WorldWideScience

Sample records for cells recruits vcam-1

  1. Inhibiting focal adhesion kinase (FAK) blocks IL-4 induced VCAM-1 expression and eosinophil recruitment in vitro and in vivo.

    Aulakh, Gurpreet K; Petri, Björn; Wojcik, Katarzyna M; Colarusso, Pina; Lee, James J; Patel, Kamala D

    2018-04-06

    Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment. ©2018 Society for Leukocyte Biology.

  2. A Human Antibody That Binds to the Sixth Ig-Like Domain of VCAM-1 Blocks Lung Cancer Cell Migration In Vitro

    Mi Ra Kim

    2017-03-01

    Full Text Available Vascular cell adhesion molecule-1 (VCAM-1 is closely associated with tumor progression and metastasis. However, the relevance and role of VCAM-1 in lung cancer have not been clearly elucidated. In this study, we found that VCAM-1 was highly overexpressed in lung cancer tissue compared with that of normal lung tissue, and high VCAM-1 expression correlated with poor survival in lung cancer patients. VCAM-1 knockdown reduced migration of A549 human lung cancer cells into Matrigel, and competitive blocking experiments targeting the Ig-like domain 6 of VCAM-1 (VCAM-1-D6 demonstrated that the VCAM-1-D6 domain was critical for VCAM-1 mediated A549 cell migration into Matrigel. Next, we developed a human monoclonal antibody specific to human and mouse VCAM-1-D6 (VCAM-1-D6 huMab, which was isolated from a human synthetic antibody library using phage display technology. Finally, we showed that VCAM-1-D6 huMab had a nanomolar affinity for VCAM-1-D6 and that it potently suppressed the migration of A549 and NCI-H1299 lung cancer cell lines into Matrigel. Taken together, these results suggest that VCAM-1-D6 is a key domain for regulating VCAM-1-mediated lung cancer invasion and that our newly developed VCAM-1-D6 huMab will be a useful tool for inhibiting VCAM-1-expressing lung cancer cell invasion.

  3. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    Pei-Chen Wang

    2014-02-01

    Full Text Available VCAM-1 (CD106, a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1. In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.

  4. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  5. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-01-01

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  6. Targeting Rapamycin to Podocytes Using a Vascular Cell Adhesion Molecule-1 (VCAM-1-Harnessed SAINT-Based Lipid Carrier System.

    Ganesh Ram R Visweswaran

    Full Text Available Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes.

  7. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.

    Hideki Uosaki

    Full Text Available RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1 antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium, CD140b (pericytes and TRA-1-60 (undifferentiated hESCs/hiPSCs. 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from h

  8. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  9. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells.

    Yao Liu

    Full Text Available The hematopoietic inductive microenvironment (HIM is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood-derived stromal cells (HUCBSCs and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34(+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were "homed in" to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.

  10. Tumor necrosis factor-α enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-01-01

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-α (TNF-α) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-α-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer–endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-α could enhance cancer–endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer–endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: ► Spontaneous oral cancer–endothelial cell fusion. ► TNF-α enhanced cell fusions. ► VCAM-1/VLA-4 expressed in oral cancer. ► TNF-α increased expression of VCAM-1 on endothelial cells. ► VCAM-1/VLA-4 mediated TNF-α-enhanced cell fusions.

  11. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  12. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    Loría Frida

    2011-08-01

    Full Text Available Abstract Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV infection of brain endothelial cells using in vitro and in vivo approaches. Methods i in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii in vivo: CB1 receptor deficient mice (Cnr1-/- infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-, the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor

  13. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-01-01

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-κB in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS

  14. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  15. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (Pcacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  16. MicroRNA-181a-5p Impedes IL-17-Induced Nonsmall Cell Lung Cancer Proliferation and Migration through Targeting VCAM-1

    Yang Cao

    2017-05-01

    Full Text Available Aim: The contribution of the inflammatory mediator interleukin-17 (IL-17 in nonsmall cell lung cancer (NSCLC malignancy has been reported in the literature. MicroRNA-181a-5p (miR-181a-5p acts as a tumor suppressor which can regulate target gene at the posttranscriptional level. Our study aimed to investigate the interaction between IL-17 and miR-181a-5p in NSCLC. Methods: 35 patients with NSCLC and 24 COPD controls were selected and examined in our study. In vitro, H226 and H460 cell lines were exposed to different doses (20, 40, 60, and 80 ng/mL of IL-17 to examine the effect of IL-17 on miR-181a-5p and vascular cell adhesion molecule 1 (VCAM-1 expression. MiR-181 mimic and miR-181a-5p inhibitor were transfected to explore the regulation of VCAM-1 as well as tumor cell proliferation and migration. Results: miR-181a-5p expression was downregulated, and IL-17 and VCAM-1 expression was upregulated in NSCLC tissues. Furthermore, IL-17 decreased miR-181a-5p expression but increased VCAM-1 expression in H226 and H460 cells. MiR-181 regulated VCAM-1 expression through binding to 3’-UTR sequence. MiR-181 attenuated tumor cell proliferation and migration. IL-17 modulated miR-181a-5p expression through activating NF-κB but not Stat3. Conclusion: Taken together, our data show the regulation of VCAM-1 expression by miR-181a-5p under IL-17 exposure, predicting a potential way for counteracting cancer metastasis.

  17. Tanshinone II A Attenuates TNF-α-Induced Expression of VCAM-1 and ICAM-1 in Endothelial Progenitor Cells by Blocking Activation of NF-κB

    Jin-Xiu Yang

    2016-11-01

    Full Text Available Background/Aims: Tanshinone IIA (Tan IIA is effective in the treatment of inflammation and atherosclerosis. The adhesion of inflammatory cells to vascular endothelium plays important role in atherogenic processes. This study examined the effects of Tan IIA on expression of adhesion molecules in tumor necrosis factor-α (TNF-α-induced endothelial progenitor cells (EPCs. Methods: EPCs were pretreated with Tan IIA and stimulated with TNF-α. Mononuclear cell (MNC adhesion assay was performed to assess the effects of Tan IIA on TNF-α-induced MNC adhesion. Expression of vascular cell adhesion molecule-1 (VCAM-1/intracellular adhesion molecule-1 (ICAM-1 and activation of Nuclear factor κB (NF-κB signaling pathway were measured. Results: The results showed that the adhesion of MNCs to TNF-α-induced EPCs and expression of VCAM-1/ICAM-1 in EPCs were promoted by TNF-α, which were reduced by Tan IIA. TNF-α increased the amount of phosphorylation of NF-κB, IκB-α and IKKα/β in cytosolic fractions and NF-κB p65 in nucleus, while Tan IIA reduced its amount. Conclusion: This study demonstrated a novel mechanism for the anti-inflammatory/anti-atherosclerotic activity of Tan IIA, which may involve down-regulation of VCAM-1 and ICAM-1 through partial blockage of TNF-α-induced NF-κB activation and IκB-α phosphorylation by the inhibition of IKKα/β pathway in EPCs.

  18. VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro.

    Yang, Hong; Zhao, Fenglong; Li, Ying; Xu, Mingming; Li, Li; Wu, Chunhui; Miyoshi, Hirokazu; Liu, Yiyao

    2013-01-01

    Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe(3)O(4)@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC) were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS) activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles was also significantly greater than that of nontargeted Fe(3)O(4)@SiO2(FITC)-NH2 nanoparticles. Magnetic resonance images showed that the superparamagnetic iron oxide cores of the VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles could also act as a contrast agent for magnetic resonance imaging. Taken together, the cumulative adhesion and uptake potential of

  19. PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3β/GATA-6 signaling pathways in TNF-α-activated human endothelial cells.

    Tsoyi, Konstantin; Jang, Hwa Jin; Nizamutdinova, Irina Tsoy; Park, Kyungok; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2010-11-01

    Phosphotase and tensin homolog deleted on chromosome 10 (PTEN) is a potent negative regulator of PI3K/Akt pathway. Here, we tried to elucidate the role of PTEN in the regulation of endothelial adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1, induced by TNF-α in human endothelial cells (ECs). Transfection with PTEN overexpressing vector resulted in the significant decrease in phosphorylation of Akt in TNF-α-treated ECs. PTEN strongly inhibited VCAM-1 but not ICAM-1, however this inhibitory effect was reversed by co-transfection with constitutively active-Akt (CA-Akt-HA) in TNF-α-stimulated ECs. Additionally, silencing of PTEN with specific siRNA showed significant increase of phosphor-Akt compared with TNF-α alone treated ECs. siPTEN significantly upregulated VCAM-1 but was indifferent to ICAM-1 in TNF-α-treated cells. Further, chromatin immunoprecipitation (ChIP) assay showed that PTEN targets GATA-6 but not IRF-1 binding to VCAM-1 promoter. In addition, GATA-6 is associated with glycogen synthesis kinase-3beta (GSK-3β) which is in turn regulated by PTEN-dependent Akt activity. Finally, PTEN significantly prevented monocyte adhesion to TNF-α-induced ECs probably through VCAM-1 regulation. It is concluded that PTEN selectively inhibits expression of VCAM-1 but not ICAM-1 through modulation of PI3K/Akt/GSK-3β/GATA-6 signaling cascade in TNF-α-treated ECs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. VCAM1 and ICAM1 expression in oral lichen planus

    Seyedmajidi, Maryam; Shafaee, Shahryar; Bijani, Ali; Bagheri, Soodabeh

    2013-01-01

    Oral lichen planus is a chronic inflammatory immune-mediated disease. ICAM-1 and VCAM-1 are vascular adhesion molecules that their receptors are located on endothelial cells and leukocytes. The aim of this study is the immunohistochemical evaluation of VCAM1 and ICAM1 in oral lichen planus and to compare these two markers with normal mucosa for evaluation of angiogenesis. This descriptive-analytical study was performed on 70 paraffined blocks of oral lichen planus and 30 normal mucosa samples taken from around the lesions. Samples were stained with H & E and then with Immunohistochemistry using monoclonal mouse anti human VCAM1 (CD106), & monoclonal mouse anti human ICAM1(CD54) for confirmation of diagnosis. Slides were evaluated under light microscope and VCAM1 and ICAM1 positive cells (endothelial cells and leukocytes) were counted. Data were analyzed with Mann-Whitney test, Wilcoxon and Chi-Square and poral lichen planus according to the percentage of stained cells (p=0.000& p=0.000, Mann-Whitney test). Thirty cases of oral normal mucosa associated with lichen planus showed that the VCAM1 has increased significantly in comparison to normal mucosa (plichen planus and normal mucosa, showed a significantly difference (plichen planus was not observed (p>0.05). Regarding the results, it seems that high expression of VCAM1 and ICAM1 is related to oral lichen planus. PMID:24551788

  1. CORRELATION BETWEEN PROTEIN-WITH-MOLECULAR-WEIGHT-53 (P53, BURKIT CELL LYMPHOMA 2 (BCL2, AND FAS LIGAND (FASL AND VASCULAR-CELL-ADHESION-MOLECULE-1 (VCAM-1 MRNA EXPRESSION LEVELS IN A PATHOGENESIS STUDY OF PREECLAMPSIA

    Mintareja Teguh

    2014-06-01

    Full Text Available Objective: To determine the role of protein-with-molecular-weight-53 (p53, burkit cell lymphoma 2 (Bcl2, Fas ligand (FasL mRNA, and vascular cell adhesion molecule 1 (VCAM-1, known as the apoptosis-related molecular pathway, in preeclamptic patients. Methods: Observation on the correlation between the mRNA levels of p53, Bcl2 and FasL and VCAM-1 in 31 subjects at 28-42 weeks gestational age was performed in this study using the real time reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The results showed that p53 mRNA increased (>1.2350 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.010, Bcl2 mRNA was lower (≤0.9271 ng/μL in the preeclampsia group than the control group (p=0.041. There was also a tendency of increased FasL mRNA expression (>0.5509 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.300. The level of VCAM-1 elevated (>890.08 ng/mL in the preeclampsia group compared to the normal pregnancy group (p=0.001. In preeclampsia, the correlation between the Bcl2/p53 ratio and VCAM-1 was r=0.541 (p=0.002, whereas the correlation in normal pregnancy was r=0.099 (p=0.595. Conclusions: There are correlations between the mRNA expression levels of p53 and Bcl2 as an intrinsic pathway of apoptosis along with the VCAM-1 levels in the incidence of preeclampsia. However, no correlation is found between FasL mRNA expression and the incidence of preeclampsia.

  2. ICAM-1 and VCAM-1 expression by endothelial cells grown on fibronectin-coated TCPS and PS

    van der Zijpp, Y.J.T.; Poot, Andreas A.; Feijen, Jan

    2003-01-01

    Small-diameter vascular grafts rapidly fail as a result of blood coagulation and platelet deposition. Endothelial cells lining the inner side of blood vessels can provide the graft lumen with an antithrombogenic surface. One of the remaining problems is cell detachment after restoration of blood

  3. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  4. Correlation of VCAM-1 expression in serum, cord blood, and placental tissue with gestational hypertension associated with fetal growth restriction in women from Xingtai Hebei, China.

    Zhang, H G; Guo, W; Gu, H F; Chen, S B; Wang, J Q; Qiao, Z X; Ma, H S; Geng, S X

    2016-08-26

    The aim of this study was to investigate the expression of vascular adhesion molecule (VCAM)-1 in the maternal serum, cord blood, and placental tissue of pregnant women from Xingtai, Hebei, with gestational hypertension (GH) combined with fetal growth restriction (FGR). A total of 108 patients with GH combined with FGR (GH-FGR), 60 patients with GH alone (GH), and 50 healthy pregnant women (control) were recruited to this study. VCAM- 1 expression was detected in the maternal serum and cord blood by enzyme-linked immunosorbent assay, and in the placental tissue by immunohistochemistry. VCAM-1 expression was significantly higher in the maternal serum of patients with GH-FGR (164.38 ± 60.35) and GH alone (103.85 ± 54.47) than in the serum of the control population (46.70 ± 21.79; P 0.05). Moreover, the VCAM-1 expression rates were significantly higher and lower in the vascular endothelial and trophoblastic cells of the placenta of patients with GH-FGR (74.71 and 56.1%) and GH (72.98 and 55.36%), respectively, compared to those in the control subjects (46.48 and 95.11%). Therefore, we concluded that VCAM- 1 plays an important role in the development and generation of GH. Additionally, the low VCAM-1 expression in the trophoblastic cell could be correlated to the pathogenesis and progression of GH.

  5. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development

    Rhys J.P. Skelton

    2014-07-01

    Full Text Available The study of human cardiogenesis would benefit from a detailed cell lineage fate map akin to that established for the haematopoietic lineages. Here we sought to define cell lineage relationships based on the expression of NKX2-5 and the cell surface markers VCAM1, SIRPA and CD34 during human cardiovascular development. Expression of NKX2-5GFP was used to identify cardiac progenitors and cardiomyocytes generated during the differentiation of NKX2-5GFP/w human embryonic stem cells (hESCs. Cardiovascular cell lineages sub-fractionated on the basis of SIRPA, VCAM1 and CD34 expression were assayed for differentiation potential and gene expression. The NKX2-5posCD34pos population gave rise to endothelial cells that rapidly lost NKX2-5 expression in culture. Conversely, NKX2-5 expression was maintained in myocardial committed cells, which progressed from being NKX2-5posSIRPApos to NKX2-5posSIRPAposVCAM1pos. Up-regulation of VCAM1 was accompanied by the expression of myofilament markers and reduced clonal capacity, implying a restriction of cell fate potential. Combinatorial expression of NKX2-5, SIRPA, VCAM1 and CD34 can be used to define discrete stages of cardiovascular cell lineage differentiation. These markers identify specific stages of cardiomyocyte and endothelial lineage commitment and, thus provide a scaffold for establishing a fate map of early human cardiogenesis.

  6. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Duy Tien Ta

    2016-07-01

    Full Text Available Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1, an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL. Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I-catalyzed azide-alkyne cycloaddition (CuAAC “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR, respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.

  7. Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium.

    Yun Chen

    Full Text Available Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide functionalized QDs (VQDs from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor [Formula: see text] (TNF-[Formula: see text] treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-[Formula: see text]-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.

  8. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  9. MicroRNA-1185 Promotes Arterial Stiffness though Modulating VCAM-1 and E-Selectin Expression

    Haoyuan Deng

    2017-04-01

    Full Text Available Background/Aims: Atherosclerosis is the primary cause of cardiovascular ischaemic events; arterial stiffness is a characteristic of the atherosclerotic process. MicroRNAs (miRNAs have been revealed as crucial modulators of atherosclerosis. However, the role of arterial stiffness-related miRNAs in the atherosclerotic process is still unclear. Methods: Four hundred six participants from Northern China were enrolled in this study. Circulating miR-1185 and adhesion molecule levels were measured. Multiple linear regression models were used to evaluate the association of miR-1185 levels with brachial-ankle pulse wave velocity (baPWV and adhesion molecule levels. A mediation analysis was also performed to examine the mediating effect. Cell adhesion molecule levels were measured in primary human umbilical vein endothelial cells (pHUVECs and human umbilical vein smooth cells (HUVSMCs transfected with miR-1185 or co-transfected with a miR-1185 inhibitor. Results: miR-1185 was independently correlated with arterial stiffness. A positive relationship between miR-1185 and vascular cell adhesion molecule-1 (VCAM-1 and E-selectin levels was observed. VCAM- 1 and E-selectin partially mediated the correlation between miR-1185 and arterial stiffness. miR-1185 induced a significant increase in the VCAM-1 and E-selectin levels in pHUVECs and HUVSMCs in vitro. According to our mechanistic analysis, VCAM-1 and E-selectin mediated miR-1185-induced arterial stiffening. Conclusions: miR-1185 modulated the expression of VCAM-1 and E-selectin to promote arterial stiffening, suggesting that miR-1185 plays a crucial role in the development of atherosclerosis and may serve as a novel therapeutic target for atherosclerosis.

  10. VCAM-1 and ICAM-1 serum levels as markers of relapse in visceral leishmaniasis

    Alexandros Makis

    2017-01-01

    Full Text Available Objectives-Methods. Visceral leishmaniasis (VL is characterized by chronicity and relapses despite efficacious treatment. Acute and chronic inflammatory processes and concomitant disturbances in cell adhesion characterize the pathogenesis of the disease. To investigate these processes further we measured adhesion molecules (L-selectin, ICAM-1 and VCAM-1 serum levels in 16 children with VL, as well as in 20 healthy controls. All children were treated with liposomal amphotericin B (3 mg/kg on days 1 to 5, 14, and 21. Measurements were performed at days 0, 15 and 30. Results. All children responded well to treatment in both clinical and laboratory terms. In three cases relapse occurred at 3, 5 and 6 months after treatment had ended. Serum L-selectin levels, both pre-treatment and post-treatment, did not significantly differ between patients and controls. VCAM-1 and ICAM-1 median levels were similar in patients and controls (P>0.05 at day 0 and significantly increased at day 15 (P0.05, but not in the 3 patients who relapsed (P<0.05. Conclusions. Despite the small number of the patients, the changes in VCAM-1 and ICAM-1 levels indicate the anti-parasite activation of the immune system during the course of VL and the effect of treatment. Decline in post-treatment serum VCAM-1 and ICAM-1 levels might be used as a marker of treatment efficacy in childhood VL.

  11. PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner.

    Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M

    2015-04-01

    Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Aortic VCAM-1: an early marker of vascular inflammation in collagen-induced arthritis.

    Denys, Anne; Clavel, Gaëlle; Lemeiter, Delphine; Schischmanoff, Olivier; Boissier, Marie-Christophe; Semerano, Luca

    2016-05-01

    Cardiovascular disease (CVD) is a major cause of morbidity and mortality in rheumatoid arthritis (RA). There are limited experimental data on vascular involvement in arthritis models. To study the link between CVD and inflammation in RA, we developed a model of vascular dysfunction and articular inflammation by collagen-induced arthritis (CIA) in C57Bl/6 (B6) mice. We studied the expression of vascular inflammatory markers in CIA with and without concomitant hyperlipidic diet (HD). Collagen-induced arthritis was induced with intradermal injection of chicken type-II collagen followed by a boost 21 days later. Mice with and without CIA were fed a standard diet or an HD for 12 weeks starting from the day of the boost. Arthritis severity was evaluated with a validated clinical score. Aortic mRNA levels of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS) and interleukin-17 were analysed by quantitative RT-PCR. Vascular cell adhesion molecule-1 localization in the aortic sinus was determined by immunohistochemistry. Atherosclerotic plaque presence was assessed in aortas. Collagen-induced arthritis was associated with increased expression of VCAM-1, independent of diet. VCAM-1 overexpression was detectable as early as 4 weeks after collagen immunization and persisted after 15 weeks. The HD induced atheroma plaque formation and aortic iNOS expression regardless of CIA. Concomitant CIA and HD had no additive effect on atheroma or VCAM-1 or iNOS expression. CIA and an HD diet induced a distinct and independent expression of large-vessel inflammation markers in B6 mice. This model may be relevant for the study of CVD in RA. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma.

    Wadkin, James C R; Patten, Daniel A; Kamarajah, Sivesh K; Shepherd, Emma L; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H; Weston, Chris J; Shetty, Shishir

    2017-08-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated

  14. VCAM-1 on peritoneum and α4β1 integrin in endometrium and their implications in endometriosis.

    Schutt, Amy K; Atkins, Kristen A; Slack-Davis, Jill K; Stovall, Dale W

    2015-01-01

    The objective of the study is to investigate vascular cellular adhesion molecule-1 (VCAM-1) expression on peritoneal mesothelial cells and α4β1 integrin on eutopic endometrium as possible mechanisms in the pathogenesis of endometriosis. It is a case-control study carried out at an academic medical center. Participants are patients with (n=9) and without (n=15) endometriosis. The main outcome measures included VCAM-1 expression on peritoneal mesothelial cells and α4β1 expression on eutopic endometrium using immunohistochemistry and flow cytometry, respectively. Patients with endometriosis were more likely to express VCAM-1 on peritoneal mesothelial cells, both in areas with and without macroscopic disease, compared with patients without endometriosis (9/9 vs. 3/15, Pperitoneal mesothelial cells is associated with endometriosis. This field effect, in addition to the similarity found with regards to the expression of α4β1 integrin in eutopic endometrium between cases and controls, may implicate the expression of VCAM-1 in the peritoneum, and not changes in the eutopic endometrium, as a contributor to the pathogenesis of endometriosis.

  15. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy.

    de Sousa, Juarez; Sousa Aarão, Tinara Leila; Rodrigues de Sousa, Jorge; Hirai, Kelly Emi; Silva, Luciana Mota; Dias, Leonidas Braga; Oliveira Carneiro, Francisca Regina; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2017-03-01

    Leprosy triggers a complex relationship between the pathogen and host immune response. Endothelium plays an important role in this immune response by directly influencing cell migration to infected tissues. The objective of this work is to investigate the possible role of endothelium in M. leprae infection, correlating the characteristics of endothelial markers with the expression pattern of cytokines. Thirty-six skin biopsy samples were cut into 5-μm thick sections and stained with hematoxylin-eosin and Ziehl-Neelsen for morphological analysis and then submitted to immunohistochemical analysis using monoclonal antibodies against ICAM-1, ICAM-2, VCAM-1, and VLA-4. Immunostaining for ICAM-1 showed a significantly larger number of stained endothelial cells in the tuberculoid leprosy (9.92 ± 1.11 cells/mm 2 ) when compared to lepromatous samples (5.87 ± 1.01 cells/mm 2 ) and ICAM-2 revealed no significant difference in the number of endothelial cells expressing this marker between the tuberculoid (13.21 ± 1.27 cells/mm 2 ) and lepromatous leprosy (14.3 ± 1.02 cells/mm 2 ). VCAM-1-immunostained showed 18.28 ± 1.46/mm 2 cells in tuberculoid leprosy and 10.67 ± 1.25 cells/mm 2 in the lepromatous leprosy. VLA-4 exhibited 22.46 ± 1.38 cells/mm 2 in the tuberculoid leprosy 16.04 ± 1.56 cells/mm 2 in the lepromatous leprosy. Samples with characteristics of the tuberculoid leprosy exhibited a larger number of cells stained with ICAM-1, VCAM-1 and VLA-4, demonstrating the importance of these molecules in the migration and selection of cells that reach the inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats

    Jun Fan; Hao-Tong; Jing Di; Fang Liu; Hai-Hua Zhao; Shu-Ling Bai; Xiang Li; Linlin Zhong

    2010-01-01

    Recent studies have suggested that inflammation actively participates in ascending aortic aneurysm formation. The aim of the present study was to evaluate the expression changes of adhesion molecules and MMPs in an experimental model of ascending aortic aneurysm induced by ascending aorta banding in Wistar rats. Twelve rats developed aortic dilation after ascending aorta banding treatment, while nine normal animals underwent surgery without banding were used as controls. Light microscope and scanning electron microscope showed that the wall of the ascending aorta became disorganized as well as infiltration by inflammatory cells in aneurysmal rats. By using immunohistochemical techniques, a significant increase in the immunostaining of MCP-1 was observed in the aneurysmal wall as compared to the normal aortic wall. Under similar experimental conditions, we also found that the immunostaining of ICAM-1 and VCAM-1 was markedly increased in the aneurysmal wall. In addition, gelatin zymo graphic analysis showed that the expression and activities of MMP-2 and MMP-9 were remarkably enhanced in the ascending aorta of ascending aortic aneurysmal rats as compared to normal rats. These results demonstrate that MCP-1, ICAM-1 and VCAM-1 are involved in the pathogenesis of ascending aortic aneurysm and an increase in the immunostaining and activity of MMP-2 and MMP-9 may promote the progression of ascending aortic aneurysm. (authors)

  17. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Cai, J.-P.; Harris, K.; Chin, Y.H.

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author)

  19. Regional gene expression of LOX-1, VCAM-1, and ICAM-1 in aorta of HIV-1 transgenic rats

    Hag, Anne Mette Fisker; Kristoffersen, Ulrik Sloth; Pedersen, Sune Folke

    2009-01-01

    endpoints, studies in animal models could be attractive alternatives. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated gene expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) in HIV-1...... transgenic (HIV-1Tg) rats; these genes are all thought to play important roles in early atherogenesis. Furthermore, the plasma level of sICAM-1 was measured. We found that gene expressions of LOX-1 and VCAM-1 were higher in the aortic arch of HIV-1Tg rats compared to controls. Also, the level of sICAM-1......-infection per se may cause atherosclerosis. This transgenic rat model may be a very promising model for further studies of the pathophysiology behind HIV-associated cardiovascular disease....

