressing active PLD2 form metastases in syngeneic mice, as do the parental cells; cells expressing inactive PLD2 form fewer metastases than parental cells. In summary, active PLD2 enhances FAK phosphorylation, Akt activation, and cell invasion in EL4 lymphoma cells, whereas inactive PLD2 exerts inhibitory effects on adhesion, migration, invasion, and tumor formation. Overall, expression of active PLD2 enhances processes favorable to lymphoma cell metastasis, whereas expression of inactive PLD2 inhibits metastasis.

  17. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  18. Plasma phospholipase, γ-CEHC and antioxidant capacity in fibromyalgia.

    Science.gov (United States)

    Fais, Antonella; Cacace, Enrico; Atzori, Luigi; Era, Benedetta; Ruggiero, Valeria

    2017-05-01

    Recent studies have suggested a possible role of high levels of plasma lysophosphocholines (lysoPCs) in fibromyalgia syndrome (FMS). The aim of this study was to evaluate the content of plasma phospholipases (e.g., Platelet Activating Factor Acetyl Hydrolase [PAF-AH], secretory Phospholipase A 2 [sPLA 2 ], Total Antioxidant Capacity [TAOC] and 2,7,8-trimethyl-2-(2-carboxyethyl)-6-hydroxy chroman [γ-CEHC]) in FMS patients and their association with clinical status and quality of life. Thirty-six females meeting the 2011 American College of Rheumatology criteria for the classification of FMS and thirty-four healthy females were enrolled for the study. Plasma enzyme levels were quantified using commercial enzyme-linked-immunosorbent-assay (ELISA). In order to assess the disease severity and the functional status of patients, the Fibromyalgia Impact Questionnarie (FIQ) was used. Higher levels of sPLA 2 and lower PAF-AH and γ-CEHC were observed in the plasma of FMS patients compared to the controls. A decrease in PAF-AH and TAOC levels were found in severe FMS (S-FMS) compared to mild/slight (MS-FMS) forms. The results of the study indicate a possible involvement of phospholipases and γ-CEHC in fibromyalgia syndrome. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  19. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes

    International Nuclear Information System (INIS)

    Pai, J.K.; Siegel, M.I.; Egan, R.W.; Billah, M.M.

    1988-01-01

    There exists circumstantial evidence for activation of phospholipase D (PLD) in intact cells. However, because of the complexity of phospholipid remodeling processes, it is essential to distinguish PLD clearly from other phospholipases and phospholipid remodeling enzymes. Therefore, to establish unequivocally PLD activity in dimethyl sulfoxide-differentiated HL-60 granulocytes, to demonstrate the relative contribution of PLD to phospholipid turnover, and to validate the hypothesis that the formation of phosphatidylethanol is an expression of PLD-catalyzed transphosphatidylation, we have developed methodologies to label HL-60 granulocytes in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P without labeling cellular ATP. These methodologies involve (a) synthesis of alkyl-lysoPC containing 32P by a combination of enzymatic and chemical procedures and (b) incubation of HL-60 granulocytes with this alkyl-[32P] lysoPC which enters the cell and becomes acylated into membrane-associated alkyl-[32P]PC. Upon stimulation of these 32P-labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), alkyl-[32P]phosphatidic acid (alkyl-[32P]PA) is formed rapidly. Because, under these conditions, cellular ATP has not been labeled with 32P, alkyl-[32P]PA must be formed via PLD-catalyzed hydrolysis of alkyl-[32P]PC at the terminal phosphodiester bond. This result conclusively demonstrates fMLP-induced activation of PLD in HL-60 granulocytes. These 32P-labeled HL-60 granulocytes have also been stimulated in the presence of ethanol to produce alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). Formation of alkyl-[32P]PEt parallels that of alkyl-[32P]PA with respect to time course, fMLP concentration, inhibition by a specific fMLP antagonist (t-butoxycarbonyl-Met-Leu-Phe), and Ca2+ concentration

  20. Secretory Phospholipase A(2) Activity toward Diverse Substrates

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Linderoth, Lars; Subramanian, Arun Kumar

    2011-01-01

    We have studied secretory phospholipase A(2)-IIA (sPLA(2)) activity toward different phospholipid analogues by performing biophysical 1 characterizations and molecular dynamics simulations. The phospholipids were natural substrates, triple alkyl phospholipids, a prodrug anticancer etherlipid, and...

  1. Chemoenzymatic synthesis of fluorogenic phospholipids and evaluation in assays of phospholipases A, C and D

    DEFF Research Database (Denmark)

    Piel, Mathilde S.; Peters, Günther H.J.; Brask, Jesper

    2017-01-01

    Phospholipases are ubiquitous in nature and the target of significant research aiming at both their physiological roles and technical applications in e.g. the food industry. In the search for sensitive and selective phospholipase assays, we have focused on synthetic FRET (Forster resonance energy...... lyso-(dansyl-FA)-GPE-dabcyl (6) and (dansyl-FA)2-GPE-dabcyl (7) were synthesized by a chemoenzymatic strategy, in which preparation of (6) further included a novel selective enzymatic esterification step. As proof of concept, activity of a handful of phospholipases, one from each of the PLA1, PLA2, PLC...

  2. SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans

    Science.gov (United States)

    Chayakulkeeree, Methee; Johnston, Simon Andrew; Oei, Johanes Bijosono; Lev, Sophie; Williamson, Peter Richard; Wilson, Christabel Frewen; Zuo, Xiaoming; Leal, Ana Lusia; Vainstein, Marilene Henning; Meyer, Wieland; Sorrell, Tania Christine; May, Robin Charles; Djordjevic, Julianne Teresa

    2011-01-01

    Summary Secreted phospholipase B1 (CnPlb1) is essential for dissemination of Cryptococcus neoformans to the central nervous system (CNS) yet essential components of its secretion machinery remain to be elucidated. Using gene deletion analysis we demonstrate that CnPlb1 secretion is dependent on the CnSEC14 product, CnSec14-1p. CnSec14-1p is a homologue of the phosphatidylinositol transfer protein (PITP) ScSec14p, which is essential for secretion and viability in Saccharomyces cerevisiae. In contrast to CnPlb1, neither laccase 1 (Lac1)-induced melanization within the cell wall nor capsule induction were negatively impacted in CnSEC14-1 deletion mutants (CnΔsec14-1 and CnΔsec14-1CnΔsfh5). Similar to the CnPLB1 deletion mutant (CnΔplb1), CnΔsec14-1 was hypo-virulent in mice and did not disseminate to the CNS by day 14 post infection. Furthermore, macrophage expulsion of live CnΔsec14-1 and CnΔplb1 (vomocytosis) was reduced. Individual deletion of CnSEC14-2, a closely-related CnSEC14-1 homologue, and CnSFH5, a distantly-related SEC fourteen-like homologue, did not abrogate CnPlb1 secretion or virulence. However, reconstitution of CnΔsec14-1 with CnSEC14-1 or CnSEC14-2 restored both phenotypes, consistent with functional genetic redundancy. We conclude that CnPlb1 secretion is SEC14-dependent and that C. neoformans preferentially exports virulence determinants to the cell periphery via distinct pathways. We also demonstrate that CnPlb1 secretion is essential for vomocytosis. PMID:21453402

  3. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  4. Activities of Native and Tyrosine-69 Mutant Phospholipases A2 on Phospholipid Analogues. A Reevaluation of the Minimal Substrate Requirements

    OpenAIRE

    Kuipers, Oscar P.; Dekker, Nicolaas; Verheij, Hubertus M.; Haas, Gerard H. de

    1990-01-01

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69. Modifications in the phospholipids included introduction of a sulfur at the phosphorus (thionophospholipids), removal of the negative charge at phosphorus (phosphatidic acid dimethyl ester), and reductio...

  5. Transgenic labeling of higher order neuronal circuits linked to phospholipase C-β2-expressing taste bud cells in medaka fish.

    Science.gov (United States)

    Ieki, Takashi; Okada, Shinji; Aihara, Yoshiko; Ohmoto, Makoto; Abe, Keiko; Yasuoka, Akihito; Misaka, Takumi

    2013-06-01

    The sense of taste plays a pivotal role in the food-selecting behaviors of vertebrates. We have shown that the fish ortholog of the phospholipase C gene (plc-β2) is expressed in a subpopulation of taste bud cells that transmit taste stimuli to the central nervous system to evoke favorable and aversive behaviors. We generated transgenic medaka expressing wheat germ agglutinin (WGA) under the control of a regulatory region of the medaka plc-β2 gene to analyze the neuronal circuit connected to these sensory cells. Immunohistochemical analysis of the transgenic fish 12 days post fertilization revealed that the WGA protein was transferred to cranial sensory ganglia and several nuclei in the hindbrain. WGA signals were also detected in the secondary gustatory nucleus in the hindbrain of 3-month-old transgenic fish. WGA signals were observed in several diencephalic and telencephalic regions in 9-month-old transgenic fish. The age-dependent increase in the labeled brain regions strongly suggests that labeling occurred at taste bud cells and progressively extended to cranial nerves and neurons in the central nervous system. These data are the first to demonstrate the tracing of higher order gustatory neuronal circuitry that is associated with a specific subpopulation of taste bud cells. These results provide insight into the basic neuronal architecture of gustatory information processing that is common among vertebrates. Copyright © 2012 Wiley Periodicals, Inc.

  6. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling

    Czech Academy of Sciences Publication Activity Database

    Pokotylo, Igor; Pejchar, Přemysl; Potocký, Martin; Kocourková, Daniela; Krčková, Zuzana; Ruelland, E.; Kravets, V.; Martinec, Jan

    2013-01-01

    Roč. 52, č. 1 (2013), s. 62-79 ISSN 0163-7827 R&D Projects: GA ČR(CZ) GAP501/12/1942; GA ČR(CZ) GPP501/12/P950; GA MŠk ME09108; GA AV ČR IAA601110916 Institutional research plan: CEZ:AV0Z50380511 Keywords : Plant nonspecific phospholipase C * Phosphatidylcholine-specific phospholipase C * Diacylglycerol Subject RIV: ED - Physiology Impact factor: 12.963, year: 2013

  7. Darapladib, a lipoprotein-associated phospholipase A2 inhibitor, in diabetic macular edema

    DEFF Research Database (Denmark)

    Staurenghi, Giovanni; Ye, Li; Magee, Mindy H

    2015-01-01

    PURPOSE: To investigate the potential of lipoprotein-associated phospholipase A2 inhibition as a novel mechanism to reduce edema and improve vision in center-involved diabetic macular edema (DME). DESIGN: Prospective, multicenter, randomized, double-masked, placebo-controlled phase IIa study...... (AEs) and nonocular AEs were similar between treatment groups. CONCLUSIONS: Once-daily oral darapladib administered for 3 months demonstrated modest improvements in vision and macular edema that warrant additional investigation of this novel lipoprotein-associated phospholipase A2 inhibitory mechanism...

  8. Phospholipase A2-treated human high-density lipoprotein and cholesterol movements: exchange processes and lecithin: cholesterol acyltransferase reactivity.

    Science.gov (United States)

    Chollet, F; Perret, B P; Chap, H; Douste-Blazy, L

    1986-02-12

    Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase

  9. Plasma Lipoprotein-associated Phospholipase A(2) Is Inversely Correlated with Proprotein Convertase Subtilisin-kexin Type 9

    NARCIS (Netherlands)

    Constantinides, Alexander; Kappelle, Paul J.W.H.; Lambert, Gilles; Dullaart, Robin P. F.

    Background and Aims. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a proatherogenic phospholipase A(2), which is predominantly complexed to low-density lipoprotein (LDL) particles. Proprotein convertase subtilisin-kexin type 9 (PCSK9) provides a key step in LDL metabolism by stimulating

  10. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C

  11. An alternative method to isolate protease and phospholipase A2 toxins from snake venoms based on partitioning of aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    GN Gómez

    2012-01-01

    Full Text Available Snake venoms are rich sources of active proteins that have been employed in the diagnosis and treatment of health disorders and antivenom therapy. Developing countries demand fast economical downstream processes for the purification of this biomolecule type without requiring sophisticated equipment. We developed an alternative, simple and easy to scale-up method, able to purify simultaneously protease and phospholipase A2 toxins from Bothrops alternatus venom. It comprises a multiple-step partition procedure with polyethylene-glycol/phosphate aqueous two-phase systems followed by a gel filtration chromatographic step. Two single bands in SDS-polyacrylamide gel electrophoresis and increased proteolytic and phospholipase A2 specific activities evidence the homogeneity of the isolated proteins.

  12. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    Science.gov (United States)

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  13. Phospholipase A₂: the key to reversing long-term memory impairment in a gastropod model of aging.

    Science.gov (United States)

    Watson, Shawn N; Wright, Natasha; Hermann, Petra M; Wildering, Willem C

    2013-02-01

    Memory failure associated with changes in neuronal circuit functions rather than cell death is a common feature of normal aging in diverse animal species. The (neuro)biological foundations of this phenomenon are not well understood although oxidative stress, particularly in the guise of lipid peroxidation, is suspected to play a key role. Using an invertebrate model system of age-associated memory impairment that supports direct correlation between behavioral deficits and changes in the underlying neural substrate, we show that inhibition of phospholipase A(2) (PLA(2)) abolishes both long-term memory (LTM) and neural defects observed in senescent subjects and subjects exposed to experimental oxidative stress. Using a combination of behavioral assessments and electrophysiological techniques, we provide evidence for a close link between lipid peroxidation, provocation of phospholipase A(2)-dependent free fatty acid release, decline of neuronal excitability, and age-related long-term memory impairments. This supports the view that these processes suspend rather than irreversibly extinguish the aging nervous system's intrinsic capacity for plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Secretory Phospholipase A(2)-IIA and Cardiovascular Disease

    NARCIS (Netherlands)

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; Van Iperen, Erik P. A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J. W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M. A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, Andre G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N. M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C. M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A. A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Pare, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    Objectives This study sought to investigate the role of secretory phospholipase A(2) (sPLA(2))-IIA in cardiovascular disease. Background Higher circulating levels of sPLA(2)-IIA mass or sPLA(2) enzyme activity have been associated with increased risk of cardiovascular events. However, it is not

  15. Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy

    NARCIS (Netherlands)

    Dahnrich, C.; Komorowski, L.; Probst, C.; Seitz-Polski, B.; Esnault, V.; Wetzels, J.F.M.; Hofstra, J.M.; Hoxha, E.; Stahl, R.A.K.; Lambeau, G.; Stocker, W.; Schlumberger, W.

    2013-01-01

    BACKGROUND: Autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) are specific markers for primary membranous nephropathy (pMN) and anti-PLA2R1 serum levels may be useful to monitor disease activity. So far, a recombinant cell-based indirect immunofluorescence assay (RC-IFA) using

  16. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope.

    Directory of Open Access Journals (Sweden)

    Vanessa Danielle Muller

    Full Text Available The Flaviviridae family includes several virus pathogens associated with human diseases worldwide. Within this family, Dengue virus is the most serious threat to public health, especially in tropical and sub-tropical regions of the world. Currently, there are no vaccines or specific antiviral drugs against Dengue virus or against most of the viruses of this family. Therefore, the development of vaccines and the discovery of therapeutic compounds against the medically most important flaviviruses remain a global public health priority. We previously showed that phospholipase A2 isolated from the venom of Crotalus durissus terrificus was able to inhibit Dengue virus and Yellow fever virus infection in Vero cells. Here, we present evidence that phospholipase A2 has a direct effect on Dengue virus particles, inducing a partial exposure of genomic RNA, which strongly suggests inhibition via the cleavage of glycerophospholipids at the virus lipid bilayer envelope. This cleavage might induce a disruption of the lipid bilayer that causes a destabilization of the E proteins on the virus surface, resulting in inactivation. We show by computational analysis that phospholipase A2 might gain access to the Dengue virus lipid bilayer through the pores found on each of the twenty 3-fold vertices of the E protein shell on the virus surface. In addition, phospholipase A2 is able to inactivate other enveloped viruses, highlighting its potential as a natural product lead for developing broad-spectrum antiviral drugs.

  17. Cyclopentanoid analogs of phosphatidylcholine: susceptibility to phospholipase A2.

    Science.gov (United States)

    Lister, M D; Hancock, A J

    1988-10-01

    Six isomers of dipalmitoylcyclopentanetriol phosphocholine (cyclopentano-lecithin) were tested as potential substrates for phospholipase A2. Since each of these analogs possesses a configuration that mimics a narrow range of conformations of a glycerophospholipid molecule, the analogs were used to assess the enzyme's conformational requirements. Studies showed that all of the analogs containing the phosphocholine at the C-1 (or C-3) position could be hydrolyzed, while only one of the three analogs that contains the polar head group at the C-2 position was susceptible. Kinetic studies, however, revealed that only the all-trans-(1,3/2-1P)-cyclopentano-lecithin gave initial rates of hydrolysis that were measurable by pH-stat. Acyl group specificity of the enzyme towards the all-trans isomer was determined with an analog was acyl groups were distinguishable. The synthesis of this mixed-acid-cyclopentano-PC is described herein. When this analog was enzymatically assayed, results unequivocally showed the enzyme to be specific for C-2 acyl hydrolysis. This specificity, and data showing that the all-trans analog is stereospecifically hydrolyzed, indicate that it is acted on in an analogous manner to dipalmitoylphosphatidylcholine. These studies indicate that although the configuration of the analog is not necessarily a prerequisite for hydrolysis, there does appear to be an optimal spatial orientation for enzymatic activity. The analogy between the susceptibilities of all-trans-(1,3/2-1P)-cyclopentano-lecithin and glycero-lecithin suggests that the conformation of the glycero-lecithin during phospholipase A2-mediated hydrolysis may be best simulated by the all-trans orientation of C-O bonds in the artificial substrate.

  18. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Science.gov (United States)

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  19. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  20. A new inhibitor of synovial phospholipase A2 from fermentations of Penicillium sp. 62-92.

    Science.gov (United States)

    Witter, L; Anke, T; Sterner, O

    1998-01-01

    Penidiamide, a new tripetide containing dehydrotryptamine, glycine and anthranilic acid linked together by two amide bonds, and oxindole were isolated from submerged cultures of Penicillium sp. 62-92. Both compounds preferentially inhibited human synovial phospholipase A2, penidiamide with an IC50 of 30 microM and oxindole of 380 microM. With the exception of U 937 cells (leukemia, human), no cytotoxic activities were detected against HL-60- (leukemia, human), HeLa S3- (epitheloid carcinoma, human), BHK 21- (kidney fibroblasts, hamster), and L1210-cells (leukemia, mouse). No antimicrobial activity was detected for oxindole, and only weak antibacterial activity for penidiamide. The structure of penidiamide was elucidated by spectroscopic methods.

  1. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  2. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.

    Directory of Open Access Journals (Sweden)

    Amine Bazaa

    Full Text Available Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1 in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.

  3. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role......Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding...

  4. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma

    Directory of Open Access Journals (Sweden)

    V.Vasco

    2017-06-01

    Full Text Available Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI pathway and related phospholipase C (PLC enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES and synovial sarcoma (SS. Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts

  5. Half-of-the-sites reactivity of outer-membrane phospholipase A against an active-site-directed inhibitor.

    Science.gov (United States)

    Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N

    1999-03-01

    The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.

  6. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    Science.gov (United States)

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  7. Calcium-independent phospholipase A2 regulates retinal pigment epithelium proliferation and may be important in the pathogenesis of retinal diseases

    DEFF Research Database (Denmark)

    Kolko, M; Kiilgaard, J F; Wang, J

    2009-01-01

    Calcium-independent phospholipase A2, group VIA (iPLA2-VIA) is involved in cell proliferation. This study aimed to evaluate the role of iPLA2-VIA in retinal pigment epithelium (RPE) cell proliferation and in retinal diseases involving RPE proliferation. A human RPE cell line (ARPE-19) was used...... the expression of iPLA2-VIA in proliferative vitreoretinopathy (PVR). PVR membranes revealed nuclear expression of iPLA2-VIA in the RPE cells which had migrated and participated in the formation of the membranes. Overall, the present results point to an important role of iPLA2-VIA in the regulation of RPE...

  8. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C.

    Science.gov (United States)

    Tang, Y; Li, G D

    2004-12-01

    Overwhelming evidence indicates that endothelial cell dysfunction in diabetes is characterised by diminished endothelium-dependent relaxation, but the matter of the underlying molecular mechanism remains unclear. As nitric oxide (NO) production from the endothelium is the major player in endothelium-mediated vascular relaxation, we investigated the effects of high glucose on NO production, and the possible alterations of signalling pathways implicated in this scenario. NO production and intracellular Ca(2+) levels ([Ca(2+)](i)) were assessed using the fluorescent probes 4,5-diaminofluorescein diacetate and fura-2 respectively. Exposure of cultured bovine aortic endothelial cells to high glucose for 5 or 10 days significantly reduced NO production induced by bradykinin (but not by Ca(2+) ionophore) in a time- and dose-dependent manner. This was probably due to an attenuation in bradykinin-induced elevations of [Ca(2+)](i) under these conditions, since a close correlation between [Ca(2+)](i) increases and NO generation was observed in intact bovine aortic endothelial cells. Both bradykinin-promoted intracellular Ca(2+) mobilisation and extracellular Ca(2+) entry were affected. Moreover, bradykinin-induced formation of Ins(1,4,5)P(3), a phospholipase C product leading to increases in [Ca(2+)](i), was also inhibited following high glucose culture. This abnormality was not attributable to a decrease in inositol phospholipids, but possibly to a reduction in the number of bradykinin receptors. The alterations in NO production, the increases in [Ca(2+)](i), and the bradykinin receptor number due to high glucose could be largely reversed by protein kinase C inhibitors and D: -alpha-tocopherol (antioxidant). Chronic exposure to high glucose reduces NO generation in endothelial cells, probably by impairing phospholipase-C-mediated Ca(2+) signalling due to excess protein kinase C activation. This defect in NO release may contribute to the diminished endothelium

  9. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Hanson, D.; DeLeo, V.

    1990-01-01

    Long wave ultraviolet radiation (UVA) has been shown to play an important role in the overall response of skin to solar radiation, including sunburn, tanning, premature aging, and non-melanoma skin cancer. UVA induction of inflammation in human skin is thought to be mediated by membrane lipid derived products. In order to investigate the mechanism of this response we examined the effect of UVA on phospholipid metabolism of human epidermal keratinocytes in culture. Keratinocytes were grown in serum free low calcium medium. The cells were prelabeled with [3H] arachidonic acid or [3H] choline and irradiated with UVA (Honle 2002-Hg vapor lamp). Identification and quantitation of specific membrane phospholipid-derived components was achieved using high-performance liquid chromatography, paper chromatography, and radioimmunoassay. UVA resulted in a linear dose dependent release of [3H] arachidonic acid into medium between 1 and 20 joule/cm2. This response was inhibited in an oxygen-reduced environment. The radiolabel released was predominantly free arachidonate and cyclooxygenase metabolites. Cyclooxygenase metabolites prostaglandin E2 and prostacyclin derivative, 6-keto-prostaglandin F1a, were stimulated following UVA irradiation, but the lipoxygenase metabolite, leukotriene B was not detected. Maximal release was measured immediately after irradiation and changed little over 24 h post-irradiation. UVA stimulated an increase of [3H] choline metabolites glycerophosphorylcholine and phosphorylcholine in media extracts suggesting UVA activation of phospholipase C and phospholipase A2 or diacylglyceride lipase

  10. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom.

    Science.gov (United States)

    Borges, Isabela Pacheco; Silva, Mariana Ferreira; Santiago, Fernanda Maria; de Faria, Lucas Silva; Júnior, Álvaro Ferreira; da Silva, Rafaela José; Costa, Mônica Soares; de Freitas, Vitor; Yoneyama, Kelly Aparecida Geraldo; Ferro, Eloísa Amália Vieira; Lopes, Daiana Silva; Rodrigues, Renata Santos; de Melo Rodrigues, Veridiana

    2018-06-01

    Activities of phospholipases (PLAs) have been linked to pathogenesis in various microorganisms, and implicated in cell invasion and so the interest in these enzymes as potential targets that could contribute to the control of parasite survival and proliferation. Chicken eggs immunized with BnSP-7, a Lys49 phospholipase A 2 (PLA 2 ) homologue from Bothrops pauloensis snake venom, represent an excellent source of polyclonal antibodies with potential inhibitory activity on parasite PLA s. Herein, we report the production, characterization and anti-parasitic effect of IgY antibodies from egg yolks of hens immunized with BnSP-7. Produced antibodies presented increasing avidity and affinity for antigenic toxin epitopes throughout immunization, attaining a plateau after 4weeks. Pooled egg yolks-purified anti-BnSP-7 IgY antibodies were able to specifically recognize different PLA 2 s from Bothrops pauloensis and Bothrops jararacussu venom. Antibodies also neutralized BnSP-7 cytotoxic activity in C2C12 cells. Also, the antibodies recognized targets in Leishmania (Leishmania) amazonensis and Toxoplasma gondii extracts by ELISA and immunofluorescence assays. Anti-BnSP-7 IgY antibodies were cytotoxic to T. gondii tachyzoite and L. (L.) amazonensis promastigotes, and were able to decrease proliferation of both parasites treated before infection. These data suggest that the anti-BnSP-7 IgY is an important tool for discovering new parasite targets and blocking parasitic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M.

    1989-01-01

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125 I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  12. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C

    International Nuclear Information System (INIS)

    Kang, Mi Sun; Jeong, Ju Yeon; Seo, Ji Heui; Jeon, Hyung Jun; Jung, Kwang Mook; Chin, Mi-Reyoung; Moon, Chang-Kiu; Bonventre, Joseph V.; Jung, Sung Yun; Kim, Dae Kyong

    2006-01-01

    Methylmercury (MeHg) is a ubiquitous environmental toxicant to which humans can be exposed by ingestion of contaminated food. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of free intracellular Ca 2+ levels ([Ca 2+ ] i ). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity in MDCK cells. D609, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner with concomitant inhibition of the diacylglycerol (DAG) generation and the phosphatidylcholine (PC)-breakdown. MeHg activated the group IV cytosolic phospholipase A 2 (cPLA 2 ) and acidic form of sphingomyelinase (A-SMase) downstream of PC-PLC, but these enzymes as well as protein kinase C (PKC) were not linked to the toxicity by MeHg. Furthermore, MeHg produced ROS, which did not affect the toxicity. Addition of EGTA to culture media resulted in partial decrease of [Ca 2+ ] i and partially blocked the toxicity. In contrast, when the cells were treated with MeHg in the presence of Ca 2+ in the culture media, D609 completely prevented cell death with parallel decrease in [Ca 2+ ] i . Our results demonstrated that MeHg-induced toxicity was linked to elevation of [Ca 2+ ] i through activation of PC-PLC, but not attributable to the signaling pathways such as cPLA 2 , A-SMase, and PKC, or to the generation of ROS

  13. Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein α subunit in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2009-05-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways. Results In this work we describe a new G protein α subunit gene in S. schenckii, ssg-2. The cDNA sequence of ssg-2 revealed a predicted open reading frame of 1,065 nucleotides encoding a 355 amino acids protein with a molecular weight of 40.9 kDa. When used as bait in a yeast two-hybrid assay, a cytoplasmic phospholipase A2 catalytic subunit was identified as interacting with SSG-2. The sspla2 gene, revealed an open reading frame of 2538 bp and encoded an 846 amino acid protein with a calculated molecular weight of 92.62 kDa. The principal features that characterize cPLA2 were identified in this enzyme such as a phospholipase catalytic domain and the characteristic invariable arginine and serine residues. A role for SSPLA2 in the control of dimorphism in S. schenckii is suggested by observing the effects of inhibitors of the enzyme on the yeast cell cycle and the yeast to mycelium transition in this fungus. Phospholipase A2 inhibitors such as AACOCF3 (an analogue of archidonic acid and isotetrandrine (an inhibitor of G protein

  14. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase.

    Science.gov (United States)

    Albert, J L; Boyle, J P; Roberts, J A; Challiss, R A; Gubby, S E; Boarder, M R

    1997-11-01

    1. The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK). 2. Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to alpha,beta-MethylATP (alpha,beta MeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage. 3. ATP (log EC50 -5.1+/-0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and alpha,beta MeATP giving no detectable response. 4. Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3. 5. None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPgammaS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 microM forskolin. 6. Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with

  15. Localization of peroxisome proliferator-activated receptor alpha (PPAR alpha) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    OpenAIRE

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavon, Francisco J.; Rodriguez de Fonseca, Fernando; Suarez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the b...

  16. Overexpression of porcine lipoprotein-associated phospholipase A2 in swine

    NARCIS (Netherlands)

    Tang, Xiaochun; Wang, Gangqi; Liu, Xingxing; Han, Xiaolei; Li, Zhuang; Ran, Guangyao; Li, Zhanjun; Song, Qi; Ji, Y; Wang, Haijun; Wang, Yuhui; Ouyang, Hongsheng; Pang, Daxin

    2015-01-01

    Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is associated with the risk of vascular disease. It circulates in human blood predominantly in association with low-density lipoprotein cholesterol (LDL-C) and hydrolyses oxidized phospholipids into pro-inflammatory products. However, in the mouse

  17. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  18. Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells

    DEFF Research Database (Denmark)

    Blank, Simon; Seismann, Henning; Plum, Melanie

    2011-01-01

    Allergic reactions to hymenoptera stings are one of the major reasons for IgE-mediated anaphylaxis. However, proper diagnosis using venom extracts is severely affected by molecular cross-reactivity. In this study recombinant honeybee venom major allergen phospholipase A2 (Api m 1) was produced......-derived recombinant Api m 1 with defined CCD phenotypes might provide further insights into hymenoptera venom IgE reactivities and contribute to an improved diagnosis of hymenoptera venom allergy....

  19. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  20. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde

    2009-01-01

    of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more......Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached...... cytotoxicity was incorporated into liposomes that were designed to be particularly Susceptible to a liposome degrading enzyme, secretory phospholipase A(2) (sPLA(2)), which is found in high concentrations in tumors of several different cancer types. Liposome incorporation was investigated by differential...

  1. Detergent organisation in crystals of monomeric outer membrane phospholipase A

    NARCIS (Netherlands)

    Snijder, HJ; Timmins, PA; Kalk, KH; Dijkstra, BW

    The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H2O/D2O contrast. From the neutron diffraction at five contrasts,

  2. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Pejchar, Přemysl; Pleskot, R.; Schwarzerová, K.; Martinec, Jan; Valentová, O.; Novotná, Z.

    2008-01-01

    Roč. 32, č. 5 (2008), s. 554-556 ISSN 1065-6995 R&D Projects: GA ČR GA522/05/0340 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aluminum toxicity * Phospholipase D * Microtubules Subject RIV: ED - Physiology Impact factor: 1.619, year: 2008

  3. Cytosolic phospholipase A2-α expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2011-01-18

    The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)α (cPLA(2)α) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)α expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines.

  4. Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments

    DEFF Research Database (Denmark)

    Kolko, Miriam; Wang, Jinmei; Zhan, Chen

    2007-01-01

    PURPOSE: To identify intracellular phospholipases A(2) (PLA(2)) in the human retina and to explore the role of these enzymes in human retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS). METHODS: PCR amplification and Western blot analysis were used to identify m......)-VIA activity was found to be specifically increased 12 hours after ARPE-19 cells were fed with POS. Finally, RPE phagocytosis was inhibited by the iPLA(2)-VIA inhibitor bromoenol lactone. CONCLUSIONS: Various intracellular PLA(2) subtypes are present in the human retina. iPLA(2)-VIA may play...

  5. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack

    Czech Academy of Sciences Publication Activity Database

    Krčková, Zuzana; Kocourková, Daniela; Daněk, Michal; Brouzdová, Jitka; Pejchar, Přemysl; Janda, Martin; Pokotylo, I.; Ott, P.G.; Valentová, O.; Martinec, Jan

    2018-01-01

    Roč. 121, č. 2 (2018), s. 297-310 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP501/12/1942 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * effector-triggered immunity * flagellin * MAMP-triggered immunity * non-specific phospholipase C * phosphatidylcholine-specific phospholipase C * Pseudomonas syringae * reactive oxygen species Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  6. Characterization and structural analysis of a potent anticoagulant phospholipase A2 from Pseudechis australis snake venom.

    Science.gov (United States)

    Du, Qianyun Sharon; Trabi, Manuela; Richards, Renée Stirling; Mirtschin, Peter; Madaras, Frank; Nouwens, Amanda; Zhao, Kong-Nan; de Jersey, John; Lavin, Martin F; Guddat, Luke W; Masci, Paul P

    2016-03-01

    Pseudechis australis is one of the most venomous and lethal snakes in Australia. Numerous phospholipase A2 (PLA2) isoforms constitute a major portion of its venom, some of which have previously been shown to exhibit not only enzymatic, but also haemolytic, neurotoxic and anticoagulant activities. Here, we have purified a potent anticoagulant PLA2 (identified as PA11) from P. australis venom to investigate its phospholipase, anticoagulant, haemolytic and cytotoxic activities and shown that addition of 11 nM PA11 resulted in a doubling of the clotting time of recalcified whole blood. We have also demonstrated that PA11 has high PLA2 enzymatic activity (10.9 × 10(4) Units/mg), but low haemolytic activity (0.6% of red blood cells hydrolysed in the presence of 1 nM PA11). PA11 at a concentration lower than 600 nM is not cytotoxic towards human cultured cells. Chemical modification experiments using p-bromophenacyl bromide have provided evidence that the catalytic histidine of PA11 is critical for the anticoagulant activity of this PLA2. PA11 that was subjected to trypsin digestion without previous reduction and alkylation of the disulfide bonds maintained enzymatic and anticoagulant activity, suggesting that proteolysis alone cannot abolish these properties. Consistent with these results, administration of PA11 by gavage in a rabbit stasis thrombosis model increased the clotting time of recalcified citrated whole blood by a factor of four. These data suggest that PA11 has potential to be developed as an anticoagulant in a clinical setting. Copyright © 2015. Published by Elsevier Ltd.

  7. Didecanoyl phosphatidylcholine is a superior substrate for assaying mammalian phospholipase D

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Jensen, T.; Morgan, C.P.

    1996-01-01

    Phospholipase D (PLD) activity in crude or solubilized membranes from mammalian tissues is difficult to detect with the current assay techniques, unless a high radioactive concentration of substrate and/or long incubation times are employed. Generally, the enzyme has to be extracted and partially...... purified on one column before easy detection of activity. Furthermore, PLD activity in cultured cells can only be detected by the available assay techniques in the presence of guanosine 5'-[¿-thio]triphosphate (GTP[S]) and a cytosolic factor [usually ADP-ribosylation factor (Arf)]. In this paper we report...... that the use of didecanoyl phosphatidylcholine (C-PC) in mammalian PLD assays considerably increases the detection limit. C-PC was compared with the commonly used dipalmitoyl phosphatidylcholine (C-PC) as a substrate for PLD activity from membranes of human neutrophils, human placenta and pig brain, and from...

  8. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  9. Moderate alcohol consumption and lipoprotein-associated phospholipase A2 activity

    NARCIS (Netherlands)

    Beulens, J.W.J.; Berg, R. van den; Kok, F.J.; Helander, A.; Vermunt, S.H.F.; Hendriks, H.F.J.

    2008-01-01

    Background and aims: To investigate the effect of moderate alcohol consumption on lipoprotein-associated phospholipase A2 activity, markers of inflammation and oxidative stress and whether these effects are modified by BMI. Methods and results: Eleven lean (BMI: 18.5-25 kg/m2) and 9 overweight (BMI

  10. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy.

    Science.gov (United States)

    Falik Zaccai, Tzipora C; Savitzki, David; Zivony-Elboum, Yifat; Vilboux, Thierry; Fitts, Eric C; Shoval, Yishay; Kalfon, Limor; Samra, Nadra; Keren, Zohar; Gross, Bella; Chasnyk, Natalia; Straussberg, Rachel; Mullikin, James C; Teer, Jamie K; Geiger, Dan; Kornitzer, Daniel; Bitterman-Deutsch, Ora; Samson, Abraham O; Wakamiya, Maki; Peterson, Johnny W; Kirtley, Michelle L; Pinchuk, Iryna V; Baze, Wallace B; Gahl, William A; Kleta, Robert; Anikster, Yair; Chopra, Ashok K

    2017-02-01

    Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A 2 -activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E 2 and cytosolic phospholipase A 2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E 2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E 2 and cytosolic phospholipase A 2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E 2 The non-functional phospholipase A 2 -activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email

  11. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    LENUS (Irish Health Repository)

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  12. Evaluation of snake venom phospholipase A{sub 2}: hydrolysis of non-natural esters

    Energy Technology Data Exchange (ETDEWEB)

    Pirolla, Renan A.S.; Baldasso, Paulo A.; Marangoni, Sergio; Moran, Paulo J.S.; Rodrigues, Jose Augusto R., E-mail: jaugusto@iqm.unicamp.b [University of Campinas (UNICAMP), SP (Brazil). Inst. of Chemistry. Dept. of Organic Chemistry

    2011-07-01

    Phospholipase A2 from the rattlesnake Crotalus durissus terrificus was employed for the first time to test its enantioselectivity on the hydrolysis of different non-natural esters. It was observed that the structure of this small enzyme is restrictive in the choice of its lipase action with non-natural substrates. Two forms of the enzyme were used; free and as its cross-linked enzyme aggregate (CLEA). With all substrates, the free enzyme showed activity similar to the CLEA preparation. The advantage of the CLEA phospholipase is the possibility to reuse it in several consecutive reactions without a decrease of activity and selectivity with good but higher yields and ee than with the free enzyme. (author)

  13. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...

  14. Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo

    DEFF Research Database (Denmark)

    Kolko, M; Bruhn, T; Christensen, Thomas

    1999-01-01

    The secretory phospholipases A2 (sPLA2) OS2 (10, 20 and 50 pmol) or OS1, (50 pmol) purified from taipan snake Oxyuranus scutellatus scutellatus venom, and the excitatory amino acid glutamate (Glu) (2.5 and 5.0 micromol) were injected into the right striatum of male Wistar rats. Injection of 10...... no tissue damage or neurological abnormality. After injection of 5.0 micromol Glu, the animals initially circled towards the side of injection, and gradually developed generalized clonic convulsions. These animals showed a well demarcated striatal infarct. When non-toxic concentrations of 20 pmol OS2 and 2.......5 micromol Glu were co-injected, a synergistic neurotoxicity was observed. Extensive histological damage occurred in the entire right hemisphere, and in several rats comprising part of the contralateral hemisphere. These animals were apathetic in the immediate hours following injection, with circling towards...

  15. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    Science.gov (United States)

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  17. The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction

    Directory of Open Access Journals (Sweden)

    Abdelkafi Slim

    2011-11-01

    Full Text Available Abstract Background Phospholipase D (PLD belongs to a lipolytic enzyme subclass which catalyzes the hydrolysis and transesterification of glycerophospholipids at the terminal phosphodiester bond. Results In this work, we have studied the substrate specificity of PLDs from germinating sunflower seeds and cultured-soybean cells, using their capacity of transphosphatidylation. In the presence of a nucleophilic acceptor, such as [14C]ethanol, PLD catalyzes the production of phosphatidyl-[14C]-ethanol. The resulting product is easily identified since it is well separated from the other lipids by thin-layer chromatography. The main advantage of this assay is that the phospholipid used as substrate does not need to be radiolabelled and thus allow us a large choice of polar heads and fatty acids. In vitro, we observed that sunflower and soybean cell PLD show the following decreasing order of specificity: phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol; while phosphatidylserine and phosphatidylinositol are utilized much less efficiently. Conclusions The substrate specificity is modulated by the fatty acid composition of the phosphatidylcholine used as well as by the presence of other charged phospholipids.

  18. Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling.

    Directory of Open Access Journals (Sweden)

    William R Henderson

    Full Text Available Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible - in particular, the group V sPLA2 (sPLA2-V that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells.The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA in the sPLA2-V(-/- mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V(-/- mice diminishes Th2 cytokine responses in the airways.This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.

  19. Action of phospholipases on the phosphatidylcholine exchange protein from beef liver

    NARCIS (Netherlands)

    Kamp, H.H.; Sprengers, E.D.; Westerman, J.; Wirtz, K.W.A.; Deenen, L.L.M. van

    1975-01-01

    Abstract The phospholipases A2, C and D have been used to investigate the localization of phosphatidylcholine in the phosphatidylcholine exchange protein from beef liver. The rate of enzymatic hydrolysis of the protein-bound phosphatidylcholine was found to be very low. Addition of deoxycholate,

  20. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    International Nuclear Information System (INIS)

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi

    2005-01-01

    Phospholipase C-zeta (PLCζ), a strong candidate of the egg-activating sperm factor, causes intracellular Ca 2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCζ. Changes in the localization of expressed PLCζ were investigated by tagging with a fluorescent protein. PLCζ began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCζ in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCζ was recognized in every embryo up to blastocyst. Thus, PLCζ exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca 2+ oscillations in early embryogenesis

  1. The Effects of Bee Venom on PLA2 and Calcium Concentration in Raw 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jong-Il Yun

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide, sodium nitroprusside and hydrogen peroxide induced expression phospholipase A2 and calcium concentration in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase A2 was determined by western blotting with corresponding antibodies, and the generation of intracellular calcium concentration was investigated by delta scan system in RAW 264.7 cells. Results : 1. Compared with control, expressions of lipopolysaccharide-induced phospholipase A2 were decreased significantly by 1 ㎍/㎕ of bee venom and decreased by 0.5, 5 ㎍/㎕ of bee venom. 2. Compared with control, expressions of sodium nitroprusside-induced phospholipase A2 were decreased significantly by 5 ㎍/㎕ of bee venom but increased by 0.5, 5 ㎍/㎕ of bee venom. 3. Compared with control, expressions of hydrogen peroxide-induced phospholipase A2 were decreased significaltly by 1 ㎍/㎕ of bee venom and decreased by 0.5 ㎍/㎕ of bee venom but increased by 5 ㎍/㎕ of bee venom. 4. Compared with control, lipopolysaccharide, sodium nitroprusside and hydrogen peroxide- induced intracellular calcium concentrations were decreased by 0.5, 1, 5 ㎍/㎕ of bee venom and by indomethacin

  2. Origin and evolution of group XI secretory phospholipase A2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains.

    Science.gov (United States)

    Gupta, Payal; Saini, Raman; Dash, Prasanta K

    2017-07-01

    Phospholipase A 2 (PLA 2 ) belongs to class of lipolytic enzymes (EC 3.1.1.4). Lysophosphatidic acid (LPA) and free fatty acids (FFAs) are the products of PLA 2 catalyzed hydrolysis of phosphoglycerides at sn-2 position. LPA and FFA that act as second mediators involved in the development and maturation of plants and animals. Mining of flax genome identified two phospholipase A 2 encoding genes, viz., LusPLA 2 I and LusPLA 2 II (Linum usitatissimum secretory phospholipase A 2 ). Molecular simulation of LusPLA 2 s with already characterized plant sPLA 2 s revealed the presence of conserved motifs and signature domains necessary to classify them as secretory phospholipase A 2 . Phylogenetic analysis of flax sPLA 2 with representative sPLA 2 s from other organisms revealed that they evolved rapidly via gene duplication/deletion events and shares a common ancestor. Our study is the first report of detailed phylogenetic analysis for secretory phospholipase A 2 in flax. Comparative genomic analysis of two LusPLA 2 s with earlier reported plant sPLA 2 s, based on their gene architectures, sequence similarities, and domain structures are presented elucidating the uniqueness of flax sPLA 2 .

  3. Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Vikbjerg, Anders Falk; Xu, Xuebing

    2007-01-01

    Acyl modification of the sn-2 position in phospholipids (PLs) was conducted by acidolysis reaction using immobilized phospholipase A2 (PLA2) as the catalyst. In the first stage we screened different carriers for their ability to immobilize PLA2. Several carriers were able to fix the enzyme...

  4. Diverse regulation of retinal pigment epithelium phagocytosis of photoreceptor outer segments by calcium-independent phospholipase A₂, group VIA and secretory phospholipase A₂, group IB

    DEFF Research Database (Denmark)

    Zhan, Chen; Wang, Jinmei; Kolko, Miriam

    2012-01-01

    PURPOSE: To investigate the roles of the phospholipases A(2) (PLA(2)) subtypes, iPLA(2)-VIA and sPLA(2)-IB in retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS) and to explore a possible interaction between sPLA(2)-IB and iPLA(2)-VIA in the RPE. METHODS: To explore...... the role of iPLA(2)-VIA in RPE phagocytosis of POS, experiments with iPLA(2)-VIA vector transfection, iPLA(2)-VIA(-/-) knockout (KO) mice, and iPLA(2)-VIA inhibition by bromoenol lactone (BEL) were done. Exogenous addition of sPLA(2)-IB was used to investigate the role of sPLA(2)-IB in RPE phagocytosis....... A Luciferase Reporter Vector containing the iPLA(2)-VIA promoter was used to study the effects of sPLA(2)-IB on the iPLA(2)-VIA promoter. RESULTS: ARPE-19 and primary mouse RPE cells transfected with iPLA(2)-VIA showed increased phagocytosis. Phagocytosis was reduced in primary mouse RPE inhibited with BEL...

  5. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  6. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  7. H2O2-Activated Mitochondrial Phospholipase iPLA2 gamma Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic beta-Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin; Ježek, Petr

    2015-01-01

    Roč. 23, č. 12 (2015), s. 958-972 ISSN 1523-0864 R&D Projects: GA ČR(CZ) GPP303/11/P320; GA ČR(CZ) GA13-02033S; GA ČR(CZ) GA13-06666S; GA ČR GA15-02051S Institutional support: RVO:67985823 Keywords : mitochondrial phospholipase iPLA2 gamma * uncoupling protein UCP2 * G-protein coupled receptor - 40 * glucose-stimulated insulin secretion * pancreatic beta cells Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 7.093, year: 2015

  8. Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia.

    Directory of Open Access Journals (Sweden)

    Fumio Yoshikawa

    Full Text Available BACKGROUND: Phospholipase D (PLD catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x(4-Asp (HKD motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4. METHODOLOGY/PRINCIPAL FINDINGS: PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity. CONCLUSIONS/SIGNIFICANCE: Results showed that PLD4 is a non

  9. Synergistic Effects of Secretory Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus with Cancer Chemotherapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jennifer Nelson

    2013-01-01

    Full Text Available Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antineoplastic drugs: methotrexate, daunorubicin, actinomycin D, and paclitaxel. In each case, a substantial population of treated cells was still alive yet vulnerable to attack by the enzyme. Induction of cell death by these agents also perturbed the biophysical properties of the membrane as detected by merocyanine 540 and trimethylammonium-diphenylhexatriene. These results suggest that exposure of lymphoma cells to these drugs universally causes changes to the cell membrane that render it susceptible to enzymatic attack. The data also argue that the snake venom enzyme is not only capable of clearing cell corpses but can aid in the demise of tumor cells that have initiated but not yet completed the death process.

  10. Hydrolysis of synthetic mixed-acid phosphatides by phospholipase A from human pancreas

    NARCIS (Netherlands)

    Deenen, L.L.M. van; Haas, Gerard H. de; Heemskerk, C.H.Th.

    1963-01-01

    An investigation was made into the action of a human pancreatic phospholipase A on various synthetic phosphatides. L-α-Phosphatidyl ethanolamines were readily hydrolysed in an aqueous system by this enzyme. Synthetic lecithins, however, were not attacked in an appreciable rate by the mammalian

  11. The correlation between anti phospholipase A 2 specific IgE and clinical symptoms after a bee sting in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-06-01

    Full Text Available Introduction: Beekeepers are a group of people with high exposure to honeybee stings and with a very high risk of allergy to bee venom. Therefore, they are a proper population to study the correlations between clinical symptoms and results of diagnostic tests. Aim: The primary aim of our study was to assess the correlations between total IgE, venom- and phospholipase A 2 -specific IgE and clinical symptoms after a bee sting in beekeepers. The secondary aim was to compare the results of diagnostic tests in beekeepers and in individuals with standard exposure to bees. Material and methods: Fifty-four individuals were divided into two groups: beekeepers and control group. The levels of total IgE (tIgE, venom-specific IgE (venom sIgE, and phospholipase A 2 -specific IgE (phospholipase A 2 sIgE were analyzed. Results: Our study showed no statistically significant correlation between the clinical symptoms after a sting and tIgE in the entire analyzed group. There was also no correlation between venom sIgE level and clinical symptoms either in beekeepers or in the group with standard exposure to bees. We observed a statistically significant correlation between phospholipase A 2 sIgE level and clinical signs after a sting in the group of beekeepers, whereas no such correlation was detected in the control group. Significantly higher venom-specific IgE levels in the beekeepers, as compared to control individuals were shown. Conclusions : In beekeepers, the severity of clinical symptoms after a bee sting correlated better with phospholipase A 2 sIgE than with venom sIgE levels.

  12. Phospholipase C-related catalytically inactive protein participates in the autophagic elimination of Staphylococcus aureus infecting mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kae Harada-Hada

    Full Text Available Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3, a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the involvement of PRIP in the autophagic elimination of Staphylococcus aureus in infected mouse embryonic fibroblasts (MEFs. We observed significantly more LC3-positive autophagosome-like vacuoles enclosing an increased number of S. aureus cells in PRIP-deficient MEFs than control MEFs, 3 h and 4.5 h post infection, suggesting that S. aureus proliferates in LC3-positive autophagosome-like vacuoles in PRIP-deficient MEFs. We performed autophagic flux analysis using an mRFP-GFP-tagged LC3 plasmid and found that autophagosome maturation is significantly inhibited in PRIP-deficient MEFs. Furthermore, acidification of autophagosomes was significantly inhibited in PRIP-deficient MEFs compared to the wild-type MEFs, as determined by LysoTracker staining and time-lapse image analysis performed using mRFP-GFP-tagged LC3. Taken together, our data show that PRIP is required for the fusion of S. aureus-containing autophagosome-like vacuoles with lysosomes, indicating that PRIP is a novel modulator in the regulation of the innate immune system in non-professional phagocytic host cells.

  13. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  14. Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD

    DEFF Research Database (Denmark)

    Givskov, M; Eberl, L; Christiansen, Gunna

    1995-01-01

    . Expression of flagella is demonstrated to follow a growth-phase-dependent pattern. Cloning, complementation studies and DNA-sequencing analysis has identified a genetic region in Serratia liquefaciens which exhibits extensive homology to the Escherichia coli flhD flagellar master operon. Interruption...... of the chromosomal flhD operon in S. liquefaciens results in non-flagellated and phospholipase-negative cells, but the synthesis of other exoenzymes is not affected. By placing the flhD operon under the control of a foreign inducible promoter we have shown that increased transcription through the flhD operon leads...

  15. Ultrastructural analysis of early toxic effects produced by bee venom phospholipase A2 and melittin in Sertoli cells in rats.

    Science.gov (United States)

    Tilinca, Mariana; Florea, Adrian

    2018-01-01

    In this study, we aimed to investigate the testicular toxicity of two molecules derived from bee venom (BV): phospholipase A2 (PlA2) and melittin (Mlt). Ultrastructural effects of purified BV PlA2 and Mlt were assessed consecutive to repeated dose (30 days) and acute toxicity studies. For the subchronic treatment, PlA2 and Mlt were injected in daily doses equivalent to those released by a bee sting (105 μg PlA2/kg/day and 350 μg Mlt/kg/day), while in the acute treatment their doses corresponded to those released by 100 bee stings (9.3 mg PlA2/kg and 31 mg Mlt/kg). Both PlA2 and Mlt affected the Leydig cells and the cells in seminiferous tubules, the Sertoli cells first of all. PlA2 injection resulted in detachment of the Sertoli cells from the surrounding cells, and extracellular vacuolations, cytoplasmic vacuolations in their basal region and in branches as well, detachment of spermatids, residual bodies and sometimes even spermatocytes into the lumen, changes that had a higher magnitude after the acute treatment. Mlt injection induced similar ultrastructural alterations, but more severe, including degeneration of cellular organelles and cellular necrosis, resulting into rarefaction of the seminiferous epithelium; the ultrastructural changes had a higher magnitude after the 30 repeated dose treatment. We concluded that either of the two molecules tested here, PlA2 and Mlt, were Sertoli cells toxicants at the used doses, and they participated both in the BV testicular toxicity. We consider the observed changes as part of a preceding mechanism of the more severe alterations produced by the BV. It also remains possible that these early unspecific changes reported here could represent the response of the SCs not only to the components of bee venom, but to molecules of other venoms as well. The Sertoli cells were the primary target of PlA2 and Mlt in the spermatogenic epithelium, and their alteration led to further degenerative changes of the germ cells. Since

  16. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    Science.gov (United States)

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  17. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A

    2002-01-01

    The lipid mediators generated by phospholipases A(2) (PLA(2)), free arachidonic acid (AA), eicosanoids, and platelet-activating factor, modulate neuronal activity; when overproduced, some of them become potent neurotoxins. We have shown, using primary cortical neuron cultures, that glutamate...... and secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate......) and in minor changes in other phospholipids. A similar profile, although of greater magnitude, was observed 20 hr posttreatment. Glutamate (80 microM) induced much less mobilization of (3)H-AA than did sPLA(2) and resulted in a threefold greater degradation of (3)H-AA PE than of (3)H-AA PC by 20 hr...

  18. Uncarinic acids: phospholipase Cgamma1 inhibitors from hooks of Uncaria rhynchophylla.

    Science.gov (United States)

    Lee, J S; Yang, M Y; Yeo, H; Kim, J; Lee, H S; Ahn, J S

    1999-05-17

    Bioactivity-guided fractionation of the CHCl3 extract from hooks of Uncaria rhynchophylla led to the isolation of two triterpene esters, namely uncarinic acids A (1) and B (2). Their structures were established by spectroscopic and chemical methods. These compounds inhibited phospholipase Cgamma1 with IC50 values of 35.66 and 44.55 microM, respectively.