  20. Elongated membrane tethers, individually anchored by high affinity α4β1/VCAM-1 complexes, are the quantal units of monocyte arrests.

    Calvin Chu

    Full Text Available The α4β1 integrin facilitates both monocyte rolling and adhesion to the vascular endothelium and is physiologically activated by monocyte chemoattractant protein (MCP-1. The current study investigated the initial events in the adhesion of THP-1 cells to immobilized Vascular Cell Adhesion Molecule 1 (VCAM-1. Using AFM force measurements, cell adhesion was shown to be mediated by two populations of α4β1/VCAM-1 complexes. A low affinity form of α4β1 was anchored to the elastic elements of the cytoskeleton, while a higher affinity conformer was coupled to the viscous elements of the cell membrane. Within 100 ms of contact, THP-1 cells, stimulated by co-immobilized MCP-1, exhibited a tremendous increase in adhesion to VCAM-1. Enhanced cell adhesion was accompanied by a local decoupling of the cell membrane from the cytoskeleton and the formation of long membrane tethers. The tethers were individually anchored by multiple α4β1/VCAM-1 complexes that prolonged the extension of the viscous tethers. In vivo, the formation of these membrane tethers may provide the quantal structural units for the arrest of rolling monocytes within the blood vessels.

  1. Soluble serum VCAM-1, whole blood mRNA expression and treatment response in natalizumab-treated multiple sclerosis

    Petersen, E R; Søndergaard, H B; Oturai, A B

    2016-01-01

    Background Natalizumab reduces disease activity in multiple sclerosis (MS). Natalizumab binds to the very late antigen-4 and inhibits vascular cell adhesion molecule-1 (VCAM-1)-mediated transmigration of immune cells across the blood-brain-barrier. This is associated with decreased serum...... levels of a panel of immunomarkers, associated with natalizumab-treatment, are not sensitive markers of MS disease activity. However, decreased expression of pro-inflammatory HLX1 and IL1B and increased expression of immunoregulatory EBI3 may indicate a less pathogenic immune activation status...

  2. Regional gene expression of LOX-1, VCAM-1, and ICAM-1 in aorta of HIV-1 transgenic rats.

    Anne Mette Fisker Hag

    Full Text Available BACKGROUND: Increased prevalence of atherosclerotic cardiovascular disease in HIV-infected patients has been observed. The cause of this accelerated atherosclerosis is a matter of controversy. As clinical studies are complicated by a multiplicity of risk-factors and a low incidence of hard endpoints, studies in animal models could be attractive alternatives. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated gene expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1, vascular cell adhesion molecule-1 (VCAM-1, and intercellular adhesion molecule-1 (ICAM-1 in HIV-1 transgenic (HIV-1Tg rats; these genes are all thought to play important roles in early atherogenesis. Furthermore, the plasma level of sICAM-1 was measured. We found that gene expressions of LOX-1 and VCAM-1 were higher in the aortic arch of HIV-1Tg rats compared to controls. Also, the level of sICAM-1 was elevated in the HIV-1Tg rats compared to controls, but the ICAM-1 gene expression profile did not show any differences between the groups. CONCLUSIONS/SIGNIFICANCE: HIV-1Tg rats have gene expression patterns indicating endothelial dysfunction and accelerated atherosclerosis in aorta, suggesting that HIV-infection per se may cause atherosclerosis. This transgenic rat model may be a very promising model for further studies of the pathophysiology behind HIV-associated cardiovascular disease.

  3. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  4. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  5. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  6. The effects of colloids or crystalloids on acute respiratory distress syndrome in swine (Sus scrofa models with severe sepsis: analysis on extravascular lung water, IL-8, and VCAM-1

    Rismala Dewi

    2016-04-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is a fatal complication of severe sepsis. Due to its higher molecular weight, the use of colloids in fluid resuscitation may be associated with fewer cases of ARDS compared to crystalloids. Extravascular lung water (EVLW elevation and levels of interleukin-8 (IL-8 and vascular cell adhesion molecule-1 (VCAM-1 have been studied as indicators playing a role in the pathogenesis of ARDS. The aim of the study was to determine the effects of colloid or crystalloid on the incidence of ARDS, elevation of EVLW, and levels of IL-8 and VCAM-1, in swine models with severe sepsis.Methods: This was a randomized trial conducted at the Laboratory of Experimental Surgery, School of Veterinary Medicine, IPB, using 22 healthy swine models with a body weight of 8 to 12 kg. Subjects were randomly allocated to receive either colloid or crystalloid fluid resuscitation. After administration of endotoxin, clinical signs of ARDS, EVLW, IL-8, and VCAM-1 were monitored during sepsis, severe sepsis, and one- and three hours after fluid resuscitation. Analysis of data using the Wilcoxon test , Kolmogorov-Smirnov test, Mann-Whitney test, unpaired t test.Results: Mild ARDS was more prevalent in the colloid group, while moderate ARDS was more frequent in the crystalloid group. EVLW elevation was lower in the colloid compared to the crystalloid group. There was no significant difference in IL-8 and VCAM-1 levels between the two groups.Conclusion: The use of colloids in fluid resuscitation does not decrease the probability of ARDS events compared to crystalloids. Compared to crystalloids, colloids are associated with a lower increase in EVLWI, but not with IL-8 or VCAM-1 levels.

  7. CTRP3 is a novel biomarker for diabetic retinopathy and inhibits HGHL-induced VCAM-1 expression in an AMPK-dependent manner.

    Zheyi Yan

    Full Text Available Diabetic retinopathy (DR is a severe complication of chronic diabetes. The C1q/TNF-related protein family (CTRPs has been demonstrated to exert protective effects against obesity and atherosclerosis in animal studies. Heretofore, the association between circulating CTRPs and DR patients has been unexplored. In the current study, we attempt to define this association, as well as the effect of CTRPs upon DR pathophysiology.The present investigation is a case control study that enrolled control subjects and type 2 diabetes mellitus (T2DM patients diagnosed with DR. Serum CTRPs and sVACM-1 were determined by ELISA.Serum CTRP3 and CTRP5 levels were markedly decreased in patients with T2DM compared to controls (p<0.05 and inversely associated with T2DM. Furthermore, mutivariate regression and ROC analysis revealed CTRP3 deficiency, not CTRP5, was associated with proliferative diabetic retinopathy (PDR. Spearman's rank correlation assay demonstrated an inverse association between CTRP3 and sVCAM-1. Finally, exogenous CTRP3 administration attenuated high glucose high lipid (HGHL-induced VCAM-1 production in an AMPK-dependent manner in cultured human retinal microvascular endothelial cells (HRMECs.CTRP3 may serve as a novel biomarker for DR severity. CTRP3 may represent a future novel therapeutic against DR, a common ocular complication of diabetes.

  8. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  9. Targeting Stromal Recruitment by Prostate Cancer Cells

    2006-03-01

    Ensinger, C., Tumer , Z., Tommerup, N. et al.: Hedgehog signaling in small-cell lung cancer : frequent in vivo but a rare event in vitro. Lung Cancer , 52...W81XWH-04-1-0157 TITLE: Targeting Stromal Recruitment by Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Jingxian Zhang, Ph.D...DATES COVERED (From - To) 15 Feb 2004 – 14 Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Stromal Recruitment by Prostate Cancer

  10. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  11. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights

  12. Budesonide and formoterol inhibit ICAM-1 and VCAM-1 expression of human lung fibroblasts

    Spoelstra, FM; Postma, DS; Hovenga, H; Noordhoek, JA; Kauffman, HF

    The glucocorticoid budesonide and the long-acting beta(2)-adrenoceptor agonist formoterol are used in asthma therapy for their anti-inflammatory and bronchodilating effects, respectively. Since expression of adhesion molecules on resident cells in the lung plays an important role in asthmatic

  13. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall.

    Guri, Amir J; Misyak, Sarah A; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which ABA prevents or ameliorates atherosclerosis. apolipoprotein E-deficient (ApoE(-/-)) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on Days 0, 28, 56 and 72. Gene expression, immune cell infiltration and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3',5'-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80(+)CD11b(+) macrophages and CD4(+) T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and up-regulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall and up-regulates aortic eNOS expression in ApoE(-/-) mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Effects of endurance and high intensity training on ICAM-1 and VCAM-1 levels and arterial pressure in obese and normal weight adolescents.

    Kargarfard, Mehdi; Lam, Eddie T C; Shariat, Ardalan; Asle Mohammadi, Mahmoud; Afrasiabi, Saleh; Shaw, Ina; Shaw, Brandon S

    2016-09-01

    Obesity prevalence has increased in Iranian adolescents in recent years. However, few studies have examined the impact of intervention programs on this health issue. The main objective of this study was to evaluate the effects of 8-week endurance training (ET) and high intensity interval training (HIIT) on intercellular adhesion molecule-1(ICAM-1) and vascular adhesion molecule-1(VCAM-1) levels among obese and normal-weight male adolescents. Thirty obese and 30 normal-weight subjects were assigned to the ET, HIIT, or control group for eight weeks. Before and after the intervention, ICAM-1, VCAM-1, body weight, BMI, VO2max, and blood pressures were measured. SPSS (Version 21) was used for data analysis, and the significance level was set at p HIIT (from 517 ± 72 ng/ml to 374 ± 50 ng/ml), but their VCAM-1 level was significantly (p HIIT (from 1689 ± 119 ng/ml to 1282 ± 63 ng/ml). Similarly, normal weight participants significantly (p HIIT (from 289 ± 22 ng/ml to 202 ± 12 ng/ml), but their VCAM-1 level was significantly (p HIIT (from 895 ± 50 ng/ml to 673 ± 142 ng/ml). Systolic blood pressure and diastolic blood pressures of all the participants were significantly (p HIIT. While both the ET and HIIT were useful in lowering the SBP and DBP of the participants, HIIT was more effective than ET in reducing ICAM-1 and VCAM-1 content in normal and obese adolescents.

  15. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells.

    Derek B Danahy

    2017-09-01

    Full Text Available Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM provide robust protection in a variety of infectious models. TRM rapidly 'sense' infection in non-lymphoid tissues and 'alarm' the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their 'sensing and alarming' functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9 on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM

  16. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  17. Competitive Stem Cell Recruitment by Multiple Cytotactic Cues

    Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.

    2014-01-01

    A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311

  18. Growth hormone increases vascular cell adhesion molecule 1 expression

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  19. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  20. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and receptors involved in recr...uitment of inflammatory cells. Authors Ben-Baruch A, Mic

  1. Medical Therapies for Endometriosis Differentially Inhibit Stem Cell Recruitment.

    Ersoy, Gulcin Sahin; Zolbin, Masoumeh Majidi; Cosar, Emine; Mamillapalli, Ramanaiah; Taylor, Hugh S

    2017-06-01

    To determine the effect of the 3 well-known endometriosis treatments on stem cell recruitment to endometriotic lesions. C57BL/6 mice (aged 8 weeks, n = 20) underwent bone marrow transplant following submyeloablation with 5-fluorouracil using 20 × 10 6 bone marrow stem cells from green fluorescent protein (GFP) mice. Two weeks after transplantation, experimental endometriosis was created in mice by suturing segments of the uterine horn into the peritoneal cavity. Mice were then randomized to receive treatment with medroxyprogesterone acetate (MPA), leuprolide acetate (Gonadotrophin-Releasing Hormone Analogue [GnRHa]), letrozole, or vehicle control (dimethyl sulfoxide). After 3 weeks of treatment, the mice were killed and the endometriosis lesions evaluated. All 3 treatments resulted in a significant reduction in lesion volume and weight. Estrogen deprivation using GnRHa or letrozole resulted in greater lesion regression than the progestin MPA. The GFP + /CD45 - bone marrow-derived stem cells (BMDSCs) engrafted the lesions of endometriosis. Estrogen deprivation using GnRHa or letrozole significantly reduced BMDSC engraftment in the endometriosis lesions. MPA failed to significantly reduce stem cell number in endometriosis. The superiority of estrogen deprivation over progestin therapy in depriving the lesions of stem cells may have implications for the long-term treatment of endometriosis. Reduced stem cell engraftment is likely to result in long-term regression of the lesions, whereas progestins may only prevent their growth acutely.

  2. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  3. The Stem Cell Club: a model for unrelated stem cell donor recruitment.

    Fingrut, Warren; Parmar, Simran; Cuperfain, Ari; Rikhraj, Kiran; Charman, Erin; Ptak, Emilie; Kahlon, Manjot; Graham, Alice; Luong, Susan; Wang, Yongjun George; Yu, Janice; Arora, Neha; Suppiah, Roopa; Li, Edward W; Lee, Anna; Welsh, Christopher; Benzaquen, Menachem; Thatcher, Alicia; Baharmand, Iman; Ladd, Aedan; Petraszko, Tanya; Allan, David; Messner, Hans

    2017-12-01

    Patients with blood, immune, or metabolic diseases may require a stem cell transplant as part of their treatment. However, 70% of patients do not have a suitable human leukocyte antigen match in their family, and need an unrelated donor. Individuals can register as potential donors at stem cell drives, where they provide consent and a tissue sample for human leukocyte antigen typing. The ideal donors are young, male, and from a diversity of ethnic backgrounds. However, in Canada, non-Caucasian males ages 17 to 35 years represent only 8.8% of listed donors. The Stem Cell Club is a non-profit organization founded in 2011 in Canada that aims to augment recruitment of the most needed donors. The initiative published a recruitment toolkit online (www.stemcellclub.ca). Currently, there are 12 chapters at universities across Canada. To date, the Stem Cell Club has recruited 6585 potential registrants, representing 1.63% of donors on Canada's donor-database. Of the recruited registrants, 58.3% were male; 60.3% of males self-reported as non-Caucasian, and 78.5% were ages 17 to 25 years. From 2015 to 2016, the initiative recruited 13.7% of all ethnically diverse males ages 17 to 35 years listed in Canada's donor database. Data from this initiative demonstrate sustainability and performance on key indicators of stem cell drive quality. The Stem Cell Club has developed a capacity to recruit 2600 donors annually, with the majority being males with a high degree of ethnic diversity. The initiative enhances the quality of Canada's unrelated donor-database, improving the chances that patients in need of an unrelated donor will find a match for transplant. The Stem Cell Club is a model relevant to recruitment organizations around the world. © 2017 AABB.

  4. The recruitability and cell-cycle state of intestinal stem cells

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  5. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment

    Frédéric Boal

    2016-02-01

    Full Text Available Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1, a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment.

  6. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  7. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment

    Ortega-Gomez, Almudena; Salvermoser, Melanie; Rossaint, Jan; Pick, Robert; Brauner, Janine; Lemnitzer, Patricia; Tilgner, Jessica; de Jong, Renske J.; Megens, Remco T. A.; Jamasbi, Janina; Döring, Yvonne; Pham, Christine T.; Scheiermann, Christoph; Siess, Wolfgang; Drechsler, Maik; Weber, Christian; Grommes, Jochen; Zarbock, Alexander; Walzog, Barbara; Soehnlein, Oliver

    2016-01-01

    Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the

  8. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage

    Gerhart, Jacquelyn; Neely, Christine; Stewart, Benjamin; Perlman, Jordanna; Beckmann, David; Wallon, Margaretha; Knudsen, Karen; George-Weinstein, Mindy

    2004-01-01

    Embryonic stem cells are derived from the epiblast. A subpopulation of epiblast cells expresses MyoD mRNA and the G8 antigen in vivo. G8 positive (G8pos) and G8 negative (G8neg) populations were isolated by magnetic cell sorting. Nearly all G8pos cells switched from E- to N-cadherin and differentiated into skeletal muscle in culture. G8neg cells were impaired in their ability to switch cadherins and few formed skeletal muscle. Medium conditioned by G8pos cells stimulated skeletal myogenesis and N-cadherin synthesis in G8neg cultures. The effect of conditioned medium from G8pos cultures was inhibited by bone morphogenetic protein (BMP) 4. Treatment of G8neg cells with a soluble form of the BMP receptor-IA or Noggin promoted N-cadherin synthesis and skeletal myogenesis. These results demonstrate that MyoD-positive epiblast cells recruit pluripotent cells to the skeletal muscle lineage. The mechanism of recruitment involves blocking the BMP signaling pathway. PMID:14981095

  9. s-ICAM-1 and s-VCAM-1 in healthy men are strongly associated with traits of the metabolic syndrome, becoming evident in the postprandial response to a lipid-rich meal

    Nothnagel Michael

    2008-09-01

    Full Text Available Abstract Background The importance of the postprandial state for the early stages of atherogenesis is increasingly acknowledged. We conducted assessment of association between postprandial triglycerides, insulin and glucose after ingestion of a standardized lipid-rich test meal, and soluble cellular adhesion molecules (sCAM in young healthy subjects. Methods Metabolic parameters and sICAM-1, sVCAM-1 and E-selectin were measured before and hourly until 6 hours after ingestion of a lipid-rich meal in 30 healthy young men with fasting triglycerides 260 mg/dl. Levels of CAM were compared in HR and NR, and correlation with postprandial triglyceride, insulin and glucose response was assessed. Results Fasting sICAM-1 and sVCAM-1 levels were significantly higher in HR as compared to NR (p = 0.046, p = 0.03. For sE-selectin there was such a trend (p = 0.05. There was a strong positive and independent correlation between sICAM-1 and postprandial insulin maxima (r = 0.70, p Conclusion This independent association of postprandial triglycerides with sICAM-1 may indicate a particular impact of postprandial lipid metabolism on endothelial reaction.

  10. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  11. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.

    Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara

    2011-06-01

    The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  13. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  14. β-Carotene Attenuates Angiotensin II-Induced Aortic Aneurysm by Alleviating Macrophage Recruitment in Apoe(-/- Mice.

    Kaliappan Gopal

    Full Text Available Abdominal aortic aneurysm (AAA is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe(-/- mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II, and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002 increased (2.24±0.20 mm in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm. Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm in the aneurysm-induced mice (β-carotene, P = 0.0002. It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe(-/- mice.

  15. Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells

    Tempel, D.; de Boer, M.; van Deel, E.D.; Haasdijk, R.A.; Duncker, D.J.G.M.; Cheng, C.; Schulte-Merker, S.; Duckers, H.J.

    2012-01-01

    RATIONALE: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development.

  16. Apelin Enhances Cardiac Neovascularization After Myocardial Infarction By Recruiting Aplnr+ Circulating Cells

    Tempel, D.; Boer, de M.; Deel, van E.D.; Haasdijk, A.; Duncker, D.J.; Cheng, C.; Schulte-Merker, S.; Duckers, H.J.

    2012-01-01

    Rationale: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development.

  17. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. © 2016 Wiley Periodicals, Inc.

  18. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  19. The use of the soluble adhesion molecules sE-selectin, sICAM-1, sVCAM-1, sPECAM-1 and their ligands CD11a and CD49d as diagnostic and prognostic biomarkers in septic and critically ill non-septic ICU patients

    Kjaergaard, Anders G; Dige, Anders; Nielsen, Jeppe S.

    2016-01-01

    Endothelial activation is pivotal in the development and escalation of sepsis. Central to endothelial activation is the endothelial up-regulation of cellular adhesion molecules (CAMs) including E-selectin, ICAM-1, VCAM-1, and PECAM-1. Shed CAMs are also found in circulating soluble forms (s...... critically ill non-septic patients were included. All patients had an APACHE II score above 13 at ICU admission. Fifteen healthy volunteers served as controls. Flow cytometry was used to estimate levels of sE-selectin, sICAM-1, sVCAM-1, sPECAM-1, and the cellular expression of CD11a and CD49d. Levels of s...

  20. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin.

    Bennett, Jared R; Lateef, Zabeen; Fleming, Stephen B; Mercer, Andrew A; Wise, Lyn M

    2016-02-02

    Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  2. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation

    Sun, GuoQiang; Yu, Ruth T.; Evans, Ronald M.; Shi, Yanhong

    2007-01-01

    TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to ...

  3. Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-κB pathway.

    Wan, M; Liu, J; Ouyang, X

    2015-04-01

    Porphyromonas gingivalis has been shown to actively invade endothelial cells and induce vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) overexpression. Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition reporter, and its involvement in this process was unknown. This study focused on endothelial cells infected with P. gingivalis, the detection of NOD1 expression and the role that NOD1 plays in the upregulation of VCAM-1 and ICAM-1. The human umbilical vein endothelial cell line (ECV-304) was intruded by P. gingivalis W83, and cells without any treatment were the control group. Expression levels of NOD1, VCAM-1, ICAM-1, phosphorylated P65 between cells with and without treatment on both mRNA and protein levels were compared. Then we examined whether mesodiaminopimelic acid (NOD1 agonist) could increase VCAM-1 and ICAM-1 expression, meanwhile, NOD1 gene silence by RNA interference could reduce VCAM-1, ICAM-1 and phosphorylated P65 release. At last, we examined whether inhibition of NF-κB by Bay117082 could reduce VCAM-1 and ICAM- 1 expression. The mRNA levels were measured by real-time polymerase chain reaction, and protein levels by western blot or electrophoretic mobility shift assays (for phosphorylated P65). P. gingivalis invasion showed significant upregulation of NOD1, VCAM-1 and ICAM-1. NOD1 activation by meso-diaminopimelic acid increased VCAM-1 and ICAM-1 expression, and NOD1 gene silence reduced VCAM-1 and ICAM-1 release markedly. The NF-κB signaling pathway was activated by P. gingivalis, while NOD1 gene silence decreased the activation of NF-κB. Moreover, inhibition of NF-κB reduced VCAM-1 and ICAM-1 expression induced by P. gingivalis in endothelial cells. The results revealed that P. gingivalis induced NOD1 overexpression in endothelial cells and that NOD1 played an important role in the process of VCAM-1 and ICAM-1 expression in endothelial cells infected with P

  4. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  6. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  7. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  8. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  9. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra

    2015-01-01

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination

  10. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  11. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer

    Shicheng Su; Ling Lin; Yunjie Zeng; Nengtai Ouyang; Xiuying Cui; Herui Yao; Fengxi Su; Jian-dong Huang; Judy Lieberman; Qiang Liu; Erwei Song; Jianyou Liao; Jiang Liu; Di Huang; Chonghua He; Fei Chen; LinBing Yang; Wei Wu; Jianing Chen

    2017-01-01

    The origin of tumor-infiltrating Tregs,critical mediators of tumor immunosuppression,is unclear.Here,we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires,while hardly overlap with circulating Tregs,suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs.Furthermore,the abundance of naive CD4+ T cells and Tregs is closely correlated,both indicating poor prognosis for breast cancer patients.Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCLl8-producing macrophages.Moreover,adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner.In human breast cancer xenografts in humanized mice,blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3,a CCL18 receptor,significantly reduces intratumoral Tregs and inhibits tumor progression.These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ.Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.

  12. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer

    Su, Shicheng; Liao, Jianyou; Liu, Jiang; Huang, Di; He, Chonghua; Chen, Fei; Yang, LinBing; Wu, Wei; Chen, Jianing; Lin, Ling; Zeng, Yunjie; Ouyang, Nengtai; Cui, Xiuying; Yao, Herui; Su, Fengxi; Huang, Jian-dong; Lieberman, Judy; Liu, Qiang; Song, Erwei

    2017-01-01

    The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy. PMID:28290464

  13. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  14. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  15. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney.

    Nastase, Madalina-Viviana; Zeng-Brouwers, Jinyang; Beckmann, Janet; Tredup, Claudia; Christen, Urs; Radeke, Heinfried H; Wygrecka, Malgorzata; Schaefer, Liliana

    2017-12-15

    Th1 and Th17 cells, T helper (Th) subtypes, are key inducers of renal fibrosis. The molecular mechanisms of their recruitment into the kidney, however, are not well understood. Here, we show that biglycan, a proteoglycan of the extracellular matrix, acting in its soluble form as a danger signal, stimulates autonomously the production of Th1 and Th17 chemoattractants CXCL10 and CCL20 in macrophages. In the presence of IFNγ, biglycan synergistically stimulates CXCL9. In macrophages deficient for TLR2, TLR4, and their adaptor molecules MyD88 or TRIF, we identified highly selective mechanisms of biglycan-dependent Th1/17 chemoattraction. Thus, the expression of CXCL9 and CXCL10, common chemoattractants for CXCR3-positive Th1 and Th17 cells, is triggered in a biglycan-TLR4/TRIF-dependent manner. By contrast, biglycan induces CCL20 chemokine production, responsible for CCR6-positive Th17 cell recruitment, in a TLR2/4/MyD88-dependent manner. Importantly, at the onset of diabetes mellitus and lupus nephritis we provide evidence for biglycan-dependent recruitment of Th1 and Th17 cells, IFNγ and IL-17 production, and development of albuminuria in mice lacking or overexpressing soluble biglycan. Furthermore, by genetic ablation of Cxcl10 we showed in vivo involvement of this chemokine in biglycan-dependent recruitment of Th1 and Th17 cells into the kidney. Finally, a positive correlation of biglycan and CXCL10/CXCL9 levels was detected in plasma from patients with diabetic nephropathy and lupus nephritis. Taken together, we identified biglycan as a novel trigger of Th1 and Th17 cell recruitment into the kidney and we postulate that interfering with biglycan/TLR/TRIF/MyD88-signaling might provide novel therapeutic avenues for renal fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  16. The effect of in-vivo interleukin-1 on recruitment of immune cells into the lung

    Bice, D E; King-Herbert, A P; Morris, M J; Hanna, N; Haley, P J

    1988-12-01

    The mechanisms responsible for recruitment of lymphocytes into the lung are not known. Data suggest that interleukin-1 (IL-1) is chemotactic for neutrophils (PMN), macrophages, and lymphocytes. Therefore, the release of IL-1 in the lung in response to antigen exposure might be important in lymphocyte recruitment. The data from this study indicate that the instillation of a low dose of human IL-lb (50 ng) into lung lobes of dogs recruited only PMN with no increase in lymphocytes. A dose of 2000 ng recruited large numbers of PMN, with a slightly increased number of lymphocytes. The instillation of 2000 ny of IL-1 into the lungs of dogs that were immunized with sheep red blood cells did not result in the recruitment of antibody-forming cells (AFC) into the treated lung lobe. These data do not support the hypothesis that IL-1 by itself is chemotactic for lymphocytes in vivo, or that inflammation induced by IL-1 alone allows the entry of APC and antibody at the same level as in lung lobes instilled with antigen. (author)

  17. The effect of in-vivo interleukin-1 on recruitment of immune cells into the lung

    Bice, D.E.; King-Herbert, A.P.; Morris, M.J.; Hanna, N.; Haley, P.J.

    1988-01-01

    The mechanisms responsible for recruitment of lymphocytes into the lung are not known. Data suggest that interleukin-1 (IL-1) is chemotactic for neutrophils (PMN), macrophages, and lymphocytes. Therefore, the release of IL-1 in the lung in response to antigen exposure might be important in lymphocyte recruitment. The data from this study indicate that the instillation of a low dose of human IL-lb (50 ng) into lung lobes of dogs recruited only PMN with no increase in lymphocytes. A dose of 2000 ng recruited large numbers of PMN, with a slightly increased number of lymphocytes. The instillation of 2000 ny of IL-1 into the lungs of dogs that were immunized with sheep red blood cells did not result in the recruitment of antibody-forming cells (AFC) into the treated lung lobe. These data do not support the hypothesis that IL-1 by itself is chemotactic for lymphocytes in vivo, or that inflammation induced by IL-1 alone allows the entry of APC and antibody at the same level as in lung lobes instilled with antigen. (author)

  18. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  19. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  20. REST-mediated recruitment of polycomb repressor complexes in mammalian cells

    Dietrich, Nikolaj; Lerdrup, Mads; Landt, Eskild

    2012-01-01

    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1......, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest¿/¿ and Eed¿/¿ mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently...... of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest¿/¿ mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context...

  1. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  2. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.

    Sun, Guoqiang; Yu, Ruth T; Evans, Ronald M; Shi, Yanhong

    2007-09-25

    TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359-385, which contains a conserved nuclear receptor-coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21(CIP1/WAF1)(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX-HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX-HDAC interactions.

  3. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health.

    Evans, William

    2017-11-01

    Positive cancer patient outcomes, including increased time to recurrent events, have been associated with increased counts and function of natural killer (NK) cells. NK cell counts and function are elevated following acute exercise, and the generally accepted mechanism of increased recruitment suggests that binding of epinephrine releases NK cells from endothelial tissue via decreases in adhesion molecules following. I propose that blood flow-induced shear stress may also play a role in NK cell recruitment from the endothelium. Additionally, shear stress may play a role in improving NK cell function by decreasing oxidative stress. The relationship between shear stress and NK cell count and function can be tested by utilizing exercise and local heating with cuff inflation. If shear stress does play an important role, NK cell count and function will be improved in the non-cuffed exercise group, but not the cuffed limb. This paper will explore the mechanisms potentially explaining exercise-induced improvements in NK cell count and function, and propose a model for investigating these mechanisms. This mechanistic insight could aid in providing a novel, safe, relatively inexpensive, and non-invasive target for immunotherapy in cancer patients. Copyright © 2017. Published by Elsevier Ltd.

  4. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells.

    Zhang, Chao; Zheng, Long; Li, Long; Wang, Lingyan; Li, Liping; Huang, Shang; Gu, Chenli; Zhang, Lexi; Yang, Cheng; Zhu, Tongyu; Rong, Ruiming

    2014-08-19

    NKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model. Balb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively. Rapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney. Rapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.

  5. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  6. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for

  7. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

  9. Cdk1 Activates Pre-Mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem cells

    Baffet, Alexandre D.; Hu, Daniel J.; Vallee, Richard B.

    2015-01-01

    Summary Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells, and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2, via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell cycle regulated, and identify the trigger mechanism for apical nuclear migration in the brain. PMID:26051540

  10. Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation

    Lankester, A. C.; van Schijndel, G. M.; van Lier, R. A.

    1995-01-01

    Hematopoietic cell phosphatase is a nonreceptor protein tyrosine phosphatase that is preferentially expressed in hematopoietic cell lineages. Motheaten mice, which are devoid of (functional) hematopoietic cell phosphatase, have severe disturbances in the regulation of B cell activation and

  11. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  12. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment

    Fang, Min; Li, Yongkui; Huang, Kai; Qi, Shanshan; Zhang, Jian; Zgodzinski, Witold; Majewski, Marek; Wallner, Grzegorz; Gozdz, Stanislaw; Macek, Pawel; Kowalik, Artur; Pasiarski, Marcin; Grywalska, Ewelina; Vatan, Linda; Nagarsheth, Nisha; Li, Wei; Zhao, Lili; Kryczek, Ilona; Wang, Guobin; Wang, Zheng; Zou, Weiping; Wang, Lin

    2018-01-01

    The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. PMID:28249897

  13. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Brady, Robert T.; O'Brien, Fergal J.; Hoey, David A.

    2015-01-01

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  14. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  15. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  16. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation

    Kowarik Markus C

    2012-05-01

    Full Text Available Abstract Background The chemokines and cytokines CXCL13, CXCL12, CCL19, CCL21, BAFF and APRIL are believed to play a role in the recruitment of B cells to the central nervous system (CNS compartment during neuroinflammation. To determine which chemokines/cytokines show the strongest association with a humoral immune response in the cerebrospinal fluid (CSF, we measured their concentrations in the CSF and correlated them with immune cell subsets and antibody levels. Methods Cytokine/chemokine concentrations were measured in CSF and serum by ELISA in patients with non-inflammatory neurological diseases (NIND, n = 20, clinically isolated syndrome (CIS, n = 30, multiple sclerosis (MS, n = 20, Lyme neuroborreliosis (LNB, n = 8 and patients with other inflammatory neurological diseases (OIND, n = 30. Albumin, IgG, IgA and IgM were measured by nephelometry. CSF immune cell subsets were determined by seven-color flow cytometry. Results CXCL13 was significantly elevated in the CSF of all patient groups with inflammatory diseases. BAFF levels were significantly increased in patients with LNB and OIND. CXCL12 was significantly elevated in patients with LNB. B cells and plasmablasts were significantly elevated in the CSF of all patients with inflammatory diseases. CXCL13 showed the most consistent correlation with CSF B cells, plasmablasts and intrathecal Ig synthesis. Conclusions CXCL13 seems to be the major determinant for B cell recruitment to the CNS compartment in different neuroinflammatory diseases. Thus, elevated CSF CXCL13 levels rather reflect a strong humoral immune response in the CNS compartment than being specific for a particular disease entity.

  18. The effect of periodontal therapy on neopterin and vascular cell adhesion molecule-1 levels in chronic periodontitis patients with and without acute myocardial infarction: a case-control study.

    Turgut Çankaya, Zeynep; Bodur, Ayşen; Taçoy, Gülten; Ergüder, Imge; Aktuna, Derya; Çengel, Atiye

    2018-04-05

    The presence of neopterin in gingival crevicular fluid (GCF) is a marker for local and acute immune activation, and the presence of vascular cell adhesion molecule (VCAM-1) in GCF is accepted as a marker for chronic vascular inflammation. This study aimed to evaluate effects of periodontal treatment on GCF levels of neopterin and VCAM-1 in patients with chronic periodontitis (CP) with acute myocardial infarction (AMI) compared with systemically healthy CP patients. Sixty subjects (20 CP patients with AMI, 20 healthy CP patients, and 20 healthy controls) were included. GCF samples were analyzed at baseline and after 3 and 6 months, and the probing pocket depth (PD), clinical attachment level (CAL), bleeding on probing, gingival (GI) and plaque (PI) indices were recorded. We determined neopterin and VCAM-1 levels (concentration and total amount) using enzyme-linked immunosorbent assay (ELISA). No significant differences were seen between the AMI+CP and CP groups for PI, GI, GCF levels of neopterin and VCAM-1 at baseline. The number of teeth with 5 mm≤CALperiodontal inflammation and the presence of neopterin and VCAM-1 in GCF prior to and following periodontal treatment, and between the GCF volume and clinical parameters. Data suggest that the total amount and concentration of neopterin and VCAM-1 in GCF seemed to be closely associated with periodontal disease severity in CP patients with AMI. Moreover, the results of our study demonstrate that the past periodontal status is potentially correlated between groups, with similar periodontal disease severity.

  19. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration

    Lena Collenburg

    2017-08-01

    Full Text Available Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

  20. A Color-coded Imageable Syngeneic Mouse Model of Stromal-cell Recruitment by Metastatic Lymphoma.

    Matsumoto, Takuro; Suetsugu, Atsushi; Shibata, Yuhei; Nakamura, Nobuhiko; Aoki, Hitomi; Kunisada, Takahiro; Tsurumi, Hisashi; Shimizu, Masahito; Hoffman, Robert M

    2015-09-01

    A syngeneic color-coded imageable lymphoma model has been developed to visualize recruitment of host stromal cells by malignant lymphoma during metastasis. The EL4 cell line was previously derived from a lymphoma induced in a C57/BL6 mouse by 9,10-dimethyl-1,2-benzanthracene. EL4 lymphoma cells expressing red fluorescent protein (EL4-RFP) were initially established. EL4-RFP cells were subsequently injected into the tail vein of C57/BL6-GFP transgenic mice. EL4-RFP metastasis was observed in the lymph nodes of the upper mediastinum and in the liver 28 days after cell injection. Large EL4-RFP liver metastases in C57/BL6-GFP mice contained GFP-expressing stromal cells derived from the host. In addition, EL4-RFP lymphoma metastasis was formed in peri-gastric lymph nodes, which were also enriched in host GFP-expressing cells. Furthermore, EL4-RFP lymphoma cells were also observed in the peripheral blood and bone marrow of C57/BL6-GFP transgenic mice, where they were associated with GFP-expressing host cells. Lymph node, liver and bone marrow metastases were found approximately 4 weeks after transplantation and all RFP-expressing metastases were highly enriched in GFP-expressing host stromal cells. This model of malignant lymphoma can be used to study early tumor development, metastasis, and the role of the stroma, as well as for discovery and evaluation of novel therapeutics for this treatment-resistant disease. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.

    Jingwei Cheng

    2017-10-01

    Full Text Available Merkel cell carcinoma (MCC frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT and an intact Small T antigen (ST. While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.

  2. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.

    Cheng, Jingwei; Park, Donglim Esther; Berrios, Christian; White, Elizabeth A; Arora, Reety; Yoon, Rosa; Branigan, Timothy; Xiao, Tengfei; Westerling, Thomas; Federation, Alexander; Zeid, Rhamy; Strober, Benjamin; Swanson, Selene K; Florens, Laurence; Bradner, James E; Brown, Myles; Howley, Peter M; Padi, Megha; Washburn, Michael P; DeCaprio, James A

    2017-10-01

    Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.

  3. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    might explain the recruitment of immune cells to the site of DNA injection. Our results suggest that B cells are involved in the initial phase of the immune response to intramuscular DNA vaccination against VHSV. This appears to be a major difference to what we know from mammalian models where T cells...

  4. The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K

    Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

    2010-11-15

    Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

  5. Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1

    Haque Inamul

    2010-08-01

    Full Text Available Abstract Background New blood vessel formation, or angiogenic switch, is an essential event in the development of solid tumors and their metastatic growth. Tumor blood vessel formation and remodeling is a complex and multi-step processes. The differentiation and recruitment of mural cells including vascular smooth muscle cells and pericytes are essential steps in tumor angiogenesis. However, the role of tumor cells in differentiation and recruitment of mural cells has not yet been fully elucidated. This study focuses on the role of human tumor cells in governing the differentiation of mouse mesenchymal stem cells (MSCs to pericytes and their recruitment in the tumor angiogenesis process. Results We show that C3H/10T1/2 mouse embryonic mesenchymal stem cells, under the influence of different tumor cell-derived conditioned media, differentiate into mature pericytes. These differentiated pericytes, in turn, are recruited to bind with capillary-like networks formed by endothelial cells on the matrigel under in vitro conditions and recruited to bind with blood vessels on gel-foam under in vivo conditions. The degree of recruitment of pericytes into in vitro neo-angiogenesis is tumor cell phenotype specific. Interestingly, invasive cells recruit less pericytes as compared to non-invasive cells. We identified tumor cell-secreted platelet-derived growth factor-B (PDGF-B as a crucial factor controlling the differentiation and recruitment processes through an interaction with neuropilin-1 (NRP-1 in mesenchymal stem cells. Conclusion These new insights into the roles of tumor cell-secreted PDGF-B-NRP-1 signaling in MSCs-fate determination may help to develop new antiangiogenic strategies to prevent the tumor growth and metastasis and result in more effective cancer therapies.

  6. In vitro analysis of cytotoxic T cell recruitment mediated by the DC-derived chemokine CCL17

    sprotocols

    2015-01-01

    Dendritic cell (DC) licensing in cross-priming requires physical interaction of several rare immune cells, i.e. cytotoxic T cells (CTL), and cross-presenting DCs. Here we describe a novel in vitro method of analyzing chemokine effects on complex recruitment events in a multi-cellular system. To study CTL recruitment towards CCL17-producing DCs, we established a co-culture system of murine splenic DCs with polyclonal splenic CTL from donor mice, which enables visualization of cell motility and...

  7. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  8. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  9. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE-/- mice by reducing lesion necrosis and inflammation.

    Li, Yi; Kanellakis, Peter; Hosseini, Hamid; Cao, Anh; Deswaerte, Virginie; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2016-02-01

    Atherosclerosis-related deaths from heart attacks and strokes remain leading causes of global mortality, despite the use of lipid-lowering statins. Thus, there is an urgent need to develop additional therapies. Reports that NKT cells promote atherosclerosis and an NKT cell CD1d-dependent lipid antagonist (DPPE-PEG350, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N[methoxy(polyethyleneglycol)-350]) reduces allergen-induced inflammation led us to investigate its therapeutic potential in preventing the development and progression of experimental atherosclerosis. DPPE-PEG350 was administered to hyperlipidaemic ApoE(-/-) mice with/without established atherosclerosis. Atherosclerosis and immune cells were assessed in the aortic sinus lesions. Lesion expression of monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) responsible for inflammatory immune cell recruitment as well as mRNA expression of IFNγ and its plasma levels were investigated. Necrotic cores and lesion smooth muscle and collagen contents important in plaque stability were determined as were plasma lipid levels. DPPE-PEG350 reduced atherosclerosis development and delayed progression of established atherosclerosis without affecting plasma lipids. CD4 and CD8 T cells and B cells in atherosclerotic lesions were decreased in DPPE-PEG350-treated mice. Lesion MCP-1 and VCAM-1 protein expression and necrotic core size were reduced without affecting lesion smooth muscle and collagen content. IFNγ and lymphocytes were unaffected by the treatment. The attenuation of progression of established atherosclerosis together with reduced development of atherosclerosis in hyperlipidaemic mice by the NKT antagonist, without affecting NKT cell or other lymphocyte numbers, suggests that targeting lesion inflammation via CD1d-dependent activation of NKT cells using DPPE-PEG350 has a therapeutic potential in treating atherosclerosis. Published on behalf of the European Society of

  10. CXCL12 Promotes Stem Cell Recruitment and Uterine Repair after Injury in Asherman’s Syndrome

    Gulcin Sahin Ersoy

    2017-03-01

    Full Text Available Asherman’s syndrome is an acquired condition of uterine fibrosis and adhesions in response to injury that adversely affects fertility and pregnancy. We have previously demonstrated that bone marrow-derived mesenchymal stem cells (BMDSCs contribute to uterine repair after injury and that stem cells supplementation improves fertility. Here, we demonstrate that CXCL12 is the chemokine that mediates stem cell engraftment and functional improvement using a murine model of Asherman’s syndrome. After uterine injury, we demonstrate that CXCL12 augmentation increased BMDSC engraftment and that the CXCL12 receptor (CXCR4 antagonist, ADM3100, blocked stem cell recruitment. CXCL12 reduced, whereas ADM3100 increased fibrosis. CXCL12 treatment led to improved fertility and litter size, whereas ADM3100 treatment reduced fertility and litter size. ADM3100 prevented optimal spontaneous uterine repair mediated by endogenous CXCL12 production, reducing pregnancies after injury in the absence of supplemental CXCL12 administration; however, ADM3100 treatment could be partially rescued by CXCL12 augmentation. CXCL12 or other CXCR4 receptor agonists may be useful in the treatment of infertility or adverse pregnancy outcomes in Asherman’s syndrome and other related uterine disorders.

  11. The MSX1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells.

    Jingqiang Wang

    Full Text Available Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development.

  12. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-01-01

    Background Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. Methods CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GF...

  13. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  14. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells.

    Felmy, Felix

    2009-06-01

    Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-beta-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-beta-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal-spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

  15. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.

    Locatelli, Luigi; Cadamuro, Massimiliano; Spirlì, Carlo; Fiorotto, Romina; Lecchi, Silvia; Morell, Carola Maria; Popov, Yury; Scirpo, Roberto; De Matteis, Maria; Amenduni, Mariangela; Pietrobattista, Andrea; Torre, Giuliano; Schuppan, Detlef; Fabris, Luca; Strazzabosco, Mario

    2016-03-01

    Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time. © 2015 by the American Association for the Study of Liver Diseases.

  16. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Colonic inflammation in mice is improved by cigarette smoke through iNKT cells recruitment.

    Muriel Montbarbon

    Full Text Available Cigarette smoke (CS protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS. This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio. This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p=0.0169, IFNγ (p<0.0001, and IL-17 (p=0.0008. Smoke exposure also induced an increased expression of IL-10 mRNA (p=0.0035 and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+ cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.

  18. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts

    van Duijn, Trynette J.; Anthony, Eloise C.; Hensbergen, Paul J.; Deelder, André M.; Hordijk, Peter L.

    2010-01-01

    Rac1 is a member of the Rho family of small GTPases, which regulate cell adhesion and migration through their control of the actin cytoskeleton. Rho-GTPases are structurally very similar, with the exception of a hypervariable domain in the C terminus. Using peptide-based pulldown assays in

  19. Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis.

    Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-06-04

    Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Growth hormone increases vascular cell adhesion molecule 1 expression

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P liter (95......% confidence interval: 95.0-208.7 microg/liter); P

  1. 5′-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion

    Zaoui, Kossay; Huang, Bruce H.; Sangwan, Veena; Gertler, Frank B.

    2016-01-01

    Invadopodia are specialized membrane protrusions that support degradation of extracellular matrix (ECM) by cancer cells, allowing invasion and metastatic spread. Although early stages of invadopodia assembly have been elucidated, little is known about maturation of invadopodia into structures competent for ECM proteolysis. The localized conversion of phosphatidylinositol(3,4,5)-triphosphate and accumulation of phosphatidylinositol(3,4)-bisphosphate at invadopodia is a key determinant for invadopodia maturation. Here we investigate the role of the 5′-inositol phosphatase, SHIP2, and reveal an unexpected scaffold function of SHIP2 as a prerequisite for invadopodia-mediated ECM degradation. Through biochemical and structure-function analyses, we identify specific interactions between SHIP2 and Mena, an Ena/VASP-family actin regulatory protein. We demonstrate that SHIP2 recruits Mena, but not VASP, to invadopodia and that disruption of SHIP2–Mena interaction in cancer cells leads to attenuated capacity for ECM degradation and invasion in vitro, as well as reduced metastasis in vivo. Together, these findings identify SHIP2 as a key modulator of carcinoma invasiveness and a target for metastatic disease. PMID:27597754

  2. 5'-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion.

    Rajadurai, Charles V; Havrylov, Serhiy; Coelho, Paula P; Ratcliffe, Colin D H; Zaoui, Kossay; Huang, Bruce H; Monast, Anie; Chughtai, Naila; Sangwan, Veena; Gertler, Frank B; Siegel, Peter M; Park, Morag

    2016-09-12

    Invadopodia are specialized membrane protrusions that support degradation of extracellular matrix (ECM) by cancer cells, allowing invasion and metastatic spread. Although early stages of invadopodia assembly have been elucidated, little is known about maturation of invadopodia into structures competent for ECM proteolysis. The localized conversion of phosphatidylinositol(3,4,5)-triphosphate and accumulation of phosphatidylinositol(3,4)-bisphosphate at invadopodia is a key determinant for invadopodia maturation. Here we investigate the role of the 5'-inositol phosphatase, SHIP2, and reveal an unexpected scaffold function of SHIP2 as a prerequisite for invadopodia-mediated ECM degradation. Through biochemical and structure-function analyses, we identify specific interactions between SHIP2 and Mena, an Ena/VASP-family actin regulatory protein. We demonstrate that SHIP2 recruits Mena, but not VASP, to invadopodia and that disruption of SHIP2-Mena interaction in cancer cells leads to attenuated capacity for ECM degradation and invasion in vitro, as well as reduced metastasis in vivo. Together, these findings identify SHIP2 as a key modulator of carcinoma invasiveness and a target for metastatic disease. © 2016 Rajadurai et al.

  3. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes

    Glennie, Nelson D.; Volk, Susan W.

    2017-01-01

    Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151

  4. Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia

    Frechou, M.; Beray-Berthat, V.; Plotkine, M.; Marchand-Leroux, C.; Margaill, I.; Raynaud, J.S.; Gombert, F.; Lancelot, E.; Ballet, S.; Robert, P.; Louin, G.; Meriaux, S.

    2013-01-01

    Vascular damage plays a critical role after stroke, leading notably to edema, hemorrhages and stroke recurrence. Tools to characterize the vascular lesion are thus a real medical need. In this context, the specific nano-particular contrast agent P03011, an USPIO (ultra-small superparamagnetic iron oxide) conjugated to a peptide that targets VCAM-1 (vascular cell adhesion molecule-1), was developed to detect this major component of the vascular inflammatory response. This study aimed to make the proof of concept of the capacity of this targeted USPIO to detect VCAM-1 with MRI after cerebral ischemia in mouse. The time course of VCAM-1 expression was first examined by immunohistochemistry in our model of cerebral ischemia-reperfusion. Secondly, P03011 or non-targeted USPIO P03007 were injected 5 h after ischemia (100 mmol iron kg -1 ; i.v.) and in vivo and ex vivo MRI were performed 24 h after ischemia onset. Double labeling immunofluorescence was then performed on brain slices in order to detect both USPIO and VCAM-1. VCAM-1 expression was significantly up-regulated 24 h after ischemia in our model. In animals receiving P03011, both in vivo and ex vivo MRI performed 24 h after ischemia onset showed hypointense foci which could correspond to iron particles. Histological analysis showed a co-localization of the targeted USPIO and VCAM-1. This study demonstrates that VCAM-1 detection is possible with the USPIO P03011 in a model of cerebral ischemia. This kind of contrast agent could be an interesting clinical tool to characterize ischemic lesions in terms of vascular damage. (authors)

  5. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis.

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Metz, Imke; Buck, Dorothea; Toyka, Klaus V; Brück, Wolfgang; Wiendl, Heinz

    2009-08-01

    We have recently described a novel population of natural regulatory T cells (T(reg)) that are characterized by the expression of HLA-G and may be found at sites of tissue inflammation (HLA-G(pos) T(reg)). Here we studied the role of these cells in multiple sclerosis (MS), a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). Sixty-four patients with different types of MS, 9 patients with other neurological diseases, and 20 healthy donors were included in this study. Inflamed brain lesions from 5 additional untreated MS patients were examined. HLA-G(pos) T(reg) were analyzed in the cerebrospinal fluid (CSF) by flow cytometry and in inflammatory demyelinating lesions of MS brain specimens by immunohistochemistry. Functional capacity was accessed and transmigration was determined using an in vitro model of the human blood-brain barrier (BBB). HLA-G(pos) T(reg) were found enriched in the inflamed CSF of MS patients and in inflammatory demyelinating lesions of MS brain specimens. HLA-G(pos) T(reg) showed a strong propensity to transmigrate across BBB, which was vigorously driven by inflammatory chemokines, and associated with a gain of suppressive capacity upon transmigration. CSF-derived HLA-G(pos) T(reg) of MS patients represented a population of activated central memory activated T cells with an upregulated expression of inflammatory chemokine receptors and exhibiting full suppressive capacity. Unlike natural FoxP3-expressing T(reg), HLA-G(pos) T(reg) derived from peripheral blood were functionally unimpaired in MS. In MS, HLA-G(pos) T(reg) may serve to control potentially destructive immune responses directly at the sites of CNS inflammation and to counterbalance inflammation once specifically recruited to the CNS.

  6. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  7. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  8. Endogenous Stem Cells Were Recruited by Defocused Low-Energy Shock Wave in Treating Diabetic Bladder Dysfunction.

    Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang

    2017-04-01

    Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.

  9. Study of serum soluble vascular cell adhesion molecule-1 levels in type 2 diabetic patients with diabetic retinopathy

    Li Fangdu; Chu Qiaomei

    2002-01-01

    To study the change and the correlation of serum soluble vascular cell adhesion molecule-1 (sV-CAM-1) levels with diabetic retinopathy in type 2 diabetic patients, serum sVCAM-1 levels were measured in duplicate by ELISA in 85 type 2 diabetic patients; fundus examination was performed by an ophthalmologist using ophthalmoscope or fundus fluorescein angiography, and the findings were graded as: no signs of diabetic retinopathy (NDR), background diabetic retinopathy (BDR) and proliferative diabetic retinopathy (PDR). Serum sVCAM-1 levels were significantly higher in the PDR and BDR groups than those in the control and NDR groups respectively (P<0.01). NDR group showed significantly increased serum sVCAM-levels compared with control group (P<0.01). In contrast, serum sVCAM-1 levels were not related to the presence of blood glucose, serum insulin levels or known diabetic duration. Authors' results suggest that serum sVCAM-1 might be implicated in the development of the diabetic retinopathy, and could assess the severity of diabetic retinopathy. The measurement of serum sVCAM-1 levels in 2 type diabetic patients may be clinically useful for early diagnosis or treatment of diabetic retinopathy

  10. ALLERGEN-INDUCED RECRUITMENT OF INFLAMMATORY CELLS IN LAVAGE 3 AND 24 H AFTER CHALLENGE IN ALLERGIC ASTHMATIC LUNGS

    AALBERS, R; KAUFFMAN, HF; VRUGT, B; KOETER, GH; DEMONCHY, JGR

    To determine whether a link exists between the recruitment of inflammatory cells in the airways on a bronchial and bronchoalveolar level and the development of allergen-induced increase in bronchial hyperresponsiveness after allergen challenge, we used bronchial lavage and bronchoalveolar lavage to

  11. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  12. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7.