  19. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes

    NARCIS (Netherlands)

    Roelofsen, B.; Sibenius Trip, M.; Verheij, H.M.; Zevenbergen, J.L.

    1980-01-01

    1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography. 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine

  20. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide

    International Nuclear Information System (INIS)

    Akiyama, Nobuteru; Nabemoto, Maiko; Hatori, Yoshio; Nakamura, Hiroyuki; Hirabayashi, Tetsuya; Fujino, Hiromichi; Saito, Takeshi; Murayama, Toshihiko

    2006-01-01

    Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the α type of cytosolic phospholipase A 2 (cPLA 2 α) in PC12 cells. Treatment with 80-120 μM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA 2 α mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N G nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA 2 α expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA 2 . Furthermore, DDC treatment of the cells enhanced Ca 2+ -ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA 2 α expression by DDC treatment in neuronal cells

  1. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Přemysl ePejchar

    2015-02-01

    Full Text Available Aluminum ions (Al have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity and function of the non-specific phospholipase C4 (NPC4, a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana.We observed a lower expression of NPC4 using GUS assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h. Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions.Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.

  2. Synthesis of Phosphatidylcholine Containing Highly Unsaturated Fatty Acid by Phospholipase A2 and Effect on Retinoic Acid Induced Differentiation of HL-60 Cells

    OpenAIRE

    細川, 雅史; 大島, 宏哲; 甲野, 裕之; 高橋, 是太郎; 羽田野, 六男; 小田島, 粛夫

    1993-01-01

    Phosphatidylcholine containing highly unsaturated fatty acid (HUFA-PC) was prepared by porcine pancreatic phospholipase A2, which catalyzed esterification between lysophosphatidylcholine (LPC) and highly unsaturated fatty acid (HUFA), under a scaled-up reaction system. Fatty acid mixture prepared from sardine oil, purified eicosapentaenoic acid (EPA), and purified docosahexaenoic acid (DHA) were used as the substrates of HUFA. The yield of HUFA-PC was 17.0-19.9%. Synthesized phosphatidylcholi...

  3. Secretory Phospholipase A2-IIA and Cardiovascular Disease: A Mendelian Randomization Study

    NARCIS (Netherlands)

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; van Iperen, Erik P. A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J. W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M. A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, André G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N. M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C. M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A. A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Paré, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is

  4. The mechanism of phospholipase Cγ1 activation

    Directory of Open Access Journals (Sweden)

    Paweł Krawczyk

    2011-08-01

    Full Text Available Phospholipase C is an enzyme which catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI(4,5P2 into second messengers inositol-1,4,5-triphosphate (Ins(1,4,5P3 and diacylglycerol (DAG. These messengers then promote the activation of protein kinase C and release of Ca2 from intracellular stores, initiating numerous cellular events including proliferation, differentiation, signal transduction, endocytosis, cytoskeletal reorganization or activation of ion channels. There have been identified 14 isozymes of PLC among which PLCγ1 and PLCγ2 are of particular interest. PLC contains catalytic region XY and a few regulatory domains: PH, EF and C2. The most unique features of these two enzymes are the Src homology domains (SH2, SH3 and split PH domain within the catalytic barrel. PLC1 and PLCγ2 have an identical domain structure, but they differ in their function and occurrence. Phospholipase Cγ1 is expressed ubiquitously, especially in the brain, thymus and lungs.PLCγ1 can be activated by receptor tyrosine kinases (i.e.: PDGFR, EGFR, FGFR, Trk, as well as non-receptor protein kinases (Src, Syk, Tec or phosphatidic acid, tau protein and its analogue.The molecular mechanism of PLCγ1 activation includes membrane recruitment, phosphorylation, rearrangements and activation in the presence of growth factors.In reference to PLCγ1 regulation, a number of positive and negative modulators have been considered. The most important positive modulator is phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5P2. Protein kinase A and C, tyrosine phosphatases (SHP-1, PTP-1B and Cbl, Grb2, Jak2/PTP-1B complex proteins have been described as negative regulators of PLCγ1 activation.

  5. Identification of the Elusive Mammalian Enzyme Phosphatidylcholine-Specific Phospholipase C

    Science.gov (United States)

    2015-09-01

    Summary of Results. Task 1. To identify mammalian PC- PLC . Based on results published by other groups, we proposed to identify candidate PC- PLC mRNAs by...establishing the role of the elusive mammalian protein, phosphatidycholine- specific phospholipase C (PC- PLC ) in the inflammatory processes involved in...progression of rheumatoid arthritis (RA). Thus, the main scopes of this proposal are: 1. to identify the PC- PLC gene and protein; and 2. to test PC- PLC

  6. Neomysin inhibits Ca2+-stimulated phosphatidylinositol hydrolysis and protects cultured rat cardiomyocytes from Ca2+-dependent cell injury

    International Nuclear Information System (INIS)

    Babson, J.R.; Dougherty, J.M.

    1991-01-01

    Exposure of cultured rat cardiomyocytes to ionomycin and extracellular Ca 2+ leads to a rapid, sustained increase in intracellular free Ca 2+ as monitored by Ca 2+ -dependent phosphorylase a activation and to a subsequent loss of cardiomyocyte viability as determined by lactate dehydrogenase (LDH) leakage. The intracellular free Ca 2+ increase coincided with a rapid hydrolysis of phosphatidylinositol that preceded cell death. Phosphatidylinositol hydrolysis was monitored by the release of radiolabeled phosphoinositides from cardiomyocytes prelabeled with [2- 3 H]-myo-inositol. Neomycin, a known inhibitor of phospholipase C, inhibited the phosphatidylinositol hydrolysis and markedly reduced the extent of cell injury. Inhibitors of other Ca 2+ -activated processes, including intracellular proteases and phospholipase A 2 , had no effect on ionomycin-mediated cell injury. These data suggest that ionomycin-induced Ca 2+ -dependent cell injury in cultured cardiomyocytes may be due in part to the stimulation of phosphatidylinositol hydrolysis, presumably catalyzed by a Ca 2+ -dependent phospholipase C

  7. Anti-phospholipase A receptor antibodies correlate with clinical status in idiopathic membranous nephropathy

    NARCIS (Netherlands)

    Hofstra, J.M.; Beck Jr., L.H.; Beck, D.M.; Wetzels, J.F.M.; Salant, D.J.

    2011-01-01

    BACKGROUND AND OBJECTIVES: Circulating autoantibodies against the M-type phospholipase A(2) receptor (anti-PLA(2)R) were recently identified in the majority of patients in the United States with idiopathic membranous nephropathy (iMN). The objectives of this study were to assess the prevalence of

  8. Phospholipase activity in rat liver mitochondria studied by the use of endogenous substrates.

    Science.gov (United States)

    Bjornstad, P

    1966-09-01

    The hydrolysis of endogenous phosphatidyl ethanolamine and lecithin in rat liver mitochondria has been studied by using mitochondria from rats injected with ethanolamine-1,2-(14)C or choline-1,2-(14)C. A phospholipase A-like enzyme has been demonstrated, which catalyzes the hydrolysis of one fatty acid ester linkage in phosphatidyl ethanolamine and lecithin. Phosphatidyl ethanolamine is hydrolyzed in preference to lecithin and the main reaction products are free fatty acids and lysophosphatidyl ethanolamine. The further breakdown of lysophospholipids appears to be limited in mitochondria, which indicates that lysophospholipase activity is mainly located extramitochondrially. The enzymic system is greatly stimulated by calcium ions, and also slightly by magnesium ions, while EDTA inhibits it almost completely. These findings are discussed in relation to previous observations on the effect of calcium and of EDTA on the functions of mitochondria. The possible function of the mitochondrial phospholipase for the formation of phospholipids with special fatty acids at the alpha- and -position is discussed.

  9. Cytosolic Phospholipase A2-α: A Potential Therapeutic Target for Prostate Cancer

    Science.gov (United States)

    Patel, Manish I.; Singh, Jaskirat; Niknami, Marzieh; Kurek, Caroline; Yao, Mu; Lu, Sasa; Maclean, Fiona; King, Nicholas J.C.; Gelb, Michael H.; Scott, Kieran F.; Russell, Pamela J.; Boulas, John; Dong., Qihan

    2008-01-01

    Purpose Cytosolic Phospholipase A2-α (cPLA2-α) provides intracellular arachidonic acid to supply both cyclooxygenase and lipoxygenase pathways. We aim to determine the expression and activation of cPLA2-α in prostate cancer (PC) cell line and tissue and the effect of targeting cPLA2-α in-vitro and in-vivo. Experimental Design The expression of cPLA2-α was determined in PC cells by RT-PCR, Western blot and immunocytochemistry. Growth inhibition, apoptosis and cPLA2-α activity were determined after inhibition with cPLA2-α siRNA or inhibitor (Wyeth-1). cPLA2-α inhibitor or vehicle was also administered to PC xenograft mouse models. Finally the expression of phospho-cPLA2-α was determined by immunohistochemistry in human normal, androgen sensitive and insensitive PC specimens. Results cPLA2-α is present in all PC cells lines, but increased in androgen insensitive cells. Inhibition with siRNA or Wyeth-1 results in significant reductions in PC cell numbers, as a result of reduced proliferation as well as increased apoptosis and this was also associated with a reduction in cPLA2-α activity. Expression of cyclin D1 and phosphorylation of Akt were also observed to decrease. Wyeth-1 inhibited PC3 xenograft growth by approximately 33% and again, also reduced cyclin D1. Immunohistochemistry of human prostate tissue revealed that phospho-cPLA2-α is increased when hormone refractory is reached. Conclusions cPLA2-α expression and activation is increased in the androgen insensitive cancer cell line and tissue. Inhibition of cPLA2-α results in cells and xenograft tumor growth inhibition and serves as a potentially effective therapy for hormone refractory PC. PMID:19088022

  10. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  11. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  12. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of Candida albicans.

    Science.gov (United States)

    Uygun-Can, Banu; Kadir, Tanju; Gumru, Birsay

    2016-02-01

    Candida-associated denture stomatitis is the most prevalent form of oral candida infections among the denture wearers. Generally, antiseptic oral rinses used in the treatment of these infections are considered as an adjunct or alternative antifungal treatment. Studies have suggested that the intraoral concentrations of antiseptics decrease substantially to the sub-therapeutic levels on account of the dynamics of the oral cavity. This condition yields the question about the minimum antiseptic concentration that effect the character or pathogenesis of Candida during treatment. The extracellular phospholipase and proteinase enzymes of Candida albicans are regarded to have a crucial role in the pathogenesis of human fungal infections. Therefore, the aim of this study was to investigate the effect of different sub-therapeutic concentrations of chlorhexidine gluconate, hexetidine and triclosan on the production of these enzymes by C. albicans strains isolated from 20 patients with denture stomatitis. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Exoenzyme production of 20 strains which were brief exposured to sub-therapeutic concentrations of three antiseptic agents decreased significantly compared with the strains that were not exposured with antiseptic values (pantiseptics (pantiseptic was compared, there were no significant differences between enzymatic activities (p>0.05). The results of this study show that sub-therapeutic levels of each antiseptic may modulate candidal exoenzyme production, consequently suppressing pathogenicity of C. albicans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of phospholipase A2 from the pyloric ceca of two species of starfish, Coscinasterias acutispina and Plazaster borealis

    OpenAIRE

    Kishimura, Hideki; Hayashi, Kenji

    2005-01-01

    Phospholipase A (PLA) activities in the pyloric ceca and viscera from seven species of marine invertebrates (four starfish, one sea urchin, and two shellfish) were determined. Relatively high PLA specific activities were found in the pyloric ceca of two species of starfish (Coscinasterias acutispina and Plazaster borealis). Phospholipase A2s (PLA2s) were partially purified from the pyloric ceca of the starfish, C. acutispina PLA2 (C-PLA2) and P. borealis PLA2 (P-PLA2). The C-PLA2 and P-PLA2 m...

  14. M3 muscarinic receptor interaction with phospholipase C beta3 determines its signaling efficiency

    NARCIS (Netherlands)

    Kan, W.; Adjobo-Hermans, M.J.; Burroughs, M.; Faibis, G.; Malik, S.; Tall, G.G.; Smrcka, A.V.

    2014-01-01

    Phospholipase Cbeta (PLCbeta) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Galphabetagamma heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and

  15. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained...... their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating...

  16. AT32P-dependent estimation of nanomoles of fatty acids: Its use in the assay of phospholipase A2 activity

    International Nuclear Information System (INIS)

    Sarafianos, S.G.; Nair, P.P.; Kumar, S.

    1990-01-01

    A procedure for the assay of free fatty acids which has been adapted for the assay of phospholipase A2 is described. This consists of the conversion of long chain fatty acids to fatty acyl-CoA using the Mg2(+)-dependent fatty acyl-CoA synthetase, [alpha-32P]ATP and coenzyme A. In order to ensure the complete conversion of the acid to its CoA ester pyrophosphatase is also added to the incubation mixture. AM32P formed in stoichiometric amounts is separated from the remaining AT32P by polyethyleneimine-cellulose thin-layer chromatography and the fatty acid content is calculated from the specific radioactivity of AT32P. As little as 1 to 3 nmol of fatty acids hydrolyzed from any phospholipid using nanogram amounts of phospholipase A2 can be estimated with reliability. The real advantage of the method is that it combines the sensitivity of a radiochemical procedure without having to use radiolabeled substrates for the assay of phospholipases

  17. Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Angueyra

    Full Text Available Melanopsin, the receptor molecule that underlies light sensitivity in mammalian 'circadian' receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A G(q was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP₃ receptor antagonists, highlighting the importance of IP₃ receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG, as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP₃-sensitive channels may fulfill a key role in conveying--directly or indirectly--the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.

  18. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-01-01

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP 2 but not plasma membrane-localized PIP 2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ) has anti-cancer activity in several colon cancers. 1α,25(OH) 2 D 3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH) 2 D 3 -induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P 2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH) 2 D 3 . These results indicate that PIPKIIβ-mediated PI(4,5)P 2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  19. The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia.

    Science.gov (United States)

    Fulton, Daniel; Condro, Michael C; Pearce, Kaycey; Glanzman, David L

    2008-07-01

    Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout. Prior work has indicated that facilitation at this time is supported primarily by postsynaptic processes. To determine whether postsynaptic PLC activity is involved in 5-HT-mediated facilitatory actions, we examined the effect of U73122 on enhancement of the response of motor neurons isolated in cell culture to glutamate, the sensory neuron transmitter. A 10-min application of 5-HT induced persistent (>40 min) enhancement of glutamate-evoked potentials (Glu-EPs) recorded from isolated motor neurons, and this enhancement was blocked by U73122. Finally, we showed that injecting U73122 into intact animals before behavioral training impaired intermediate-term sensitization, indicating that PLC activity contributes to this form of nonassociative learning.

  20. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain.

    Science.gov (United States)

    Heier, Christoph; Kien, Benedikt; Huang, Feifei; Eichmann, Thomas O; Xie, Hao; Zechner, Rudolf; Chang, Ping-An

    2017-11-17

    Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera venom against oral pathogens

    Directory of Open Access Journals (Sweden)

    Luís F. Leandro

    2015-03-01

    Full Text Available In this work, we used the Minimum Inhibitory Concentration (MIC technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in naturaand in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40µg / mL. Phospholipase A2 presented MIC values higher than 400µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80µg / mL. Considering that tooth decay affects people's health, apitoxin and its component melittin have potential application against oral pathogens.

  2. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R.

    1995-01-01

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A 2 , an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A 2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  3. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress

    Directory of Open Access Journals (Sweden)

    Eva Jarc

    2018-06-01

    Full Text Available The data presented here is related to the research article entitled “Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress” by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018 247–265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG and phosphatidylcholine (PC composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3. Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL and by exogenous addition of secreted phospholipase A2 (sPLA2 in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress. Keywords: Lipid droplets, Lipidomics, Adipose triglyceride lipase, Polyunsaturated fatty acid, Cancer, Phospholipase A2

  4. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    International Nuclear Information System (INIS)

    Nassogne, Marie-Cecile; Lizarraga, Chantal; N'Kuli, Francisca; Van Bambeke, Francoise; Van Binst, Roger; Wallemacq, Pierre; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule; Levade, Thierry; Courtoy, Pierre J.

    2004-01-01

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A 1 . At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A 1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in V max with identical K m . Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A 1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  5. New Concepts in Phospholipase D Signaling in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Julian Gomez-Cambronero

    2010-01-01

    Full Text Available Phospholipase D (PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y179 and Y511. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y296, Y415, and Y511 and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y296 is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF, DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K. A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down

  6. Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease.

    Science.gov (United States)

    Schaeffer, Evelin L; Forlenza, Orestes V; Gattaz, Wagner F

    2009-01-01

    Alzheimer disease (AD) is the leading cause of dementia in the elderly and has no known cure. Evidence suggests that reduced activity of specific subtypes of intracellular phospholipases A2 (cPLA2 and iPLA2) is an early event in AD and may contribute to memory impairment and neuropathology in the disease. The objective of this study was to review the literature focusing on the therapeutic role of PLA2 stimulation by cognitive training and positive modulators, or of supplementation with arachidonic acid (PLA2 product) in facilitating memory function and synaptic transmission and plasticity in either research animals or human subjects. MEDLINE database was searched (no date restrictions) for published articles using the keywords Alzheimer disease (mild, moderate, severe), mild cognitive impairment, healthy elderly, rats, mice, phospholipase A(2), phospholipid metabolism, phosphatidylcholine, arachidonic acid, cognitive training, learning, memory, long-term potentiation, protein kinases, dietary lipid compounds, cell proliferation, neurogenesis, and neuritogenesis. Reference lists of the identified articles were checked to select additional studies of interest. Overall, the data suggest that PLA2 activation is induced in the healthy brain during learning and memory. Furthermore, learning seems to regulate endogenous neurogenesis, which has been observed in AD brains. Finally, PLA2 appears to be implicated in homeostatic processes related to neurite outgrowth and differentiation in both neurodevelopmental processes and response to neuronal injury. The use of positive modulators of PLA2 (especially of cPLA2 and iPLA2) or supplementation with dietary lipid compounds (e.g., arachidonic acid) in combination with cognitive training could be a valuable therapeutic strategy for cognitive enhancement in early-stage AD.

  7. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    International Nuclear Information System (INIS)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca 2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations ( 2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32 P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32 P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca 2+ handling of the B-cells. (author)

  8. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  9. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Poulsen, Kristian Arild; Lambert, Ian H.

    2006-01-01

    Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca2+-independent phospholipase A2 (iPLA2) (Lambert IH. J Membr Biol 192: 19-32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased...... by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA2-IVA, cPLA2-IVB, cPLA2-IVC, iPLA2-VIA, iPLA2-VIB......, and secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2...

  10. Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease.

    Directory of Open Access Journals (Sweden)

    Jae-Kwang Jin

    Full Text Available PrPSc is formed from a normal glycosylphosphatidylinositol (GPI-anchored prion protein (PrPC by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie, and in both the brains and cerebrospinal fluids (CSF of sporadic and familial Creutzfeldt-Jakob disease (CJD patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer's disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.

  11. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  12. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Science.gov (United States)

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  13. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  14. 1H-NMR and photochemically-induced dynamic nuclear polarization studies on bovine pancreatic phospholipase A2

    NARCIS (Netherlands)

    Egmond, M.R.; Slotboom, A.J.; Haas, G.H. de; Dijkstra, Klaas; Kaptein, R.

    1980-01-01

    Proton-NMR resonances of trytophan 3 and tyrosine 69 in bovine pancreatic phospholipase A2, its pro-enzyme and in Ala1-transaminated protein were assigned using photochemically-induced dynamic nuclear polarization (photo-CIDNP) as such or in combination with spin-echo measurements. In addition

  15. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  16. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/¿-hydroxylase/20-HETE pathways

    DEFF Research Database (Denmark)

    Inoue, Ryuji; Jensen, Lars Jørn; Jian, Zhong

    2009-01-01

    ). Single TRPC6 channel activity evoked by carbachol was also enhanced by a negative pressure added in the patch pipette. Mechanical potentiation of carbachol- or OAG-induced I(TRPC6) was abolished by small interfering RNA knockdown of cytosolic phospholipase A(2) or pharmacological inhibition of omega...... or Arg8 vasopressin was greatly enhanced by mechanical stimuli via 20-HETE production. Furthermore, myogenic response of pressurized mesenteric artery was significantly enhanced by weak receptor stimulation dependently on 20-HETE production. These results collectively suggest that simultaneous operation...

  17. Synthesis of sn-1 functionalized phospholipids as substrates for secretory phospholipase A2

    DEFF Research Database (Denmark)

    Linderoth, Lars; Peters, Günther H.J.; Jørgensen, K.

    2007-01-01

    Secretory phospholipase A2 (sPLA2) represents a family of small water-soluble enzymes that catalyze the hydrolysis of phospholipids in the sn-2 position liberating free fatty acids and lysophospholipids. Herein we report the synthesis of two new phospholipids (1 and 2) with bulky allyl-substituen......Secretory phospholipase A2 (sPLA2) represents a family of small water-soluble enzymes that catalyze the hydrolysis of phospholipids in the sn-2 position liberating free fatty acids and lysophospholipids. Herein we report the synthesis of two new phospholipids (1 and 2) with bulky allyl...... of the allyl-substituents by a zinc mediated allylation. Small unilamellar liposomes composed of phospholipids 1 and 2 were subjected to sPLA2 activity measurements. Our results show that only phospholipid 1 is hydrolyzed by the enzyme. Molecular dynamics simulations revealed that the lack of hydrolysis...

  18. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics

    Directory of Open Access Journals (Sweden)

    Arjuna N.B. Ellepola

    Full Text Available Abstract Objective Candida albicans is the primary causative agent of oral candidosis, and one of its key virulent attributes is considered to be its ability to produce extracellular phospholipases that facilitate cellular invasion. Oral candidosis can be treated with polyenes, and azoles, and the more recently introduced echinocandins. However, once administered, the intraoral concentration of these drugs tend to be sub-therapeutic and rather transient due to factors such as the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, the pathogenic yeasts may undergo a brief exposure to antifungal drugs. We, therefore, evaluated the phospholipase production of oral C. albicans isolates following brief exposure to sub-therapeutic concentrations of the foregoing antifungals. Materials and methods Fifty C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sub-therapeutic concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for one hour. Thereafter the drugs were removed and the phospholipase production was determined by a plate assay using an egg yolk-agar medium. Results The phospholipase production of these isolates was significantly suppressed with a percentage reduction of 10.65, 12.14, 11.45 and 6.40% following exposure to nystatin, amphotericin B, caspofungin and ketoconazole, respectively. This suppression was not significant following exposure to fluconazole. Conclusions Despite the sub-therapeutic, intra oral, bioavailability of polyenes, echinocandins and ketoconazole, they are likely to produce a persistent antifungal effect by suppressing phospholipase production, which is a key virulent attribute of this common pathogenic yeast.

  19. Recent research progress with phospholipase C from Bacillus cereus.

    Science.gov (United States)

    Lyu, Yan; Ye, Lidan; Xu, Jun; Yang, Xiaohong; Chen, Weiwei; Yu, Hongwei

    2016-01-01

    Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce phosphate monoesters and diacylglycerol. It has many applications in the enzymatic degumming of plant oils. PLC Bc , a bacterial PLC from Bacillus cereus, is an optimal choice for this activity in terms of its wide substrate spectrum, high activity, and approved safety. Unfortunately, its large-scale production and reliable high-throughput screening of PLC Bc remain challenging. Herein, we summarize the research progress regarding PLC Bc with emphasis on the screening methods, expression systems, catalytic mechanisms and inhibitor of PLC Bc . This review hopefully will inspire new achievements in related areas, to promote the sustainable development of PLC Bc and its application.

  20. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  1. Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils

    NARCIS (Netherlands)

    Code, Christian; Domanov, Y.A.; Killian, J.A.; Kinnunen, P.K.J.

    2009-01-01

    Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate

  2. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently......–80 to 280–300. cPLA2 -stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2 . The action of cPLA2 was mimicked by a combination of arachidonic acid...... and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2 was inhibited by the Cl- channel inhibitor DIDS...

  3. cPLA2alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha...... from 70-80 to 280-300. cPLA2alpha-stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2alpha. The action of cPLA2alpha was mimicked by a combination...... of arachidonic acid and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2alpha was inhibited...

  4. Intercellular odontoblast communication via ATP mediated by pannexin-1 channel and phospholipase C-coupled receptor activation.

    Directory of Open Access Journals (Sweden)

    Masaki eSato

    2015-11-01

    Full Text Available Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected form rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s, we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca2+ concentration ([Ca2+]i by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca2+]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca2+]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca2+]i in a stimulated human embryo kidney (HEK 293 cell, but not in nearby HEK293 cells. The increase in [Ca2+]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP release channel (pannexin-1 inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC inhibitor, the increase in [Ca2+]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated

  5. The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish.

    Science.gov (United States)

    Memar, Bahareh; Jamili, Shahla; Shahbazzadeh, Delavar; Bagheri, Kamran Pooshang

    2016-04-01

    Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mutant RBL mast cells defective in Fc epsilon RI signaling and lipid raft biosynthesis are reconstituted by activated Rho-family GTPases.

    Science.gov (United States)

    Field, K A; Apgar, J R; Hong-Geller, E; Siraganian, R P; Baird, B; Holowka, D

    2000-10-01

    Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.

  7. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nabila eDjafi

    2013-08-01

    Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.

  8. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    Science.gov (United States)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  9. EXPRESSION OF A BEE-VENOM PHOSPHOLIPASE A2 FROM APIS CERANA CERANA IN E,.qCHERICHIA COLI

    Institute of Scientific and Technical Information of China (English)

    Li-rongShen; Jia-anCheng; Chuan-xiZhang

    2004-01-01

    The venomous phospholipase A2 (AcPLA2) coding reading region of the Chinese honeybee (Apis cerana cerana), which is composed of 405 bp encoding a mature glycosylated peptide with 134 amino residues was transformed into the expression vector pETblue-1. Then the recombinant vector was introduced into Escherichia coli Tuner (DE3) plac I for expression. Analysis result of SDS-PAGE showed that the expression products had a protein band of about 15 kD. Detection of western blot using ant-European honeybee (Apis mellifera) phospholipase A2 (AmPLA2) polyclonal serum as the first antibody showed that the expression products appeared a special blot same as the native AmPLA2.The result demonstrated that the AcPLA2 peptide had been expressed in E. coli and the AcPLA2 has the similar antigenicity as the AmPLA2.

  10. Antioxidant tempol suppresses heart cytosolic phospholipase A(2)alpha stimulated by chronic intermittent hypoxia

    Czech Academy of Sciences Publication Activity Database

    Míčová, P.; Klevstig, Martina; Holzerová, Kristýna; Vecka, M.; Žurmanová, J.; Neckář, Jan; Kolář, František; Nováková, Olga; Novotný, J.; Hlaváčková, Markéta

    2017-01-01

    Roč. 95, č. 8 (2017), s. 920-927 ISSN 0008-4212 R&D Projects: GA ČR(CZ) GJ16-12420Y; GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * chronic intermittent hypoxia * oxidative stress * phospholipases A(2) * tempol Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Biochemistry and molecular biology Impact factor: 1.822, year: 2016

  11. Interaction between VEGF and Calcium-Independent Phospholipase A(2) in Proliferation and Migration of Retinal Pigment Epithelium

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Andersen, Emelie Cammilla; Andreasen, Jens Rovelt

    2012-01-01

    Purpose: Inhibition of VEGF in the eye is an important treatment modality for reducing proliferation and migration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Additionally, previous studies suggest calcium-independent phospholipase A2 group VIA (iPLA2-VIA) to be...

  12. Phospholipase A/sub 2/ activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Mouritsen, Ole G.; Jørgensen, Kent

    2001-01-01

    Phospholipase A/sub 2/ (PLA/sub 2/) is an interfacially active enzyme whose hydrolytic activity is known to be enhanced in one-component phospholipid bilayer substrates exhibiting dynamic micro-heterogeneity. In this study the activity of PLA/sub 2/ towards large unilamellar vesicles composed of ...

  13. Influence of (phospho)lipases on properties of mica supported phospholipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Jurak, Malgorzata, E-mail: mjurak@interia.pl [Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20031 Lublin (Poland); Chibowski, Emil [Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20031 Lublin (Poland)

    2010-08-15

    The effect of enzymes: lipase from Candida cylindracea (L{sub Cc}), phospholipase A{sub 2} from hog pancreas (PLA{sub 2}) and phospholipase C from Bacillus cereus (PLC) to modulate wetting properties of solid supported phospholipid bilayers was studied via advancing and receding contact angle measurements of water, formamide and diiodomethane, and calculation of the surface free energy and its components from van Oss et al. (LWAB) and contact angle hysteresis (CAH) approaches. Simultaneously, topography of the studied layers was determined by Atomic Force Microscopy (AFM). The investigated lipid bilayers were transferred on mica plates from subphase of pure water by means of Langmuir-Blodgett and Langmuir-Schaefer techniques. The investigated phospolipid layers were: saturated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), unsaturated DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and their mixture DPPC/DOPC. The obtained results revealed that the lipid membrane degradation by the enzymes caused increase in its surface free energy due to the amphiphilic hydrolysis products, which may accumulate in the lipid bilayer. In result activity of the enzymes may increase and then break down the bilayer structure takes place. It is likely that after dissolution of the hydrolysis reaction products in the bulk phase, patches of bare mica surface are accessible, which contribute to the apparent surface free energy changes. Comparison of AFM images and the free energy changes of the layers gives better insight into changes of their properties. The observed gradual increase in the layer surface free energy allows controlling of the hydrolysis process to obtain the surfaces of defined properties.

  14. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice.

    Science.gov (United States)

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; Wang, Xuemin

    2015-11-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee; Kang, Dong Woo [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Jung, Yunjin [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Kang-Yell [Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  16. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    NARCIS (Netherlands)

    Abd-El-Haliem, Ahmed; Vossen, J.H.; Zeijl, van Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, M.F.; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, M.H.A.J.

    2016-01-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs

  17. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    Science.gov (United States)

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  18. Schwann cell myelination requires Dynein function

    Directory of Open Access Journals (Sweden)

    Langworthy Melissa M

    2012-11-01

    Full Text Available Abstract Background Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. Results By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1, which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. Conclusion Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.

  19. Enzymatic hydrolysis of 1-monoacyl-SN-glycerol-3-phosphoryl-choline (1-lysolecithin) by phospholipases from peanut seeds.

    Science.gov (United States)

    Strauss, H; Leibovitz-Ben Gershon, Z; Heller, M

    1976-06-01

    Hydrolysis of 1-lysolecithin (1-acyl glycerophosphorylcholine [1-acyl GPC]) by preparations of phospholipase D from peanut seeds was investigated. 1-Lysolecithin was hydrolyzed at a much slower rate than phosphatidylcholine (lecithin). Although Ca+2 ions are required for the cleavage of lecithin by the enzyme, their effect on the hydrolysis of lysolecithin depended upon the concentration of the substrate: at 0.2 mM 1-lysolecithin, Ca+2 ions increased the reaction rates, whereas at concentrations of the substrate lower than 0.1 mM, Ca+2 ions were inhibitory. A broad pH activity curve between 5 and 8 was obtained with higher rates in the alkaline range, both in the absence and presence of Ca+2 ions. The increased hydrolysis of lysolecithin due to Ca+2 was noticed over the entire pH range. Upon storage of the enzyme solutions at 4 C, decreased rates of hydrolysis of lecithin were observed, with t 1/2 values of ca. 50 and 100 days depending on the purity of the preparation. During the same period, no reduction occurred in the activity of these preparations on lysolecithin as substrate. The effects of Ca+2 ions and the analysis of the products of 1-acyl GPC cleavage by the enzyme preparations revealed the presence of more than one enzyme and the formation of the following compounds: lysophosphatidic acids (1 acyl glycerophosphoric acids), free fatty acids, glycerophosphorylcholine, and choline. The possible pathways leading to the degradation of lysolecithin and the formation of these products include reactions catalyzed by lysophospholipase A1 (lysophosphatidylcholine 1-acyl hydrolase, E.C. 3.1.1.5) and a phosphodiesterase (L-3-glycerylphosphorylcholine glycerophosphohydrolase, E.C.3.1.4.2), in addition to phospholipase D (phosphatidyl-choline phosphatidohydrolase, E.C. 3.1.4.4).

  20. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases inc...

  1. Immobilization of phospholipase C for the production of ceramide from sphingomyelin hydrolysis

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2007-01-01

    The immobilization of Clostridium perfringens phospholipase C was studied for the first time and the catalytic properties of the immobilized enzyme were investigated for the hydrolysis of sphingomyelin to produce ceramide. Ceramide is of great commercial potentials in cosmetic and pharmaceutical...... industries such as in hair and skin care products, due to its major role in maintaining the water-retaining properties of the epidermis. The feasibility of enzymatic production of ceramide through hydrolysis of sphingomyelin has previously been proven. In order to improve the reusability of the enzyme...

  2. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A₂ from Colombian Bothrops asper Venom.

    Science.gov (United States)

    Posada Arias, Silvia; Rey-Suárez, Paola; Pereáñez J, Andrés; Acosta, Cristian; Rojas, Mauricio; Delazari Dos Santos, Lucilene; Ferreira, Rui Seabra; Núñez, Vitelbina

    2017-10-26

    Myotoxic phospholipases A₂ (PLA₂) are responsible for many clinical manifestations in envenomation by Bothrops snakes. A new myotoxic acidic Asp49 PLA₂ (BaCol PLA₂) was isolated from Colombian Bothrops asper venom using reverse-phase high performance liquid chromatography (RP-HPLC). BaCol PLA₂ had a molecular mass of 14,180.69 Da (by mass spectrometry) and an isoelectric point of 4.4. The complete amino acid sequence was obtained by cDNA cloning (GenBank accession No. MF319968) and revealed a mature product of 124 amino acids with Asp at position 49. BaCol PLA₂ showed structural homology with other acidic PLA₂ isolated from Bothrops venoms, including a non-myotoxic PLA₂ from Costa Rican B. asper . In vitro studies showed cell membrane damage without exposure of phosphatidylserine, an early apoptosis hallmark. BaCol PLA₂ had high indirect hemolytic activity and moderate anticoagulant action. In mice, BaCol PLA₂ caused marked edema and myotoxicity, the latter seen as an increase in plasma creatine kinase and histological damage to gastrocnemius muscle fibers that included vacuolization and hyalinization necrosis of the sarcoplasm.

  3. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles.

    Science.gov (United States)

    Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen

    2011-11-01

    CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  5. Protective Effects of Intratracheally-Administered Bee Venom Phospholipase A2 on Ovalbumin-Induced Allergic Asthma in Mice

    Directory of Open Access Journals (Sweden)

    Kyung-Hwa Jung

    2016-09-01

    Full Text Available Asthma is a common chronic disease characterized by bronchial inflammation, reversible airway obstruction, and airway hyperresponsiveness (AHR. Current therapeutic options for the management of asthma include inhaled corticosteroids and β2 agonists, which elicit harmful side effects. In the present study, we examined the capacity of phospholipase A2 (PLA2, one of the major components of bee venom (BV, to reduce airway inflammation and improve lung function in an experimental model of asthma. Allergic asthma was induced in female BALB/c mice by intraperitoneal administration of ovalbumin (OVA on days 0 and 14, followed by intratracheal challenge with 1% OVA six times between days 22 and 30. The infiltration of immune cells, such as Th2 cytokines in the lungs, and the lung histology, were assessed in the OVA-challenged mice in the presence and absence of an intratracheal administration of bvPLA2. We showed that the intratracheal administration of bvPLA2 markedly suppressed the OVA-induced allergic airway inflammation by reducing AHR, overall area of inflammation, and goblet cell hyperplasia. Furthermore, the suppression was associated with a significant decrease in the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, and a reduction in the number of total cells, including eosinophils, macrophages, and neutrophils in the airway.

  6. The postantifungal effect and phospholipase production of oral Candida albicans from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to subtherapeutic concentrations of chlorhexidine gluconate.

    Science.gov (United States)

    Ellepola, Arjuna N B; Joseph, Bobby K; Khan, Z U

    2014-09-01

    Candida albicans is the major aetiological agent of oral candidosis and one of its important virulent factors is the production of extracellular phospholipases, which can be modulated by subtherapeutic concentrations of antifungal agents thus decreasing their pathogenicity. Hence, considering that chlorhexidine gluconate (CG) is a common antimicrobial mouthwash used in dentistry and that its concentration in the mouth reaches subtherapeutic levels during dosage intervals due to the diluent effect of saliva and cleansing effect of the oral musculature, the postantifungal effect (PAFE) and the phospholipase production of oral C. albicans following brief exposure to subtherapeutic concentrations of CG was studied. Fifty C. albicans planktonic oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to three subtherapeutic concentrations of CG (0.005%, 0.0025% and 0.00125%) for 1 h. Isolates unexposed to CG was the control group. Thereafter the antiseptic was removed and the PAFE and phospholipase production was determined by a turbidometric method and a plate assay using an egg yolk agar medium respectively. Mean PAFE (hours) of 50 oral isolates of C. albicans following 1-h exposure to 0.005%, 0.0025% and 0.00125% CG was 6.97, 1.85 and 0.62 respectively. The phospholipase production of these isolates was significantly suppressed with a percentage reduction of 21.68, 18.20 and 14.04% following exposure to 0.005%, 0.0025% and 0.00125% CG respectively. Brief exposure of C. albicans isolates to subtherapeutic concentrations of CG would wield an antifungal effect by suppressing growth and phospholipase production, thereby quelling its pathogenicity. © 2014 Blackwell Verlag GmbH.

  7. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Jabůrek, Martin; Zelenka, Jaroslav; Ježek, Petr

    2010-01-01

    Roč. 59, č. 5 (2010), s. 737-747 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA303/07/0105; GA MŠk ME09018; GA AV ČR(CZ) KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : Heart mitochondrial phospholipase A2 * Fatty Acids * Adenine nucleotide translocase Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  8. A Model for the Interfacial Kinetics of Phospholipase D Activity on Long-Chain Lipids

    Science.gov (United States)

    2013-07-01

    7506–7513. 18. Zografi, G., R. Verger, and G. H. de Haas. 1971. Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A. Chem...ChemBioChem. 9:2853–2859. 54. Albrecht, O., H. Gruler, and E. Sackmann. 1981. Pressure-composition phase diagrams of cholesterol/ lecithin , cholesterol...phosphatidic acid, and lecithin /phosphatidic acid fixed monolayers: a Langmuit film balance study. J. Colloid Interface Sci. 79:319–338. 55. Morris, A

  9. Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area

    Directory of Open Access Journals (Sweden)

    S R Fule

    2015-01-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is most common accounting for 17 to 39% of symptomatic women. Both Candida albicans and non albicans Candida species are involved in VVC. Amongst various virulence factors proposed for Candida, extracellular phospholipases is one of the virulence factor implicated in its pathogenicity. With this background the present study was carried out to find the prevalence of different Candida species and to detect phospholipase producing strains isolated from symptomatic women with VVC. Materials and Methods: At least two vaginal swabs from 156 women of reproductive age with abnormal vaginal discharge were collected. Direct microscopy and Gram′s stained smear examined for presence of budding yeast and pseudo mycelia followed by isolation and identification of Candida species. Extracellular phospholipase activity was studied by inoculating all isolates on Sabouraud′s dextrose egg yolk agar (SDA medium. Results: Of the 156 women with curdy white discharge alone or in combination with other signs, 59 (37.82% women showed laboratory evidence of VVC. A total of 31 (52.54% women had curdy white discharge followed by 12 (20.33% with other signs and symptoms. C. albicans (62.59% and non albicans Candida (37.28% in a ratio of 1.68:1 were isolated. Of the 37 strains of C. albians 30 (81.08% showed the enzyme activity. Seventeen (56.66% strains showed higher Pz value of < 0.70 (++++. Conclusion: Although there may be typical clinical presentation of Candidiasis. all the patients did not show laboratory evidence of infection. Pregnancy was found to be major risk factor for development of VVC. C. albicans was prevalent species but non albicans species were also frequently isolated. Extracellular phospholipase activity was seen in C. albicans and not in non albicans Candida isolates.

  10. Darapladib Binds to Lipoprotein-Associated Phospholipase A2 with Meaningful Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Do, Kyungrok; Chang, Byungha; Shin, Jae Min; No, Kyoung Tai; Lee, Jeeyoung [Bioinformatics and Molecular Design Research Center, Seoul (Korea, Republic of); Kim, Chul; Yea, Sangjun; Song, Miyoung [Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of)

    2014-01-15

    Lipoprotein-associated phospholipase A{sub 2} (Lp-PLA{sub 2}) is a crucial enzyme in atherosclerosis as a potential drug target. The most remarkable Lp-PLA{sub 2} inhibitory drug is Darapladib. We determined the binding pose of Darapladib to Lp-PLA{sub 2} through docking study. Darapladib formed two hydrogen bonding interactions with the side chain of Tyr160 and Gln352 and several pi-pi interactions with aromatic and aliphatic hydrophobic residues of Lp-PLA{sub 2}. It is known that the dietylpropan-amine moiety of Darapladib has influence on the improvement of its oral bioavailability and we supposed this in our docking results.

  11. Human interleukin 1. beta. stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca sup 2+ handling

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1{beta} in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca{sup 2+} handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (<1 min) interleukin 1{beta} did not affect the production of inositoltrisphosphate. Addition of interleukin 1{beta} affected neither the cytoplasmic free Ca{sup 2+} concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a {sup 32}P-labelled substrate for this enzyme, was not altered by interleukin 1{beta}. Separation of {sup 32}P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1{beta} are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca{sup 2+} handling of the B-cells. (author).

  12. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    Science.gov (United States)

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI. PMID:24623140

  13. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    OpenAIRE

    Gulbransen, Brian D.; Finger, Thomas E.

    2005-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These ...

  14. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  15. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants

    Czech Academy of Sciences Publication Activity Database

    Profotová, Bronislava; Burketová, Lenka; Novotná, Z.; Martinec, Jan; Valentová, O.

    2006-01-01

    Roč. 44, 2-3 (2006), s. 143-151 ISSN 0981-9428 R&D Projects: GA ČR GA522/03/0353 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassica napus * Induced resistance * Phospholipase C and D Subject RIV: CE - Biochemistry Impact factor: 1.847, year: 2006

  16. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  17. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A2 homologue from Bothrops pirajai venom complexed with rosmarinic acid

    International Nuclear Information System (INIS)

    Santos, Juliana I. dos; Santos-Filho, Norival A.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2010-01-01

    PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A 2 from B. pirajai venom, was cocrystallized with the inhibitor rosmarinic acid from C. verbenacea. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved, indicating a remarkable electronic density for the ligand at the entrance to the hydrophobic channel. PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A 2 from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P2 1 2 1 2 1 , indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A 2 structures belong to space group P3 1 21, while the crystals of complexed structures belong to space groups P2 1 or P2 1 2 1 2 1

  18. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Science.gov (United States)

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  19. Differential expression of phospholipase C epsilon 1 is associated with chronic atrophic gastritis and gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available BACKGROUND: Chronic inflammation plays a causal role in gastric tumor initiation. The identification of predictive biomarkers from gastric inflammation to tumorigenesis will help us to distinguish gastric cancer from atrophic gastritis and establish the diagnosis of early-stage gastric cancer. Phospholipase C epsilon 1 (PLCε1 is reported to play a vital role in inflammation and tumorigenesis. This study was aimed to investigate the clinical significance of PLCε1 in the initiation and progression of gastric cancer. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, the mRNA and protein expression of PLCε1 were analyzed by reverse transcription-PCR and Western blotting in normal gastric mucous epithelial cell line GES-1 and gastric cancer cell lines AGS, SGC7901, and MGC803. The results showed both mRNA and protein levels of PLCε1 were up-regulated in gastric cancer cells compared with normal gastric mucous epithelial cells. Secondly, this result was confirmed by immunohistochemical detection in a tissue microarray including 74 paired gastric cancer and adjacent normal tissues. Thirdly, an independence immunohistochemical analysis of 799 chronic atrophic gastritis tissue specimens demonstrated that PLCε1 expression in atrophic gastritis tissues were down-regulated since PLCε1 expression was negative in 524 (65.6% atrophic gastritis. In addition, matched clinical tissues from atrophic severe gastritis and gastric cancer patients were used to further confirm the previous results by analyzing mRNA and protein levels expression of PLCε1 in clinical samples. CONCLUSIONS/SIGNIFICANCES: Our results suggested that PLCε1 protein may be a potential biomarker to distinguish gastric cancer from inflammation lesion, and could have great potential in applications such as diagnosis and pre-warning of early-stage gastric cancer.

  20. Differential expression of phospholipase C epsilon 1 is associated with chronic atrophic gastritis and gastric cancer.

    Science.gov (United States)

    Chen, Jun; Wang, Wei; Zhang, Tao; Ji, Jiajia; Qian, Qirong; Lu, Lungeng; Fu, Hualin; Jin, Weilin; Cui, Daxiang

    2012-01-01

    Chronic inflammation plays a causal role in gastric tumor initiation. The identification of predictive biomarkers from gastric inflammation to tumorigenesis will help us to distinguish gastric cancer from atrophic gastritis and establish the diagnosis of early-stage gastric cancer. Phospholipase C epsilon 1 (PLCε1) is reported to play a vital role in inflammation and tumorigenesis. This study was aimed to investigate the clinical significance of PLCε1 in the initiation and progression of gastric cancer. Firstly, the mRNA and protein expression of PLCε1 were analyzed by reverse transcription-PCR and Western blotting in normal gastric mucous epithelial cell line GES-1 and gastric cancer cell lines AGS, SGC7901, and MGC803. The results showed both mRNA and protein levels of PLCε1 were up-regulated in gastric cancer cells compared with normal gastric mucous epithelial cells. Secondly, this result was confirmed by immunohistochemical detection in a tissue microarray including 74 paired gastric cancer and adjacent normal tissues. Thirdly, an independence immunohistochemical analysis of 799 chronic atrophic gastritis tissue specimens demonstrated that PLCε1 expression in atrophic gastritis tissues were down-regulated since PLCε1 expression was negative in 524 (65.6%) atrophic gastritis. In addition, matched clinical tissues from atrophic severe gastritis and gastric cancer patients were used to further confirm the previous results by analyzing mRNA and protein levels expression of PLCε1 in clinical samples. Our results suggested that PLCε1 protein may be a potential biomarker to distinguish gastric cancer from inflammation lesion, and could have great potential in applications such as diagnosis and pre-warning of early-stage gastric cancer.

  1. Secretory Phospholipase A2 Hydrolysis Phospholipid Analogs is Dependent on Water Accessibility to the Active Site

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Møller, Martin S.; Jørgensen, Kent

    2007-01-01

    A new and unnatural type of phospholipids with the head group attached to the 2-position of the glycerol backbone has been synthesized and shown to be a good substrate for secretory phospholipase A2 (sPLA2). To investigate the unexpected sPLA2 activity, we have compared three different phospholip...

  2. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells.

    Science.gov (United States)

    Altúzar-Molina, Alma R; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Racagni-Di Palma, Graciela; Hernández-Sotomayor, S M Teresa

    2011-02-01

    The phospholipidic signal transduction system involves generation of second messengers by hydrolysis or changes in phosphorylation state. Several studies have shown that the signaling pathway forms part of plant response to phytoregulators such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures. An evaluation was made of the effect of SA and MJ on phospholipidic signaling and capsaicinoid production in Capsicum chinense Jacq. suspension cells. Treatment with SA inhibited phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in vitro, but increased lipid kinase activities in vitro at different SA concentrations. Treatment with MJ produced increases in PLC and PLD activities, while lipid kinase activities were variable and dose-dependent. The production of vanillin, a precursor of capsaicinoids, increased at specific SA or MJ doses. Preincubation with neomycin, a phospholipase inhibitor, before SA or MJ treatment inhibits increase in vanillin production which suggests that phospholipidic second messengers may participate in the observed increase in vanillin production. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  3. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  4. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Science.gov (United States)

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  5. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  6. Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cγ at the centrosome

    Directory of Open Access Journals (Sweden)

    Tassin Anne-Marie

    2008-04-01

    Full Text Available Abstract Background The t(6;8 translocation found in rare and agressive myeloproliferative disorders results in a chimeric gene encoding the FOP-FGFR1 fusion protein. This protein comprises the N-terminal region of the centrosomal protein FOP and the tyrosine kinase of the FGFR1 receptor. FOP-FGFR1 is localized at the centrosome where it exerts a constitutive kinase activity. Results We show that FOP-FGFR1 interacts with the large centrosomal protein CAP350 and that CAP350 is necessary for FOP-FGFR1 localisation at centrosome. FOP-FGFR1 activates the phosphoinositide-3 kinase (PI3K pathway. We show that p85 interacts with tyrosine 475 of FOP-FGFR1, which is located in a YXXM consensus binding sequence for an SH2 domain of p85. This interaction is in part responsible for PI3K activation. Ba/F3 cells that express FOP-FGFR1 mutated at tyrosine 475 have reduced proliferative ability. Treatment with PI3K pathway inhibitors induces death of FOP-FGFR1 expressing cells. FOP-FGFR1 also recruits phospholipase Cγ1 (PLCγ1 at the centrosome. We show that this enzyme is recruited by FOP-FGFR1 at the centrosome during interphase. Conclusion These results delineate a particular type of oncogenic mechanism by which an ectopic kinase recruits its substrates at the centrosome whence unappropriate signaling induces continuous cell growth and MPD.

  7. Activated platelets contribute to oxidized low-density lipoproteins and dysfunctional high-density lipoproteins through a phospholipase A2-dependent mechanism

    NARCIS (Netherlands)

    Blache, Denis; Gautier, Thomas; Tietge, Uwe J. F.; Lagrost, Laurent

    Plasma activity of secretory phospholipase A2 (sPLA2) increases in patients with cardiovascular disease. The present study investigated whether platelet-released sPLA2 induces low-density lipoprotein (LDL) and high-density lipoprotein (HDL) modifications that translate into changes in lipoprotein

  8. Draft Genome Sequence of Caenibacillus caldisaponilyticus B157T, a Thermophilic and Phospholipase-Producing Bacterium Isolated from Acidulocompost

    Science.gov (United States)

    Tsujimoto, Yoshiyuki; Saito, Ryo; Sahara, Takehiko; Kimura, Nobutada; Tsuruoka, Naoki; Shigeri, Yasushi

    2017-01-01

    ABSTRACT Caenibacillus caldisaponilyticus B157T (= NBRC 111400T = DSM 101100T), in the family Sporolactobacillaceae, was isolated from acidulocompost as a thermophilic and phospholipid-degrading bacterium. Here, we report the 3.36-Mb draft genome sequence, with a G+C content of 51.8%, to provide the genetic information coding for phospholipases. PMID:28360164

  9. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor.

    Science.gov (United States)

    Shin, Dasom; Choi, Won; Bae, Hyunsu

    2018-04-02

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic, erythematous, and eczematous skin plaques. We previously reported that phospholipase A2 (PLA2) derived from bee venom alleviates AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) and house dust mite extract ( Dermatophagoides farinae extract, DFE) in a murine model. However, the underlying mechanisms of PLA2 action in actopic dermatitis remain unclear. In this study, we showed that PLA2 treatment inhibited epidermal thickness, serum immunoglobulin E (IgE) and cytokine levels, macrophage and mast cell infiltration in the ear of an AD model induced by DFE and DNCB. In contrast, these effects were abrogated in CD206 mannose receptor-deficient mice exposed to DFE and DNCB in the ear. These data suggest that bvPLA2 alleviates atopic skin inflammation via interaction with CD206.

  10. Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera

    Directory of Open Access Journals (Sweden)

    He Wang

    2016-06-01

    Full Text Available Secretory phospholipase A2 (sPLA2 is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each from the venoms of the Western bush viper (Atheris chlorechis, the Great Lakes bush viper (Atheris nitschei and the Variable bush viper (Atheris squamigera, using a “shotgun cloning” strategy. Open-reading frames of respective cloned cDNAs contained putative 16 residue signal peptides and mature proteins composed of 121 to 123 amino acid residues. Alignment of mature protein sequences revealed high degrees of structural conservation and identity with Group II venom PLA2 proteins from other taxa within the Viperidae. Reverse-phase High Performance Liquid Chromatography (HPLC profiles of these three snake venoms were obtained separately and chromatographic fractions were assessed for phospholipase activity using an egg yolk suspension assay. The molecular masses of mature proteins were all identified as approximately 14 kDa. Mass spectrometric analyses of the fractionated oligopeptides arising from tryptic digestion of intact venom proteins, was performed for further structural characterization.

  11. Lack of genetic association between the phospholipase A2 gene and bipolar mood disorder in a European multicentre case-control study.

    Science.gov (United States)

    Dikeos, Dimitris G; Papadimitriou, George N; Souery, Daniel; Del-Favero, Jurgen; Massat, Isabelle; Blackwood, Douglas; Cichon, Sven; Daskalopoulou, Eugenia; Ivezic, Sladjana; Kaneva, Radka; Karadima, Georgia; Lorenzi, Cristina; Milanova, Vihra; Muir, Walter; Nöthen, Markus; Oruc, Lilijana; Rietschel, Marcella; Serretti, Alessandro; Van Broeckhoven, Christine; Soldatos, Constantin R; Stefanis, Costas N; Mendlewicz, Julien

    2006-08-01

    The possible association between phospholipase A2 gene and bipolar mood disorder was examined in 557 bipolar patients and 725 controls (all personally interviewed), recruited from seven countries (Belgium, Bulgaria, Croatia, Germany, Greece, Italy, and UK). The frequencies of the eight alleles that were identified did not differ between patients and control individuals in the whole population, while the power to detect an association based on our sample was relatively high. Some differences were noted among the various ethnic groups, but no significant trends existed, suggesting that population stratification by country may not be responsible for a type II error. On the basis of these results, mutations of the phospholipase A2 gene, at least in the region close to the polymorphism examined between exons 1 and 2, are not involved in the pathogenesis of bipolar mood disorder.