    Nathaniel L Coggins

    Full Text Available Chemokine CXCL12 promotes growth and metastasis of more than 20 different human cancers, as well as pathogenesis of other common diseases. CXCL12 binds two different receptors, CXCR4 and CXCR7, both of which recruit and signal through the cytosolic adapter protein β-arrestin 2. Differences in CXCL12-dependent recruitment of β-arrestin 2 in cells expressing one or both receptors remain poorly defined. To quantitatively investigate parameters controlling association of β-arrestin 2 with CXCR4 or CXCR7 in cells co-expressing both receptors, we used a systems biology approach combining real-time, multi-spectral luciferase complementation imaging with computational modeling. Cells expressing only CXCR4 maintain low basal association with β-arrestin 2, and CXCL12 induces a rapid, transient increase in this interaction. In contrast, cells expressing only CXCR7 have higher basal association with β-arrestin 2 and exhibit more gradual, prolonged recruitment of β-arrestin 2 in response to CXCL12. We developed and fit a data-driven computational model for association of either CXCR4 or CXCR7 with β-arrestin 2 in cells expressing only one type of receptor. We then experimentally validated model predictions that co-expression of CXCR4 and CXCR7 on the same cell substantially decreases both the magnitude and duration of CXCL12-regulated recruitment of β-arrestin 2 to CXCR4. Co-expression of both receptors on the same cell only minimally alters recruitment of β-arrestin 2 to CXCR7. In silico experiments also identified β-arrestin 2 as a limiting factor in cells expressing both receptors, establishing that CXCR7 wins the "competition" with CXCR4 for CXCL12 and recruitment of β-arrestin 2. These results reveal how competition for β-arrestin 2 controls integrated responses to CXCL12 in cells expressing both CXCR4 and CXCR7. These results advance understanding of normal and pathologic functions of CXCL12, which is critical for developing effective

  13. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Pinilla, Mabel G. [Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C. [Department of Physiopathology, School of Biological Sciences, University of Concepcion, Concepcion (Chile); McNerney, Eileen M. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2015-11-27

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  14. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A.; Pinilla, Mabel G.; Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C.; McNerney, Eileen M.; Onate, Sergio A.

    2015-01-01

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  15. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells.

    Warner, Emily F; Zhang, Qingzhi; Raheem, K Saki; O'Hagan, David; O'Connell, Maria A; Kay, Colin D

    2016-03-01

    Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM-100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (-17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2-36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2-54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive

  16. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-08-13

    Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater

  17. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  18. Recruitment of cells in the small intestine into rapid cell cycle by small doses of external γ or internal β-radiation

    Tsubouchi, Susumu; Potten, C.S.

    1985-01-01

    Epithelial cell recruitment was examined in mouse ileum after external γ-irradiation (50 cGy) or internal β-irradiation (0.148 MBq/g of [ 3 H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [ 3 H]thymidine, dormant (G 0 ) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous. (author)

  19. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Abigail Morris

    Full Text Available Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/- mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  20. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  1. Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury.

    Mould, Kara J; Barthel, Lea; Mohning, Michael P; Thomas, Stacey M; McCubbrey, Alexandra L; Danhorn, Thomas; Leach, Sonia M; Fingerlin, Tasha E; O'Connor, Brian P; Reisz, Julie A; D'Alessandro, Angelo; Bratton, Donna L; Jakubzick, Claudia V; Janssen, William J

    2017-09-01

    Two populations of alveolar macrophages (AMs) coexist in the inflamed lung: resident AMs that arise during embryogenesis, and recruited AMs that originate postnatally from circulating monocytes. The objective of this study was to determine whether origin or environment dictates the transcriptional, metabolic, and functional programming of these two ontologically distinct populations over the time course of acute inflammation. RNA sequencing demonstrated marked transcriptional differences between resident and recruited AMs affecting three main areas: proliferation, inflammatory signaling, and metabolism. Functional assays and metabolomic studies confirmed these differences and demonstrated that resident AMs proliferate locally and are governed by increased tricarboxylic acid cycle and amino acid metabolism. Conversely, recruited AMs produce inflammatory cytokines in association with increased glycolytic and arginine metabolism. Collectively, the data show that even though they coexist in the same environment, inflammatory macrophage subsets have distinct immunometabolic programs and perform specialized functions during inflammation that are associated with their cellular origin.

  2. CD335 (NKp46+ T-Cell Recruitment to the Bovine Upper Respiratory Tract during a Primary Bovine Herpesvirus-1 Infection

    Rahwa A. Osman

    2017-10-01

    Full Text Available Bovine natural killer (NK cells were originally defined by the NK activation receptor CD335 [natural killer cell p46-related protein (NKp46], but following the discovery of NKp46 expression on human T-cells, the definition of conventional bovine NK cells was modified to CD335+CD3− cells. Recently, a bovine T-cell population co-expressing CD335 was identified and these non-conventional T-cells were shown to produce interferon (IFN-γ and share functional properties with both conventional NK cells and T-cells. It is not known, however, if CD335+ bovine T-cells are recruited to mucosal surfaces and what chemokines play a role in recruiting this unique T-cell subpopulation. In this study, bovine herpesvirus-1 (BHV-1, which is closely related to herpes simplex virus-1, was used to investigate bovine lymphocyte cell populations recruited to the upper respiratory tract following a primary respiratory infection. Immunohistochemical staining with individual monoclonal antibodies revealed significant (P < 0.05 recruitment of CD335+, CD3+, and CD8+ lymphocyte populations to the nasal turbinates on day 5 following primary BHV-1 infection. Dual-color immunofluorescence revealed that cells recruited to nasal turbinates were primarily T-cells that co-expressed both CD335 and CD8. This non-conventional T-cell population represented 77.5% of CD355+ cells and 89.5% of CD8+ cells recruited to nasal turbinates on day 5 post-BHV-1 infection. However, due to diffuse IFN-γ staining of nasal turbinate tissue, it was not possible to directly link increased IFN-γ production following BHV-1 infection with the recruitment of non-conventional T-cells. Transcriptional analysis revealed CCL4, CCL5, and CXCL9 gene expression was significantly (P < 0.05 upregulated in nasal turbinate tissue following BHV-1 infection. Therefore, no single chemokine was associated with recruitment of non-conventional T-cells. In conclusion, the specific recruitment of CD335+ and CD8

  3. Mechanism of endothelial progenitor cell recruitment into neo-vessels in adjacent non-tumor tissues in hepatocellular carcinoma

    Yu, De-cai; Chen, Jun; Sun, Xi-tai; Zhuang, Lin-yuan; Jiang, Chun-ping; Ding, Yi-tao

    2010-01-01

    We investigated the distribution and clinical significance of mobilized endothelial progenitor cells (EPCs) in hepatocellular carcinoma (HCC). We found that many more EPCs were recruited to nonmalignant liver tissue (especially into adjacent non-tumor tissues (AT)) than to tumor vessels. These results suggest that the mechanism underlying the recruitment of EPCs into microvessels in AT merits further investigation Angiogenic factors were detected in three tissue microarrays comprising normal liver, paired tumor tissue (TT) and AT from 105 patients (who had undergone hepatectomy for HCC) using immunohistochemistry. Also, the number of EPCs (positive for Sca-1, Flk-1 and c-Kit) in the blood and liver of cirrhotic mice were determined by flow cytometry and immunohistochemistry. The distribution of these labeled EPCs in tumor and non-tumor tissues was then studied. The results from the tissue microarrays showed that the expression levels of VEGF-A, bFGF, TGF-β, MCP-1, TSP-1, MMP-9, TIMP-2, and endostatin were significantly higher in AT than in either normal liver or TT (p < 0.05), but no significant difference was found in the expression levels of COX-2 and NOS-2 between AT and TT. The expression of VEGF-A, bFGF, TGF-β, MCP-1, TSP-1, MMP-9, TIMP-2, endostatin, COX-2, and NOS-2 in normal liver tissue was weaker than that in AT or TT. In cirrhotic mice, the number of circulating endothelial progenitor cells gradually increased, before decreasing again. In this mouse model, increased numbers of EPCs were recruited and homed specifically to the cirrhotic liver. Both liver cirrhosis and HCC led to increased expression of pro-angiogenic factors, which resulted in the recruitment of EPCs into AT. Also, EPCs were mobilized, recruited and homed to cirrhotic liver. The unique pathology of HCC coupled with liver cirrhosis may, therefore, be associated with the distribution and function of EPCs

  4. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  5. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  6. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  7. GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL)

    Gjerstorff, Morten F; Rösner, Heike I; Pedersen, Christina B

    2012-01-01

    GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the...... different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells....... the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2β, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two...

  8. Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS.

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Travelstead, Anna L; Ransohoff, Richard M; Ness, Jayne M; Colliver, Jerry A

    2012-02-29

    To study aberrant B cell trafficking into the CSF in opsoclonus-myoclonus syndrome (OMS), chemoattractants CXCL13 and CXCL12, and B cell frequency and CXCR5 expression, were evaluated. CSF CXCL13 concentration and the CSF/serum ratio were higher in untreated OMS than controls, related directly to OMS severity and inversely to OMS duration, and correlated with CSF B cell frequency and oligoclonal bands. CXCL12 showed the opposite pattern. Selective accumulation of CXCR5+ memory B cells in CSF was found. In ACTH-treated OMS, CXCL13, but not CXCL12, was lower. These data implicate the chemokine/chemoreceptor pair CXCL13/CXR5 in B cell recruitment to the CNS in OMS. CXCL13 and CXCL12 may serve as reciprocal biomarkers of disease activity, but CXCL13 also had utility as a treatment biomarker. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors

    Kermani, Pouneh; Rafii, Dahlia; Jin, David K.; Whitlock, Paul; Schaffer, Wendy; Chiang, Anne; Vincent, Loic; Friedrich, Matthias; Shido, Koji; Hackett, Neil R.; Crystal, Ronald G.; Rafii, Shahin; Hempstead, Barbara L.

    2005-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is required for the maintenance of cardiac vessel wall stability during embryonic development through direct angiogenic actions on endothelial cells expressing the tropomysin receptor kinase B (TrkB). However, the role of BDNF and a related neurotrophin ligand, neurotrophin-4 (NT-4), in the regulation of revascularization of the adult tissues is unknown. To study the potential angiogenic capacity of BDNF in mediating the neovascularization of ischemic and non-ischemic adult mouse tissues, we utilized a hindlimb ischemia and a subcutaneous Matrigel model. Recruitment of endothelial cells and promotion of channel formation within the Matrigel plug by BDNF and NT-4 was comparable to that induced by VEGF-A. The introduction of BDNF into non-ischemic ears or ischemic limbs induced neoangiogenesis, with a 2-fold increase in the capillary density. Remarkably, treatment with BDNF progressively increased blood flow in the ischemic limb over 21 days, similar to treatment with VEGF-A. The mechanism by which BDNF enhances capillary formation is mediated in part through local activation of the TrkB receptor and also by recruitment of Sca-1+CD11b+ pro-angiogenic hematopoietic cells. BDNF induces a potent direct chemokinetic action on subsets of marrow-derived Sca-1+ hematopoietic cells co-expressing TrkB. These studies suggest that local regional delivery of BDNF may provide a novel mechanism for inducing neoangiogenesis through both direct actions on local TrkB-expressing endothelial cells in skeletal muscle and recruitment of specific subsets of TrkB+ bone marrow–derived hematopoietic cells to provide peri-endothelial support for the newly formed vessels. PMID:15765148

  10. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  11. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    Foley, Joseph W; Sidow, Arend

    2013-01-01

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF's direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF's motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  12. Targeted Intra-arterial Transplantation of Stem Cells to the Injured CNS is More Effective than Intravenous Administration - Engraftment is Dependent on Cell Type and Adhesion Molecule Expression

    Lundberg, Johan; Södersten, Erik; Sundström, Erik

    2011-01-01

    with inflammation, such as traumatic brain injury, there is a transient up-regulation of ICAM-1 and VCAM-1 which might provide enviromental cues for migration of stem cells from blood to parenchyma. The aim of this study was to i) analyze the effect of intra-arterial administration on cellular engraftment, ii...

  13. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response.

    Thevenot, Paul T; Nair, Ashwin M; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping

    2010-05-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Dynamic Recruitment of Functionally Distinct Swi/Snf Chromatin Remodeling Complexes Modulates Pdx1 Activity in Islet β Cells

    Brian McKenna

    2015-03-01

    Full Text Available Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.

  15. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.

    Vivancos, Pedro Diaz; Dong, Yingping; Ziegler, Kerstin; Markovic, Jelena; Pallardó, Federico V; Pellny, Till K; Verrier, Paul J; Foyer, Christine H

    2010-12-01

    Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  16. GAGE cancer-germline antigens bind DNA and are recruited to the nuclear envelope by Germ cell-less

    Gjerstorff, Morten; Rösner, Heike; Pedersen, Christina Bøg

    GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin and the nuc......GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin...... and the nuclear envelope. Structural analysis by NMR and CD spectroscopy showed GAGE proteins lack distinct secondary or tertiary structure and are therefore intrinsically disordered. In normal cells and cancer cells GAGE proteins localize predominantly in the nucleus; we found GAGE proteins formed stable......) at the nuclear envelope. Furthermore, exogenous and endogenous GAGE proteins were recruited to the nuclear envelope in GCL-overexpressing cells. Gene expression analysis and immunohistochemical staining suggest GAGE proteins and GCL interact physiologically in human cells that express both, including male germ...

  17. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  18. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling...... regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25....

  19. Role of early growth response 1 in arteriogenesis: impact on vascular cell proliferation and leukocyte recruitment in vivo.

    Pagel, Judith-Irina; Ziegelhoeffer, Tibor; Heil, Matthias; Fischer, Silvia; Fernández, Borja; Schaper, Wolfgang; Preissner, Klaus T; Deindl, Elisabeth

    2012-03-01

    Based on previous findings that early growth response 1 (Egr-1) participates in leukocyte recruitment and cell proliferation in vitro, this study was designed to investigate its mode of action during arteriogenesis in vivo. In a model of peripheral arteriogenesis, Egr-1 was significantly upregulated in growing collaterals of wild-type (WT) mice, both on mRNA and protein level. Egr-1(-/-) mice demonstrated delayed arteriogenesis after femoral artery ligation. They further showed increased levels of monocytes and granulocytes in the circulation, but reduced levels in adductor muscles under baseline conditions. After femoral artery ligation, elevated numbers of macrophages were detected in the perivascular zone of collaterals in Egr-1(-/-) mice and mRNA of leukocyte recruitment mediators was upregulated. Other Egr family members (Egr-2 to -4) were significantly upregulated only in Egr-1(-/-) mice, suggesting a mechanism of counterbalancing Egr-1 deficiency. Moreover, splicing factor-1, downregulated in WT mice after femoral artery ligation in the process of increased vascular cell proliferation, was upregulated in Egr-1(-/-) mice. αSM-actin on the other hand, significantly downregulated in WT mice, showed no differential expression in Egr-1(-/-) mice. While cell cycle regulator cyclin E and cdc20 were upregulated in Egr-1(-/-) mice, cyclin D1 expression decreased below the detection limit in collaterals, and the proliferation marker ki67 was not differentially expressed. In conclusion, compensation for deficiency in Egr-1 function in leukocyte recruitment can presumably be mediated by other transcription factors; however, Egr-1 is indispensable for effective vascular cell cycle progression in arteriogenesis.

  20. Tissue kinetics, ion transport, and recruitment of mitochondria-rich cells in the skin of the toad (Bufo bufo) in response to exposure to distilled water

    Budtz, Poul Egede; Christoffersen, Betina C.; Johansen, Jesper S.

    1995-01-01

    Mitochondria-rich cells (MRC) of the amphibian epidermis are responsible for active chloride uptake at low external salinity, and new MRCs are recruited in response to exposure to distilled (deionized) water. The time-course of this recruitment, the tissue kinetics and ion transport have been...

  1. Employee recruitment.

    Breaugh, James A

    2013-01-01

    The way an organization recruits can influence the type of employees it hires, how they perform, and their retention rate. This article provides a selective review of research that has addressed recruitment targeting, recruitment methods, the recruitment message, recruiters, the organizational site visit, the job offer, and the timing of recruitment actions. These and other topics (e.g., the job applicant's perspective) are discussed in terms of their potential influence on prehire (e.g., the quality of job applicants) and posthire (e.g., new employee retention) recruitment outcomes. In reviewing research, attention is given to the current state of scientific knowledge, limitations of previous research, and important issues meriting future investigation.

  2. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  3. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration.

    Jonas, Jost B; Tao, Yong; Neumaier, Michael; Findeisen, Peter

    2010-10-01

    To examine intraocular concentrations of monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and vascular endothelial growth factor (VEGF) in eyes with exudative age-related macular degeneration (AMD). The investigation included a study group of 28 patients (28 eyes) with exudative AMD and a control group of 25 patients (25 eyes) with cataract. The concentrations of MCP-1, sICAM-1, sVCAM-1, and VEGF in aqueous humor samples obtained during surgery were measured using a solid-phase chemiluminescence immunoassay. The study group as compared with the control group had higher aqueous concentrations of sICAM-1 (mean [SD], 844 [2073] vs 246 [206] pg/mL, respectively; P < .001), sVCAM-1 (mean [SD], 7978 [7120] vs 2999 [1426] pg/mL, respectively; P < .001), and MCP-1 (mean [SD], 587 [338] vs 435 [221] pg/mL, respectively; P = .07). The concentration of VEGF did not vary significantly between the groups (P = .76). The MCP-1 concentration was significantly associated with macular thickness (r = 0.40; P = .004). It decreased significantly with the type of subfoveal neovascular membrane (classic membrane type, occult membrane, retinal pigment epithelium detachment) (P = .009). The concentrations of sICAM-1, sVCAM-1, and VEGF were not significantly associated with membrane type and macular thickness (P ≥ .18). Concentrations of MCP-1, sICAM-1, and sVCAM-1 are significantly associated with exudative AMD, even in the presence of normal VEGF concentrations. Intraocular MCP-1 concentrations are correlated with the subfoveal neovascular membrane type and the amount of macular edema. One may infer that MCP-1, sICAM-1, and sVCAM-1 could potentially be additional target molecules in therapy for exudative AMD.

  4. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  5. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J.

    2005-01-01

    To track epitope-specific CD4 + T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA 323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA II , replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4 + T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4 + T cells were recruited to the infected lung both in the presence and absence of the OVA 323-339 epitope. These data show that, when primed, CD4 + T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  6. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  7. Scotblood 2007: Tackling local and global issues in transfusion medicine - donor recruitment, effective use of blood, stem cell plasticity, and vCJD.

    Bessos, Hagop; Fraser, Robin; Seghatchian, Jerard

    2008-02-01

    This commentary briefly highlights some of the local and the global contemporary issues affecting transfusion medicine worldwide. The main areas of focus addressed this year were: donor recruitment, stem cell plasticity, the effective use of blood, and vCJD.

  8. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S

    2018-06-01

    ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.

  9. Clinical implications of mast cell involvement in allergic conjunctivitis.

    Elieh Ali Komi, D; Rambasek, T; Bielory, L

    2018-03-01

    The conjunctiva is a common site for the allergic inflammatory response due to it being highly vascularized, having constant exposure to environmental pollutants and allergenic pollens and having a unique conjunctival associated lymphoid tissue. The primary morbidity of anterior surface conjunctival disorders that include allergic conjunctivitis and tear film disorders is associated with its high frequency of involvement rather than its severity, although the more chronic forms can involve the cornea and lead to sight-threatening conditions. Ocular allergy is associated with IgE-mediated mast cell activation in conjunctival tissue leading to the release of preformed mediators including histamine and proteases and subsequent de novo formation of lipid-derived mediators and cytokines that trigger a cascade of cellular and molecular events leading to extensive migration and infiltration of inflammatory cells to the ocular surface. The trafficking of neutrophils, eosinophils, and lymphocytes to the ocular surface is due to establishing various chemokine gradients (mainly CCL11, CCL24, CCL5, MCP-3, and MCP-4), cell surface expression of adhesion molecules (such as VCAM-1 the ligand for VLA-4), and leukocyte adhesion to vascular endothelium. The release of preformed mediators underlies the acute ocular surface response while the secondary influx of inflammatory cells leading to the recruitment and activation of eosinophils and the subsequent activation of Th2 and Th1 lymphocytes at the level of the conjunctiva reflects the late-phase reaction. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  10. Epidermal Notch1 recruits RORγ + group 3 innate lymphoid cells to orchestrate normal skin repair

    Z. Li (Zhi); T. Hodgkinson (Tom); E.J. Gothard (Elizabeth J.); S. Boroumand (Soulmaz); R. Lamb (Rebecca); I. Cummins (Ian); P. Narang (Priyanka); A. Sawtell (Amy); J. Coles (Jenny); G. Leonov (German); A. Reboldi (Andrea); C.D. Buckley; T. Cupedo (Tom); C. Siebel (Christian); A. Bayat (Ardeshir); M. Coles (Mark); C.A. Ambler (Carrie A.)

    2016-01-01

    textabstractNotch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal.

  11. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  12. Recruitment of quiet cells at the onset of vasomotion in mesenteric arteries

    Brings Jacobsen, Jens Christian; Aalkjær, Christian; Matchkov, Vladimir

    2008-01-01

    quiet. At the onset of vasomotion however, all cells, including those that were previously quiet, are forced into synchronized oscillation. We hypothesize that this entrainment of previously quiet cells is caused by the driving force from a collective cyclic variation in membrane potential.   Methods...

  13. Analysis of Drug Effects on Primary Human Coronary Artery Endothelial Cells Activated by Serum Amyloid A

    K. Lakota

    2018-01-01

    Full Text Available Background. RA patients have a higher incidence of cardiovascular diseases compared to the general population. Serum amyloid A (SAA is an acute-phase protein, upregulated in sera of RA patients. Aim. To determine the effects of medications on SAA-stimulated human coronary artery endothelial cells (HCAEC. Methods. HCAEC were preincubated for 2 h with medications from sterile ampules (dexamethasone, methotrexate, certolizumab pegol, and etanercept, dissolved in medium (captopril or DMSO (etoricoxib, rosiglitazone, meloxicam, fluvastatin, and diclofenac. Human recombinant apo-SAA was used to stimulate HCAEC at a final 1000 nM concentration for 24 hours. IL-6, IL-8, sVCAM-1, and PAI-1 were measured by ELISA. The number of viable cells was determined colorimetrically. Results. SAA-stimulated levels of released IL-6, IL-8, and sVCAM-1 from HCAEC were significantly attenuated by methotrexate, fluvastatin, and etoricoxib. Both certolizumab pegol and etanercept significantly decreased PAI-1 by an average of 43%. Rosiglitazone significantly inhibited sVCAM-1 by 58%. Conclusion. We observed marked influence of fluvastatin on lowering cytokine production in SAA-activated HCAEC. Methotrexate showed strong beneficial effects for lowering released Il-6, IL-8, and sVCAM-1. Interesting duality was observed for NSAIDs, with meloxicam exhibiting opposite-trend effects from diclofenac and etoricoxib. This represents unique insight into specific responsiveness of inflammatory-driven HCAEC relevant to atherosclerosis.

  14. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  16. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Chenggang Lu

    2015-12-01

    Full Text Available Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s. In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC, a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs, spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  17. Recruiting intensity

    R. Jason Faberman

    2014-01-01

    To hire new workers, employers use a variety of recruiting methods in addition to posting a vacancy announcement. The intensity with which employers use these alternative methods can vary widely with a firm’s performance and with the business cycle. In fact, persistently low recruiting intensity helps to explain the sluggish pace of US job growth following the Great Recession.

  18. CCL2 recruits T cells into the brain in a CCR2-independent manner

    Cédile, Oriane; Wlodarczyk, Agnieszka; Owens, Trevor

    2017-01-01

    CCR2, a receptor for CCL2. Expression of another receptor for CCL2, CCR4, and CXCR3, a receptor for CXCL10, which was also induced, were both increased in CCL2-treated CNS. CCR4 was expressed by neurons and astrocytes as well as CD4 T cells, and CXCR3 was expressed by CD4 and CD8 T cells. Chemokine...

  19. Soluble endothelial cell-selective adhesion molecule and incident cardiovascular events in a multiethnic population.

    Ren, Hao-Yu; Khera, Amit; de Lemos, James A; Ayers, Colby R; Rohatgi, Anand

    2017-09-01

    Cell adhesion molecules are key regulators of atherosclerotic plaque development, but circulating levels of soluble fragments, such as intercellular adhesion molecule (sICAM-1) and vascular cell adhesion molecule (sVCAM-1), have yielded conflicting associations with atherosclerotic cardiovascular disease (ASCVD). Endothelial cell-selective adhesion molecule (ESAM) is expressed exclusively in platelets and endothelial cells, and soluble ESAM (sESAM) levels have been associated with prevalent subclinical atherosclerosis. We therefore hypothesized that sESAM would be associated with incident ASCVD. sESAM, sICAM-1, and sVCAM-1 were measured in 2,442 participants without CVD in the Dallas Heart Study, a probability-based population sample aged 30-65 years enrolled between 2000 and 2002. ASCVD was defined as first myocardial infarction, stroke, coronary revascularization, or CV death. A total of 162 ASCVD events were analyzed over 10.4 years. Increasing sESAM was associated with ASCVD, independent of risk factors (HR Q4 vs Q1: 2.7, 95% CI 1.6-4.6). Serial adjustment for renal function, sICAM-1, VCAM-1, and prevalent coronary calcium did not attenuate these associations. Continuous ESAM demonstrated similar findings (HR 1.31, 95% CI 1.2-1.4). Addition of sESAM to traditional risk factors improved discrimination and reclassification (delta c-index: P = .009; integrated-discrimination-improvement index P = .001; net reclassification index = 0.42, 95% CI 0.15-0.68). Neither sICAM-1 nor sVCAM-1 was independently associated with ASCVD. sESAM but not sICAM-1 or sVCAM-1 levels are associated with incident ASCVD. Further studies are warranted to investigate the role of sESAM in ASCVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome.