  12. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-06-01

    The data presented here is related to the research article entitled "Lipid droplets induced by secreted phospholipase A 2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress" by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018) 247-265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG) and phosphatidylcholine (PC) composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3). Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL) and by exogenous addition of secreted phospholipase A 2 (sPLA 2 ) in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress.

  13. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  14. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A{sub 2} homologue from Bothrops pirajai venom complexed with rosmarinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Juliana I. dos [Departamento de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu-SP (Brazil); Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil); Santos-Filho, Norival A.; Soares, Andreimar M. [Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil); Departamento de Análizes Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP (Brazil); Fontes, Marcos R. M., [Departamento de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu-SP (Brazil); Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil)

    2010-06-01

    PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A{sub 2} from B. pirajai venom, was cocrystallized with the inhibitor rosmarinic acid from C. verbenacea. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved, indicating a remarkable electronic density for the ligand at the entrance to the hydrophobic channel. PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A{sub 2} from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A{sub 2} structures belong to space group P3{sub 1}21, while the crystals of complexed structures belong to space groups P2{sub 1} or P2{sub 1}2{sub 1}2{sub 1}.

  15. Enhanced seed viability and lipid compositional changes during natural aging by suppressing phospholipase Dα in soybean seed

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T.; Li, Jiarui; Trick, Harold N.

    2013-01-01

    Summary Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols, i.e. the storage lipids. Phospholipase D (PLD) catalyzes the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild type seeds stored for 33 months were non-viable, 30 to 50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. Wild type and PLD-KD seeds increased in lysophospholipid levels and in triacylglycerol fatty acid unsaturation during aging, but the levels of lysophospholipids increased more in wild type than in PLD-KD seeds. The loss of viability of wild type seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural aging, PLDα affects the soybean phospholipid profile and the triacylglycerol profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. PMID:21895945

  16. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations

    Science.gov (United States)

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  17. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance.

    Science.gov (United States)

    Mollov, J L; Lucas, C L; Haspot, F; Gaspar, J Kurtz C; Guzman, A; Sykes, M

    2010-03-01

    Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.

  18. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Priscila Sutto-Ortiz

    2017-07-01

    Full Text Available Novel microbial phospholipases A (PLAs can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73% and Micromonospora (10% genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA using enriched PC (≈60% as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support. Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and

  19. Edema toxin impairs anthracidal phospholipase A2 expression by alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Benoit Raymond

    2007-12-01

    Full Text Available Bacillus anthracis, the etiological agent of anthrax, is a spore-forming gram-positive bacterium. Infection with this pathogen results in multisystem dysfunction and death. The pathogenicity of B. anthracis is due to the production of virulence factors, including edema toxin (ET. Recently, we established the protective role of type-IIA secreted phospholipase A2 (sPLA2-IIA against B. anthracis. A component of innate immunity produced by alveolar macrophages (AMs, sPLA2-IIA is found in human and animal bronchoalveolar lavages at sufficient levels to kill B. anthracis. However, pulmonary anthrax is almost always fatal, suggesting the potential impairment of sPLA2-IIA synthesis and/or action by B. anthracis factors. We investigated the effect of purified ET and ET-deficient B. anthracis strains on sPLA2-IIA expression in primary guinea pig AMs. We report that ET inhibits sPLA2-IIA expression in AMs at the transcriptional level via a cAMP/protein kinase A-dependent process. Moreover, we show that live B. anthracis strains expressing functional ET inhibit sPLA2-IIA expression, whereas ET-deficient strains induced this expression. This stimulatory effect, mediated partly by the cell wall peptidoglycan, can be counterbalanced by ET. We conclude that B. anthracis down-regulates sPLA2-IIA expression in AMs through a process involving ET. Our study, therefore, describes a new molecular mechanism implemented by B. anthracis to escape innate host defense. These pioneering data will provide new molecular targets for future intervention against this deadly pathogen.

  20. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids

    Directory of Open Access Journals (Sweden)

    Robert H. Notter

    2016-10-01

    Full Text Available Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC and palmitoyl-oleoyl phosphatidylglycerol (POPG, while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight. The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS. Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with

  1. Lipoprotein-associated phospholipase A(2) mass and activity in children with heterozygous familial hypercholesterolemia and unaffected siblings: Effect of pravastatin

    NARCIS (Netherlands)

    Ryu, Sung Kee; Hutten, Barbara A.; Vissers, Maud N.; Wiegman, Albert; Kastelein, John J. P.; Tsimikas, Sotirios

    2011-01-01

    BACKGROUND: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an independent risk factor of cardiovascular disease and a target of treatment. Lp-PLA(2) levels in children have not been previously reported. The effect of statin therapy on Lp-PLA(2) mass and activity in children with familial

  2. The metabolites in peripheral blood mononuclear cells showed greater differences between patients with impaired fasting glucose or type 2 diabetes and healthy controls than those in plasma.

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Han, Ji Yun; Lee, Sang-Hyun; Jee, Sun Ha; Lee, Jong Ho

    2017-03-01

    To determine differences between peripheral blood mononuclear cells and the plasma metabolites in patients with impaired fasting glucose or type 2 diabetes and healthy controls. In all, 65 nononobese patients (aged 30-70 years) with impaired fasting glucose or type 2 diabetes and 65 nonobese sex-matched healthy controls were included, and fasting peripheral blood mononuclear cell and plasma metabolomes were profiled. The diabetic or impaired fasting glucose patients showed higher circulating and peripheral blood mononuclear cell lipoprotein phospholipase A 2 activities, high-sensitivity C-reactive protein and tumour necrosis factor-α than controls. Compared with controls, impaired fasting glucose or diabetic subjects showed increases in 11 peripheral blood mononuclear cell metabolites: six amino acids (valine, leucine, methionine, phenylalanine, tyrosine and tryptophan), l-pyroglutamic acid, two fatty acid amides containing palmitic amide and oleamide and two lysophosphatidylcholines. In impaired fasting glucose or diabetic patients, peripheral blood mononuclear cell lipoprotein phospholipase A 2 positively associated with peripheral blood mononuclear cell lysophosphatidylcholines and circulating inflammatory markers, including tumour necrosis factor-α, high-sensitivity C-reactive protein and lipoprotein phospholipase A 2 activities. In plasma metabolites between patients and healthy controls, we observed significant increases in only three amino acids (proline, valine and leucine) and decreases in only five lysophosphatidylcholines. This study demonstrates significant differences in the peripheral blood mononuclear cell metabolome in patients with impaired fasting glucose or diabetes compared with healthy controls. These differences were greater than those observed in the plasma metabolome. These data suggest peripheral blood mononuclear cells as a useful tool to better understand the inflammatory pathophysiology of diabetes.

  3. Phospholipase D-derived phosphatidic acid is involved in the activation of the CD11b/CD18 integrin in human eosinophils

    NARCIS (Netherlands)

    Tool, A. T.; Blom, M.; Roos, D.; Verhoeven, A. J.

    1999-01-01

    Priming of human eosinophils is an essential event for the respiratory burst induced by serum-opsonized particles [serum-treated zymosan (STZ)]. In this study we have found that treatment of eosinophils with platelet-activating factor (PAF) leads to activation of phospholipase D. Inhibition of the

  4. Alteration of phospholipase D activity in the rat tissues by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. S. [Korea Univ., Seoul (Korea, Republic of). Coll. of Medicine; Cho, Y. J. [Hanyang Univ., Seoul (Korea, Republic of). Coll. of Medicine; Choi, M. U. [Seoul National Univ. (Korea, Republic of). Coll. of Natural Sciences

    1997-09-01

    Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. The reaction mixture for the PLD assay contained 0.1{mu}Ci 1,2-di[1-{sup 14}C]palmitoyl phosphatidylcholine, 0.5mM phosphatidylcholine, 5mM sodium oleate, 0.2% taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM CaCl{sub 2}, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cm x 10cm and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward {gamma}-ray with more than two times amplification in their activities. In contrast, the PLD activity of bone marrow appears to be reduced to nearly 30%. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation strongly indicates that the PLD is closely related to the physiological function of these organs. Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell proliferation to cell death on these organs. (author).

  5. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A2 from Colombian Bothrops asper Venom

    Directory of Open Access Journals (Sweden)

    Silvia Posada Arias

    2017-10-01

    Full Text Available Myotoxic phospholipases A2 (PLA2 are responsible for many clinical manifestations in envenomation by Bothrops snakes. A new myotoxic acidic Asp49 PLA2 (BaCol PLA2 was isolated from Colombian Bothrops asper venom using reverse-phase high performance liquid chromatography (RP-HPLC. BaCol PLA2 had a molecular mass of 14,180.69 Da (by mass spectrometry and an isoelectric point of 4.4. The complete amino acid sequence was obtained by cDNA cloning (GenBank accession No. MF319968 and revealed a mature product of 124 amino acids with Asp at position 49. BaCol PLA2 showed structural homology with other acidic PLA2 isolated from Bothrops venoms, including a non-myotoxic PLA2 from Costa Rican B. asper. In vitro studies showed cell membrane damage without exposure of phosphatidylserine, an early apoptosis hallmark. BaCol PLA2 had high indirect hemolytic activity and moderate anticoagulant action. In mice, BaCol PLA2 caused marked edema and myotoxicity, the latter seen as an increase in plasma creatine kinase and histological damage to gastrocnemius muscle fibers that included vacuolization and hyalinization necrosis of the sarcoplasm.

  6. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.

    Science.gov (United States)

    Palm, Noah W; Rosenstein, Rachel K; Yu, Shuang; Schenten, Dominik D; Florsheim, Esther; Medzhitov, Ruslan

    2013-11-14

    Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton (G. hirsutum

    Directory of Open Access Journals (Sweden)

    Angeliki Bourtsala

    2017-03-01

    Full Text Available Phospholipases D (PLDs catabolize structural phospholipids to produce phosphatidic acid (PtdOH, a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ. This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling.

  8. Crystallization and preliminary X-ray diffraction studies of BmooPLA2-I, a platelet-aggregation inhibitor and hypotensive phospholipase A2 from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Salvador, Guilherme H. M.; Marchi-Salvador, Daniela P.; Silveira, Lucas B.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    BmooPLA 2 -I, an acidic, catalytic and nontoxic phospholipase A 2 from B. moojeni venom that is able to inhibit platelet aggregation and induce a hypotensive effect, has been crystallized. An X-ray diffraction data set was collected to 1.6 Å resolution and a molecular-replacement solution was obtained. Phospholipases A 2 (PLA 2 s) are enzymes that cause the liberation of fatty acids and lysophospholipids by the hydrolysis of membrane phospholipids. In addition to their catalytic action, a wide variety of pharmacological activities have been described for snake-venom PLA 2 s. BmooPLA 2 -I is an acidic, nontoxic and catalytic PLA 2 isolated from Bothrops moojeni snake venom which exhibits an inhibitory effect on platelet aggregation, an immediate decrease in blood pressure, inducing oedema at a low concentration, and an effective bactericidal effect. BmooPLA 2 -I has been crystallized and X-ray diffraction data have been collected to 1.6 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C222 1 , with unit-cell parameters a = 39.7, b = 53.2, c = 89.2 Å. The molecular-replacement solution of BmooPLA 2 -I indicated a monomeric conformation, which is in agreement with nondenaturing electrophoresis and dynamic light-scattering experiments. A comparative study of this enzyme with the acidic PLA 2 from B. jararacussu (BthA-I) and other toxic and nontoxic PLA 2 s may provide important insights into the functional aspects of this class of proteins

  9. Phospholipase C-related catalytically inactive protein can regulate obesity, a state of peripheral inflammation

    Directory of Open Access Journals (Sweden)

    Yosuke Yamawaki

    2017-02-01

    Full Text Available Obesity is defined as abnormal or excessive fat accumulation. Chronic inflammation in fat influences the development of obesity-related diseases. Many reports state that obesity increases the risk of morbidity in many diseases, including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, stroke, sleep apnea, and breast, prostate and colon cancers, leading to increased mortality. Obesity is also associated with chronic neuropathologic conditions such as depression and Alzheimer's disease. However, there is strong evidence that weight loss reduces these risks, by limiting blood pressure and improving levels of serum triglycerides, total cholesterol, low-density lipoprotein (LDL-cholesterol, and high-density lipoprotein (HDL-cholesterol. Prevention and control of obesity is complex, and requires a multifaceted approach. The elucidation of molecular mechanisms driving fat metabolism (adipogenesis and lipolysis aims at developing clinical treatments to control obesity. We recently reported a new regulatory mechanism in fat metabolism: a protein phosphatase binding protein, phospholipase C-related catalytically inactive protein (PRIP, regulates lipolysis in white adipocytes and heat production in brown adipocytes via phosphoregulation. Deficiency of PRIP in mice led to reduced fat accumulation and increased energy expenditure, resulting in a lean phenotype. Here, we evaluate PRIP as a new therapeutic target for the control of obesity.

  10. The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans.

    Science.gov (United States)

    Hube, B; Hess, D; Baker, C A; Schaller, M; Schäfer, W; Dolan, J W

    2001-04-01

    The phosphatidylcholine-specific phospholipase D1 (PLD1) in Saccharomyces cerevisiae is involved in vesicle transport and is essential for sporulation. The gene encoding the homologous phospholipase D1 from Candida albicans (PLD1) was used to study the role of PLD1 in this pathogenic fungus. In vitro and in vivo expression studies using Northern blots and reverse transcriptase-PCR showed low PLD1 mRNA levels in defined media supporting yeast growth and during experimental infection, while enhanced levels of PLD1 transcripts were detected during the yeast to hyphal transition. To study the relevance of PLD1 during yeast and hyphal growth, an essential part of the gene was deleted in both alleles of two isogenic strains. In vitro PLD1 activity assays showed that pld1 mutants produced no detectable levels of phosphatidic acid, the hydrolytic product of PLD1 activity, and strongly reduced levels of diacylglycerol, the product of lipid phosphate phosphohydrolase, suggesting no or a negligible background PLD1 activity in the pld1 mutants. The pld1 mutants showed no growth differences compared to the parental wild-type in liquid complex and minimal media, independent of the growth temperature. In addition, growth rates of pld1 mutants in media with protein as the sole source of nitrogen were similar to growth rates of the wild-type, indicating that secretion of proteinases was not reduced. Chlamydospore formation was normal in pld1 mutants. When germ tube formation was induced in liquid media, pld1 mutants showed similar rates of yeast to hyphal transition compared to the wild-type. However, no hyphae formation was observed on solid Spider medium, and cell growth on cornmeal/Tween 80 medium indicated aberrant morphogenesis. In addition, pld1 mutants growing on solid media had an attenuated ability to invade the agar. In a model of oral candidosis, pld1 mutants showed no attenuation of virulence. In contrast, the mutant was less virulent in two different mouse models

  11. Optimization of the degumming process for camellia oil by the use of phospholipase C in pilot-scale system.

    Science.gov (United States)

    Jiang, Xiaofei; Chang, Ming; Jin, Qingzhe; Wang, Xingguo

    2015-06-01

    In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.

  12. Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling

    Directory of Open Access Journals (Sweden)

    Xuemin eWang

    2012-03-01

    Full Text Available The activation of phospholipase D (PLD produces phosphatidic acid (PA, whereas sphingosine kinase (SPHK phosphorylates long-chain bases (LCBs to generate LCB-1-phosphates (LCBPs such as phytosphingosine-1-phosphate (phyto-S1P. PA and phyto-S1P have been identified as lipid messengers. Recent studies have shown that PA interacts directly with SPHKs in Arabidopsis, and that the interaction promotes SPHK activity. However, SPHK and phyto-S1P act upstream of PLDα1 and PA in the stomatal response to abscisic acid (ABA. These findings indicate that SPHK/phyto-S1P and PLD/PA are co-dependent in the amplification of lipid messengers, and that crosstalk between the sphingolipid- and phospholipid-mediated signaling pathways may play important roles in plant stress signaling.

  13. Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-01

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576

  14. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  15. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones✰

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260

  16. Plasma Cholesteryl Ester Transfer, But Not Cholesterol Esterification, Is Related to Lipoprotein-Associated Phospholipase A(2) : Possible Contribution to an Atherogenic Lipoprotein Profile

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Constantinides, Alexander; Perton, Frank G.; van Leeuwen, Jeroen J. J.; van Pelt, Joost L.; de Vries, Rindert; van Tol, Arie

    Context: Plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) predicts incident cardiovascular disease and is associated preferentially with negatively charged apolipoprotein B-containing lipoproteins. The plasma cholesteryl ester transfer (CET) process, which contributes to low high-density

  17. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  18. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  19. Preventive Effects of Bee Venom Derived Phospholipase A₂ on Oxaliplatin-Induced Neuropathic Pain in Mice.

    Science.gov (United States)

    Li, Dongxing; Kim, Woojin; Shin, Dasom; Jung, Yongjae; Bae, Hyunsu; Kim, Sun Kwang

    2016-01-19

    Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A₂ (bvPLA₂) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were observed at three days after an injection of oxaliplatin (6 mg/kg, i.p.) and then decreased gradually to a normal level on days 7-9. The oxaliplatin injection also induced infiltration of macrophages and upregulated levels of the pro-inflammatory cytokine interleukin (IL)-1β in the lumbar dorsal root ganglia (DRG). Daily treatment with bvPLA₂ (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA₂ were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA₂ may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs.

  20. Purification and biochemical characterization of pancreatic phospholipase A2 from the common stingray Dasyatis pastinaca

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-02-01

    Full Text Available Abstract Background Mammalian sPLA2-IB are well characterized. In contrast, much less is known about aquatic ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes. Results A marine stingray phospholipase A2 (SPLA2 was purified from delipidated pancreas. Purified SPLA2, which is not glycosylated protein, was found to be monomeric protein with a molecular mass of 14 kDa. A specific activity of 750 U/mg for purified SPLA2 was measured at optimal conditions (pH 8.5 and 40 °C in the presence of 4 mM NaTDC and 8 mM CaCl2 using PC as substrate. The sequence of the first twenty first amino-acid residues at the N-terminal extremity of SPLA2 was determined and shows a close similarity with known mammal and bird pancreatic secreted phospholipases A2. SPLA2 stability in the presence of organic solvents, as well as in acidic and alkaline pH and at high temperature makes it a good candidate for its application in food industry. Conclusions SPLA2 has several advantageous features for industrial applications. Stability of SPLA2 in the presence of organic solvents, and its tolerance to high temperatures, basic and acidic pH, makes it a good candidate for application in food industry to treat phospholipid-rich industrial effluents, or to synthesize useful chemical compounds.

  1. Cell division requirement for activation of murine leukemia virus in cell culture by irradiation

    International Nuclear Information System (INIS)

    Otten, J.A.; Quarles, J.M.; Tennant, R.W.

    1976-01-01

    Actively dividing cultures of AKR mouse cells were exposed to relatively low dose-rates of γ radiation and tested for activation of endogenous leukemia viruses. Efficient and reproducible induction of virus was obtained with actively dividing cells, but cultures deprived of serum to inhibit cell division before and during γ irradiation were not activated, even when medium with serum was added immediately after irradiation. These results show that cell division was required for virus induction but that a stable intermediate similar to the state induced by halogenated pyrimidines was not formed. In actively dividing AKR cell cultures, virus activation appeared to be proportional to the dose of γ radiation; the estimated frequency of activation was 1-8 x 10 - 5 per exposed cell and the efficiency of activation was approximately 0.012 inductions per cell per rad. Other normal primary and established mouse cell cultures tested were not activated by γ radiation. The requirement of cell division for radiation and chemical activation may reflect some common mechanism for initiation of virus expression

  2. Membrane Restructuring by Phospholipase A2 Is Regulated by the Presence of Lipid Domains

    DEFF Research Database (Denmark)

    Leidy, Chad; Ocampo, Jackson; Duelund, Lars

    2011-01-01

    Secretory phospholipase A2 (sPLA2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (Lα/Lβ) lipid domains. In this work, we explore whether lipid domains can also...... without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary...

  3. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E⁻/⁻mice.

    Science.gov (United States)

    Li, H; Huang, S; Wang, S; Zhao, J; Su, L; Zhao, B; Zhang, Y; Zhang, S; Miao, J

    2013-09-19

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E⁻/⁻ (apoE⁻/⁻) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE⁻/⁻ mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE⁻/⁻ mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE⁻/⁻ mice.

  4. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells

    Czech Academy of Sciences Publication Activity Database

    Scherer, G. F. E.; Paul, R. U.; Holk, A.; Martinec, Jan

    2002-01-01

    Roč. 293, č. 2 (2002), s. 766-770 ISSN 0006-291X R&D Projects: GA ČR GA522/00/1332 Institutional research plan: CEZ:AV0Z5038910 Keywords : CULTURED PARSLEY CELLS * PHYTOALEXIN SYNTHESIS * OXIDATIVE BURST Subject RIV: CE - Biochemistry Impact factor: 2.935, year: 2002

  5. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed.

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T; Li, Jiarui; Trick, Harold N

    2012-02-01

    Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  7. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    Science.gov (United States)

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  9. The loss of plasma membrane lysopip and an increase of PIP2 result from treatment of carrot cells with fungal enzymes

    International Nuclear Information System (INIS)

    Chen, Q.; Boss, W.F.

    1989-01-01

    The plasma membranes of carrot cells grown in suspension culture are enriched with PIP, lysoPIP, and PIP 2 . To determine whether or not these lipids are involved in signal transduction, we have challenged the cells with a mixture of fungal cellulases, Driselase, and monitored the changes in the phosphoinositides and in the phosphoinositide kinase activity. With cell prelabeled with [ 3 H]inositol, two major changes are observed: (1) lysoPIP decreases 30% compared to the sorbitol control and (2) PIP 2 doubles. There is no increase in IP, IP 2 , or IP 3 . In vitro phosphorylation studies using [γ- 32 P]ATP indicate that the increase in PIP 2 is due in part to activation of the PIP kinase. These data suggest that the role of the polyphosphoinositides in signal transduction in plants may involve activation of the PIP kinase and/or activation of A type phospholipases rather than C type phospholipases

  10. Membrane associated phospholipase C from bovine brain

    International Nuclear Information System (INIS)

    Lee, K.; Ryu, S.H.; Suh, P.; Choi, W.C.; Rhee, S.G.

    1987-01-01

    Cytosolic fractions of bovine brain contain 2 immunologically distinct phosphoinositide-specific phospholipase (PLC), PLC-I and PLC-II, whose MW are 150,000 and 145,000 respectively, under a denaturing condition. Monoclonal antibodies were derived against each form and specific radioimmunoassays were developed. Distribution of PLC-I and PLC-II in cytosolic and particulate fractions was measured using the radioimmunoassay. More than 90% of PLC-II was found in the cytosolic fraction, while the anti-PLC-I antibody cross-reacting protein was distributed nearly equally between the soluble fraction and the 2 M KCl extract of particulate fraction. The PLC enzyme in the particulate fraction was purified to homogeneity, yielding 2 proteins of 140 KDa and 150 KDa when analyzed on SDS-PAGE. Neither of the 2 enzymes cross-reacted with anti-PLC-II antibodies, but both could be immunoblotted by all 4 different anti-PLC-I antibodies. This suggests that the 140 KDa PLC was derived from the 150 KDa form. The 150 Kda form from particulate fraction was indistinguishable from the cytosolic PLC-I when their mixture was analyzed on SDS-PAGE. In addition, the elution profile of tryptic peptides derived from the 150 KDa particulate form was identical to that of cytosolic PLC-I. This result indicates that PLC-I is reversibly associated to membranes

  11. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    . The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together...

  12. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    Science.gov (United States)

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  13. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Shota Suenami

    2018-01-01

    Full Text Available Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe, whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect.

  14. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis.

    Science.gov (United States)

    Diez, Veronica; Schujman, Gustavo E; Gueiros-Filho, Frederico J; de Mendoza, Diego

    2012-01-01

    Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development. © 2011 Blackwell Publishing Ltd.

  15. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design

    Science.gov (United States)

    Lättig, Jens; Böhl, Markus; Fischer, Petra; Tischer, Sandra; Tietböhl, Claudia; Menschikowski, Mario; Gutzeit, Herwig O.; Metz, Peter; Pisabarro, M. Teresa

    2007-08-01

    The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.

  16. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies.

    Science.gov (United States)

    Lupo, Gabriella; Motta, Carla; Giurdanella, Giovanni; Anfuso, Carmelina Daniela; Alberghina, Mario; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2013-12-01

    Diabetic retinopathy is one of the leading causes of blindness and the most common complication of diabetes with no cure available. We investigated the role of phospholipases A2 (PLA2) in diabetic retinopathy using an in vitro blood-retinal barrier model (BRB) and an in vivo streptozotocin (STZ)-induced diabetic model. Mono- and co-cultures of endothelial cells (EC) and pericytes (PC), treated with high or fluctuating concentrations of glucose, to mimic the diabetic condition, were used. PLA2 activity, VEGF and PGE2 levels and cell proliferation were measured, with or without PLA2 inhibition. Diabetes was induced in rats by STZ injection and PLA2 activity along with VEGF, TNFα and ICAM-1 levels were measured in retina. High or fluctuating glucose induced BRB breakdown, and increased PLA2 activity, PGE2 and VEGF in EC/PC co-cultures; inhibition of PLA2 in mono- or co-cultures treated with high or fluctuating glucose dampened PGE2 and VEGF production down to the levels of controls. High or fluctuating glucose increased EC number and reduced PC number in co-cultures; these effects were reversed after transfecting EC with small interfering RNA targeted to PLA2. PLA2 and COX-2 protein expressions were significantly increased in microvessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNFα that were reduced by treatment with a cPLA2 inhibitor. In conclusion, the present findings indicate that PLA2 upregulation represents an early step in glucose-induced alteration of BRB, possibly upstream of VEGF; thus, PLA2 may be an interesting target in managing diabetic retinopathy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia

    DEFF Research Database (Denmark)

    Lambert, I. H.; Pedersen, S. F.; Poulsen, K. A.

    2006-01-01

    Phospholipase A2 (PLA2) activity is increased in mammalian cells in response to numerous stimuli such as osmotic challenge, oxidative stress and exposure to allergens. The increased PLA2 activity is seen as an increased release of free, polyunsaturated fatty acids, e.g. arachidonic acid....... Here, we review data that illustrates that stress-induced PLA2 activity involves various PLA2 subtypes and that the PLA2 in question is determined by the cell type and the physiological stress condition....

  18. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.

  19. Rac1 is essential for phospholipase C-gamma2 activation in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Elvers, Margitta; Strehl, Amrei

    2008-01-01

    isoenzymes are activated downstream of G protein-coupled receptors (GPCRs), whereas PLCgamma2 is activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, such as the major platelet collagen receptor glycoprotein (GP) VI or CLEC-2. The mechanisms underlying PLC......Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cbeta or PLCgamma2. Active PLCs trigger Ca(2+) mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCbeta...... regulation are not fully understood. An involvement of small GTPases of the Rho family (Rho, Rac, Cdc42) in PLC activation has been proposed but this has not been investigated in platelets. We here show that murine platelets lacking Rac1 display severely impaired GPVI- or CLEC-2-dependent activation...

  20. Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate.

    Science.gov (United States)

    Rodriguez, A V; Baigorí, M D; Alvarez, S; Castro, G R; Oliver, G

    2001-10-16

    Phosphatidylinositol-specific phospholipase C (PI-PLC) activity was investigated in 25 different lactic acid bacteria (LAB) strains belonging to the genera Lactobacillus, Weisella, and Enterococcus. PI-PLC activity was detected in 44% of the strains studied in culture medium without carbon source. From the PI-PLC positive strains, Lactobacillus rhamnosus ATCC 7469 was selected for translocation studies. Healthy mice were orally administered with a daily dose of 2.0 x 10(9) of viable L. rhamnosus suspension. Viable bacteria were detected in liver and spleen of mice fed with LAB for 7 days. Bacterial colonies isolated from liver were biochemically characterized, and further subjected to randomly amplified polymorphic DNA. Amplification patterns of five strains displayed identical profiles to L. rhamnosus. PI-PLC activity was determined in the strains recovered from liver.

  1. The effects of two phospholipase A2 inhibitors on the neuromuscular blocking activities of homologous phospholipases A2 from the venom of Pseudechis australis, the Australian king brown snake.

    Science.gov (United States)

    Fatehi, M; Rowan, E G; Harvey, A L

    1995-12-01

    Previous studies have shown that homologous phospholipases A2 (PLA2) (Pa-3, Pa-9C, Pa-10F and Pa-11) from the venom of the Australian king brown snake, Pseudechis australis, significantly reduce the resting membrane potentials and quantal contents of endplate potentials recorded from endplate regions of mouse triangularis sterni nerve-muscle preparations. It is not clear whether PLA2 activity is essential for their neuromuscular activities. Therefore, pharmacological studies were carried out to determine whether neuromuscular activity of the toxins changed after treatment with the phospholipase A2 inhibitors 7,7-dimethyl-eicosadienoic acid (DEDA) and manoalide. After incubation of the toxins with manoalide (120 nM), or DEDA (50 microM), no PLA2 activity against 1-stearoyl 2-[3H]arachidonoylglycerophosphocholine was detected. After incubation with manoalide and/or DEDA, the toxins did not depolarize muscle fibre membranes up to 60 min after administration. However, manoalide and DEDA had different influences on the inhibitory effect of these toxic enzymes on acetylcholine release from nerve terminals. Manoalide abolished the inhibitory effect of the toxins on evoked release of acetylcholine. In contrast, DEDA was not able to prevent the reduction of quantal content of endplate potentials induced by the toxins. This study provides evidence that the depolarizing action and the inhibitory effect on release of acetylcholine exerted by these toxic PLA2 from king brown snake are independent phenomena. The evidence for this conclusion was that inhibition of enzymatic activity with an arachidonic acid analogue (DEDA) abolished the depolarizing effect of the toxins but not the effects on the quantal release of acetylcholine from mouse motor nerve terminals. The data suggest that the depolarizing effect of these toxins is probably due to the enzymatic activity. Since manoalide interacts with lysine residues of PLA2 polypeptides, and, as shown here, manoalide prevented

  2. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment.

    Science.gov (United States)

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.

  3. Secretory phospholipase A2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro, but induce unforeseen severe toxicity in vivo

    DEFF Research Database (Denmark)

    Østrem, Ragnhild Garborg; Parhamifar, Ladan; Pourhassan, Houman

    2017-01-01

    The clinical use of liposomal drug delivery vehicles is often hindered by insufficient drug release. Here we present the rational design of liposomes optimized for secretory phospholipase A2 (sPLA2) triggered drug release, and test their utility in vitro and in vivo. We hypothesized...

  4. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  5. Distinct requirements for activation of NKT and NK cells during viral infection.

    Science.gov (United States)

    Tyznik, Aaron J; Verma, Shilpi; Wang, Qiao; Kronenberg, Mitchell; Benedict, Chris A

    2014-04-15

    NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.

  6. Differential Expression of Ccn4 and Other Genes Between Metastatic and Non-metastatic EL4 Mouse Lymphoma Cells

    OpenAIRE

    S. CHAHAL, MANPREET; TERESA KU, H.; ZHANG, ZHIHONG; M. LEGASPI, CHRISTIAN; LUO, ANGELA; M. HOPKINS, MANDI; E. MEIER, KATHRYN

    2016-01-01

    Background: Previous work characterized variants of the EL4 murine lymphoma cell line. Some are non-metastatic, and others metastatic, in syngenic mice. In addition, metastatic EL4 cells were stably transfected with phospholipase D2 (PLD2), which further enhanced metastasis. Materials and Methods: Microarray analyses of mRNA expression was performed for non-metastatic, metastatic, and PLD2-expressing metastatic EL4 cells. Results: Many differences were observed between non-metastatic and meta...

  7. Splenectomy reduces packed red cell transfusion requirement in children with sickle cell disease.

    Science.gov (United States)

    Haricharan, Ramanath N; Roberts, Jared M; Morgan, Traci L; Aprahamian, Charles J; Hardin, William D; Hilliard, Lee M; Georgeson, Keith E; Barnhart, Douglas C

    2008-06-01

    The purpose of the study was to measure the effect of splenectomy on packed-cell transfusion requirement in children with sickle cell disease. Thirty-seven sickle cell children who underwent splenectomies between January 2000 and May 2006 at a children's hospital were reviewed. Data were collected 6 months preoperatively to 12 months postsplenectomy. Paired t test, analysis of variance, and multivariable regression analyses were performed. Of 37 children with median age 11 years (range, 2-18 years), 34 (21 males) had data that allowed analyses. Twenty-six had Hgb-SS, 5 had Hgb-SC, and 3 had Hgb S-Thal. Laparoscopic splenectomy was attempted in 36 and completed successfully in 34 (94% success). The number of units transfused decreased by 38% for 0 to 6 months and by 45% for 6 to 12 months postsplenectomy. Postoperatively, hematocrit levels increased and reticulocytes concurrently decreased with a reduction in transfusion clinic visits. The decrease in transfusion was not influenced by spleen weight, age, or hemoglobin type. Two children had acute chest syndrome (6%), and 1 had severe pneumonia (3%). Laparoscopic splenectomy can be successfully completed in sickle cell children. Splenectomy significantly reduces the packed red cell transfusion requirement and frequency of clinic visits, in sickle cell children for at least 12 months postoperatively.

  8. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling.

    Science.gov (United States)

    Okajima, F; Tomura, H; Sho, K; Kimura, T; Sato, K; Im, D S; Akbar, M; Kondo, Y

    1997-01-01

    Exogenous sphingosine 1-phosphate (S1P) stimulated hydrogen peroxide (H2O2) generation in association with an increase in intracellular Ca2+ concentration in FRTL-5 thyroid cells. S1P also induced inositol phosphate production, reflecting activation of phospholipase C (PLC) in the cells. These three S1P-induced events were inhibited partially by pertussis toxin (PTX) and markedly by U73122, a PLC inhibitor, and were conversely potentiated by N6-(L-2-phenylisopropyl)adenosine, an A1-adenosine receptor agonist. In FRTL-5 cell membranes, S1P also activated PLC in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), but not in its absence. Guanosine 5'-O-(2-thiodiphosphate) inhibited the S1P-induced GTP gamma S-dependent activation of the enzyme. To characterize the signaling pathways, especially receptors and G proteins involved in the S1P-induced responses, cross-desensitization experiments were performed. Under the conditions where homologous desensitization occurred in S1P-, lysophosphatidic acid (LPA)-, and bradykinin-induced induction of Ca2+ mobilization, no detectable cross-desensitization of S1P and bradykinin was observed. This suggests that the primary action of S1P in its activation of the PLC-Ca2+ system was not the activation of G proteins common to S1P and bradykinin, but the activation of a putative S1P receptor. On the other hand, there was a significant cross-desensitization of S1P and LPA; however, a still significant response to S1P (50-80% of the response in the nontreated control cells) was observed depending on the lipid dose employed after a prior LPA challenge. S1P also inhibited cAMP accumulation in a PTX-sensitive manner. We conclude that S1P stimulates H2O2 generation through a PLC-Ca2+ system and also inhibits adenylyl cyclase in FRTL-5 thyroid cells. The S1P-induced responses may be mediated partly through a putative lipid receptor that is coupled to both PTX-sensitive and insensitive G proteins.

  9. Chronic intermittent hypoxia affects the cytosolic phospholipase A(2)alpha/cyclooxygenase 2 pathway via beta(2)-adrenoceptor-mediated ERK/p38 stimulation

    Czech Academy of Sciences Publication Activity Database

    Míčová, P.; Hahnová, K.; Hlaváčková, Markéta; Elsnicová, B.; Chytilová, Anna; Holzerová, Kristýna; Žurmanová, J.; Neckář, Jan; Kolář, František; Nováková, Olga; Novotný, J.

    2016-01-01

    Roč. 423, 1-2 (2016), s. 151-163 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * hypoxia * ischemia/reperfusion * phospholipase A2 * cyclooxygenase 2 * beta-adrenoceptor * MAPK Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.669, year: 2016

  10. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  11. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  12. Phospholipase D mediated transphosphatidylation as a possible new pathway of ethanol metabolism in isolated rat pancreatic acini

    Energy Technology Data Exchange (ETDEWEB)

    Rydzewska, G.; Jurkowska, G.; Gabryelewicz, A. [Akademia Medyczna, Bialystok (Poland)

    1996-12-31

    Activation of pancreatic phospholipase D (PLD) has been previously observed in response to caerulein (Cae), phorbol myristate acetate and growth factors. The physiological role of PLD in pancreatic cells still remains unclear. In the presence of ethanol, PLD catalysed transphosphatidylation reaction, forming phosphatidylethanol (PEt). This study was thus undertaken to determine the involvement of PLD in ethanol metabolism in isolated pancreatic acini and to show the potential physiological consequences of transphosphatidylation. Dispersed pancreatic acini prelabelled with 3H myristic acid were incubated with 500 pM Cae in the presence or absence of different concentrations of ethanol, and labelled phosphatidylethanol (3H PEt) production or phosphatidic acid (3H PA) accumulation were measured. The production of PEt after Cae stimulation in pancreatic acini was significant from 0.5% up to 4% of ethanol in the medium and was not dependent on increasing concentration of ethanol. Prolonged up to 2 h stimulation with Cae in the presence of 1% ethanol did not increase PEt production which was almost stable since 5 min of stimulation. In the presence of different concentrations of ethanol (1-4%), the significant inhibition of PA accumulation was obtained after Cae stimulation, similar to inhibition with a specific PLD inhibitor-wortmannin. These data indicate that Cae activated PLD in the presence of ethanol caused PEt production in pancreatic acini. During formation of PEt in pancreatic acinar cells significant and parallel inhibition of PA accumulation was observed. This indicates the relation of PLD activation in isolated pancreatic acini to ethanol metabolism. Ethanol can act as an inhibitor of PLD activity. Since PA, a product of PLD, is known as a second messenger probably involved in cell proliferation and differentiation, this may suggest a potentially new mechanism for pancreatic tissue injury after ethanol ingestion. (author). 32 refs, 5 figs.

  13. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys......Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined...... for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production...

  14. Mind bomb 1 is required for pancreatic ß-cell formation

    DEFF Research Database (Denmark)

    Horn, Signe; Kobberup, Sune; Jørgensen, Mette C

    2012-01-01

    the insulin producing ß-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of ß-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and ß-cell formation. We found that endoderm...

  15. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    OpenAIRE

    Kadamur, Ganesh; Ross, Elliott M.

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in...

  16. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    Science.gov (United States)

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  17. Phospholipase D mediated transphosphatidylation as a possible new pathway of ethanol metabolism in isolated rat pancreatic acini

    International Nuclear Information System (INIS)

    Rydzewska, G.; Jurkowska, G.; Gabryelewicz, A.

    1996-01-01

    Activation of pancreatic phospholipase D (PLD) has been previously observed in response to caerulein (Cae), phorbol myristate acetate and growth factors. Although PLD involvement has been postulated in pancreatic cell proliferation and differentiation, the physiological role of this enzyme in pancreatic cells still remains unclear. In the presence of ethanol, PLD catalysed transphosphatidylation reaction, forming phosphatidylethanol (PEt). This study was thus undertaken to determine the involvement of PLD in ethanol metabolism in isolated pancreatic acini and to show the potential physiological consequences of transphosphatidylation. Dispersed pancreatic acini prelabelled with 3H myristic acid were incubated with 500 pM Cae in the presence or absence of different concentrations of ethanol, and labelled phosphatidylethanol (3H PEt) production or phosphatidic acid (3H PA) accumulation were measured. The production of PEt after Cae stimulation in pancreatic acini was significant from 0.5% up to 4% of ethanol in the medium and was not dependent on increasing concentration of ethanol. Prolonged up to 2 h stimulation with Cae in the presence of 1% ethanol did not increase PEt production which was almost stable since 5 min of stimulation. In the presence of different concentrations of ethanol (1-4%), the significant inhibition of PA accumulation was obtained after Cae stimulation, similar to inhibition with a specific PLD inhibitor-wortmannin. These data indicate that Cae activated PLD in the presence of ethanol caused PEt production in pancreatic acini. During formation of PEt in pancreatic acinar cells significant and parallel inhibition of PA accumulation was observed. This indicates the relation of PLD activation in isolated pancreatic acini to ethanol metabolism. Ethanol can act as an inhibitor of PLD activity. Since PA, a product of PLD, is known as a second messenger probably involved in cell proliferation and differentiation, this may suggest a potentially new

  18. Major histocompatibility complex-restricted self-recognition in responses to trinitrophenyl-Ficoll. A novel cell interaction pathway requiring self-recognition of accessory cell H-2 determinants by both T cells and B cells

    International Nuclear Information System (INIS)

    Hodes, R.J.; Hathcock, K.S.; Singer, A.

    1983-01-01

    In vitro primary antibody responses to limiting concentrations of trinitrophenyl (TNP)-Ficoll were shown to be T cell dependent, requiring the cooperation of T helper (TH) cells, B cells, and accessory cells. Under these conditions, TH cells derived from long-term radiation bone marrow chimeras were major histocompatibility complex (MHC) restricted in their ability to cooperate with accessory cells expressing host-type MHC determinants. The requirement for MHC-restricted self-recognition by TNP-Ficoll-reactive B cells was assessed under these T-dependent conditions. In the presence of competent TH cells, chimeric B cells were found to be MHC restricted, cooperating only with accessory cells that expressed host-type MHC products. In contrast, the soluble products of certain monoclonal T cell lines were able to directly activate B cells in response to TNP-Ficoll, bypassing any requirement for MHC-restricted self-recognition. These findings demonstrate the existence of a novel cell interaction pathway in which B cells as well as TH cells are each required to recognize self-MHC determinants on accessory cells, but are not required to recognize each other. They further demonstrate that the requirement for self-recognition by B cells may be bypassed in certain T-dependent activation pathways

  19. Epidemiology and phospholipase activity of oral Candida spp. among patients with central nervous system diseases before and after dental cleaning procedure

    Directory of Open Access Journals (Sweden)

    Aurélia Silva Ribeiro

    2010-03-01

    Full Text Available Patients suffering of diseases that affect central nervous system may be considered more susceptible to the infectious diseases of mouth. Sixty-nine patients suffering of cerebral palsy, Down's syndrome and metal retardation were submitted to saliva examination for the presence of Candida spp. before and after a procedure of dental cleaning. The isolates were submitted to assay for verifying phospholipase production. 55.10% of the patients provided isolation of Candida spp. The frequency of isolation obtained before dental procedure was: C. albicans (83.33%, C. krusei (8.33% and C. kefyr, C. parapsilosis and C. glabrata (2.78% each. The frequency after the procedure was: C. albicans (68.57%, C. parapsilosis (11.43%, C. krusei and C. kefyr (8.57% each and Candida glabrata (2.86%. We verified significantly difference (p < 0.01 between populations obtained at the two examinations. Phospholipase production was verified only among C. albicans strains and the proportion of producers was higher when testing isolates obtained after dental cleaning procedure. Studies focused on Candida spp. isolation are useful for better comprehension of the role of these yeasts on the oral flora from patients with cerebral palsy, Down's syndrome and metal retardation.

  20. T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration.

    Science.gov (United States)

    Colombo, Matthew J; Sun, Guizhi; Alugupalli, Kishore R

    2010-09-01

    The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells. In this study, we examined the role of Cxcl13-dependent B cell migration using Borrelia hermsii infection or intraperitoneal immunization with pneumococcal polysaccharide or 4-hydroxy-3-nitrophenyl-acetyl (NP)-Ficoll, all of which induce robust antibody responses from B1b cells. Surprisingly, we found that antibody responses to B. hermsii or to FhbA, an antigenic target of B1b cells, and the resolution of bacteremia were indistinguishable between wild-type and Cxcl13-/- mice. Importantly, we did not observe an expansion of peritoneal B1b cell numbers in Cxcl13-/- mice. Nonetheless, mice that had resolved infection were resistant to reinfection, indicating that the peritoneal B1b cell reservoir is not required for controlling B. hermsii. Furthermore, despite a reduced peritoneal B1b compartment, immunization with pneumococcal polysaccharide vaccine yielded comparable antigen-specific antibody responses in wild-type and Cxcl13-/- mice and conferred protection against Streptococcus pneumoniae. Likewise, immunization with NP-Ficoll elicited similar antibody responses in wild-type and Cxcl13-/- mice. These data demonstrate that homing of B1 cells into the coelomic cavity is not a requirement for generating protective TI antibody responses, even when antigen is initially localized to this anatomical compartment.

  1. Phorbol ester and vasopressin activate phospholipase D in Leydig cells

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1991-01-01

    ]PEt) in a dose-dependent manner at the expense of [H]phosphatidic acid ([H]PA). In cells prelabelled with [H]choline, PMA caused a rapid increase in intracellular free [H]choline. The time course of [H]PEt formation was similar to the time course of intracellular [H]choline formation. The data taken together...

  2. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.

    Science.gov (United States)

    Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David

    2016-09-01

    Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion.

  4. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  5. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  6. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...

  7. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry.

    Science.gov (United States)

    Even, Deborah L; Henley, Allison M; Geraghty, Robert J

    2006-08-01

    Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.

  8. Carotid intima media thickness is associated with plasma lipoprotein-associated phospholipase A(2) mass in nondiabetic subjects but not in patients with type 2 diabetes

    NARCIS (Netherlands)

    Constantinides, Alexander; van Pelt, L. Joost; van Leeuwen, Jeroen J. J.; de Vries, Rindert; Tio, Rene A.; van der Horst, Iwan C. C.; Sluiter, Wim J.; Dullaart, Robin P. F.

    Background A recent meta-analysis showed that both plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) mass and activity independently predict cardiovascular events. Notably, Lp-PLA(2) activity but not mass was found to be a determinant of cardiovascular outcome in type 2 diabetes mellitus.

  9. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population

    International Nuclear Information System (INIS)

    Roeske, John C; Stinchcomb, Thomas G

    2006-01-01

    Alpha-particle emitters are currently being considered for the treatment of micrometastatic disease. Based on in vitro studies, it has been speculated that only a few alpha-particle hits to the cell nucleus are considered lethal. However, such estimates do not consider the stochastic variations in the number of alpha-particle hits, energy deposited, or in the cell survival process itself. Using a tumour control probability (TCP) model for alpha-particle emitters, we derive an estimate of the average number of hits to the cell nucleus required to provide a high probability of eradicating a tumour cell population. In simulation studies, our results demonstrate that the average number of hits required to achieve a 90% TCP for 10 4 clonogenic cells ranges from 18 to 108. Those cells that have large cell nuclei, high radiosensitivities and alpha-particle emissions occurring primarily in the nuclei tended to require more hits. As the clinical implementation of alpha-particle emitters is considered, this type of analysis may be useful in interpreting clinical results and in designing treatment strategies to achieve a favourable therapeutic outcome. (note)

  10. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Steven E Fiester

    Full Text Available Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen

  11. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface.

    Science.gov (United States)

    Kai, Siqi; Li, Xu; Li, Bolin; Han, Xiaofeng; Lu, Xiaolin

    2017-12-20

    Hydrolysis of planar phospholipids catalyzed by honey bee venom phospholipase A 2 (bvPLA 2 ) was studied. Experiments demonstrated that Ca 2+ ions mediated between the lipids and bvPLA 2 , induced reorientation of bvPLA 2 , and activated hydrolysis. One of the hydrolysis products, fatty acids, was desorbed, and the other one, lysophospholipids, self-organized at the interface.

  12. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  13. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  14. Point of care testing of phospholipase A2 group IIA for serological diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Mmesi, Jonas; Bentham, Andrew; Tyreman, Matthew; Abraham, Sonya; Stevens, Molly M.

    2016-02-01

    Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care.Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08423g

  15. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2.

    Science.gov (United States)

    Sivaramakrishnan, V; Ilamathi, M; Ghosh, K S; Sathish, S; Gowda, T V; Vishwanath, B S; Rangappa, K S; Dhananjaya, B L

    2016-01-01

    Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    Science.gov (United States)

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  17. Effect of lipoprotein-associated phospholipase A2 inhibitor on insulin resistance in streptozotocin-induced diabetic pregnant rats.

    Science.gov (United States)

    Wang, Guo-Hua; Jin, Jun; Sun, Li-Zhou

    2018-06-21

    This paper aims to investigate the influence of lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, darapladib, on insulin resistance (IR) in streptozotocin (STZ)-induced diabetic pregnant rats. The rat models were divided into Control (normal pregnancy), STZ + saline (STZ-induced diabetic pregnant rats), STZ + Low-dose and STZ + High-dose darapladib (STZ-induced diabetic pregnant rats treated with low-/high-dose darapladib) groups. Pathological changes were observed by Hematoxylin-eosin (HE) and Immunohistochemistry staining. Lp-PLA2 levels were determined by enzyme-linked immunosorbent assay (ELISA). An automatic biochemical analyzer was used to measure the serum levels of biochemical indicators, and homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were calculated. Western blot was applied to determine levels of inflammatory cytokines. Compared with Control group, rats in the STZ + saline group were significantly decreased in body weight, the number of embryo implantation, the number of insulin positive cells and pancreatic islet size as well as the islet endocrine cells, and high-density lipoprotein (HDL-C) level, but substantially increased in Lp-PLA2, low-density lipoprotein (LDL-C), fatty acids (FFA), serum total cholesterol (TC), triglyceride (TG) levels. Moreover, the increased fasting plasma glucose (FPG) and HOMA-IR and inflammatory cytokines but decreased fasting insulin (FINS) and ISI were also found in diabetic pregnant rats. On the contrary, rats in the darapladib-treated groups were just opposite to the STZ + saline group, and STZ + High-dose group improved better than STZ + Low-dose group. Thus, darapladib can improve lipid metabolism, and enhance insulin sensitivity of diabetic pregnant rats by regulating inflammatory cytokines.

  18. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings

    NARCIS (Netherlands)

    Leeuwen, van W.; Vermeer, J.E.M.; Gadella, T.W.J.; Munnik, T.

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P-2] is an important signalling lipid in mammalian cells, where it functions as a second-messenger precursor in response to agonist-dependent activation of phospholipase C (PLC) but also operates as a signalling molecule on its own. Much of the

  19. Galectin-1 is required for the regulatory function of B cells.

    Science.gov (United States)

    Alhabbab, R; Blair, P; Smyth, L A; Ratnasothy, K; Peng, Q; Moreau, A; Lechler, R; Elgueta, R; Lombardi, G

    2018-02-09

    Galectin-1 (Gal-1) is required for the development of B cells in the bone marrow (BM), however very little is known about the contribution of Gal-1 to the development of B cell regulatory function. Here, we report an important role for Gal-1 in the induction of B cells regulatory function. Mice deficient of Gal-1 (Gal-1 -/- ) showed significant loss of Transitional-2 (T2) B cells, previously reported to include IL-10 + regulatory B cells. Gal-1 -/- B cells stimulated in vitro via CD40 molecules have impaired IL-10 and Tim-1 expression, the latter reported to be required for IL-10 production in regulatory B cells, and increased TNF-α expression compared to wild type (WT) B cells. Unlike their WT counterparts, T2 and T1 Gal-1 -/- B cells did not suppress TNF-α expression by CD4 + T cells activated in vitro with allogenic DCs (allo-DCs), nor were they suppressive in vivo, being unable to delay MHC-class I mismatched skin allograft rejection following adoptive transfer. Moreover, T cells stimulated with allo-DCs show an increase in their survival when co-cultured with Gal-1 -/- T2 and MZ B cells compared to WT T2 and MZ B cells. Collectively, these data suggest that Gal-1 contributes to the induction of B cells regulatory function.

  20. Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: Function of the Asn-His interaction in the catalytic triad

    NARCIS (Netherlands)

    Snijder, H.J.; van Eerde, J.H.; Kalk, K.H.; Dekker, N.; Egmond, M.R.; Dijkstra, B.W.

    2010-01-01

    Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged

  1. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    Science.gov (United States)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  2. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    International Nuclear Information System (INIS)

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts

  3. Substituted thiobenzoic acid S-benzyl esters as potential inhibitors of a snake venom phospholipase A2: Synthesis, spectroscopic and computational studies

    Science.gov (United States)

    Henao Castañeda, I. C.; Pereañez, J. A.; Jios, J. L.

    2012-11-01

    4-Chlorothiobenzoic acid S-benzyl ester (I), 3-nitrothiobenzoic acid S-benzyl ester (II), 4-nitrothiobenzoic acid S-benzyl ester (III) and 4-methylthiobenzoic acid S-benzyl ester (IV) were prepared and characterized by 1H and 13C NMR, Mass spectrometry and IR spectroscopy. Quantum chemical calculations were performed with Gaussian 09 to calculate the geometric parameters and vibrational spectra. Phospholipase A2 (PLA2) was purified from Crotalus durissus cumanensis venom by molecular exclusion chromatography, followed by reverse phase-high performance liquid chromatography. Two studies of the inhibition of phospholipase A2 activity were performed using phosphatidilcholine and 4-nitro-3-octanoyloxybenzoic acid as substrates, in both cases compound II showed the best inhibitory ability, with 74.89% and 69.91% of inhibition, respectively. Average percentage of inhibition was 52.49%. Molecular docking was carried out with Autodock Vina using as ligands the minimized structures of compounds (I-IV) and as protein PLA2 (PDB code 2QOG). The results suggest that compounds I-IV could interact with His48 at the active site of PLA2. In addition, all compounds showed Van der Waals interactions with residues from hydrophobic channel of the enzyme. This interaction would impede normal catalysis cycle of the PLA2.