    Gottenberg, Jacques-Eric; Cagnard, Nicolas; Lucchesi, Carlo; Letourneur, Franck; Mistou, Sylvie; Lazure, Thierry; Jacques, Sebastien; Ba, Nathalie; Ittah, Marc; Lepajolec, Christine; Labetoulle, Marc; Ardizzone, Marc; Sibilia, Jean; Fournier, Catherine; Chiocchia, Gilles; Mariette, Xavier

    2006-02-21

    Gene expression analysis of target organs might help provide new insights into the pathogenesis of autoimmune diseases. We used global gene expression profiling of minor salivary glands to identify patterns of gene expression in patients with primary Sjögren's syndrome (pSS), a common and prototypic systemic autoimmune disease. Gene expression analysis allowed for differentiating most patients with pSS from controls. The expression of 23 genes in the IFN pathways, including two Toll-like receptors (TLR8 and TLR9), was significantly different between patients and controls. Furthermore, the increased expression of IFN-inducible genes, BAFF and IFN-induced transmembrane protein 1, was also demonstrated in ocular epithelial cells by quantitative RT-PCR. In vitro activation showed that these genes were effectively modulated by IFNs in salivary gland epithelial cells, the target cells of autoimmunity in pSS. The activation of IFN pathways led us to investigate whether plasmacytoid dendritic cells were recruited in salivary glands. These IFN-producing cells were detected by immunohistochemistry in all patients with pSS, whereas none was observed in controls. In conclusion, our results support the pathogenic interaction between the innate and adaptive immune system in pSS. The persistence of the IFN signature might be related to a vicious circle, in which the environment interacts with genetic factors to drive the stimulation of salivary TLRs.

  1. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome

    Gottenberg, Jacques-Eric; Cagnard, Nicolas; Lucchesi, Carlo; Letourneur, Franck; Mistou, Sylvie; Lazure, Thierry; Jacques, Sebastien; Ba, Nathalie; Ittah, Marc; Lepajolec, Christine; Labetoulle, Marc; Ardizzone, Marc; Sibilia, Jean; Fournier, Catherine; Chiocchia, Gilles; Mariette, Xavier

    2006-01-01

    Gene expression analysis of target organs might help provide new insights into the pathogenesis of autoimmune diseases. We used global gene expression profiling of minor salivary glands to identify patterns of gene expression in patients with primary Sjögren’s syndrome (pSS), a common and prototypic systemic autoimmune disease. Gene expression analysis allowed for differentiating most patients with pSS from controls. The expression of 23 genes in the IFN pathways, including two Toll-like receptors (TLR8 and TLR9), was significantly different between patients and controls. Furthermore, the increased expression of IFN-inducible genes, BAFF and IFN-induced transmembrane protein 1, was also demonstrated in ocular epithelial cells by quantitative RT-PCR. In vitro activation showed that these genes were effectively modulated by IFNs in salivary gland epithelial cells, the target cells of autoimmunity in pSS. The activation of IFN pathways led us to investigate whether plasmacytoid dendritic cells were recruited in salivary glands. These IFN-producing cells were detected by immunohistochemistry in all patients with pSS, whereas none was observed in controls. In conclusion, our results support the pathogenic interaction between the innate and adaptive immune system in pSS. The persistence of the IFN signature might be related to a vicious circle, in which the environment interacts with genetic factors to drive the stimulation of salivary TLRs. PMID:16477017

  2. Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells.

    J Dinesh Kumar

    Full Text Available Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs compared with adjacent tissue myofibroblasts (ATMs. The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.

  3. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component.

  4. Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET

    ten Klooster, Jean Paul; Leeuwen, Ingrid v; Scheres, Nina; Anthony, Eloise C.; Hordijk, Peter L.

    2007-01-01

    The Rho GTPase Rac1 controls cell adhesion and motility. The effector loop of Rac1 mediates interactions with downstream effectors, whereas its C-terminus binds the exchange factor beta-Pix, which mediates Rac1 targeting and activation. Here, we report that Rac1, through its C-terminus, also binds

  5. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  6. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

    Stefan Riwaldt

    2015-11-01

    Full Text Available We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1 mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids.

  7. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Rubina, Kseniya A.; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I.; Poliakov, Alexei A.; Treshalina, Helena M.; Tkachuk, Vsevolod A.

    2015-01-01

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  8. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  9. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

    Shaler, Christopher R; Horvath, Carly; Lai, Rocky; Xing, Zhou

    2012-01-01

    Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.

  10. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Kseniya A. Rubina

    2015-07-01

    Full Text Available T-cadherin is a glycosyl-phosphatidylinositol (GPI anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  11. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  12. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  13. A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment.

    Caires, Hugo R; Barros da Silva, Patrícia; Barbosa, Mário A; Almeida, Catarina R

    2018-03-01

    The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome. Copyright © 2017 John Wiley & Sons, Ltd.

  14. A comparison of the recruitment of antibody forming cells in the nose and lung: Preliminary findings

    King-Herbert, A P; Bice, D E; Harkema, J R

    1988-12-01

    Instillation of a particulate antigen into a selected lung lobe leads to an accumulation of antibody forming cells in the exposed lung lobe. Our goal in this preliminary study was to determine if an immune response could be elicited in the nasal mucosa of Beagle dogs exposed to a particulate antigen, and if so, to compare this immune response with that of the lungs when the nasal mucosa and the lungs are each immunized with a different particulate antigen. An Immune response was observed when the nasal mucosa was exposed to particulate antigen, but numbers of antibody-forming cells and levels of antibody in the nose were much lower than observed in an immunized lung lobe. (author)

  15. A comparison of the recruitment of antibody forming cells in the nose and lung: Preliminary findings

    King-Herbert, A.P.; Bice, D.E.; Harkema, J.R.

    1988-01-01

    Instillation of a particulate antigen into a selected lung lobe leads to an accumulation of antibody forming cells in the exposed lung lobe. Our goal in this preliminary study was to determine if an immune response could be elicited in the nasal mucosa of Beagle dogs exposed to a particulate antigen, and if so, to compare this immune response with that of the lungs when the nasal mucosa and the lungs are each immunized with a different particulate antigen. An Immune response was observed when the nasal mucosa was exposed to particulate antigen, but numbers of antibody-forming cells and levels of antibody in the nose were much lower than observed in an immunized lung lobe. (author)

  16. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  17. Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells

    Bártová, Eva; Šustáčková, Gabriela; Stixová, Lenka; Kozubek, Stanislav; Legartová, Soňa; Foltánková, Veronika

    2011-01-01

    Roč. 6, č. 12 (2011), e27281 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LC535; GA MŠk(CZ) LC06027; GA MŠk(CZ) ME 919; GA ČR(CZ) GAP302/10/1022; GA MŠk(CZ) LD11020 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : embryonic stem cells * epigenetics * Oct4 Subject RIV: BO - Biophysics Impact factor: 4.092, year: 2011

  18. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  19. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  20. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    Zhong-Cheng Xin

    2016-01-01

    Full Text Available Transplanted stem cells (SCs, owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED. However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1 SC niche and SC biological features in vitro; (2 localization and mobilization of endogenous SCs; (3 existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED.

  1. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation.

    Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander

    2017-04-20

    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  3. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment?

    Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A

    2010-06-15

    Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.

  4. Type i CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B cells

    Engelberts, P. J.; Voorhorst, M.; Schuurman, J.

    2016-01-01

    . We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship...... between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells...... isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC...

  5. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  6. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  7. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model.

    Charlotte E Egan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR or susceptible (BALB/c and C57BL/6 to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6 but not resistant AKR mice. Ccr2(-/- mice were completely protected from hepatitis and Cd44(-/- mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45(+CD44(+ cells bound to hyaluronic acid (HA in diet fed B6 mice but not Cd44(-/- or Ccr2(-/- mice. Ccr2(-/- mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8(+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.

  8. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22

    Hammad, Hamida; Smits, Hermelijn H.; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A.; Stewart, Geoffrey A.; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T

  9. Tumor-Associated Macrophages Recruit CCR6+ Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice

    Li, Qun; Zhang, Weiwei; Ke, Fang; Leng, Qibin; Wang, Hong; Chen, Jinfei; Wang, Honglin

    2011-01-01

    Background Tumor-associated macrophages (TAMs) remodel the colorectal cancer (CRC) microenvironment. Yet, findings on the role of TAMs in CRC seem to be contradictory compared with other cancers. FoxP3+ regulatory T (Treg)-cells dominantly infiltrate CRC. However, the underlying molecular mechanism in which TAMs may contribute to the trafficking of Treg-cells to the tumor mass remains unknown. Methodology/Principal Findings CRC was either induced by N-methyl-N-nitrosourea (MNU) and H. pylori or established by subcutaneous injection of mouse colorectal tumor cell line (CMT93) in mice. CMT93 cells were co-cultured with primary macrophages in a transwell apparatus. Recruitment of FoxP3 green fluorescence protein positive (FoxP3GFP+) Treg-cells was assessed using the IVIS Imaging System or immunofluorescence staining. A role for macrophages in trafficking of Treg-cells and in the development of CRC was investigated in CD11b diphtheria toxin receptor (CD11b-DTR) transgenic C57BL/6J mice in which macrophages can be selectively depleted. Treg-cells remarkably infiltrated solid tumor, and predominantly expressed the homing chemokine receptor (CCR) 6 in the induced CRC model. Both CMT93 cancer cells and macrophages produced a large amount of CCL20, the sole ligand of CCR6 in vitro and in vivo. Injection of recombinant mouse CCL20 into tumor sites promoted its development with a marked recruitment of Treg-cells in the graft CRC model. Conditional macrophage ablation decreased CCL20 levels, blocked Treg-cell recruitment and inhibited tumor growth in CD11b-DTR mice grafted with CMT93. Conclusions/Significance TAMs recruit CCR6+ Treg-cells to tumor mass and promote its development via enhancing the production of CCL20 in a CRC mouse model. PMID:21559338

  10. Type I CD20 Antibodies Recruit the B Cell Receptor for Complement-Dependent Lysis of Malignant B Cells

    Engelberts, Patrick J.; Voorhorst, Marleen; Schuurman, Janine; van Meerten, Tom; Bakker, Joost M.; Vink, Tom; Mackus, Wendy J. M.; Breij, Esther C. W.; Derer, Stefanie; Valerius, Thomas; van de Winkel, Jan G. J.; Parren, Paul W. H. I.; Beurskens, Frank J.

    2016-01-01

    Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20(+) B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab ')2 fragments, as well as C1q-binding-deficient IgG mutants,

  11. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells.

    Anne-Sophie Bergot

    2014-10-01

    Full Text Available Human Papillomavirus (HPV 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.

  12. Tissue Damage Caused by Myeloablative, but Not Non-Myeloablative, Conditioning before Allogeneic Stem Cell Transplantation Results in Dermal Macrophage Recruitment without Active T-Cell Interaction

    Peter van Balen

    2018-02-01

    activated APC and donor T-cells, the tissue damage caused by myeloablative alloSCT results in dermal recruitment of HLA class II-positive tissue repairing macrophages co-existing with increased numbers of patient- and donor-derived T-cells, but without signs of specific interaction and initiation of an immune response. Thus, the local skin damage caused by the conditioning regimen appears to be insufficient as single factor to provoke GVHD induction.

  13. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  14. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  15. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  16. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  17. Serum of patients with antiphospholipid syndrome induces adhesion molecules in endothelial cells.

    Engel, Bettina; Müller, Gregor; Roch, Beate; Schröder, Hans-Egbert; Aringer, Martin; Bornstein, Stefan R; Morawietz, Henning

    2017-11-01

    The antiphospholipid syndrome (APS) is a systemic auto-immune disease with an unclear pathophysiology. The aim of our study was to understand the development of APS on a cellular level. Therefore, we analyzed the influence of human serum of APS patients on endothelial expression of specific genes and proteins in comparison to a control group. In this study, we analyzed the expression of ICAM-1, VCAM-1, E-selectin and annexin V in primary cultures of human umbilical vein endothelial cells (HUVEC) in response to 10% (v/v) serum of control patients (n = 6), patients with systemic lupus erythematosus (SLE) and no APS (n = 4) or APS patients (n = 9) for 24 h. Total RNA was prepared from confluent endothelial cell layers and mRNA expression of ICAM-1, VCAM-1 and E-selectin was analyzed by reverse transcription polymerase-chain reaction (RT-PCR). The protein expression was determined by Western blot. Serum protein concentrations of soluble forms of adhesion molecules sICAM-1 and sVCAM-1 were quantified by ELISA. Gene expression data were correlated with clinical parameters. The mRNA expression of ICAM-1 was increased in cells incubated with serum from APS patients (166 ± 22% of control; P = 0.023). Serum of patients with (SLE)/no APS caused a 1.4-fold higher ICAM-1 mRNA level. Western blot analysis showed an increase in protein expression of adhesion molecules ICAM-1 (260 ± 49%; P = 0.011) and VCAM-1 (357 ± 97%; P = 0.023) in cells that were incubated with serum from APS patients. Plasma analysis showed elevated levels of sVCAM-1 in APS patients (189 ± 34%; P = 0.045) compared to the levels measured in the control group. The sVCAM-1 plasma level was correlating with the frequency of abortions. An augmented expression of endothelial adhesion molecules is involved in the pathophysiology of patients with antiphospholipid syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  19. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Kathie Béland

    Full Text Available The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C in presence or absence of activated liver-specific autoreactive CD8(+ T cells. Regardless of autoreactive CD8(+ T cells, mice injected with CpG and Poly(I:C showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C and autoreactive CD8(+T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+ T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+ T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  20. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions.

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-05-06

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions*

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-01-01

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn2+-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. PMID:26994136

  2. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing.

    Fang-Yuan Wei

    Full Text Available Low intensity pulsed ultrasound (LIPUS has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4 pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37 °C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the

  3. MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing.

    Masahiro Ishikawa

    Full Text Available OBJECTIVE: The purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models. METHODS: The expression profiles of chemokines were examined during fracture healing in wild-type (WT mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1 on primary mouse bone marrow stromal cells (mBMSCs was evaluated using an in vitro migration assay. MCP-1-/- and C-C chemokine receptor 2 (CCR2-/- mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT. RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1-/- mice and were evaluated by histological staining and micro-CT. RESULTS: MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1-/- and CCR2-/- mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1-/- mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1-/- mouse. Conversely, transplantation of MCP-1-/- mouse-derived grafts into host WT mice markedly decreased new bone formation. CONCLUSIONS: MCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.

  4. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    Sermsathanasawadi, N.; Inoue, Yoshinori; Iwai, Takehisa; Ishii, Hideto; Yoshida, Masayuki; Igarashi, Kaori; Miura, Masahiko

    2009-01-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  5. Human eosinophil–airway smooth muscle cell interactions

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  6. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment.

    Maza, Paloma K; Suzuki, Erika

    2016-01-01

    Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.

  7. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  8. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+ Ly6Chi cells to tumor tissue reduces tumor growth

    Deronic, Adnan; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C hi and Ly6G hi cells, but instead reduced the influx of Ly6C hi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C hi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor

  9. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes

    Peter Draber

    2015-12-01

    Full Text Available Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1 ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC, at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.

  10. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    Hong, Wei; Chen, Linfeng; Li, Juan; Yao, Zhi

    2010-01-01

    Estrogen receptor alpha (ERα), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERα activity and has been applied in breast cancer treatment. TAM-bound ERα associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERα mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERα with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERα to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERα activity via enhanced recruitment of SMRT, leading to reduced expression of ERα target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERα, suggesting corepressor mediates inhibition of ERα transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  11. The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts

    Mandy J. Ludford-Menting

    2011-01-01

    Full Text Available Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.

  12. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  13. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment

    Fletcher, M.P.

    1986-01-01

    Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3 H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT

  14. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  15. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  16. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  17. Cell Cycle-Dependent Recruitment of Polycomb Proteins to the ASNS Promoter Counteracts C/ebp-Mediated Transcriptional Activation in Bombyx mori

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Zhu, Li; Xu, Jian; Tatsuke, Tsuneyuki; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2013-01-01

    Epigenetic modifiers and transcription factors contribute to developmentally programmed gene expression. Here, we establish a functional link between epigenetic regulation by Polycomb group (PcG) proteins and transcriptional regulation by C/ebp that orchestrates the correct expression of Bombyx mori asparagine synthetase (BmASNS), a gene involved in the biosynthesis of asparagine. We show that the cis-regulatory elements of YY1-binding motifs and the CpG island present on the BmASNS promoter are required for the recruitment of PcG proteins and the subsequent deposition of the epigenetic repression mark H3K27me3. RNAi-mediated knockdown of PcG genes leads to derepression of the BmASNS gene via the recruitment of activators, including BmC/ebp, to the promoter. Intriguingly, we find that PcG proteins and BmC/ebp can dynamically modulate the transcriptional output of the BmASNS target in a cell cycle-dependent manner. It will be essential to suppress BmASNS expression by PcG proteins at the G2/M phase of the cell cycle in the presence of BmC/ebp activator. Thus, our results provide a novel insight into the molecular mechanism underlying the recruitment and regulation of the PcG system at a discrete gene locus in Bombyx mori. PMID:23382816

  18. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families.

    Hemant Kulkarni

    Full Text Available While the role of type 2 diabetes (T2D in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1 and soluble vessel cell adhesion molecule 1 (sVCAM-1 with incident T2D.Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI and net reclassification improvement (NRI indexes.Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment--insulin resistance (HOMA-IR. Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low values for both

  19. The occurrence of recruitment supported from the finding of an increase in radiosensitivity of quiescent cells in solid tumors after fractionated irradiation with X-rays

    Masunaga, Shinichiro; Ono, Koji; Kinashi, Yuko; Suzuki, Minoru; Akaboshi, Mitsuhiko

    1998-01-01

    We examined the behavior of quiescent cells in solid tumors irradiated twice at various intervals with X-rays, using our recently developed method for selectively detecting the response of quiescent cells in solid tumors. To determine the labeling indices of tumors at the second irradiation, each mouse group included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted before the first irradiation. Radiosensitivity of total tumor cells at the second irradiation decreased in proportion to the increase in interval time. However, radiosensitivity of quiescent cells was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings supported the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. (author)

  20. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  1. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  2. CCR9 Is Not Required for the Homing of Pro-inflammatory Effector T cells, but Is Crucial for Recruitment and Expansion of FoxP3+ CD8+ Tregs in the Small Intestine

    Gomez-Casado, Cristina; Joeris, Thorsten; Holmkvist, Petra

    Chemokine receptor 9 (CCR9) is required for the homeostatic recruitment of T cells to the mucosa of the small intestine. Accordingly, CCR9 has been suggested as a potential target to inhibit the recruitment of proinflammatory effector T cells (Teff) in inflammatory bowel disease (IBD). Since...... the contribution of CCR9 to the recruitment of Teff in inflammation is not entirely clear, we aimed to address this question using IFABPtOva mice. These mice express Ovalbumin (Ova) specifically in small intestinal epithelial cells, which allows triggering of acute inflammation following transfer of Ova......-specific CD8+ T cells (OT-I cells) and adjuvant treatment. Strikingly, intestinal inflammation in IFABP-tOva mice could also be triggered following transfer of CCR9-deficient OT-I cells, demonstrating that CCR9 is not required for homing of Teff cells. Interestingly, OTI cells transferred to IFABP-tOva mice...

  3. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  4. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus

    2009-01-01

    BACKGROUND: Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1...... and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset...

  5. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins

    Kang, Tae-Yun; Lee, Jung Ho; Kang, Jo-A; Rhie, Jong-Won; Kim, Bum Jin; Cha, Hyung Joon; Hong, Jung Min; Kim, Byoung Soo; Cho, Dong-Woo

    2015-01-01

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine–glycine–aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. (paper)

  6. Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission.

    Giugliano, Silvia; Petroff, Margaret G; Warren, Bryce D; Jasti, Susmita; Linscheid, Caitlin; Ward, Ashley; Kramer, Anita; Dobrinskikh, Evgenia; Sheiko, Melissa A; Gale, Michael; Golden-Mason, Lucy; Winn, Virginia D; Rosen, Hugo R

    2015-10-15

    Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Aminobisphosphonates and Toll-like receptor ligands: recruiting Vγ9Vδ2 T cells for the treatment of hematologic malignancy.

    Kalyan, S; Wesch, D; Kabelitz, D

    2011-01-01

    Gamma delta (γδ) T cells are intrinsically important for preventing the development and progression of hematologic cancers. These innate T cells are particularly suited for the application of cancer therapy due to the fact they: 1) recognize transformed cells independent of antigen processing or presentation by classical MHC molecules, and 2) embody the anti-tumour effector functions of both NK cells and cytotoxic T cells. It was serendipitously discovered that aminobisphosphonates (ABP), a class of drugs used as adjuvant cancer therapy for the treatment of malignant osteolytic bone disease, have the unexpected side-effect of potently activating the antitumour effector functions of human peripheral γδ T cells. Such beneficial therapeutic synergisms are rare, and no time has been wasted to determine how to best harness the anti-cancer potential of γδ T cells and ABP. Despite promising experimental results, the full clinical potential of this immunotherapeutic strategy has been hampered by the subversive strategies employed by cancer cells to obstruct activation of anti-tumour immune responses. These include the promotion of regulatory T cells (Tregs) that maintain tumour tolerance and the corruption of dendritic cell (DC) function and maturation. Toll-like receptor (TLR) agonists have a long history of breaking free of tumour-induced immune-suppression by resetting DC function and abrogating Treg induced tolerance. This review presents data to support the notion that TLR signalling may perfectly complement the anti-tumour synergy of ABP and activated γδ T cells, and this combined innate artillery could provide the necessary ammunition to topple malignancy's stronghold on the immune system.

  8. Mast cell-deficient kit mice develop house dust mite-induced lung inflammation despite impaired eosinophil recruitment

    de Boer, J. Daan; Yang, Jack; van den Boogaard, Florry E.; Hoogendijk, Arie J.; de Beer, Regina; van der Zee, Jaring S.; Roelofs, Joris J. T. H.; van 't Veer, Cornelis; de Vos, Alex F.; van der Poll, Tom

    2014-01-01

    Mast cells are implicated in allergic and innate immune responses in asthma, although their role in models using an allergen relevant for human disease is incompletely understood. House dust mite (HDM) allergy is common in asthma patients. Our aim was to investigate the role of mast cells in

  9. A possible mechanism in the recruitment of eosinophils and Th2 cells through CD163(+) M2 macrophages in the lesional skin of eosinophilic cellulitis.

    Fujimura, Taku; Kambayashi, Yumi; Furudate, Sadanori; Kakizaki, Aya; Aiba, Setsuya

    2014-01-01

    M2 macrophages play a critical role in the recruitment of T helper 2 (Th2) regulatory T cells (Treg). To study the role of M2 macrophages and Treg cells in eosinophilic celulitis. We employed immunohistochemical staining for CD163( )and CD206 (macrophages) as well as FoxP3 (Treg), in lesional skin of four cases of eosinophilic cellulitis. CD163(+) CD206(+) M2 macrophages, which were previously reported to produce CCL17 to induce Th2 cells and Treg cells, were predominantly infiltrating the subcutaneous tissues and interstitial area of the dermis. M2 macrophages derived from PBMC showed significantly increased expression of CCL11, CCL17, CCL24 and CCL26 mRNA and production of CCL17 and CCL24, when stimulated by IL-4 or IL- 13. In addition, CCL17-producing cells and CCL24-producing cells were prominent in the lesional skin of EC. Our study sheds light on one of the possible immunological mechanisms of eosinophilic cellulitis.

  10. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures.

    Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia

    2017-11-02

    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.

  11. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  12. Cell type-specific recruitment of Drosophila Lin-7 to distinct MAGUK-based protein complexes defines novel roles for Sdt and Dlg-S97.

    Bachmann, André; Timmer, Marco; Sierralta, Jimena; Pietrini, Grazia; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich

    2004-04-15

    Stardust (Sdt) and Discs-Large (Dlg) are membrane-associated guanylate kinases (MAGUKs) involved in the organization of supramolecular protein complexes at distinct epithelial membrane compartments in Drosophila. Loss of either Sdt or Dlg affects epithelial development with severe effects on apico-basal polarity. Moreover, Dlg is required for the structural and functional integrity of synaptic junctions. Recent biochemical and cell culture studies have revealed that various mammalian MAGUKs can interact with mLin-7/Veli/MALS, a small PDZ-domain protein. To substantiate these findings for their in vivo significance with regard to Sdt- and Dlg-based protein complexes, we analyzed the subcellular distribution of Drosophila Lin-7 (DLin-7) and performed genetic and biochemical assays to characterize its interaction with either of the two MAGUKs. In epithelia, Sdt mediates the recruitment of DLin-7 to the subapical region, while at larval neuromuscular junctions, a particular isoform of Dlg, Dlg-S97, is required for postsynaptic localization of DLin-7. Ectopic expression of Dlg-S97 in epithelia, however, was not sufficient to induce a redistribution of DLin-7. These results imply that the recruitment of DLin-7 to MAGUK-based protein complexes is defined by cell-type specific mechanisms and that DLin-7 acts downstream of Sdt in epithelia and downstream of Dlg at synapses.

  13. The pyloric caeca area is a major site for IgM(+ and IgT(+ B cell recruitment in response to oral vaccination in rainbow trout.

    Natalia A Ballesteros

    Full Text Available Although previous studies have characterized some aspects of the immune response of the teleost gut in response to diverse pathogens or stimuli, most studies have focused on the posterior segments exclusively. However, there are still many details of how teleost intestinal immunity is regulated that remain unsolved, including the location of IgM(+ and IgT(+ B cells along the digestive tract and their role during the course of a local stimulus. Thus, in the current work, we have studied the B cell response in five different segments of the rainbow trout (Oncorhynchus mykiss digestive tract in both naïve fish and fish orally vaccinated with an alginate-encapsulated DNA vaccine against infectious pancreatic necrosis virus (IPNV. IgM(+ and IgT(+ cells were identified all along the tract with the exception of the stomach in naïve fish. While IgM(+ cells were mostly located in the lamina propria (LP, IgT(+ cells were primarily localized as intraepithelial lymphocytes (IELs. Scattered IgM(+ IELs were only detected in the pyloric caeca. In response to oral vaccination, the pyloric caeca region was the area of the digestive tract in which a major recruitment of B cells was demonstrated through both real time PCR and immunohistochemistry, observing a significant increase in the number of both IgM(+ and IgT(+ IELs. Our findings demonstrate that both IgM(+ and IgT(+ respond to oral stimulation and challenge the paradigm that teleost IELs are exclusively T cells. Unexpectedly, we have also detected B cells in the fat tissue associated to the digestive tract that respond to vaccination, suggesting that these cells surrounded by adipocytes also play a role in mucosal defense.