  4. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    Science.gov (United States)

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  5. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor

    OpenAIRE

    Dasom Shin; Won Choi; Hyunsu Bae

    2018-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic, erythematous, and eczematous skin plaques. We previously reported that phospholipase A2 (PLA2) derived from bee venom alleviates AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) and house dust mite extract (Dermatophagoides farinae extract, DFE) in a murine model. However, the underlying mechanisms of PLA2 action in actopic dermatitis remain unclear. In this study, we showed that PLA...

  6. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast...

  7. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene.

    Science.gov (United States)

    Zeman, M; Mašlaňová, I; Indráková, A; Šiborová, M; Mikulášek, K; Bendíčková, K; Plevka, P; Vrbovská, V; Zdráhal, Z; Doškař, J; Pantůček, R

    2017-04-13

    Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

  8. Effects of arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on prolactin secretion from anterior pituitary cells

    International Nuclear Information System (INIS)

    Camoratto, A.M.

    1988-01-01

    The role of two lipids, arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, as modulators or prolactin secretion has been examined. Stimulators of phospholipase A 2 activity, melittin and mastoparan, were found to increase prolactin release. Melittin also caused release of previously incorporated 3 H-arachidonic acid and this effect was associated with loss of radiolabel from the phospholipid fraction. Exogenous arachidonic acid also stimulated prolactin secretion. Conversely, inhibitors of phospholipase A 2 activity, dibromoacetophenone and U10029A, decreased basal and stimulated prolactin release. Prolactin release could also be lowered by ETYA, BW755C and NDGA, inhibitors of arachidonic acid metabolism. In the second series of experiments the effects of the biologically active phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor, PAF) on prolactin release were examined. PAF is an ether-linked phospholipid known to stimulate granule release in a variety of cell types including both inflammatory and noninflammatory cells. PAF increased release of prolactin from dispersed rat anterior pituitary cells; stimulation was not due to cell lysis. PAF-induced prolactin release could be blocked by the dopaminergic agonists apomorphine and bromocriptine as well as by two PAF receptor antagonists, SRI 63-072 and L-652-731

  9. The role of p97 in iron metabolism in human brain glioma cells

    International Nuclear Information System (INIS)

    Xia Chunlin; Chen Guiwen; Qian Zhongming

    2000-01-01

    Objective: To investigate the role of p97 (melanotransferrin) in iron uptake in human brain glioma cells . Methods: Human brain glioma cell lines, GBM and BT325 were incubated in the medium containing 59 Fe-Citrate. The cells were treated with phosphatidylinositol-phospholipase C (PI-PLC) and pronase. The iron uptake of the cells was expressed as relative iron uptake level according to the cpm measured by the gamma scintillation counter. Results: 59 Fe uptake of the cells was significantly declined with the certain concentration of PI-PCL. 59 Fe uptake of the cells treated with pronase tended to coincide with that of the cells treated without pronase in the increasing concentration of PI-PLC. Conclusion: p97 expresses a high level and plays an important role in iron uptake in human brain glioma cells

  10. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    Science.gov (United States)

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  12. Design of group IIA secreted/synovial phospholipase A(2 inhibitors: an oxadiazolone derivative suppresses chondrocyte prostaglandin E(2 secretion.

    Directory of Open Access Journals (Sweden)

    Jean-Edouard Ombetta

    Full Text Available Group IIA secreted/synovial phospholipase A(2 (GIIAPLA(2 is an enzyme involved in the synthesis of eicosanoids such as prostaglandin E(2 (PGE(2, the main eicosanoid contributing to pain and inflammation in rheumatic diseases. We designed, by molecular modeling, 7 novel analogs of 3-{4-[5(indol-1-ylpentoxy]benzyl}-4H-1,2,4-oxadiazol-5-one, denoted C1, an inhibitor of the GIIAPLA(2 enzyme. We report the results of molecular dynamics studies of the complexes between these derivatives and GIIAPLA(2, along with their chemical synthesis and results from PLA(2 inhibition tests. Modeling predicted some derivatives to display greater GIIAPLA(2 affinities than did C1, and such predictions were confirmed by in vitro PLA(2 enzymatic tests. Compound C8, endowed with the most favorable energy balance, was shown experimentally to be the strongest GIIAPLA(2 inhibitor. Moreover, it displayed an anti-inflammatory activity on rabbit articular chondrocytes, as shown by its capacity to inhibit IL-1beta-stimulated PGE(2 secretion in these cells. Interestingly, it did not modify the COX-1 to COX-2 ratio. C8 is therefore a potential candidate for anti-inflammatory therapy in joints.

  13. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers.

    Science.gov (United States)

    Boonpiyathad, T; Meyer, N; Moniuszko, M; Sokolowska, M; Eljaszewicz, A; Wirz, O F; Tomasiak-Lozowska, M M; Bodzenta-Lukaszyk, A; Ruxrungtham, K; van de Veen, W

    2017-03-01

    The involvement of B cells in allergen tolerance induction remains largely unexplored. This study investigates the role of B cells in this process, by comparing B-cell responses in allergic patients before and during allergen immunotherapy (AIT) and naturally exposed healthy beekeepers before and during the beekeeping season. Circulating B cells were characterized by flow cytometry. Phospholipase A2 (PLA)-specific B cells were identified using dual-color staining with fluorescently labeled PLA. Expression of regulatory B-cell-associated surface markers, interleukin-10, chemokine receptors, and immunoglobulin heavy-chain isotypes, was measured. Specific and total IgG1, IgG4, IgA, and IgE from plasma as well as culture supernatants of PLA-specific cells were measured by ELISA. Strikingly, similar responses were observed in allergic patients and beekeepers after venom exposure. Both groups showed increased frequencies of plasmablasts, PLA-specific memory B cells, and IL-10-secreting CD73 - CD25 + CD71 + B R 1 cells. Phospholipase A2-specific IgG4-switched memory B cells expanded after bee venom exposure. Interestingly, PLA-specific B cells showed increased CCR5 expression after high-dose allergen exposure while CXCR4, CXCR5, CCR6, and CCR7 expression remained unaffected. This study provides the first detailed characterization of allergen-specific B cells before and after bee venom tolerance induction. The observed B-cell responses in both venom immunotherapy-treated patients and naturally exposed beekeepers suggest a similar functional immunoregulatory role for B cells in allergen tolerance in both groups. These findings can be investigated in other AIT models to determine their potential as biomarkers of early and successful AIT responses. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen

    Czech Academy of Sciences Publication Activity Database

    Jabůrek, Martin; Ježek, Jan; Zelenka, Jaroslav; Ježek, Petr

    2013-01-01

    Roč. 45, č. 4 (2013), s. 816-825 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP303/11/P320; GA MŠk(CZ) ME09018 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial uncoupling protein UCP2 * mitochondrial phospholipase A(2) isoform gamma * mitochondrial oxidative stress attenuation * fatty acid * antioxidant mechanism Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  15. Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C

    Czech Academy of Sciences Publication Activity Database

    Upham, B. L.; Bláha, L.; Babica, P.; Park, J.-S.; Sovadinová, I.; Pudrith, Ch.; Rummel, A.M.; Weis, L.M.; Sai, K.; Tithof, P.K.; Gužvič, M.; Vondráček, Jan; Machala, M.; Trosko, J.E.

    2008-01-01

    Roč. 99, č. 4 (2008), s. 696-705 ISSN 1347-9032 R&D Projects: GA ČR(CZ) GA524/05/0595 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : GJIC * phospholipases * tumor promotion Subject RIV: BO - Biophysics Impact factor: 3.471, year: 2008

  16. An electrophysiological study on the effects of Pa-1G (a phospholipase A(2)) from the venom of king brown snake, Pseudechis australis, on neuromuscular function.

    Science.gov (United States)

    Fatehi, M; Rowan, E G; Harvey, A L

    2002-01-01

    The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.

  17. Ultraviolet radiation stimulates the release of arachidonic acid from mammalian cells in culture

    International Nuclear Information System (INIS)

    De Leo, V.A.; Hanson, D.; Weinstein, I.B.; Harber, L.C.

    1985-01-01

    C3H 10T1/2 cells in culture were prelabelled with [ 3 H]arachidonic acid and exposed to UVB radiation. Almost immediately after irradiation cells released labelled arachidonate metabolites into media in a dose dependent manner. This release was inhibited by removing calcium ions from the system and by the addition of dexamethasone and parabromophenacyl bromide to the system. This suggests that the UVB stimulated release of arachidonic acid from membrane phospholipids is, in part, mediated by a phospholipase A 2 enzyme system. Thin layer chromatographic examination of media extracts revealed a dose dependent UVB stimulation of prostaglandin production by cultured cells. (author)

  18. Carvacrol attenuates serum levels of total protein, phospholipase A2 and histamine in asthmatic guinea pig

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2016-11-01

    Full Text Available Objective: Pharmacological effects of carvacrol such as its anti-inflammatory activities have been shows. In this study the effects of carvacrol on serum levels of total protein (TP, phospholipase A2 (PLA2 and histamine in sensitized guinea pigs was evaluated. Materials and Methods: Sensitized guinea pigs were given drinking water alone (group S, drinking water containing three concentrations of carvacrol (40, 80 and 160 µg/ml or dexamethasone. Serum levels of TP, PLA2 and histamine were examined I all sensitized groups as well as a non-sensitized control group (n=6 for each group. Results: In sensitized animals, serum levels of TP, PLA2 and histamine were significantly increased compared to control animals (p

  19. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    Science.gov (United States)

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  20. Effect of the environmental pollutant bisphenol A dimethacylate (BAD) on Ca2+ movement and viability in OC2 human oral cancer cells.

    Science.gov (United States)

    Chien, Jau-Min; Chou, Chiang-Ting; Lu, Yi-Chau; Lu, Ti; Chi, Chao-Chuan; Tseng, Li-Ling; Liu, Shiuh-Inn; Cheng, Jin-Shiung; Kuo, Chun-Chi; Liang, Wei-Zhe; Jan, Chung-Ren

    2013-03-01

    The environmental pollutant bisphenol A dimethacylate (BAD) has been used as a dental composite. The effect of BAD on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in OC2 human oral cancer cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. BAD induced [Ca(2+)]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca(2+). BAD-evoked Ca(2+) entry was suppressed by nifedipine, econazole, and SK&F96365. In Ca(2+)-free medium, incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished BAD-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 did not alter BAD-induced [Ca(2+)]i rise. At 10-30μM, BAD inhibited cell viability, which was not reversed by chelating cytosolic Ca(2+). BAD (20-30μM) also induced apoptosis. Collectively, in OC2 cells, BAD induced a [Ca(2+)]i rise by evoking phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via store-operated Ca(2+) channels. BAD also caused apoptosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

    Science.gov (United States)

    Cheng, Tzuling; Sudderth, Jessica; Yang, Chendong; Mullen, Andrew R.; Jin, Eunsook S.; Matés, José M.; DeBerardinis, Ralph J.

    2011-01-01

    Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis. PMID:21555572

  2. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  3. A novel protein from the serum of Python sebae, structurally homologous with type-γ phospholipase A(2) inhibitor, displays antitumour activity.

    Science.gov (United States)

    Donnini, Sandra; Finetti, Federica; Francese, Simona; Boscaro, Francesca; Dani, Francesca R; Maset, Fabio; Frasson, Roberta; Palmieri, Michele; Pazzagli, Mario; De Filippis, Vincenzo; Garaci, Enrico; Ziche, Marina

    2011-12-01

    Cytotoxic and antitumour factors have been documented in the venom of snakes, although little information is available on the identification of cytotoxic products in snake serum. In the present study, we purified and characterized a new cytotoxic factor from serum of the non-venomous African rock python (Python sebae), endowed with antitumour activity. PSS (P. sebae serum) exerted a cytotoxic activity and reduced dose-dependently the viability of several different tumour cell lines. In a model of human squamous cell carcinoma xenograft (A431), subcutaneous injection of PSS in proximity of the tumour mass reduced the tumour volume by 20%. Fractionation of PSS by ion-exchange chromatography yielded an active protein fraction, F5, which significantly reduced tumour cell viability in vitro and, strikingly, tumour growth in vivo. F5 is composed of P1 (peak 1) and P2 subunits interacting in a 1:1 stoichiometric ratio to form a heterotetramer in equilibrium with a hexameric form, which retained biological activity only when assembled. The two peptides share sequence similarity with PIP {PLI-γ [type-γ PLA(2) (phospholipase A(2)) inhibitor] from Python reticulatus}, existing as a homohexamer. More importantly, although PIP inhibits the hydrolytic activity of PLA(2), the anti-PLA(2) function of F5 is negligible. Using high-resolution MS, we covered 87 and 97% of the sequences of P1 and P2 respectively. In conclusion, in the present study we have identified and thoroughly characterized a novel protein displaying high sequence similarity to PLI-γ and possessing remarkable cytotoxic and antitumour effects that can be exploited for potential pharmacological applications.

  4. Daboxin P, a Major Phospholipase A2 Enzyme from the Indian Daboia russelii russelii Venom Targets Factor X and Factor Xa for Its Anticoagulant Activity.

    Directory of Open Access Journals (Sweden)

    Maitreyee Sharma

    Full Text Available In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0 and neutral pH (pH 7.0 and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48 was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity.

  5. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  6. Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD

    DEFF Research Database (Denmark)

    Givskov, M; Eberl, L; Christiansen, Gunna

    1995-01-01

    When a liquid culture of Serratia spp. reaches the last part of the logarithmic phase of growth it induces the synthesis of several extracellular hydrolytic enzymes. In this communication we show that synthesis and secretion of the extracellular phospholipase is coupled to expression of flagella....... Expression of flagella is demonstrated to follow a growth-phase-dependent pattern. Cloning, complementation studies and DNA-sequencing analysis has identified a genetic region in Serratia liquefaciens which exhibits extensive homology to the Escherichia coli flhD flagellar master operon. Interruption...

  7. Glucose and carbachol activate phospholipase C in digitonin-permeabilized islets

    International Nuclear Information System (INIS)

    Wolf, B.A.; Florholmen, J.; Turk, J.; McDaniel, M.L.

    1987-01-01

    Stimulation of intact islets with D-glucose, the major insulin secretagogue, or with carbachol, a muscarinic agonist, results in the accumulation of inositoltrisphosphate (IP 3 ) suggesting that activation of phospholipase C (PLC) has a major role in stimulus-secretion coupling. Carbachol activation of PLC is an example of receptor-mediated activation in islets, whereas, the mechanism of glucose activation of PLC is controversial since a glucose receptor has not been identified. They have measured PLC activity in digitonin-permeabilized islets. Islets were labeled with 3 H-inositol, permeabilized and IP 3 accumulation measured by HPLC. Carbachol, in the presence of ATP, GTP and 1 μM free Ca 2+ released two-fold more Ins 1,3,4-P 3 than control in a time-dependent manner. Glucose, under the same conditions also significantly released more Ins 1,3,4-P 3 than control. This effect was not due to metabolism of glucose nor to an effect on the IP 3 -phosphomonoesterase. Preliminary Ca 2+ -dependency studies indicate that PLC is not activated by Ca 2+ in the submicromolar range. In conclusion, these studies show that Ca 2+ does not activate PLC, and furthermore, that D-glucose may be recognized directly by PLC

  8. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.

    Science.gov (United States)

    Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara

    2017-12-19

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.

  9. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  10. Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes.

    Science.gov (United States)

    Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V

    1996-07-01

    Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.

  11. Hematopoietic stem cell development requires transient Wnt/β-catenin activity

    DEFF Research Database (Denmark)

    Ruiz-Herguido, Cristina; Guiu, Jordi; D'Altri, Teresa

    2012-01-01

    in the aorta-gonad-mesonephros (AGM) region. We show here that β-catenin is nuclear and active in few endothelial nonhematopoietic cells closely associated with the emerging hematopoietic clusters of the embryonic aorta during mouse development. Importantly, Wnt/β-catenin activity is transiently required...... of mutant cells toward the hematopoietic lineage; however, these mutant cells still contribute to the adult endothelium. Together, those findings indicate that Wnt/β-catenin activity is needed for the emergence but not the maintenance of HSCs in mouse embryos....

  12. Use of fuel cells to meet military requirements for mobile power

    International Nuclear Information System (INIS)

    Andrukaitis, E.

    2004-01-01

    'Full text:' The use of fuel cell technology in military applications will depend on safe, high energy density systems being developed. An important part of using this technology is also the development of alternative hydrogen producing fuels with high energy densities and are easy to transport. Fuel cells are now a very large R and D effort for several military applications around the world. The major reason is because of the high power demands needed requires electrical energy sources that far exceed the capabilities of batteries currently being fielded for portable applications. Fuel cells are regarded as highly efficient, tactical energy converters that can be adapted for wide range of power requirements. They are potentially the lowest weight power source when coupled with batteries or capacitors to form hybrid systems. Generally electrical power is needed to support a number of applications from ultra-high power for electrical pulses (radios, sensors) to reliable, conditioned power for command and control systems. In the future, sustained power for electric drive systems, will also be required. Some of the promising applications in the military and the R and D challenges that remain to reach performance and reliability targets suitable for military requirements will be discussed. (author)

  13. Mural cell associated VEGF is required for organotypic vessel formation.

    Directory of Open Access Journals (Sweden)

    Lasse Evensen

    Full Text Available BACKGROUND: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. METHODS AND FINDINGS: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. CONCLUSIONS: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.

  14. Purification, crystallization and preliminary X-ray diffraction analysis of an acidic phospholipase A2 with vasoconstrictor activity from Agkistrodon halys pallas venom

    International Nuclear Information System (INIS)

    Zou, Zhisong; Zeng, Fuxing; Zhang, Lu; Niu, Liwen; Teng, Maikun; Li, Xu

    2012-01-01

    A vasoconstrictor PLA 2 was purified from Agkistrodon halys pallas venom and the preliminary X-ray diffraction analysis had been described. Phospholipases A 2 (PLA 2 s) are the major component of snake venoms and exert a variety of relevant toxic actions such as neurotoxicity and myotoxicity, amongst others. An acidic PLA 2 , here named AhV-aPA, was purified from Agkistrodon halys pallas venom by means of a three-step chromatographic procedure. AhV-aPA migrated as a single band on SDS–PAGE gels, with a molecular weight of about 14 kDa. Like other acidic aPLA 2 s, AhV-aPA has high enzymatic activity. Tension measurements of mouse thoracic aortic rings remarkably indicated that AhV-aPA could induce a further contractile response on the 60 mM K + -induced contraction, with an EC 50 of 369 nmol l −1 . Rod-shaped crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to a resolution limit of 2.30 Å. The crystals belonged to space group P222, with unit-cell parameters a = 44.27, b = 68.39, c = 81.54 Å

  15. In vitro preparation of radionuclides labeled blood cells: Status and requirements

    International Nuclear Information System (INIS)

    Couret, I.; Desruet, M.D.; Bolot, C.; Chassel, M.L.; Pellegrin, M.

    2010-01-01

    Labelled blood cells permit nuclear medicine imaging using their physiological behaviours. The radiolabeling must be performed in vitro because of the lack of specific markers and requires several highly technical stages of preparation. Labelled blood cells have not the medication drug status, so that the nuclear physician conducting the nuclear test is fully liable. In most cases, the physician delegates the technical responsibility to radio-pharmacists. Although the status of radiolabelled autologous cells is not legally defined and in the absence of a specific repository, it is essential that their preparation is subject to the requirements of the rules of French Good Manufacturing Practice published by Agence francaise de securite sanitaire des produits de sante (Afssaps). It would be desirable to harmonize the practices of radiolabeling cellular blood components by editing a repository. (authors)

  16. Ceruleotoxin: identification in the venom of Bungarus fasciatus, molecular properties and importance of phospholipase A2 activity for neurotoxicity.

    Science.gov (United States)

    Bon, C; Saliou, B

    1983-01-01

    Ceruleotoxin is a potent neurotoxin which was originally purified from a batch of venom labelled Bungarus caeruleus, from the Pasteur Institute. Since NOBLE et al. have shown that this batch differs in its protein composition from that of B. caeruleus provided by Miami Serpentarium, we decided to clarify this point by comparing the composition of venoms from various Bungarus species of several origins. Although individual variations exist between samples of the same species, the venom from B. multicinctus, B. caeruleus and B. fasciatus possess characteristic protein compositions which allowed us to identify the batch used to purify ceruleotoxin as a B. fasciatus venom. We identified and purified ceruleotoxin from each of the five samples of B. fasciatus venoms tested. We failed to find this neurotoxin in either B. multicinctus or B. caeruleus venoms. Purified ceruleotoxin is a slightly basic protein with an isoelectric point of 7.4 which possesses a significant phospholipase A2 activity (200 mumoles lecithin hydrolyzed per min per mg) and a high lethal potency (i.v. LD50 in mice 0.03-0.07 mg/kg). It is composed of two identical subunits of 13,000 mol. wt. which resemble pancreas and snake venom phospholipases in their amino acid composition. Like crotoxin, ceruleotoxin irreversibly blocks the postsynaptic response of Torpedo and Electrophorus electroplaques to cholinergic agonists without preventing the binding of acetylcholine to its receptor. By hydrolyzing critical lipids of the postsynaptic membrane, it stabilizes the acetylcholine receptor - ionophore assembly in a desensitized state.

  17. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  18. Analysis of the active site mechanism of Tyrosyl-DNA phosphodiesterase I: a member of the phospholipase D superfamily

    Science.gov (United States)

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene; Bharatham, Nagakumar; Bashford, Donald; White, Stephen W.; van Waardenburg, Robert C.A.M.

    2011-01-01

    Tyrosyl DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily and hydrolyzes 3′phospho-DNA adducts via two conserved catalytic histidines, one acting as the lead nucleophile and the second as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease SCAN1. We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics and theoretical chemistry. The structures of wild type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts access of a nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitution with Asn, Gln, Leu, Ala, Ser and Thr all result in severely compromised enzymes and Top1-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate which suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pKa of this histidine is crucially dependent upon the second histidine and the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily. PMID:22155078

  19. Identification and characterization of a phospholipase A1 activity type three secreted protein, PP_ExoU from Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea).

    Science.gov (United States)

    Zhang, J; Wang, Y; Guo, H; Mao, Z; Ge, C

    2017-06-01

    Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in farmed Larimichthys crocea in China, encodes a predicted type three effector PP_ExoU, a homolog of the cytotoxin ExoU of Pseudomonas aeruginosa. In this study, secretion of PP_ExoU was tested in various broth, the protein was expressed with the pET30a prokaryotic system, the phospholipase A (PLA) activity of the recombinant protein was determined with fluorogenic phospholipid substrates, fusion expression with green fluorescent protein in transfected HeLa cells was investigated, and the lactate dehydrogenase (LDH) level was measured. The results showed the protein was type three secreted in several media; the recombinant protein displayed significant PLA1 activity with ubiquitin. Fluorescence was observed on the cell membrane and scattered in the cytoplasm of HeLa cells expressing catalytic wild-type PP_ExoU, blebbing and stretching developed in the cell membranes indicating of membrane damage. Fluorescence scattered in the cytoplasm of cells expressing the catalytic inactive protein. A significant LDH level was detected in HeLa cells expressing wild-type PP_exoU, but not in the Ser/Asp-mutated protein, suggestion mutation of predicted catalytic residues abolished the PLA activity. This is the first report on the function of a secreted type three protein from P. plecoglossicida. © 2016 John Wiley & Sons Ltd.

  20. Generation of a parvovirus B19 vaccine candidate.

    Science.gov (United States)

    Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C

    2013-08-20

    Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    Science.gov (United States)

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Classical dendritic cells are required for dietary antigen-mediated peripheral regulatory T cell and tolerance induction

    Science.gov (United States)

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y.; Mucida, Daniel

    2016-01-01

    Oral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b− cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b− cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. PMID:27019226

  3. AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs.

    Directory of Open Access Journals (Sweden)

    Khadija El Hadri

    Full Text Available Secretory Phospholipase A2 of type IIA (sPLA2 IIA plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs, especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1β-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (AICAR treatment strongly repressed IL-1β-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6 was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1β-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1β induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs.

  4. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells.

    Science.gov (United States)

    Kerkelä, Erja; Laitinen, Anita; Räbinä, Jarkko; Valkonen, Sami; Takatalo, Maarit; Larjo, Antti; Veijola, Johanna; Lampinen, Milla; Siljander, Pia; Lehenkari, Petri; Alfthan, Kaija; Laitinen, Saara

    2016-03-01

    Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs. © 2016 AlphaMed Press.

  5. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Cheng Cui

    2013-11-01

    Full Text Available Planar cell polarity (PCP regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin

  6. The polycomb group protein Suz12 is required for embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Hansen, Jacob Bo Højberg

    2007-01-01

    results in early lethality of mouse embryos. Here, we demonstrate that Suz12(-/-) mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12(-/-) ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation......-specific genes. Moreover, Suz12(-/-) ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which...... despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different...

  7. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    Science.gov (United States)

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  8. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  9. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15.

    Directory of Open Access Journals (Sweden)

    Angela Cassese

    Full Text Available Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15 causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1. Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4 restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15 by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance.

  10. Inhibition of Secretory Phospholipase A(2) in Patients with Acute Coronary Syndromes: Rationale and Design of the Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 Weeks (VISTA-16) Trial

    NARCIS (Netherlands)

    Nicholls, Stephen J.; Cavender, Matthew A.; Kastelein, John J. P.; Schwartz, Gregory; Waters, David D.; Rosenson, Robert S.; Bash, Dianna; Hislop, Colin

    2012-01-01

    Background The action of secretory phospholipase A(2) (sPLA(2)) on lipoproteins may render them more susceptible to oxidation, thereby promoting vascular inflammation and increasing cardiovascular risk. Patients with acute coronary syndrome face a high risk of early, recurrent cardiovascular events

  11. Notch2 Is Required for Inflammatory Cytokine-Driven Goblet Cell Metaplasia in the Lung

    Directory of Open Access Journals (Sweden)

    Henry Danahay

    2015-01-01

    Full Text Available The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.

  12. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung.

    Science.gov (United States)

    Danahay, Henry; Pessotti, Angelica D; Coote, Julie; Montgomery, Brooke E; Xia, Donghui; Wilson, Aaron; Yang, Haidi; Wang, Zhao; Bevan, Luke; Thomas, Chris; Petit, Stephanie; London, Anne; LeMotte, Peter; Doelemeyer, Arno; Vélez-Reyes, Germán L; Bernasconi, Paula; Fryer, Christy J; Edwards, Matt; Capodieci, Paola; Chen, Amy; Hild, Marc; Jaffe, Aron B

    2015-01-13

    The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  14. Inhibitory effects of Swietenia macrophylla on myotoxic phospholipases A2

    Directory of Open Access Journals (Sweden)

    Jaime A. Pereañez

    Full Text Available Activity-guided fractionation of an ethanol-soluble extract of the leaves of Swietenia macrophylla King, Meliaceae, led to several fractions. As a result, sample Sm13-16, 23 had the most promising activity against phospholipases A2 (PLA2, Asp49 and Lys49 types. This fraction inhibited PLA2 activity of the Asp49 PLA2, when aggregated substrate was used. On the other hand, this activity was weakly neutralized when monodispersed substrate was used. In addition, Sm13-16, 23 inhibited, in a dose dependent manner, the cytotoxicity, myotoxicity and edema induced by PLA2s, as well as the anticoagulant activity of Asp49 PLA2. Overall, this fraction exhibited a better inhibition of the toxic activities induced by the Lys49 PLA2than those caused by the Asp49 PLA2. The spectral data of Sm13-16, 23 suggested the presence of aromatic compounds (UV λ max (nm 655, 266, and 219; IR λ max KBr (cm-1: ~ 3600-3000 (OH, 2923.07 and 1438.90 (C-H, 1656.69 (C = O, 1618.63 and 1607.67 (C-O, 1285.47772.60. We suggest that phenolic compounds could interact and inhibit the toxins by several mechanisms. Further analysis of the compounds present in the active fraction could be a relevant contribution in the treatment of accidents caused by snake envenomation.