  14. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  15. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade.

    Wang, S; Xia, P; Shi, L; Fan, Z

    2012-04-01

    Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.

  16. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    Ji, Jiayao; Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu; Chen, Xiangmei

    2012-01-01

    Highlights: ► Overexpression of Robo2 caused reduced UB branching and glomerular number. ► Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. ► No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. ► Overexpression of Robo2 affected MM cells migration and caused UB deficit. ► The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2–Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2–Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that overexpression of Robo2 by microinjection in embryonic kidneys is an effective approach to study the function of Robo2.

  17. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix.

    Kawai, Yoshikazu; Daniel, Richard A; Errington, Jeffery

    2009-03-01

    The bacterial actin homologue MreB plays a key role in cell morphogenesis. In Bacillus subtilis MreB is essential under normal growth conditions and mreB mutants are defective in the control of cell diameter. However, the precise role of MreB is still unclear. Analysis of the lethal phenotypic consequences of mreB disruption revealed an unusual bulging phenotype that precedes cell death. A similar phenotype was seen in wild-type cells at very low Mg(2+) concentrations. We found that inactivation of the major bi-functional penicillin-binding protein (PBP) PBP1 of B. subtilis restored the viability of an mreB null mutant as well as preventing bulging in both mutant and wild-type backgrounds. Bulging was associated with delocalization of PBP1. We show that the normal pattern of localization of PBP1 is dependent on MreB and that the proteins can physically interact using in vivo pull-down and bacterial two-hybrid approaches. Interactions between MreB and several other PBPs were also detected. Our results suggest that MreB filaments associate directly with the peptidoglycan biosynthetic machinery in B. subtilis as part of the mechanism that brings about controlled cell elongation.

  18. Evidence for eosinophil recruitment, leukotriene B4 production and mast cell hyperplasia following Toxocara canis infection in rats

    D. Carlos

    2011-04-01

    Full Text Available It is well known that eosinophilia is a key pathogenetic component of toxocariasis. The objective of the present study was to determine if there is an association between peritoneal and blood eosinophil influx, mast cell hyperplasia and leukotriene B4 (LTB4 production after Toxocara canis infection. Oral inoculation of 56-day-old Wistar rats (N = 5-7 per group with 1000 embryonated eggs containing third-stage (L3 T. canis larvae led to a robust accumulation of total leukocytes in blood beginning on day 3 and peaking on day 18, mainly characterized by eosinophils and accompanied by higher serum LTB4 levels. At that time, we also noted increased eosinophil numbers in the peritoneal cavity. In addition, we observed increased peritoneal mast cell number in the peritoneal cavity, which correlated with the time course of eosinophilia during toxocariasis. We also demonstrated that mast cell hyperplasia in the intestines and lungs began soon after the T. canis larvae migrated to these compartments, reaching maximal levels on day 24, which correlated with the complete elimination of the parasite. Therefore, mast cells appear to be involved in peritoneal and blood eosinophil infiltration through an LTB4-dependent mechanism following T. canis infection in rats. Our data also demonstrate a tight association between larval migratory stages and intestinal and pulmonary mast cell hyperplasia in the toxocariasis model.

  19. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  20. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Zahra Hassani

    Full Text Available Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke.We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation.We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells.Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  1. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  2. Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit

    Wu, C.; Tan, L.; van Hooren, M.; Tan, X.; Liu, F.; Li, Y.; Zhao, Y.; Li, B.; Rui, Q.; Munnik, T.; Bao, Y.

    2017-01-01

    The exocyst is a well-known complex which tethers vesicles at the cell membrane before fusion. Whether an individual subunit can execute a unique function is largely unknown. Using yeast-two-hybrid (Y2H) analysis, we found that EXO70A1 interacted with the GOLD domain of Patellin3 (PATL3). The direct

  3. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    Ji, Jiayao [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China); Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Chen, Xiangmei, E-mail: xmchen301@126.com [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that

  4. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz

    2013-01-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  5. NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation

    Boris Eleuteri

    2018-05-01

    Full Text Available Summary: Embryonic stem cells (ESCs display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC. A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation. : Histone variant H2A.X defines the rate of embryonic stem cell proliferation. Eleuteri et al. identify H2A.X-interacting proteins, and they show that H2A.X deposition at rDNA promoters assembles the NoRC, which represses rRNA transcription and determines the rate of self-renewal. Keywords: ribosomal biogenesis, rRNA, rDNA, stem cells, TIP5, SNF2H, SPT16, BRG1, H2A.X, G1, cell cycle, cell cycle arrest, proliferation

  6. Modulation of genes related to the recruitment of immune cells in the digestive tract of trout experimentally infected with infectious pancreatic necrosis virus (IPNV) or orally vaccinated.

    Ballesteros, Natalia A; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara I; Aquilino, Carolina; Tafalla, Carolina

    2014-05-01

    There are still many details of how intestinal immunity is regulated that remain unsolved in teleost. Although leukocytes are present all along the digestive tract, most immunological studies have focused on the posterior segments and the importance of each gut segment in terms of immunity has barely been addressed. In the current work, we have studied the regulation of several immune genes along five segments of the rainbow trout (Oncorhynchus mykiss) digestive tract, comparing the effects observed in response to an infectious pancreatic necrosis virus (IPNV) infection to those elicited by oral vaccination with a plasmid coding for viral VP2. We have focused on the regulation of several mucosal chemokines, chemokine receptors, the major histocompatibility complex II (MHC-II) and tumor necrosis factor α (TNF-α). Furthermore, the recruitment of IgM(+) cells and CD3(+) cells was evaluated along the different segments in response to IPNV by immunohistochemical techniques. Our results provide evidences that there is a differential regulation of these immune genes in response to both stimuli along the gut segments. Along with this chemokine and chemokine receptor induction, IPNV provoked a mobilization of IgM(+) and IgT(+) cells to the foregut and pyloric caeca region, and CD3(+) cells to the pyloric caeca and midgut/hindgut regions. Our results will contribute to a better understanding of how mucosal immunity is orchestrated in the different gut segments of teleost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. [Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli].

    Fefelova, E A; Stolyarenko, A D; Yakushev, E Y; Gvozdev, V A; Klenov, M S

    2017-01-01

    Proteins of the Piwi family and short Piwi-interacting RNAs (piRNAs) ensure the protection of the genome from transposable elements. We have previously shown that nuclear Piwi protein tends to concentrate in the nucleoli of the cells of Drosophila melanogaster ovaries. It could be hypothesized that the function of Piwi in the nucleolus is associated with the repression of R1 and R2 retrotransposons inserted into the rDNA cluster. Here, we show that Piwi participates in recruiting Udd protein to nucleoli. Udd is a component of the conserved Selectivity Factor I-like (SL1-like) complex, which is required for transcription initiation by RNA polymerase I. We found that Udd localization depends on Piwi in germline cells, but not in somatic cells of the ovaries. In contrast, knockdowns of the SL1-like components (Udd or TAF1b) do not disrupt Piwi localization. We also observed that the absence of Udd or TAF1b in germline cells, as well as the impairment of Piwi nuclear localization lead to the accumulation of late stage egg chambers in the ovaries, which could be explained by reduced rRNA transcription. These results allow us to propose for the first time a role for Piwi in the nucleolus that is not directly associated with transposable element repression.

  8. Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium

    Bravard, Anne; Campalans, Anna; Vacher, Monique; Gouget, Barbara; Levalois, Celine; Chevillard, Sylvie; Radicella, J. Pablo

    2010-01-01

    The induction of mutations in mammalian cells exposed to cadmium has been associated with the oxidative stress triggered by the metal. There is increasing evidence that the mutagenic potential of Cd is not restricted to the induction of DNA lesions. Cd has been shown to inactivate several DNA repair enzymes. Here we show that exposure of human cells to sub-lethal concentrations of Cd leads to a time- and concentration-dependent decrease in hOGG1 activity, the major DNA glycosylase activity responsible for the initiation of the base excision repair (BER) of 8-oxoguanine, an abundant and mutagenic form of oxidized guanine. Although there is a slight effect on the level of hOGG1 transcripts, we show that the inhibition of the 8-oxoguanine DNA glycosylase activity is mainly associated with an oxidation of the hOGG1 protein and its disappearance from the soluble fraction of total cell extracts. Confocal microscopy analyses show that in cells exposed to Cd hOGG1-GFP is recruited to discrete structures in the cytoplasm. These structures were identified as stress granules. Removal of Cd from the medium allows the recovery of the DNA glycosylase activity and the presence of hOGG1 in a soluble form. In contrast to hOGG1, we show here that exposure to Cd does not affect the activity of the second enzyme of the pathway, the major AP endonuclease APE1.

  9. The Effect of Incorporation of SDF-1α into PLGA Scaffolds on Stem Cell Recruitment and the Inflammatory Response

    Thevenot, Paul; Nair, Ashwin; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng Yu; Tang, Liping

    2010-01-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. ...

  10. Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation.

    Wetter, Justin A; Revankar, Chetana; Hanson, Bonnie J

    2009-10-01

    Cellular assay development for the endothelial differentiation gene (EDG) family of G-protein-coupled receptors (GPCRs) and related lysophospholipid (LP) receptors is complicated by endogenous receptor expression and divergent receptor signaling. Endogenously expressed LP receptors exist in most tissue culture cell lines. These LP receptors, along with other endogenously expressed GPCRs, contribute to off-target signaling that can complicate interpretation of second-messenger-based cellular assay results. These receptors also activate a diverse and divergent set of cellular signaling pathways, necessitating the use of a variety of assay formats with mismatched procedures and functional readouts. This complicates examination and comparison of these receptors across the entire family. The Tango technology uses the conserved beta-arrestin-dependent receptor deactivation process to allow interrogation of the EDG and related receptors with a single functional assay. This method also isolates the target receptor signal, allowing the use of tissue culture cell lines regardless of their endogenous receptor expression. The authors describe the use of this technique to build cell-based receptor-specific assays for all 8 members of the EDG receptor family as well as the related LPA receptors GPR23, GPR92, and GPR87. In addition, they demonstrate the value of this technology for identification and investigation of functionally selective receptor compounds as demonstrated by the immunosuppressive compound FtY720-P and its action at the EDG(1) and EDG(3) receptors.

  11. Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.

    Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L

    1997-08-01

    Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring Ca

  12. Proliferating Cell Nuclear Antigen-dependent Rapid Recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged Sites after UV Irradiation in HeLa Cells*

    Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo

    2010-01-01

    The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861

  13. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  14. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells.

    Schauwecker, Suzanne M; Kim, J Julie; Licht, Jonathan D; Clevenger, Charles V

    2017-02-10

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  16. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  17. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  18. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  19. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  20. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells

    Adone Mohd-Sarip

    2017-07-01

    Full Text Available The Nucleosome Remodeling and Deacetylase (NURD complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1 is associated with human oral squamous cell carcinomas (OSCCs. Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT. This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.

  1. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  2. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto; Cleary, Margot P.; Gonzalez-Perez, Ruben R.; Torroella-Kouri, Marta

    2015-01-01

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity

  3. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Khatami, Mahin [Inflammation and Cancer Biology, National Cancer Institute (Ret), the National Institutes of Health, Bethesda, MD 20817 (United States)

    2014-01-27

    Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mϕs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  4. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs and Eosinophils (Eos with Host Mast Cells (MCs and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Mahin Khatami

    2014-01-01

    Full Text Available Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates is heavy investment on numerous genetic mutations (molecular false-flags in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance. Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs demonstrated at least three stages of interactions between resident (host and recruited immune cells: (a, acute phase; activation of mast cells (MCs, IgE Abs, histamine and prostaglandin synthesis; (b, intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos infiltrations into epithelia and goblet cells (GCs, tissue hypertrophy and neovascularization; and (c, chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mfs, increased (irregular size B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth and/or thinning (necrosis and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  5. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Khatami, Mahin

    2014-01-01

    Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mϕs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  6. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  7. Technology and Navy Recruiting

    Golfin, Peggy

    1997-01-01

    Since November 1996, CNA has participated on a Technology Task Force established by the Commander, Navy Recruiting Command, to address several issues concerning the use of technology and Navy recruiting...

  8. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  10. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames.

    Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques

    2018-04-06

    The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.

  11. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  12. The Recruitment Process:

    Holm, Anna

    , which were carried out in Denmark in 2008-2009 using qualitative research methods, revealed changes in the sequence, divisibility and repetitiveness of a number of recruitment tasks and subtasks. The new recruitment process design was identified and presented in the paper. The study concluded......The aim of this research was to determine whether the introduction of e-recruitment has an impact on the process and underlying tasks, subtasks and activities of recruitment. Three large organizations with well-established e-recruitment practices were included in the study. The three case studies...

  13. Seminal Fluid Regulates Accumulation of FOXP3(+) Regulatory T Cells in the Preimplantation Mouse Uterus Through Expanding the FOXP3(+) Cell Pool and CCL19-Mediated Recruitment

    Guerin, Leigh R.; Moldenhauer, Lachlan M.; Prins, Jelmer R.; Bromfield, John J.; Hayball, John D.; Robertson, Sarah A.

    Regulatory T (Treg) cells facilitate maternal immune tolerance of the semiallogeneic conceptus in early pregnancy, but the origin and regulation of these cells at embryo implantation is unclear. During the preimplantation period, factors in the seminal fluid delivered at coitus cause expansion of a

  14. Recruitment of Intracavernously Injected Adipose-Derived Stem Cells to the Major Pelvic Ganglion Improves Erectile Function in a Rat Model of Cavernous Nerve Injury

    Fandel, Thomas M.; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F.; Lin, Ching-Shwun

    2011-01-01

    Background Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. Objectives To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Design, setting, and participants Sprague-Dawley rats (n = 110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n = 25) or vehicle (n = 10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n = 5), and 28 d (n = 10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. Measurements IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. Results and limitations IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. Conclusions CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves

  15. Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes.

    Margaret Veselits

    Full Text Available Casitas B-lineage lymphoma-b (Cbl-b is a ubiquitin ligase (E3 that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9 into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.

  16. Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions.

    Kwong Tai Cheng

    2011-03-01

    Full Text Available Store-operated Ca²+ entry (SOCE has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC, activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC; the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵. In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store

  17. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection.

    Carvalho, A K; Carvalho, K; Passero, L F D; Sousa, M G T; da Matta, V L R; Gomes, C M C; Corbett, C E P; Kallas, G E; Silveira, F T; Laurenti, M D

    2016-01-01

    Leishmania (L.) amazonensis (La) and L. (V.) braziliensis (Lb) are responsible for a large clinical and immunopathological spectrum in human disease; while La may be responsible for anergic disease, Lb infection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by these Leishmania species, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course of La and Lb infection in BALB/c mice. Our results demonstrated a high involvement of DCs in La infection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely, Lb infection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4(+) T-cells was observed in Lb infection. Interleukin- (IL-) 4- and IL-10-producing CD4(+)and CD8(+) T-cells were present in both La and Lb infection; however, interferon- (IFN-) γ-producing CD4(+)and CD8(+) T-cells were detected only in Lb infection. The results suggest that during Lb infection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrast La infection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.

  18. Recruitment of the cohesin loading factor NIPBL to DNA double-strand breaks depends on MDC1, RNF168 and HP1γ in human cells

    Oka, Yasuyoshi; Suzuki, Keiji; Yamauchi, Motohiro; Mitsutake, Norisato; Yamashita, Shunichi

    2011-01-01

    Highlights: → NIPBL is recruited to DSBs. → Localization of NIPBL to DSBs is regulated by MDC1 and RNF168. → HP1γ is required for NIPBL accumulation at DSBs. -- Abstract: The cohesin loading factor NIPBL is required for cohesin to associate with chromosomes and plays a role in DNA double-strand break (DSB) repair. Although the NIPBL homolog Scc2 is recruited to an enzymatically generated DSB and promotes cohesin-dependent DSB repair in yeast, the mechanism of the recruitment remains poorly understood. Here we show that the human NIPBL is recruited to the sites of DNA damage generated by micro-irradiation as well as to the sites of DSBs induced by homing endonuclease, I-PpoI. The recruitment of NIPBL was impaired by RNAi-mediated knockdown of MDC1 or RNF168, both of which also accumulate at DSBs. We also show that the recruitment of NIPBL to the sites of DNA damage is mediated by its C-terminal region containing HEAT repeats and Heterochromatin protein 1 (HP1) interacting motif. Furthermore, NIPBL accumulation at damaged sites was also compromised by HP1γ depletion. Taken together, our study reveals that human NIPBL is a novel protein recruited to DSB sites, and the recruitment is controlled by MDC1, RNF168 and HP1γ.

  19. E-recruitment

    Holm, Anna

    2012-01-01

    E-recruitment, also known as online or web-based recruitment, is little discussed in research from an organizational perspective. The purpose of this chapter is therefore to analyze and discuss the process of e-recruitment, its key constituents and organizing principles. In doing so I draw...... on the results of a qualitative study conducted in 2008-2009, and on data stemming from industrial reports, articles from practitioner magazines, and in-depth interviews. The chapter provides a summary of e-recruitment properties and a composite matrix of the overall elements of e-recruitment organizing. E-recruitment...... is viewed as a case of virtual organizing- the organization of processes and activities which, via technology and human agents, facilitate time- and space-independent interaction and collaboration. In closure I offer a brief discussion of implications of the findings for HR managers and professionals...

  20. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b{sup +} myeloid cells to the lungs and facilitates B16-F10 melanoma colonization

    Souza, Lucas E.B., E-mail: lucasebsouza@usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Almeida, Danilo C., E-mail: gudaalmeida@gmail.com [Department of Medicine – Nephrology, Laboratory of Clinical and Experimental Immunology, Federal University of São Paulo, São Paulo, SP (Brazil); Yaochite, Juliana N.U., E-mail: ueda.juliana@gmail.com [Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo (Brazil); Covas, Dimas T., E-mail: dimas@fmrp.usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Fontes, Aparecida M., E-mail: aparecidamfontes@usp.br [Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2016-07-15

    the recruitment of CD11b{sup +} myeloid cells during tumor colonization.

  1. Induction of Live Cell Phagocytosis by a Specific Combination of Inflammatory Stimuli

    Takamasa Ishidome

    2017-08-01

    Full Text Available Conditions of severe hyper-inflammation can lead to uncontrolled activation of macrophages, and the ensuing phagocytosis of live cells. However, relationships between inflammatory stimuli and uncontrolled phagocytosis of live cells by macrophages are poorly understood. To identify mediators of this process, we established phagocytosis assays of live cells by stimulating macrophages with CpG DNA, interferon-γ, and anti-interleukin-10 receptor antibody. In this model, various cell surface receptors were upregulated on macrophages, and phagocytosis of live cells was induced in a Rac1-dependent manner. Subsequent inhibition of the ICAM-1, VCAM-1, and both of these receptors abolished in vitro and in vivo phagocytosis of live T cells, myeloid cells, and B cells, respectively. Specifically, the reduction in lymphocyte numbers due to in vivo activation of macrophages was ameliorated in Icam-1-deficient mice. In addition, overexpression of ICAM-1 or VCAM-1 in non-phagocytic NIH3T3 cells led to active phagocytosis of live cells. These data indicate molecular mechanisms underlying live cell phagocytosis induced by hyper-inflammation, and this experimental model will be useful to clarify the pathophysiological mechanisms of hemophagocytosis and to indicate therapeutic targets.

  2. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of

  3. Profiling, Screening and Criminal Recruitment

    Christopher Cotton; Cheng Li

    2012-01-01

    We model major criminal activity as a game in which a law enforcement officer chooses the rate at which to screen different population groups and a criminal organization (e.g., drug cartel, terrorist cell) chooses the observable characteristics of its recruits. Our model best describes smuggling or terrorism activities at borders, airports and other security checkpoints. When the social costs of crime are high, law enforcement is most-effective when it is unconstrained in its ability to profi...

  4. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome.

    Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E

    2018-02-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.

  5. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome

    Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.

    2018-01-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212

  6. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    Aliyev Emil

    2004-04-01

    Full Text Available Abstract Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1 in patients with unstable angina pectoris (AP. Methods Thirty-five patients with unstable AP (Group I, ten patients with stable AP (Group II and ten subjects who had angiographycally normal coronary arteries (Group III were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15 received tirofiban and Group IB (n = 20 did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point.

  7. Recruitment of general practices

    Riis, Allan; Jensen, Cathrine Elgaard; Maindal, Helle Terkildsen

    2016-01-01

    -factors as determinants for successfully recruiting healthcare professionals: relationships, reputation, requirements, rewards, reciprocity, resolution, and respect. Method: This is a process evaluation of the seven R-factors. We applied these factors to guide the design of our recruitment strategy as well as to make......Introduction: Health service research often involves the active participation of healthcare professionals. However, their ability and commitment to research varies. This can cause recruitment difficulties and thereby prolong the study period and inflate budgets. Solberg has identified seven R...... adjustments when recruiting general practices in a guideline implementation study. In the guideline implementation study, we studied the effect of outreach visits, quality reports, and new patient stratification tools for low back pain patients. Results: During a period of 15 months, we recruited 60 practices...

  8. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Ying An

    2011-01-01

    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  9. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  10. Extinction of Contextual Cocaine Memories Requires Cav1.2 within D1R-Expressing Cells and Recruits Hippocampal Cav1.2-Dependent Signaling Mechanisms.

    Burgdorf, Caitlin E; Schierberl, Kathryn C; Lee, Anni S; Fischer, Delaney K; Van Kempen, Tracey A; Mudragel, Vladimir; Huganir, Richard L; Milner, Teresa A; Glass, Michael J; Rajadhyaksha, Anjali M

    2017-12-06

    Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Ca v 1.2 L-type Ca 2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Ca v 1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Ca v 1.2 targets revealed that extinction recruited calcium/calmodulin (Ca 2+ /CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Ca v 1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Ca v 1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Ca v 1.2 channels in extinction of contextual cocaine-associated memories. SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of

  11. Recruiting and Retaining Cyberwarriors

    Westermeyer, Roger H

    2008-01-01

    .... Recruiting and retaining this highly skilled workforce is a significant challenge for the Air Force due to the high public and private sector demand for people with IT and related engineering skills...

  12. Recruiting and Retaining Cyberwarriors

    2008-02-07

    2007 hearing of the House Oversight and Government Reform Subcommittee on Information Policy, Gregory Wilshusen, director of Information Technology at...Abbott Laboratories in Chicago, recruiters are reaching out to College students by offering flexible work schedules, telecommuting , full tuition

  13. Nurse recruitment. Going places.

    Buchan, James

    2002-08-01

    Overseas nurses account for 40 per cent of all new registrations in the UK and this may be rising to 50 per cent. This upward trend is likely to continue. International recruitment is to be part of the NHS's long-term strategy and is becoming the focus of increasing policy attention. The international labour market will become tighter: the US needs to recruit an extra million nurses of its own.

  14. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  15. Electronic Recruitment at CERN

    2004-01-01

    The Human Resources Department switches to electronic recruitment. From now on whenever you are involved in a recruitment action you will receive an e-mail giving you access to a Web folder. Inside you will find a shortlist of applications drawn up by the Human Resources Department. This will allow you to consult the folder, at the same time as everyone else involved in the recruitment process, for the vacancy you are interested in. This new electronic recruitment system, known as e-RT, will be introduced in a presentation given at 10 a.m. on 11 February in the Main Auditorium. Implemented by AIS (Administrative Information Services) and the Human Resources Department, e-RT will cover vacancies open in all of CERN's recruitment programmes. The electronic application system was initially made available to technical students in July 2003. By December it was extended to summer students, fellows, associates and Local Staff. Geraldine Ballet from the Recruitment Service prefers e-RT to mountains of paper! The Hu...

  16. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye; Rho, Seung-Sik; Park, Hyojin [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Young-Myeong [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Guen, E-mail: ygkwon@yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and is involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.

  17. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-11

    Hyun, Young-Min; Chung, Hung-Li; McGrath, James L.; Waugh, Richard E.; Kim, Minsoo

    2009-01-01

    Lymphocyte migration from blood into lymphoid tissues or to sites of inflammation occurs through interactions between cell surface integrins and their ligands expressed on the vascular endothelium and the extracellular matrix. Very Late Antigen-4 (VLA-4, α4β1) is a key integrin in the effective trafficking of lymphocytes. Although it has been well established that integrins undergo functionally significant conformational changes to mediate cell adhesion, there is no mechanistic information that explains how these are dynamically and spatially regulated during lymphocyte polarization and migration. Using dynamic fluorescence resonance energy transfer (FRET) analysis of a novel VLA-4 FRET sensor under total internal reflection fluorescence (TIRF) microscopy, we show that VLA-4 activation localizes to the lamellipodium in living cells. During T cell migration on VCAM-1, VLA-4 activation concurs with spatial redistribution of chemokine receptor and active Rap1 at the leading edge. Selective inhibition of the activated VLA-4 at leading edge with a small molecule inhibitor is sufficient to block T cell migration. These data suggest that a subpopulation of activated VLA-4 is mainly localized to the leading edge of polarized human T cells, and is critical for T cell migration on VCAM-1. PMID:19542447

  18. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.

    Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L

    2009-04-01

    Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.

  19. Effective recruitment of participants to a phase I study using the internet and publicity releases through charities and patient organisations: analysis of the adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D).