  15. Radiochromatographic assay of N-acyl-phosphatidylethanolamine-specific phospholipase D activity.

    Science.gov (United States)

    Fezza, Filomena; Gasperi, Valeria; Mazzei, Cinzia; Maccarrone, Mauro

    2005-04-01

    A radiochromatographic method has been set up to assay the activity of N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), based on reversed-phase high-performance liquid chromatography (HPLC) and online scintillation counting. The anandamide (N-arachidonoylethanolamine, AEA), product released by NAPE-PLD from the N-arachidonoyl-phosphatidylethanolamine (NArPE) substrate, was separated using a C18 column eluted with methanol-water-acetic acid and was quantified with an external standard method. Baseline separation of AEA and NArPE was completed in less than 15 min, with a detection limit of 0.5 fmol AEA at a signal-to-noise ratio of 4:1. The sensitivity and accuracy of the radiochromatographic procedure allowed detection and characterization of NAPE-PLD activity in very tiny tissue samples or in samples where the enzymatic activity is very low. With this method, we could determine the kinetic constants (i.e., apparent Michaelis-Menten constant (Km) of 40.0+/-5.6 microM and maximum velocity (Vmax) of 22.2+/-3.5 pmol/min per milligram protein toward NArPE) and the distribution of NAPE-PLD activity in brain areas and peripheral tissues of mouse. In addition, we could collect unprecedented evidence that compounds widely used in studies of the endocannabinoid system (e.g., AEA and congeners, receptor a(nta)gonists and inhibitors of AEA degradation) can also affect NAPE-PLD activity.

  16. Protein kinase C promotes restoration of calcium homeostasis to platelet activating factor-stimulated human neutrophils by inhibition of phospholipase C

    Directory of Open Access Journals (Sweden)

    Anderson Ronald

    2009-10-01

    Full Text Available Abstract Background The role of protein kinase C (PKC in regulating the activity of phospholipase C (PLC in neutrophils activated with the chemoattractant, platelet-activating factor (PAF, 20 and 200 nM, was probed in the current study using the selective PKC inhibitors, GF10903X (0.5 - 1 μM and staurosporine (400 nM. Methods Alterations in cytosolic Ca2+, Ca2+ influx, inositol triphosphate (IP3, and leukotriene B4 production were measured using spectrofluorimetric, radiometric and competitive binding radioreceptor and immunoassay procedures, respectively. Results Activation of the cells with PAF was accompanied by an abrupt increase in cytosolic Ca2+ followed by a gradual decline towards basal levels. Pretreatment of neutrophils with the PKC inhibitors significantly increased IP3 production with associated enhanced Ca2+ release from storage vesicles, prolongation of the peak cytosolic Ca2+ transients, delayed clearance and exaggerated reuptake of the cation, and markedly increased synthesis of LTB4. The alterations in Ca2+ fluxes observed with the PKC inhibitors were significantly attenuated by U73122, a PLC inhibitor, as well as by cyclic AMP-mediated upregulation of the Ca2+-resequestering endomembrane ATPase. Taken together, these observations are compatible with a mechanism whereby PKC negatively modulates the activity of PLC, with consequent suppression of IP3 production and down-regulation of Ca2+ mediated pro-inflammatory responses of PAF-activated neutrophils. Conclusion Although generally considered to initiate and/or amplify intracellular signalling cascades which activate and sustain the pro-inflammatory activities of neutrophils and other cell types, the findings of the current study have identified a potentially important physiological, anti-inflammatory function for PKC, at least in neutrophils.

  17. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.

    Science.gov (United States)

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-12-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

  18. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    Science.gov (United States)

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Shielded Cells D ampersand D and Dismantlement System Requirements

    International Nuclear Information System (INIS)

    Witherspoon, R.L.

    1995-01-01

    This document describes the basis for the development of the System for Highly Radioactive Equipment Dismantlement or SHRED. It is the result of a thorough investigation into current and past dismantlement practices at shielded cell facilities around the DOE complex. This information has been used to formulate the development requirements for the SHRED

  20. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Visualization of phosphatidic acid fluctuations in the plasma membrane of living cells.

    Directory of Open Access Journals (Sweden)

    José P Ferraz-Nogueira

    Full Text Available We developed genetically-encoded fluorescent sensors based on Förster Resonance Energy Transfer to monitor phosphatidic acid (PA fluctuations in the plasma membrane using Spo20 as PA-binding motif. Basal PA levels and phospholipase D activity varied in different cell types. In addition, stimuli that activate PA phosphatases, leading to lower PA levels, increased lamellipodia and filopodia formation. Lower PA levels were observed in the leading edge than in the trailing edge of migrating HeLa cells. In MSC80 and OLN93 cells, which are stable cell lines derived from Schwann cells and oligodendrocytes, respectively, a higher ratio of diacylglycerol to PA levels was demonstrated in the membrane processes involved in myelination, compared to the cell body. We propose that the PA sensors reported here are valuable tools to unveil the role of PA in a variety of intracellular signaling pathways.

  2. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    Science.gov (United States)

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia

    Science.gov (United States)

    Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.

    2017-01-01

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537

  4. Inhibition of phospholipase A2 from human plasma by sodium bisulfite

    International Nuclear Information System (INIS)

    Wiggins, C.W.; Franson, R.C.

    1987-01-01

    The anti-oxidant sodium bisulfite has been shown to inhibit acid active(lysosomal), non-Ca ++ -dependent phospholipase A 2 (PLA 2 ), and to interact reversibly with unsaturated fatty acids, altering their chromatographic mobility. The authors examined the effect of bisulfite on neutral active, Ca ++ -dependent PLA 2 from human plasma. Using [1- 14 C]oleate-labelled autoclaved E. coli as substrate, PLA 2 activity was inhibited in a dose-dependent manner by bisulfite. Maximal inhibition occurred at 100μM bisulfite. Preincubation of plasma for 0-30 minutes with bisulfite resulted in a time-dependent increase in PLA 2 inhibition. Preincubation of substrate with bisulfite had no such effect. When the plasma PLA 2 was purified 25-fold by SP-Sephadex chromatography it was no longer inhibited by bisulfite. The SP-Sephadex wash through fraction, which contained greater than 95% of the applied protein but not PLA 2 activity, did not inhibit the purified enzyme. When incubated with bisulfite however, the SP-wash through fraction produced dose-dependent inhibition of the purified enzyme. These results indicate that sodium bisulfite inhibits human plasma PLA 2 , in vitro, indirectly by interaction with a factor(s) present in plasma and suggests that anti-oxidants may similarly influence expression of extracellular PLA 2 in vivo

  5. Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties.

    Science.gov (United States)

    Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.

  6. Cellular growth in plants requires regulation of cell wall biochemistry.

    Science.gov (United States)

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Specific binding of [alpha-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C

    International Nuclear Information System (INIS)

    Lapetina, E.G.; Reep, B.R.

    1987-01-01

    We have assessed the binding of [alpha- 32 P]GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by NaDodSO 4 /PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with [alpha- 32 P]GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP and by 100 nM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) or GDP; binding was unaffected by 1 nM-1 microM ATP. One main GTP-binding protein (29.5 kDa) was detected in the membrane fraction, while three others (29, 27, and 21 kDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 kDa) were degraded by trypsin; another cytosolic protein (21 kDa) and the membrane-bound protein (29.5 kDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of [alpha- 32 P]GTP to the membrane-bound protein. GTP[gamma S] still stimulated phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTP[gamma S

  8. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    International Nuclear Information System (INIS)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. [ 3 H]PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 μM. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRPγS and GDPβS, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA)

  9. Large, but not small, antigens require time- and temperature-dependent processing in accessory cells before they can be recognized by T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    We have studied if antigens of different size and structure all require processing in antigen-presenting cells of guinea-pigs before they can be recognized by T cells. The method of mild paraformaldehyde fixation was used to stop antigen-processing in the antigen-presenting cells. As a measure...... of antigen presentation we used the proliferative response of appropriately primed T cells during a co-culture with the paraformaldehyde-fixed and antigen-exposed presenting cells. We demonstrate that the large synthetic polypeptide antigen, dinitrophenyl-poly-L-lysine, requires processing. After an initial......-dependent and consequently energy-requiring. Processing is strongly inhibited by the lysosomotrophic drug, chloroquine, suggesting a lysosomal involvement in antigen processing. The existence of a minor, non-lysosomal pathway is suggested, since small amounts of antigen were processed even at 10 degrees C, at which...

  10. Differential Requirements for T Cells in Viruslike Particle- and Rotavirus-Induced Protective Immunity▿

    Science.gov (United States)

    Blutt, Sarah E.; Warfield, Kelly L.; Estes, Mary K.; Conner, Margaret E.

    2008-01-01

    Correlates of protection from rotavirus infection are controversial. We compared the roles of B and T lymphocytes in protective immunity induced either by intranasally administered nonreplicating viruslike particles or inactivated virus or by orally administered murine rotavirus. We found that protection induced by nonreplicating vaccines requires CD4+ T cells and CD40/CD40L. In contrast, T cells were not required for short-term protective immunity induced by infection, but both T-cell-dependent and -independent mechanisms contributed to long-term maintenance of protection. Our findings indicate that more than one marker of protective immunity exists and that these markers depend on the vaccine that is administered. PMID:18184712

  11. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  12. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  13. Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Nacife Valéria Pereira

    1998-01-01

    Full Text Available The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals and -29.3 mV (cells from adult animals. The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.

  14. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Aleksandra; Genander, Maria [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kundu, Parag [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Catchpole, Timothy [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); He, Xiao; Strååt, Klas; Sabelström, Hanna [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Xu, Nan-Jie [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Pettersson, Sven [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); The National Cancer Centre, Singapore General Hospital (Singapore); Henkemeyer, Mark [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Frisén, Jonas, E-mail: jonas.frisen@ki.se [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden)

    2016-10-15

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  15. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    International Nuclear Information System (INIS)

    Jurek, Aleksandra; Genander, Maria; Kundu, Parag; Catchpole, Timothy; He, Xiao; Strååt, Klas; Sabelström, Hanna; Xu, Nan-Jie; Pettersson, Sven; Henkemeyer, Mark; Frisén, Jonas

    2016-01-01

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  16. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  17. Purification, characterization, molecular cloning and extracellular production of a phospholipase A1 from Streptomyces albidoflavus NA297.

    Science.gov (United States)

    Sugimori, Daisuke; Kano, Kota; Matsumoto, Yusaku

    2012-01-01

    A novel metal ion-independent phospholipase A1 of Streptomyces albidoflavus isolated from Japanese soil has been purified and characterized. The enzyme consists of a 33-residue N-terminal signal secretion sequence and a 269-residue mature protein with a deduced molecular weight of 27,199. Efficient and extracellular production of the recombinant enzyme was successfully achieved using Streptomyces lividans cells and an expression vector. A large amount (25 mg protein, 14.7 kU) of recombinant enzyme with high specific activity (588 U/mg protein) was purified by simple purification steps. The maximum activity was found at pH 7.2 and 50 °C. At pH 7.2, the enzyme preferably hydrolyzed phosphatidic acid and phosphatidylserine; however, the substrate specificity was dependent on the reaction pH. The enzyme hydrolyzed lysophosphatidylcholine and not triglyceride and the p-nitrophenyl ester of fatty acids. At the reaction equilibrium, the molar ratio of released free fatty acids (sn-1:sn-2) was 63:37. The hydrolysis of phosphatidic acid at 50 °C and pH 7.2 gave apparent V max and k cat values of 1389 μmol min(-1) mg protein(-1) and 630 s(-1), respectively. The apparent K m and k cat/K m values were 2.38 mM and 265 mM(-1) s(-1), respectively. Mutagenesis analysis showed that Ser11 is essential for the catalytic function of the enzyme and the active site may include residues Ser216 and His218.

  18. Si Shen Wan Regulates Phospholipase Cγ-1 and PI3K/Akt Signal in Colonic Mucosa from Rats with Colitis

    Directory of Open Access Journals (Sweden)

    Duan-yong Liu

    2015-01-01

    Full Text Available The present study explored the feasible pathway of Si Shen Wan (SSW in inhibiting apoptosis of intestinal epithelial cells (IECs by observing activation of phospholipase Cγ-1 (PLC-γ1 and PI3K/Akt signal in colonic mucosa from rats with colitis. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS in the Sprague-Dawley rats. After SSW was administrated for 7 days after TNBS infusion, western blot showed an increment in levels of PI3K, p-Akt, and IL-23 and a decrement in levels of PLC-γ1 and HSP70 in colonic mucosal injury induced by TNBS. Meanwhile, assessments by ELISA revealed an increment in concentrations of IL-2, IL-6, and IL-17 and a reduction in level of TGF-β after TNBS challenge. Impressively, treatment with SSW for 7 days significantly attenuated the expressions of PI3K and p-Akt and the secretion of IL-2, IL-6, IL-17, and IL-23 and promoted the activation of PLC-γ1, HSP70, and TGF-β. Our previous studies had demonstrated that SSW restored colonic mucosal ulcers by inhibiting apoptosis of IECs. The present study demonstrated that the effect of SSW on inhibiting apoptosis of IECs was realized probably by activation of PLC-γ1 and suppression of PI3K/Akt signal pathway.

  19. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  20. Fibroblast Cluster Formation on 3D Collagen Matrices Requires Cell Contraction-Dependent Fibronectin Matrix Organization

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2012-01-01

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  1. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  3. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  4. Distribution of Insertion- and Deletion-Associated Genetic Polymorphisms among Four Mycobacterium tuberculosis Phospholipase C Genes and Associations with Extrathoracic Tuberculosis: a Population-Based Study

    OpenAIRE

    Kong, Y.; Cave, M. D.; Yang, D.; Zhang, L.; Marrs, C. F.; Foxman, B.; Bates, J. H.; Wilson, F.; Mukasa, L. N.; Yang, Z. H.

    2005-01-01

    The Mycobacterium tuberculosis genome contains four phospholipase C (PLC)-encoding genes, designated plcA, plcB, plcC, and plcD, respectively. Each of the four genes contributes to the overall PLC activity of M. tuberculosis. PLC is hypothesized to contribute to M. tuberculosis virulence. Infection of M. tuberculosis strains carrying a truncated plcD gene is associated with the occurrence of extrathoracic tuberculosis. However, whether the other three plc genes are also associated with extrat...

  5. Clofazimine Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Arbace Officioso

    2015-08-01

    Full Text Available Background/Aims: The antimycobacterial riminophenazine clofazimine has previously been shown to up-regulate cellular phospholipase A2 and to induce apoptosis. In erythrocytes phospholipase A2 stimulates eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Phospholipase A2 is in part effective by fostering formation of prostaglandin E2, which triggers Ca2+ entry. Stimulators of Ca2+ entry and eryptosis further include oxidative stress and energy depletion. The present study tested, whether and how clofazimine induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, cytosolic Ca2+ activity ([Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS from 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, and cytosolic ATP level utilizing a luciferin-luciferase assay kit. Results: A 24-48 hours exposure of human erythrocytes to clofazimine (≥1.5 µg/ml significantly increased the percentage of annexin-V-binding cells without appreciably modifying forward scatter. Clofazimine significantly increased [Ca2+]i, significantly decreased cytosolic ATP, but did not significantly modify ROS. The effect of clofazimine on annexin-V-binding was significantly blunted, but not fully abolished by removal of extracellular Ca2+, and by phospholipase A2 inhibitor quinacrine (25 µM. Clofazimine further augmented the effect of Ca2+ ionophore ionomycin (0.1 µM on eryptosis. The clofazimine induced annexin-V-binding was, however, completely abrogated by combined Ca2+ removal and addition of quinacrine. Conclusion: Clofazimine stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on entry of extracellular Ca2+, paralleled by cellular energy depletion and sensitive to

  6. Human T cell colony formation in microculture: analysis of growth requirements and functional activities.

    Science.gov (United States)

    Gelfand, E W; Lee, J W; Dosch, H M; Price, G B

    1981-03-01

    A microculture method in methylcellulose has been developed for the study of human T cell colony formation. The technique is simple, reliable, does not require preincubation with lectin and requires small numbers of cells. Colony formation was dependent on the presence of phytohemagglutin-conditioned medium, a T colony precursor cell (TCPC), and a "helper" or accessory T cell. Plating efficiency was increased 10-fold in the presence of irradiated feeder cells. Progenitors of the T colony cells were identified in peripheral blood, tonsil, and spleen but not in thymus or thoracic duct. They were isolated in the E-rosetting, theophylline-resistant, Fc-IgG-negative cell populations. In peripheral blood the frequency of TCPC and accessory cells, the T colony forming unit, was estimated to be 8 X 10(-3). Colony cells proliferated in response to lectins and allogeneic cells. Forty to 80% of the cells were Ia-positive and stimulated both autologous and allogeneic mixed lymphocyte responses. They were incapable of mediating antibody-dependent cytotoxicity. In contrast, they were effective in assays of spontaneous cytotoxicity but only against certain target cells. This method for the analysis of T colony formation should prove valuable in the functional analysis of T cell subsets in immunodeficiency states or the transplant recipient.

  7. Invasion of Ureaplasma diversum in Hep-2 cells

    Directory of Open Access Journals (Sweden)

    Braga Antonio

    2010-03-01

    Full Text Available Abstract Background Understanding mollicutes is challenging due to their variety and relationship with host cells. Invasion has explained issues related to their opportunistic role. Few studies have been done on the Ureaplasma diversum mollicute, which is detected in healthy or diseased bovine. The invasion in Hep-2 cells of four clinical isolates and two reference strains of their ureaplasma was studied by Confocal Laser Scanning Microscopy and gentamicin invasion assay. Results The isolates and strains used were detected inside the cells after infection of one minute without difference in the arrangement for adhesion and invasion. The adhesion was scattered throughout the cells, and after three hours, the invasion of the ureaplasmas surrounded the nuclear region but were not observed inside the nuclei. The gentamicin invasion assay detected that 1% of the ATCC strains were inside the infected Hep-2 cells in contrast to 10% to the clinical isolates. A high level of phospholipase C activity was also detected in all studied ureaplasma. Conclusions The results presented herein will help better understand U. diversum infections, aswell as cellular attachment and virulence.

  8. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    Science.gov (United States)

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  9. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    Science.gov (United States)

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  10. Phospholipases A2: enzymatic assay for snake venom (Naja naja karachiensis) with their neutralization by medicinal plants of Pakistan.

    Science.gov (United States)

    Asad, Muhammad H H B; Durr-E-Sabih; Yaqab, Tahir; Murtaza, Ghulam; Hussain, Muhammad S; Hussain, Muhammad S; Nasir, Muhammad T; Azhar, Saira; Khan, Shujaat A; Hussain, Izhar

    2014-01-01

    Phospholipases A2 (PLA2) are the most lethal and noxious component of Naja naja karachiensis venom. They are engaged to induce severe toxicities after their penetration in victims. Present study was designed to highlight hydrolytic actions of PLA. in an egg yolk mixture and to encounter their deleterious effects via medicinal plants of Pakistan. PLA2 were found to produce free fatty acids in a dose dependent manner. Venom at concentration of 0.1 mg was found to liberate 26.6 pmoles of fatty acids with a decline in pH1 of 0.2 owing to the presence of PLA2 (133 Unit/mg). When quantity of venom was increased up to 8 mg, it caused to release 133 pmoles of free fatty acids with a decrease in 1.0 pH due to abundance in PLA, (665 Unit/mg). The rest of other doses of venom (0.3-4.0 mg) was found to liberate fatty acids between these two upper and lower limits. Twenty eight medicinal plants (0.1-0.6 mg) were tried to abort PLA, hydrolytic action, however, all were found useful (50-100%) against PLA,. Bauhinia variegate L., Citrus limon (L.). Burm.f. Enicostemnma hyssopifolium (Willd.) Verdoorn, Ocimum sanctum. Psoralea corylifolia L. and Stenolobium stans (L.) D. Don were found excellent in switching off 100% phospholipases A, at their lowest concentration (0.1 mg). Three plants extract were found useful only at lower concentration (0.1 mg), however, their higher doses were seemed to aggravate venom response. Eight medicinal plants failed to neutralize PLA, rather their higher doses were found effective. Standard antidote and rest of other plants extract were able to show maximum of 50% efficiencies. Therefore, it is necessary to identify and isolate bioactive constituent(s) from above cited six medicinal plants to eradicate the problem of snake bite in the future.

  11. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.

    Science.gov (United States)

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J V

    2016-10-27

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.

  12. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-01-01

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  13. Phospholipase C-independent effects of 3M3FBS in murine colon.

    Science.gov (United States)

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  14. Mast cell protease 6 is required for allograft tolerance.

    Science.gov (United States)

    de Vries, V C; Elgueta, R; Lee, D M; Noelle, R J

    2010-09-01

    It has been shown that mast cells (MC) are absolutely required for transplant acceptance. However, only a few of the numerous mediators produced by MC have been proposed as potential mechanisms for the observed immunosuppression. The role of proteases in acquired immune tolerance as such has not yet been addressed. In this study, we have shown the requirement for MC protease 6 (MCP6), an MC-specific tryptase, to establish tolerance toward an allogeneic skin graft. The substrate for MCP6 is interleukin (IL)-6, cytokine generally considered to indicate transplant rejection. Herein we have shown an inverse correlation between MCP6 and IL-6. High expression of MCP6 is accompanied by low levels of IL-6 when the allograft is accepted, whereas low expression of MCP6 in combination with high levels of IL-6 are observed in rejecting grafts. Moreover, tolerance toward an allogeneic graft cannot be induced in MCP6(-/-) mice. Rejection observed in these mice was comparable to that of MC-deficient hosts; it is T-cell mediated. These findings suggest that MCP6 actively depletes the local environment of IL-6 to maintain tolerance. 2010. Published by Elsevier Inc.

  15. Lysophosphatidic Acid Regulation and Roles in Human Prostate Cancer

    Science.gov (United States)

    2006-08-01

    IGF-II ( insulin -like growth factor-II), and hormones have been implicated in the growth and survival of prostate cancer cells [1]. A recent addition to...sphingomyelin. In the synthesis of sphingomyelin, a phosphocholine group is transferred from phosphatidylcholine to ceramide. Sphin- gomyelin synthesis...cytotoxicity of TNF-α [78]. A phosphatidylcholine -specific phospholipase C activity was also required for aSMase activa- tion [79,80]. It is assumed that

  16. Distinct enzymatic and cellular characteristics of two secretory phospholipases A2 in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Nakahama, Tomoyuki; Nakanishi, Yoshito; Viscomi, Arturo R; Takaya, Kohei; Kitamoto, Katsuhiko; Ottonello, Simone; Arioka, Manabu

    2010-04-01

    Microbial secretory phospholipases A(2) (sPLA(2)s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA(2)s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA(2)s. Two sPLA(2)s differ in pH optimum, Ca(2+) requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA(2) overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA(2) overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either DeltasplaA or DeltasplaB mutants, hyphal growth of DeltasplaB, but not that of DeltasplaA, displayed increased sensitivity to H(2)O(2) treatment. These data indicate that two A. oryzae sPLA(2) enzymes display distinct, presumably non-redundant, physiological functions.

  17. Characterization of Serum Phospholipase A2 Activity in Three Diverse Species of West African Crocodiles

    Directory of Open Access Journals (Sweden)

    Mark Merchant

    2011-01-01

    Full Text Available Secretory phospholipase A2, an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus and the African dwarf crocodile (Osteolaemus tetraspis. Product formation was inhibited by BPB, a specific PLA2 inhibitor, confirming that the activity was a direct result of the presence of serum PLA2. Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA2 activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria.

  18. Purification and partial characterization of phospholipases A2 from Bothrops asper (barba amarilla snake venom from Chiriguaná (Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    J. Ramírez-Avila

    2004-01-01

    Full Text Available Components with phospholipase A2 activity were isolated by gel filtration and cationic exchange chromatography from the venom of Bothrops asper snakes from Chiriguaná, Colombia (9°22´N; 73°37´W. Five fractions were obtained by the gel filtration, and PLA2 activity was found in fraction 3 (F3. In the cationic exchange chromatography, F3 showed eight components with PLA2 activity. Six of these components appeared as one band in polyacrylamide gel electrophoresis (SDS-PAGE. Fractions II and VII exhibited an optimal activity at pH 9 and 52ºC. The optimum calcium concentration for fraction II was 48 mM and for fraction VII, 384 mM. Both fractions showed thermal stability. Fraction II was stable at pH values between 2.5 and 9, and fraction VII, between 2.5 and 8. The Michaelis Menten constant (K M was 3.5x10-3 M for fraction II and 1.6x10-3 M for fraction VII. The molecular weight was 16,000 Dalton for fraction II and 17,000 Dalton for fraction VII. Both isoenzymes did not show any toxic activity (DL50 at 5.3 and 4 µg/g. The two fractions showed different kinetic constant (K M, calcium requirement, and substrate specificity for haemolytic activity.

  19. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pietilä, Mika [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu University Hospital, Aapistie 5a, P.O. Box 5000, FIN-90014 (Finland); Kuvaja, Paula [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7, P.O. Box 5000, FIN-90014 (Finland); Department of Pathology, Oulu University Hospital, P.O. Box 50, FIN-90029 OYS, Oulu (Finland); Kaakinen, Mika [Biocenter Oulu, University of Oulu, P.O. Box 5000, FI-90014 (Finland); Kaul, Sunil C.; Wadhwa, Renu [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan); Uemura, Toshimasa, E-mail: t.uemura@aist.go.jp [National Institute of Advanced industrial Sciences and Technology, Tsukuba, Ibaraki 305 8562 (Japan)

    2013-11-01

    The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells.

  20. Multiple modes of proepicardial cell migration require heartbeat.

    Science.gov (United States)

    Plavicki, Jessica S; Hofsteen, Peter; Yue, Monica S; Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2014-05-15

    injected hearts. Epicardial cells stem from a heterogeneous population of progenitors, suggesting that the progenitors in the PE have distinct identities. PE cells attach to the heart via a cellular bridge and free-floating cell clusters. Pericardiac fluid advections are not necessary for the development of the PE cluster, however heartbeat is required for epicardium formation. Epicardium formation can occur in culture without normal hydrodynamic and hemodynamic forces, but not without contraction.