    Heywood, James; Evangelou, Marina; Goymer, Donna; Kennet, Jane; Anselmiova, Katerina; Guy, Catherine; O'Brien, Criona; Nutland, Sarah; Brown, Judy; Walker, Neil M; Todd, John A; Waldron-Lynch, Frank

    2015-03-11

    A barrier to the successful development of new disease treatments is the timely recruitment of participants to experimental medicine studies that are primarily designed to investigate biological mechanisms rather than evaluate clinical efficacy. The aim of this study was to analyse the performance of three recruitment sources and the effect of publicity events during the Adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D). The final study outcome, demography, disease duration, residence and the effect of publicity events on the performance of three recruitment sources (clinics, type 1 diabetes (T1D) disease register and the internet) were analysed from a bespoke DILT1D recruitment database. For the internet source, the origin of website hits in relation to publicity events was also evaluated. A total of 735 potentially eligible participants were approached to identify the final 45 DILT1D participants. A total of 477 (64%) were identified via the disease register, but only 59 (12%) responded to contact. A total of 317 individuals registered with the DILT1D study team. Self-referral via the study website generated 170 (54%) registered individuals and was the most popular and successful source, with 88 (28%) sourced from diabetes clinics and 59 (19%) from the disease register. Of those with known T1D duration (N = 272), the internet and clinics sources identified a larger number (57, 21%) of newly diagnosed T1D (promotional events from organisations supporting T1D research and treatment during the trial were essential to the success of the internet recruitment strategy. Analysis of the DILT1D study recruitment outcomes illustrates the utility of an active internet recruitment strategy, supported by patient groups and charities, funding agencies and sponsors, in successfully conducting an early phase study in T1D. This recruitment strategy should now be evaluated in late-stage trials to develop treatments for T1D and other diseases. NCT

  20. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  1. Involvement of leucocyte/endothelial cell interactions in anorexia nervosa.

    Víctor, Víctor M; Rovira-Llopis, Susana; Saiz-Alarcón, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; de Pablo, Carmen; Álvarez, Ángeles; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio

    2015-07-01

    Anorexia nervosa is a common psychiatric disorder in adolescence and is related to cardiovascular complications. Our aim was to study the effect of anorexia nervosa on metabolic parameters, leucocyte-endothelium interactions, adhesion molecules and proinflammatory cytokines. This multicentre, cross-sectional, case-control study employed a population of 24 anorexic female patients and 36 controls. We evaluated anthropometric and metabolic parameters, interactions between leucocytes polymorphonuclear neutrophils (PMN) and human umbilical vein endothelial cells (HUVEC), proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and soluble cellular adhesion molecules (CAMs) including E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Anorexia nervosa was related to a decrease in weight, body mass index, waist circumference, systolic blood pressure, glucose, insulin and HOMA-IR, and an increase in HDL cholesterol. These effects disappeared after adjusting for BMI. Anorexia nervosa induced a decrease in PMN rolling velocity and an increase in PMN rolling flux and PMN adhesion. Increases in IL-6 and TNF-α and adhesion molecule VCAM-1 were also observed. This study supports the hypothesis of an association between anorexia nervosa, inflammation and the induction of leucocyte-endothelium interactions. These findings may explain, in part at least, the increased risk of vascular disease among patients with anorexia nervosa. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  2. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-01-01

    Highlights: ► AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. ► We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. ► RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. ► It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RARα. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1–100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  3. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  4. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  5. Sales Force Recruitment

    Flaviu MEGHISAN

    2008-01-01

    The sales plan is put into practice through the tasks associated with sales plan implementation. Whereas sales plan formulation focuses on "doing the right things," implementation emphasizes "doing things right." The three major tasks involved in implementing a sales plan are (1) salesforce recruitment and selection, (2) salesforce training, and (3) salesforce motivation and compensation.

  6. Recruitment and Retention.

    Combs, Jolene

    1986-01-01

    Suggests ways community college journalism instructors can recruit and retain students in journalism classes (e.g., host a high school press day, fund a journalism scholarship, sponsor events for high school journalism teachers and advisers, serve as counselor for journalism majors, have a yearly journalism convocation, and involve campus…

  7. E-recruitment

    Holm, Anna B.

    2012-01-01

    tasks and subtasks. For management, the main task is now that of communicating with candidates. In addition, a new on-going task of maintaining a corporate career website has become an integral part of the new recruitment process. The new design is presented in the following, and its implications...

  8. Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels.

    Kim, Yang-Hee; Tabata, Yasuhiko

    2017-11-01

    The objective of the present study is to evaluate the effects of the release patterns of stromal derived factor (SDF)-1 and sphingosine-1 phosphate agonist (SEW2871), used as MSC and macrophage recruitment agents, on the wound closure of diabetic mouse skin defects. To achieve different release patterns, hydrogels were prepared using two types of gelatin with isoelectric points (IEP) of 5 and 9, into which SDF-1 and SEW2871 were then incorporated in various combinations. When the hydrogels incorporating SDF-1 and SEW2871 were applied into wound defects of diabetic mice, the number of MSCs and macrophages recruited to the defects and the levels of pro- and anti- inflammatory cytokines were found to be dependent on the release profiles of SDF-1 and SEW2871. Of particular interest was the case of a rapid release of SDF-1 combined with a controlled release of SEW2871. This resulted in a higher number of M2 macrophages and gene expression levels of anti-inflammatory cytokines 3 days after implantation and faster wound closure than when pairing the controlled release of SDF-1 with a rapid release of SEW2871. Therefore, the present study demonstrates that different release patterns of SDF-1 and SEW2871 can enhance the in vivo recruitment of MSCs and macrophages, and can promote skin wound closure through the modulation of inflammation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Osteoblast recruitment routes in human cancellous bone remodeling

    Kristensen, Helene Bjørg; Andersen, Thomas Levin; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling...... is lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels...

  10. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Rouger, Caroline; Pagie, Sylvain; Derbré, Séverine; Le Ray, Anne-Marie; Richomme, Pascal; Charreau, Béatrice

    2016-01-01

    Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  11. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Caroline Rouger

    Full Text Available Endothelial cells (ECs are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP and two xanthones were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin and major histocompatibility complex (MHC molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  12. Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection.

    Grau, Morgan; Valsesia, Séverine; Mafille, Julien; Djebali, Sophia; Tomkowiak, Martine; Mathieu, Anne-Laure; Laubreton, Daphné; de Bernard, Simon; Jouve, Pierre-Emmanuel; Ventre, Erwan; Buffat, Laurent; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2018-05-15

    The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. eHealth Recruitment Challenges

    Thompson, Debbe; Canada, Ashanti; Bhatt, Riddhi; Davis, Jennifer; Plesko, Lisa; Baranowski, Tom; Cullen, Karen; Zakeri, Issa

    2006-01-01

    Little is known about effective eHealth recruitment methods. This paper presents recruitment challenges associated with enrolling African-American girls aged 8-10 years in an eHealth obesity prevention program, their effect on the recruitment plan, and potential implications for eHealth research. Although the initial recruitment strategy was…

  14. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  15. Effects of angiopoietin-1 on inflammatory injury in endothelial progenitor cells and blood vessels.

    Wang, Yi-Qing; Song, Jing-Jin; Han, Xiao; Liu, Yi-Ye; Wang, Xi-Huang; Li, Zhi-Ming; Tzeng, Chi-Meng

    2014-01-01

    Endothelial progenitor cells (EPCs) and angiopoietin-1 (Ang-1) play important roles in vasculogenesis and angiogenesis, respectively. Thus, targeting both aspects of cardiovascular tissue regeneration may offer promising therapeutic options for cardiovascular disorders. To this end, we constructed a lentiviral vector (pNL) with the Ang-1 gene and transfected EPCs with it (Ang-1-EPCs) to investigate vasculogenesis in both cellular and animal models. Compared to controls, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) increased significantly in both untreated EPCs and in the pNL vector group. After Ang-1 transcription, ICAM-1 and VCAM-1 decreased considerably in those treatment groups. Ang-1-modified EPCs alleviated inflammatory responses induced by tumor-necrosis factor-α (TNF-α) in vitro. Moreover, Ang-1-EPC implantation inhibited neointimal hyperplasia after balloon catheter injury in rats, dramatically diminishing the intimal-media (I/M) ratio and decreasing the neointimal area. Proliferating cell nuclear antigen expression in the Ang-1-EPC group was lower than the EPC non-treatment group as well, suggesting that Ang-1-EPC improved cell survival during inflammation and promoted endothelialization in damaged blood vessels.

  16. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. Copyright © 2017 Korean Endocrine Society

  17. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution

    Xiao, Xiang; Mruk, Dolores D.

    2013-01-01

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788

  18. Recruitment of HDAC4 by transcription factor YY1 represses HOXB13 to affect cell growth in AR-negative prostate cancers

    Ren, Guoling; Zhang, Guocui; Dong, Zhixiong

    2008-01-01

    HOXB13 is a homeodomain protein implicated to play a role in growth arrest in AR (androgen receptor)-negative prostate cancer cells. Expression of HOXB13 is restricted to the AR-expressing prostate cells. In this report, we demonstrate that the HDAC inhibitor NaB (sodium butyrate) was able...... to induce cell growth arrest and to increase HOXB13 expression in AR-negative prostate cancer cells. We also show that both HDAC4 and YY1 participated in the repression of HOXB13 expression through an epigenetic mechanism involving histone acetylation modification. Specifically, co...

  19. Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils?

    Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora

    2015-05-01

    Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.

  20. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress.

    Toma, Laura; Sanda, Gabriela M; Niculescu, Loredan S; Deleanu, Mariana; Stancu, Camelia S; Sima, Anca V

    2017-09-10

    Type 2 diabetes mellitus is a worldwide epidemic and its atherosclerotic complications determine the high morbidity and mortality of diabetic patients. Caffeic acid (CAF), a phenolic acid present in normal diets, is known for its antioxidant properties. The aim of this study was to investigate CAF's anti-inflammatory properties and its mechanism of action, using cultured human endothelial cells (HEC) incubated with glycated low-density lipoproteins (gLDL). Levels of the receptor for advanced glycation end-products (RAGE), inflammatory stress markers (C reactive protein, CRP; vascular cell adhesion molecule-1, VCAM-1; monocyte chemoattractant protein-1, MCP-1), and oxidative stress and endoplasmic reticulum stress (ERS) markers were evaluated in gLDL-exposed HEC, in the presence/absence of CAF. RAGE silencing or blocking, specific inhibitors for oxidative stress (apocynin, N-acetyl-cysteine), and ERS (salubrinal) were used. The results showed that: (i) gLDL induced CRP synthesis and secretion through mechanisms involving NADPH oxidase-dependent oxidative stress and ERS in HEC; (ii) gLDL-RAGE interaction, oxidative stress, and ERS stimulated the secretion of VCAM-1 and MCP-1 in HEC; and (iii) CAF reduced the secretion of CRP, VCAM-1, and MCP-1 in gLDL-exposed HEC by inhibiting RAGE expression, oxidative stress, and ERS. In conclusion, CAF might be a promising alternative to ameliorate a wide spectrum of disorders due to its complex mechanisms of action resulting in anti-inflammatory and antioxidative properties. © 2017 BioFactors, 43(5):685-697, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Ohno, Marumi; Ikenaka, Yoshinori [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.jp [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. Black-Right-Pointing-Pointer We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. Black-Right-Pointing-Pointer RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. Black-Right-Pointing-Pointer It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RAR{alpha}. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1-100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  2. Distinctive Capillary Action by Micro-channels in Bone-like Templates can Enhance Recruitment of Cells for Restoration of Large Bony Defect.

    Oh, Daniel S; Koch, Alia; Eisig, Sidney; Kim, Sahng Gyoon; Kim, Yoon Hyuk; Kim, Do-Gyoon; Shim, Jae Hyuck

    2015-09-11

    Without an active, thriving cell population that is well-distributed and stably anchored to the inserted template, exceptional bone regeneration does not occur. With conventional templates, the absence of internal micro-channels results in the lack of cell infiltration, distribution, and inhabitance deep inside the templates. Hence, a highly porous and uniformly interconnected trabecular-bone-like template with micro-channels (biogenic microenvironment template; BMT) has been developed to address these obstacles. The novel BMT was created by innovative concepts (capillary action) and fabricated with a sponge-template coating technique. The BMT consists of several structural components: inter-connected primary-pores (300-400 µm) that mimic pores in trabecular bone, micro-channels (25-70 µm) within each trabecula, and nanopores (100-400 nm) on the surface to allow cells to anchor. Moreover, the BMT has been documented by mechanical test study to have similar mechanical strength properties to those of human trabecular bone (~3.8 MPa)12. The BMT exhibited high absorption, retention, and habitation of cells throughout the bridge-shaped (Π) templates (3 cm height and 4 cm length). The cells that were initially seeded into one end of the templates immediately mobilized to the other end (10 cm distance) by capillary action of the BMT on the cell media. After 4 hr, the cells homogenously occupied the entire BMT and exhibited normal cellular behavior. The capillary action accounted for the infiltration of the cells suspended in the media and the distribution (active migration) throughout the BMT. Having observed these capabilities of the BMT, we project that BMTs will absorb bone marrow cells, growth factors, and nutrients from the periphery under physiological conditions. The BMT may resolve current limitations via rapid infiltration, homogenous distribution and inhabitance of cells in large, volumetric templates to repair massive skeletal defects.

  3. Recruiting in remote locations

    Ionel, C. [Enerflex Systems Ltd., Calgary, AB (Canada)

    2006-07-01

    This presentation provided details of Enerflex, a leading supplier of products and services to the oil and gas industry, and outlined their personnel hiring policies. Enerflex's core values include community involvement and divisional logo branding. The extensive training that is provided places an emphasis on employee empowerment. The company also places an emphasis on employee safety, diversity, and team building. Competitive salaries are offered along with generous equipment allowances and a flexible benefits program. Benefits include travel and overtime rates; health benefits; retirement savings; scholarship programs; career opportunities; and apprenticeship programs. External technical training is provided. An employee referral program has been developed, and the company's recruitment program also advertises in remote newspapers to develop career streams within remote communities. tabs., figs.

  4. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  5. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  6. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  7. Podoplanin-positive cancer-associated fibroblast recruitment within cancer stroma is associated with a higher number of single nucleotide variants in cancer cells in lung adenocarcinoma.

    Nakasone, Shoko; Mimaki, Sachiyo; Ichikawa, Tomohiro; Aokage, Keiju; Miyoshi, Tomohiro; Sugano, Masato; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Tsuboi, Masahiro; Goto, Koichi; Tsuchihara, Katsuya; Ishii, Genichiro

    2018-05-01

    Podoplanin-positive cancer-associated fibroblasts (CAFs) play an essential role in tumor progression. However, it is still unclear whether specific genomic alterations of cancer cells are required to recruit podoplanin-positive CAFs. The aim of this study was to investigate the relationship between the mutation status of lung adenocarcinoma cells and the presence of podoplanin-positive CAFs. Ninety-seven lung adenocarcinomas for which whole exome sequencing data were available were enrolled. First, we analyzed the clinicopathological features of the cases, and then, evaluated the relationship between genetic features of cancer cells (major driver mutations and the number of single nucleotide variants, SNVs) and the presence of podoplanin-positive CAFs. The presence of podoplanin-positive CAFs was associated with smoking history, solid predominant subtype, and lymph node metastasis. We could not find any significant correlations between major genetic mutations (EGFR, KRAS, TP53, MET, ERBB2, BRAF, and PIC3CA) in cancer cells and the presence of podoplanin-positive CAFs. However, cases with podoplanin-positive CAFs had a significantly higher number of SNVs in cancer cells than the podoplanin-negative CAFs cases (median 84 vs 37, respectively; p = 0.001). This was also detected in a non-smoker subgroup (p = 0.037). Multivariate analyses revealed that the number of SNVs in cancer cells was the only statistically significant independent predictor for the presence of podoplanin-positive CAFs (p = 0.044). In lung adenocarcinoma, the presence of podoplanin-positive CAFs was associated with higher numbers of SNVs in cancer cells, suggesting a relationship between accumulations of SNVs in cancer cells and the generation of a tumor-promoting microenvironment.

  8. Boomerang recruitment: bridging the gap.

    Hart, Karen A

    2009-01-01

    In today's competitive health care recruitment environment, one of the most cost-effective and successful recruitment strategies is alumni or "boomerang" recruitment. A proven business model, alumni recruitment is just beginning to be used in a significant way in the health care arena. The cost to recruit alumni is much lower than for those in the general workforce and the alumni population is a known quantity. Alumni will assimilate much more easily into your corporate culture, will need less orientation and onboarding, and will be more productive.

  9. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels.

    Marc B Bigler

    Full Text Available Acute stress drives a 'high-alert' response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans.3,4-methylenedioxymethamphetamine (MDMA, methylphenidate (MPH, or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells.MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment.The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.

  10. Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells

    Haubner, Frank; Leyh, Michaela; Ohmann, Elisabeth; Pohl, Fabian; Prantl, Lukas; Gassner, Holger G

    2013-01-01

    The inflammatory response clinically observed after radiation has been described to correlate with elevated expression of cytokines and adhesion molecules by endothelial cells. Therapeutic compensation for this microvascular compromise could be an important approach in the treatment of irradiated wounds. Clinical reports describe the potential of adipose-derived stem cells to enhance wound healing, but the underlying cellular mechanisms remain largely unclear. Human dermal microvascular endothelial cells (HDMEC) and human adipose-derived stem cells (ASC) were cultured in a co-culture setting and irradiated with sequential doses of 2 to 12 Gy. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (FGF), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the supernatants using enzyme-linked immunosorbent assay (ELISA). Irradiated HDMEC and ASC as well as non-irradiated co-cultures, HDMEC or ASC respectively were used as controls. Cell count was significantly reduced in irradiated co-cultures of HDMEC and ASC compared to non-irradiated controls. Levels of IL-6, FGF, ICAM-1 and VCAM-1 in the supernatants of the co-cultures were significantly less affected by external radiation in comparison to HDMEC. The increased expression of cytokines and adhesion molecules by HDMEC after external radiation is mitigated in the co-culture setting with ASC. These in vitro changes seem to support the clinical observation that ASC may have a stabilizing effect when injected into irradiated wounds

  11. eHealth recruitment challenges.

    Thompson, Debbe; Canada, Ashanti; Bhatt, Riddhi; Davis, Jennifer; Plesko, Lisa; Baranowski, Tom; Cullen, Karen; Zakeri, Issa

    2006-11-01

    Little is known about effective eHealth recruitment methods. This paper presents recruitment challenges associated with enrolling African-American girls aged 8-10 years in an eHealth obesity prevention program, their effect on the recruitment plan, and potential implications for eHealth research. Although the initial recruitment strategy was literature-informed, it failed to enroll the desired number of girls within a reasonable time period. Therefore, the recruitment strategy was reformulated to incorporate principles of social marketing and traditional marketing techniques. The resulting plan included both targeted, highly specific strategies (e.g., selected churches), and more broad-based approaches (e.g., media exposure, mass mailings, radio advertisements). The revised plan enabled recruitment goals to be attained. Media appeared to be particularly effective at reaching the intended audience. Future research should identify the most effective recruitment strategies for reaching potential eHealth audiences.

  12. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  13. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy

    Harwood, Seandean Lykke; Alvarez-Cienfuegos, Ana; Alanes, Natalia Nuñez del Prado

    2018-01-01

    The redirection of T cell activity using bispecific antibodies is one of the most promising cancer immunotherapy approaches currently in development, but it is limited by cytokine storm-related toxicities, as well as the pharmacokinetics and tumor-penetrating capabilities of current bispecific an...

  14. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes.

    Heine, Shannon J; Diaz-McNair, Jovita; Andar, Abhay U; Drachenberg, Cinthia B; van de Verg, Lillian; Walker, Richard; Picking, Wendy L; Pasetti, Marcela F

    2014-02-15

    Shigella is one of the leading pathogens contributing to the vast pediatric diarrheal disease burden in low-income countries. No licensed vaccine is available, and the existing candidates are only partially effective and serotype specific. Shigella type III secretion system proteins IpaB and IpaD, which are conserved across Shigella spp., are candidates for a broadly protective, subunit-based vaccine. In this study, we investigated the immunogenicity and protective efficacy of IpaB and IpaD administered intradermally (i.d.) with a double-mutant of the Escherichia coli heat-labile enterotoxin (dmLT) adjuvant using microneedles. Different dosage levels of IpaB and IpaD, with or without dmLT, were tested in mice. Vaccine delivery into the dermis, recruitment of neutrophils, macrophages, dendritic cells, and Langerhans cells, and colocalization of vaccine Ag within skin-activated APC were demonstrated through histology and immunofluorescence microscopy. Ag-loaded neutrophils, macrophages, dendritic cells, and Langerhans cells remained in the tissue at least 1 wk. IpaB, IpaD, and dmLT-specific serum IgG- and IgG-secreting cells were produced following i.d. immunization. The protective efficacy was 70% against Shigella flexneri and 50% against Shigella sonnei. Similar results were obtained when the vaccine was administered intranasally, with the i.d. route requiring 25-40 times lower doses. Distinctively, IgG was detected in mucosal secretions; secretory IgA, as well as mucosal and systemic IgA Ab-secreting cells, were seemingly absent. Vaccine-induced T cells produced IFN-γ, IL-2, TNF-α, IL-17, IL-4, IL-5, and IL-10. These results demonstrate the potential of i.d. vaccination with IpaB and IpaD to prevent Shigella infection and support further studies in humans.

  15. The Effects of Arterial Blood Pressure Reduction on Endocan and Soluble Endothelial Cell Adhesion Molecules (CAMs and CAMs Ligands Expression in Hypertensive Patients on Ca-Channel Blocker Therapy

    Refmir Tadzic

    2013-04-01

    Full Text Available Background/Aims: To determine the effect of arterial blood pressure (BP reduction on endocan and soluble cell adhesion molecules' (sCAM plasma concentration and expression of their ligands on circulatory leukocyte subpopulations. Methods: 24 hypertensive subjects of both sexes (age: 53±8 yrs were treated with Ca-channel blocker, amlodipin (5-10 mg/day for 8 weeks; to reach BP≤139/89mmHg. The serum sCAMs and endocan concentrations were determined by ELISA kits. Level of ICAM/VCAM ligands on leukocytes was assessed by flow cytometry. Paired t-test, or t-test were used as appropriate, with Pearson's correlation calculated; pResults: sICAM-1 and sVCAM-1 were decreased (p≤0.001 and p=0.002, respectively, while E-selectin concentration was increased after amlodipin treatment (P=0.014. CD11a/LFA-1 (ICAM-1 and endocan ligand was significantly increased in all three cell types with BP decrease. CD15 and CD49d/VLA-4 (VCAM-1 ligand did not change after the treatment. There was significant positive correlation of systolic and diastolic BP with ICAM-1 and VCAM-1, and significant negative correlation of systolic BP with CD11a/LFA-1. Endocan significantly positively correlated with ICAM-1. Conclusions: The increased expression of ICAM/VACM ligands, together with decrease of sCAMs and endocan suggests the de-activation of endothelium with reduction in BP, decreasing the adherence of circulatory leukocytes to endothelium; subsequently decreasing the risk for development of atherosclerosis.

  16. Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide

    Lino dos Santos Franco, Adriana; Damazo, Amilcar Sabino; Beraldo de Souza, Hyula Regines; Domingos, Helory Vanni; Oliveira-Filho, Ricardo Martins; Oliani, Sonia Maria; Costa, Soraia Katia Pereira; Tavares de Lima, Wothan

    2006-01-01

    We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also, FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. On the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects

  17. lncRNA Panct1 Maintains Mouse Embryonic Stem Cell Identity by Regulating TOBF1 Recruitment to Oct-Sox Sequences in Early G1

    Chakraborty, Debojyoti; Paszkowski-Rogacz, Maciej; Berger, Nicolas

    2017-01-01

    -chromosome-encoded protein A830080D01Rik, hereafter referred to as transient octamer binding factor 1 (TOBF1), to genomic sites resembling the canonical Oct-Sox motif. TOBF1 physically interacts with Panct1 and exhibits a cell-cycle-specific punctate localization in ESCs. At the chromatin level, this correlates with its......-cycle-dependent manner and suggest that lncRNAs might function as barcodes for identifying genomic addresses for maintaining cellular states....

  18. Motivated reasoning during recruitment.

    Kappes, Heather Barry; Balcetis, Emily; De Cremer, David

    2018-03-01

    This research shows how job postings can lead job candidates to see themselves as particularly deserving of hiring and high salary. We propose that these entitlement beliefs entail both personal motivations to see oneself as deserving and the ability to justify those motivated judgments. Accordingly, we predict that people feel more deserving when qualifications for a job are vague and thus amenable to motivated reasoning, whereby people use information selectively to reach a desired conclusion. We tested this hypothesis with a 2-phase experiment (N = 892) using materials drawn from real online job postings. In the first phase of the experiment, participants believed themselves to be more deserving of hiring and deserving of higher pay after reading postings composed of vaguer types of qualifications. In the second phase, yoked observers believed that participants were less entitled overall, but did not selectively discount endorsement of vaguer qualifications, suggesting they were unaware of this effect. A follow-up preregistered experiment (N = 905) using postings with mixed qualification types replicated the effect of including more vague qualifications on participants' entitlement beliefs. Entitlement beliefs are widely seen as problematic for recruitment and retention, and these results suggest that reducing the inclusion of vague qualifications in job postings would dampen the emergence of these beliefs in applicants, albeit at the cost of decreasing application rates and lowering applicants' confidence. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  20. Sida rhomboidea.Roxb aqueous extract down-regulates in vivo expression of vascular cell adhesion molecules in atherogenic rats and inhibits in vitro macrophage differentiation and foam cell formation.

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-10-01

    The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.

  1. Differential Recruitment of Distinct Amygdalar Nuclei across Appetitive Associative Learning

    Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D.

    2013-01-01

    The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…

  2. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis.

    Elham Khanicheh

    Full Text Available BACKGROUND/OBJECTIVES: Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1 with contrast enhanced ultrasound (CEU could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS: Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day. At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM and control microbubbles (MB(Ctr. Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS: Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM in non-treated animals (MB(VCAM 2±0.3 vs MB(Ctr 0.7±0.2, p<0.01, but not in statin-treated animals (MB(VCAM 0.8±0.2 vs MB(Ctr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM signal. CONCLUSIONS: Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

  3. Primary observation on adherent function of bone marrow stromal cells in mice post combined radiation-burn injury

    Chen Xinghua; Luo Chengji; Guo Chaohua; Wang Ping; Deng Xuecai

    1999-01-01

    Objective: To investigate the adherent function of bone marrow stromal cells in hematopoietic inductive microenvironment post combined radiation-burn injury. Methods: The expression of cell adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1), fibro-connection (Fn), laminin (Ln) and collagen type IV (Col IV) on bone marrow stromal cells cultured in vitro was detected by flow cytometry and the binding capacity of bone marrow mononuclear cells to stromal cell adherence layer was tested by cell binding assay and cell binding blocking assay respectively from mice treated with 5.0 Gy γ-ray 15% of total body surface area (TBSA), third-degree burn injury and combined irradiation-burn injury, respectively. Results: 1. The expression levels of molecules mentioned above in burn-injured mice were the highest. The molecules levels in control mice were greater than those in radiation-injured mice, which were lower than those in mice with combined radiation-burn injury. 2. The binding capacity of stromal cell adherence layer in burn-injured mice was greater than that in control mice, and significantly increased from 3 to 7 days post injury as compared with that in controls, radiation-injured mice and combined radiation-burn-injured mice, respectively (P < 0.05-0.01). Contrarily, the capacity of binding in the radiation-injured and combined radiation-burn-injured mice was the lowest from 3 to 7 days post injury. 3. The binding rate of bone marrow mononuclear cells to stromal cell adherence layer descended in different degrees after pre-treatment with monoclonal antibodies directed to VCAM-1, Fn, Ln, or Col IV respectively or VCAM-1 combined with anti-Fn, anti-Ln or anti-Col IV, respectively, in stromal cell adherence layer. Conclusion: The damage of cell adherent function for bone marrow hematopoietic inductive microenvironment post combined radiation-burn injury might be one of the important factors in hematopoietic disorder in combined radiation-burn injury

  4. Recruitment and selection of employees

    Čermochová, Barbora

    2017-01-01

    The Bachelor's thesis focuses on the process of recruitment and selection of employees. The thesis is divided into theoretical and practical part. The theoretical part includes concepts that are important for understanding of issues of the process of recruitment and selection of employees. The practical part is divided into three chapters. The first chapter briefly describes the company xxx. Next two chapters deal with the process of recruitment and selection of employees in the company. The ...

  5. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important...... in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity...... and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased...

  6. Recruit and ADVANCE

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  7. Recruitment Practices And Institutional Change

    Holm, Anna; Ulhøi, John Parm

    Up to now, there has been little research on recruitment practices from an organizational perspective, and in part it lags behind practice. This paper attempts to rectify this by studying recent changes in the recruitment practices of Danish organizations. We employ new institutional theory......, and individuals’ social cognition. Among other things, this is reflected in the use of online recruitment and employer branding. The study concludes that the recruitment field has transformed and reviewed its practices due to institutional changes in how individuals search for employment and expect to be hired....

  8. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  9. Navy Enlisted Recruiting: Alternatives for Improving Recruiter Productivity

    2013-03-01

    Instruction CR Chief Recruiter CRF Career Recruiting Force CS Culinary Specialist CT Command Trainer CTI Cryptologic Technician...third week (Module 2) when the students are taught about trends in sales and marketplaces, the art and science of sales, how to prospect for new...8, Aviation Machinist Mates (AD), Aviation Structural Mechanic (AM), Culinary Specialists (CS), and Fire Controlman (FC) had the highest average

  10. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø

    2011-01-01

    cells (HUVECs). Viability and production of reactive oxygen species (ROS) were investigated in all cell types. We collected particles from combustion of D(100) and 20% (w/w) blends of animal fat or rapeseed oil methyl esters in light-duty vehicle engines complying with Euro2 or Euro4 standards......Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial....... Particles emitted from the Euro4 engine were smaller in size and more potent than particles emitted from the Euro2 engine with respect to ROS production and DNA damage, but similarly potent concerning cytokine mRNA expression. Particles emitted from combustion of biodiesel blends were larger in size...

  11. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface.

    Seymour, Lisa M; Jenkins, Cheryl; Deutscher, Ania T; Raymond, Benjamin B A; Padula, Matthew P; Tacchi, Jessica L; Bogema, Daniel R; Eamens, Graeme J; Woolley, Lauren K; Dixon, Nicholas E; Walker, Mark J; Djordjevic, Steven P

    2012-01-01

    Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence. © 2011 Blackwell Publishing Ltd.

  12. Diversity employment and recruitment sources

    1994-08-01

    Effective human resources management has been identified as one of four critical success factors in the Department of Energy Strategic Plan. The Plan states relative to this factor: ``The Department seeks greater alignment of resources with agency priorities and increased diversification of the workforce, including gender, ethnicity, age, and skills. This diversification will bring new thinking and perspectives that heretofore have not had a voice in departmental decision-making.`` This Guide has been developed as a key tool to assist Department of Energy management and administrative staff in achieving Goal 2 of this critical success factor, which is to ``Ensure a diverse and talented workforce.`` There are numerous sources from which to recruit minorities, women and persons with disabilities. Applying creativity and proactive effort, using traditional and non-traditional approaches, and reaching out to various professional, academic and social communities will increase the reservoir of qualified candidates from which to make selections. In addition, outreach initiatives will undoubtedly yield further benefits such as a richer cultural understanding and diversity awareness. The resource listings presented in this Guide are offered to encourage active participation in the diversity recruitment process. This Guide contains resource listings by state for organizations in the following categories: (1) African American Recruitment Sources; (2) Asian American/Pacific Islander Recruitment Sources; (3) Hispanic Recruitment Sources; (4) Native American/Alaskan Native Recruitment Sources; (5) Persons with Disabilities Recruitment Sources; and (6) Women Recruitment Sources.

  13. Fast-Track Teacher Recruitment.

    Grant, Franklin Dean

    2001-01-01

    Schools need a Renaissance human-resources director to implement strategic staffing and fast-track teacher-recruitment plans. The HR director must attend to customer satisfaction, candidate supply, web-based recruitment possibilities, stabilization of newly hired staff, retention of veteran staff, utilization of retired employees, and latest…

  14. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  15. 40 CFR 5.310 - Recruitment.

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Recruitment. 5.310 Section 5.310... in Admission and Recruitment Prohibited § 5.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  16. 43 CFR 41.310 - Recruitment.

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Recruitment. 41.310 Section 41.310 Public... in Admission and Recruitment Prohibited § 41.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  17. 14 CFR 1253.310 - Recruitment.

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Recruitment. 1253.310 Section 1253.310... in Admission and Recruitment Prohibited § 1253.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  18. 6 CFR 17.310 - Recruitment.

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Recruitment. 17.310 Section 17.310 Domestic... in Admission and Recruitment Prohibited § 17.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  19. 41 CFR 101-4.310 - Recruitment.

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Recruitment. 101-4.310... Admission and Recruitment Prohibited § 101-4.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  20. 15 CFR 8a.310 - Recruitment.

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Recruitment. 8a.310 Section 8a.310... in Admission and Recruitment Prohibited § 8a.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  1. 28 CFR 54.310 - Recruitment.

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Recruitment. 54.310 Section 54.310... in Admission and Recruitment Prohibited § 54.310 Recruitment. (a) Nondiscriminatory recruitment. A... recruitment and admission of students. A recipient may be required to undertake additional recruitment efforts...

  2. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.

    Parsanathan, Rajesh; Jain, Sushil K

    2018-04-06

    L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.

  3. Human Resources Marketing and Recruiting: Essentials of Digital Recruiting

    Purvis, James

    2016-01-01

    This chapter will cover digital recruitment from its definition thru to its history in recruitment and trends. The subject itself could cover an entire book or an entire module at university, so this chapter will broadly touch upon the key elements and considerations. Under cultural perspective, the recruitment life cycle will be broken down into its individual parts, and digital solutions will be examined for each individual part of the process together with the impact this has on the knowledge and challenges for the manager and team. The economic perspective will assist in prioritizing initiatives and building a business case for the introduction of digital recruiting solutions. The risk perspective will raise awareness of the potential pitfalls and the operational perspective on the key considerations for a successful implementation. Finally, the key messages of this chapter are summarized in the Do’s and Don’ts.

  4. Sales Training for Army Recruiter Success: Interviews with Excellent Recruiters

    1987-11-01

    merit of an expert modeling system of the skills and strategies used by excel- lent Army recruiters. Neurolinguistic programming (NLP) was used as the...7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s) Steven R. Frieman 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK U.S...Recruiting 2M AUSTIRACT (rcnttm ame r orw am nssry i Identify by block number) s-This report describes a program of research on communication strategies and

  5. Recruiting for Prior Service Market

    Thomas, Brian A; Givens, Eric

    2008-01-01

    ...) market based on data from: * DMDC (All services) * IRR (HRC-St. Louis) * AC/RC transition (HRC-Alexandria); 2) To recommend possible recruiting pools of applicants from the analyzed market data...

  6. Information networks and worker recruitment

    Schram, A.; Brandts, J.; Gërxhani, K.

    2007-01-01

    This paper studies experimentally how the existence of social information networks affects the ways in which firms recruit new personnel. Through such networks firms learn about prospective employees' performance in previous jobs. Assuming individualistic preferences social networks are predicted

  7. Student Recruitment: The Hard Sell?

    McAdams, Tony

    1975-01-01

    Presents the pros and cons concerning advertising for recruitment using three modes of analyses - economics, ethics, and law. The author concludes that advertising is an invaluable technique for information dispersal in higher education. (Author/PG)

  8. Recruiting for Prior Service Market

    2008-06-01

    perceptions, expectations and issues for re-enlistment • Develop potential marketing and advertising tactics and strategies targeted to the defined...01 JUN 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Recruiting for Prior Service Market 5a. CONTRACT NUMBER 5b. GRANT...Command First Handshake to First Unit of Assignment An Army of One Proud to Be e e to Serve Recruiting for Prior Service Market MAJ Eric Givens / MAJ Brian

  9. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 10 CFR 1042.310 - Recruitment.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Recruitment. 1042.310 Section 1042.310 Energy DEPARTMENT... Recruitment Prohibited § 1042.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 1042.300 through 1042.310 apply shall not discriminate on the basis of sex in the recruitment and admission...

  11. 45 CFR 86.23 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 86.23 Section 86.23 Public Welfare... in Admission and Recruitment Prohibited § 86.23 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which this subpart applies shall not discriminate on the basis of sex in the recruitment and...

  12. 49 CFR 25.310 - Recruitment.

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Recruitment. 25.310 Section 25.310 Transportation... Recruitment Prohibited § 25.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 25.300 through 25.310 apply shall not discriminate on the basis of sex in the recruitment and admission of...

  13. 22 CFR 146.310 - Recruitment.

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Recruitment. 146.310 Section 146.310 Foreign... Recruitment Prohibited § 146.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 146.300 through 146.310 apply shall not discriminate on the basis of sex in the recruitment and admission...

  14. 22 CFR 229.310 - Recruitment.

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Recruitment. 229.310 Section 229.310 Foreign... and Recruitment Prohibited § 229.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 229.300 through 229.310 apply shall not discriminate on the basis of sex in the recruitment and...

  15. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells

    Du, Mi; Zhu, Ting; Duan, Xiaoqi; Ge, Shaohua; Li, Ning; Sun, Qinfeng; Yang, Pishan

    2017-01-01

    New generation of barrier membranes has been developed, which not only act as barriers but also as delivery devices to release specific growth factors. This study observed biological behaviors of bone morrow mesenchymal stem cells (BMMSCs) pretreated by bFGF or BMP-2 in vitro and evaluated differential bone regeneration process induced by bFGF and BMP-2 loaded acellular dermal matrix (ADM) membrane using critical-size rat calvarial defect model in vivo. The results showed that the proliferation capability of BMMSCs pretreated by bFGF was stronger than that by BMP-2, while there was temporally differential effect of bFGF and BMP-2 pretreatment on MSC osteogenic differentiation potentials. During healing process of rat calvarial defects, 2-fold more CD34 −/CD90 + MSCs in group of bFGF-ADM was observed than in any other treatment group at 2 weeks. However, there were similar amount of new bone formation and expression of osteopotin in newly-formed bone tissue in groups of bFGF- and BMP-2-ADM at 8 weeks, which were more than those in ADM alone and blank control. Taken together, bFGF-ADM guided similar bone regeneration to BMP-2 through more efficient recruitment of MSCs, and moreover, BMMSCs pretreated by bFGF showed stronger proliferation at 1–5 days and osteogenic differentiation potentials at 14 days compared with BMP-2 pretreatment. - Highlights: • An improved barrier membrane used in the field of bone tissue engineering was proposed, which is acellular dermal matrix (ADM) loaded with growth factors. • It is generally agreed that BMP-2 and -7 provide the greatest bone regeneration potentials, however, we found that ADM loading with bFGF could guide similar bone regeneration to BMP-2. • Compared with BMP-2, bFGF could more effectively recruit MSCs and moreover, BMMSCs pretreated by bFGF showed out stronger proliferation at 1-5 days and osteogenic differentiation potentials at 14 days.

  16. Spatial synchrony in cisco recruitment

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  17. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of

  18. Human development recruiting and selection

    Maksimović Marijana

    2002-01-01

    Full Text Available Along with the development of trends towards internationalization and globalization, human resource management and, especially, international human resource management, attracted overall theoretical and practical interest. International environment is complex, made of numerous elements like social organization, laws, education, values and attitudes, religion language, politics, material and technological culture. In multicultural environment, strategic activities could be multiplied through economical political, cultural, social and technological spheres of action, making the recruitment, selection and successful resource allocation in the international human resource management a real challenge for top management. In international human resource management practice, several approaches to the recruitment have differentiated, playing the key roles in hiring talented individuals and retaining efficient workforce KW resources, labor force, recruiting, managers, education

  19. Uncover the recruiter in you!

    2013-01-01

    2013 saw the launch of the one-day training course "Selecting the best person for CERN". So far, 10 courses have taken place and over 100 participants have taken part in this interactive, hands on experience.   The course has been met with much enthusiasm and positive feedback, with participants not only feeling better prepared and organised for the recruitment boards, but also equipped with concrete tools on how to prepare and conduct an effective selection interview. Following on from this success, further sessions are planned in 2014: we look forward to welcoming recruiting supervisors and board members who are likely to take part in a recruitment process, whether for LD or LD2IC, and who are interested in finding out more about how to get the most out of this important process! To enrol to this course, please follow this link: "Selecting the best person for CERN".

  20. Microvascular Recruitment in Insulin Resistance

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  1. Campus Recruiting: What the Recruiters Are Looking For.

    Turner, Martha R.; And Others

    1996-01-01

    A survey of 111 campus recruiters of graduating students shows agreement that interviews are the most important selection method. Students' verbal communication skills, character, work experience, and academic performance were judged the most important personal characteristics in applicants. Work-related expectations and attitudes were the most…

  2. Do recruitment ties affect wages?

    Larsen, Anna Folke; Rand, John; Torm, Nina Elisabeth

    This paper examines the extent to which recruitment ties affect individual wage outcomes in small and medium scale manufacturing firms. Based on a unique matched employer-employee dataset from Vietnam we find that there is a significant positive wage premium associated with obtaining a job through...... an informal contact, when controlling for standard determinants of wage compensation. Moreover, we show that the mechanism through which informal contacts affect wages depends on the type of recruitment tie used. The findings are robust across location, firm size categories and different worker types....

  3. Tim-3 is a Marker of Plasmacytoid Dendritic Cell Dysfunction during HIV Infection and Is Associated with the Recruitment of IRF7 and p85 into Lysosomes and with the Submembrane Displacement of TLR9.

    Schwartz, Jordan Ari; Clayton, Kiera L; Mujib, Shariq; Zhang, Hongliang; Rahman, A K M Nur-Ur; Liu, Jun; Yue, Feng Yun; Benko, Erika; Kovacs, Colin; Ostrowski, Mario A

    2017-04-15

    In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1 + lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. A Strategic Systems Model for Effective Recruiting

    Woolever, Daniel

    2003-01-01

    .... After introducing a model for effective and efficient recruiting, this Strategic Research Project describes the Air Force recruiting organizational structure, management processes and practices...

  5. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1...... (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species...

  6. A Blueprint for Student Recruitment

    Chamberlain, Frank M.

    1977-01-01

    A marketing plan from the Young Presidents' Organization Task Force is offered: define the market; identify the target student; clarify the college selection process; assess the competition; define the college in terms of market needs; develop a recruiting strategy; develop objectives for the year; spell out the tactics; and manage for results.…

  7. Recruiting Teachers--Future Prospects.

    Schlechty, Phillip C.; Joslin, Anne W.

    1984-01-01

    Comprehensive reform in the ways teachers are recruited, trained, evaluated, and rewarded is required if the status of the teaching profession and the present quality of education is to be improved. A new career structure, simplification of certification, and reconceptualization of the teaching role are possible remedies. (KH)

  8. Recruiting physicians without inviting trouble.

    Hoch, L J

    1989-05-01

    Many hospitals use physician recruitment strategies--generally assistance or employment strategies--to ensure medical staff loyalty. Although these strategies appeal to both hospitals and physicians, they are becoming increasingly problematic. Over the past three years, the government has issued pronouncements that question their legality. Thus any hospital considering physician recruitment strategies would be wise to evaluate them in light of various legal issues. such as reimbursement, nonprofit taxation, corporate practice of medicine, and certificate-of-need statutes. The consequences of failing to consider these issues can be ominous. The penalties for violating the proscribed remuneration provision of the Medicare act can include a fine, imprisonment, suspension from the Medicare and Medicaid programs, or loss of license. Payment issues can result in reduced reimbursement levels. Nonprofit taxation issues can trigger the loss of tax exemption. As a result of the corporate practice of medicine, a physician recruitment strategy may not be reimbursable by third-party payers or may even constitute the unauthorized practice of medicine. Finally, in some states, physician recruitment may trigger certificate-of-need review.

  9. Recruiting Trends, 2007-2008

    Collegiate Employment Research Institute (NJ3), 2008

    2008-01-01

    This paper presents the recruiting trends for 2007-2008. This year's report is based on 994 respondents, including 84 K-12 school districts. The researchers focused attention on growing companies, based on lists from Forbes and Inc. magazines, and as a result, they have more small and medium-size employers represented this year. The sample…

  10. Recruiting Strategies for Women's Colleges.

    Ricci, Ronald J.

    1994-01-01

    Methods for combating declining applicant pools at women's colleges are discussed. Research suggests that effective student recruitment can be facilitated by the use of single-gender market niche as a means for differentiation and parent influence for promotion. Review of strategies currently used indicate these marketing methods are underused and…

  11. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  13. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  14. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...... where we could not detect Mat1-Mc in the resulting protein-DNA complex. When we changed a single base in the mfm1 TR-box, such that it resembled those boxes found in ubiquitously expressed genes, Ste11 binding was enhanced, and in vivo the mfm1 gene also became expressed in P cells where Mat1-Mc...

  15. 28 CFR 54.510 - Recruitment.

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Recruitment. 54.510 Section 54.510... in Employment in Education Programs or Activities Prohibited § 54.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  16. 44 CFR 19.310 - Recruitment.

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Recruitment. 19.310 Section... RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 19.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 19.300 through 19...

  17. 15 CFR 8a.510 - Recruitment.

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Recruitment. 8a.510 Section 8a.510... in Employment in Education Programs or Activities Prohibited § 8a.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  18. 7 CFR 15a.53 - Recruitment.

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Recruitment. 15a.53 Section 15a.53 Agriculture Office... Activities Prohibited § 15a.53 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has...

  19. 31 CFR 28.510 - Recruitment.

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Recruitment. 28.510 Section 28.510... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  20. 34 CFR 106.53 - Recruitment.

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Recruitment. 106.53 Section 106.53 Education... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  1. 36 CFR 1211.510 - Recruitment.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Recruitment. 1211.510 Section... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  2. 18 CFR 1317.510 - Recruitment.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Recruitment. 1317.510... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  3. 10 CFR 5.310 - Recruitment.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Recruitment. 5.310 Section 5.310 Energy NUCLEAR REGULATORY... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 5.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 5.300 through 5.310 apply shall not...

  4. 7 CFR 15a.23 - Recruitment.

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Recruitment. 15a.23 Section 15a.23 Agriculture Office... FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 15a.23 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which this subpart applies shall...

  5. 22 CFR 229.510 - Recruitment.

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Recruitment. 229.510 Section 229.510 Foreign... in Education Programs or Activities Prohibited § 229.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring...

  6. 20 CFR 655.30 - Supervised recruitment.

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Supervised recruitment. 655.30 Section 655.30... Workers) § 655.30 Supervised recruitment. (a) Supervised recruitment. Where an employer is found to have... failed to adequately conduct recruitment activities or failed in any obligation of this part, the CO may...

  7. 22 CFR 146.510 - Recruitment.

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Recruitment. 146.510 Section 146.510 Foreign... Education Programs or Activities Prohibited § 146.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees...

  8. 20 CFR 656.21 - Supervised recruitment.

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Supervised recruitment. 656.21 Section 656.21... Supervised recruitment. (a) Supervised recruitment. Where the Certifying Officer determines it appropriate, post-filing supervised recruitment may be required of the employer for the pending application or...

  9. 41 CFR 101-4.510 - Recruitment.

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Recruitment. 101-4.510... Employment in Education Programs or Activities Prohibited § 101-4.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring...

  10. 45 CFR 83.12 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 83.12 Section 83.12 Public Welfare... § 83.12 Recruitment. (a) Comparable recruitment. A federally supported entity shall, with respect to... demonstrate that such action is part of a recruitment program which does not have the effect of discriminating...

  11. 13 CFR 113.510 - Recruitment.

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Recruitment. 113.510 Section 113... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  12. 14 CFR 1253.510 - Recruitment.

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Recruitment. 1253.510 Section 1253.510... in Employment in Education Programs or Activities Prohibited § 1253.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  13. 45 CFR 618.510 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Recruitment. 618.510 Section 618.510 Public... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  14. 45 CFR 2555.310 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Recruitment. 2555.310 Section 2555.310 Public... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 2555.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 2555.300 through 2555.310 apply shall not discriminate on the...

  15. 45 CFR 618.310 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Recruitment. 618.310 Section 618.310 Public... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 618.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 618.300 through 618.310 apply shall not discriminate on the...

  16. 43 CFR 41.510 - Recruitment.

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Recruitment. 41.510 Section 41.510 Public... in Employment in Education Programs or Activities Prohibited § 41.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  17. 13 CFR 113.310 - Recruitment.

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Recruitment. 113.310 Section 113... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 113.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 113.300 through 113.310 apply shall not discriminate on the...

  18. 45 CFR 86.53 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 86.53 Section 86.53 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.53 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  19. 31 CFR 28.310 - Recruitment.

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Recruitment. 28.310 Section 28.310... Basis of Sex in Admission and Recruitment Prohibited § 28.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 28.300 through 28.310 apply shall not discriminate on the basis of sex in...

  20. 49 CFR 25.510 - Recruitment.

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Recruitment. 25.510 Section 25.510 Transportation... Education Programs or Activities Prohibited § 25.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees...

  1. 36 CFR 1211.310 - Recruitment.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Recruitment. 1211.310 Section... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1211.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 1211.300 through 1211.310 apply shall not discriminate on the...

  2. 40 CFR 5.510 - Recruitment.

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Recruitment. 5.510 Section 5.510... in Employment in Education Programs or Activities Prohibited § 5.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  3. 45 CFR 2555.510 - Recruitment.

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Recruitment. 2555.510 Section 2555.510 Public... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  4. 32 CFR 196.310 - Recruitment.

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Recruitment. 196.310 Section 196.310 National... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 196.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 196.300 through 196.310 apply shall not discriminate on the...

  5. 38 CFR 23.510 - Recruitment.

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Recruitment. 23.510... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  6. 32 CFR 196.510 - Recruitment.

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Recruitment. 196.510 Section 196.510 National... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  7. 6 CFR 17.510 - Recruitment.

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Recruitment. 17.510 Section 17.510 Domestic... in Employment in Education Programs or Activities Prohibited § 17.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  8. 29 CFR 36.510 - Recruitment.

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Recruitment. 36.510 Section 36.510 Labor Office of the... Activities Prohibited § 36.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has...

  9. 18 CFR 1317.310 - Recruitment.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Recruitment. 1317.310... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 1317.300 through 1317.310 apply shall not discriminate on the...

  10. 24 CFR 3.310 - Recruitment.

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Recruitment. 3.310 Section 3.310... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 3.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 3.300 through 3.310 apply shall not discriminate on the basis...

  11. 38 CFR 23.310 - Recruitment.

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Recruitment. 23.310... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 23.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 23.300 through 23.310 apply shall not discriminate on the...

  12. 44 CFR 19.510 - Recruitment.

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Recruitment. 19.510 Section... Programs or Activities Prohibited § 19.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a...

  13. 34 CFR 106.23 - Recruitment.

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Recruitment. 106.23 Section 106.23 Education... Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 106.23 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which this subpart applies shall not discriminate on the basis of sex...

  14. 24 CFR 3.510 - Recruitment.

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Recruitment. 3.510 Section 3.510... Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found to be presently...

  15. 10 CFR 5.510 - Recruitment.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Recruitment. 5.510 Section 5.510 Energy NUCLEAR REGULATORY... Prohibited § 5.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees. Where a recipient has been found...

  16. 29 CFR 36.310 - Recruitment.

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Recruitment. 36.310 Section 36.310 Labor Office of the... FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 36.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 36.300 through 36.310...

  17. 10 CFR 1042.510 - Recruitment.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Recruitment. 1042.510 Section 1042.510 Energy DEPARTMENT... Education Programs or Activities Prohibited § 1042.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment and hiring of employees...

  18. Role of interferon in lymphocyte recruitment into the skin

    Issekutz, T.B.; Stoltz, J.M.; Webster, D.M.

    1986-01-01

    Large numbers of lymphocytes are recruited from the blood into sites of cutaneous DTH reactions. Our goal was to investigate the factors controlling this recruitment. 111 In-labeled peritoneal exudate lymphocytes were injected iv and the accumulation of these cells in skin sites injected with a variety of stimuli, was used to measure lymphocyte recruitment in rats. Large numbers of lymphocytes migrated into vaccinia- and KLH-injected sites in sensitized animals, but only into the viral and not the KLH lesions in non-immune animals. Lymphocytes also migrated efficiently into sites injected with the alpha-interferon (IFN) inducers, uv-inactivated vaccinia virus and poly I:C, as well as into sites injected with IFN. In each case there was a dose-response relationship. Analysis of the kinetics of lymphocyte recruitment demonstrated that the peak rate of migration occurred most rapidly after the injection of IFN, later after poly I:C, and was slowest to be reached after vaccinia virus. Rabbit anti-IFN blocked the recruitment of lymphocytes by uv-inactivated vaccinia and by IFN. Histologically, all of these sites demonstrated a dense mononuclear cell infiltrate in the dermis. It is suggested that IFN may be an important mediator in the recruitment of lymphocytes into inflammatory reactions

  19. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (