WorldWideScience

Sample records for cells recruits vcam-1

  1. VCAM-1 and VLA-4 modulate dendritic cell IL-12p40 production in experimental visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Amanda C Stanley

    Full Text Available Vascular cell adhesion molecule-1 (VCAM-1 interacts with its major ligand very late antigen-4 (VLA-4 to mediate cell adhesion and transendothelial migration of leukocytes. We report an important role for VCAM-1/VLA-4 interactions in the generation of immune responses during experimental visceral leishmaniasis caused by Leishmania donovani. Our studies demonstrate that these molecules play no direct role in the recruitment of leukocytes to the infected liver, but instead contribute to IL-12p40-production by splenic CD8(+ dendritic cells (DC. Blockade of VCAM-1/VLA-4 interactions using whole antibody or anti-VCAM-1 Fab' fragments reduced IL-12p40 mRNA accumulation by splenic DC 5 hours after L. donovani infection. This was associated with reduced anti-parasitic CD4(+ T cell activation in the spleen and lowered hepatic IFNgamma, TNF and nitric oxide production by 14 days post infection. Importantly, these effects were associated with enhanced parasite growth in the liver in studies with either anti-VCAM-1 or anti-VLA-4 antibodies. These data indicate a role for VCAM-1 and VLA-4 in DC activation during infectious disease.

  2. A Human Antibody That Binds to the Sixth Ig-Like Domain of VCAM-1 Blocks Lung Cancer Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Mi Ra Kim

    2017-03-01

    Full Text Available Vascular cell adhesion molecule-1 (VCAM-1 is closely associated with tumor progression and metastasis. However, the relevance and role of VCAM-1 in lung cancer have not been clearly elucidated. In this study, we found that VCAM-1 was highly overexpressed in lung cancer tissue compared with that of normal lung tissue, and high VCAM-1 expression correlated with poor survival in lung cancer patients. VCAM-1 knockdown reduced migration of A549 human lung cancer cells into Matrigel, and competitive blocking experiments targeting the Ig-like domain 6 of VCAM-1 (VCAM-1-D6 demonstrated that the VCAM-1-D6 domain was critical for VCAM-1 mediated A549 cell migration into Matrigel. Next, we developed a human monoclonal antibody specific to human and mouse VCAM-1-D6 (VCAM-1-D6 huMab, which was isolated from a human synthetic antibody library using phage display technology. Finally, we showed that VCAM-1-D6 huMab had a nanomolar affinity for VCAM-1-D6 and that it potently suppressed the migration of A549 and NCI-H1299 lung cancer cell lines into Matrigel. Taken together, these results suggest that VCAM-1-D6 is a key domain for regulating VCAM-1-mediated lung cancer invasion and that our newly developed VCAM-1-D6 huMab will be a useful tool for inhibiting VCAM-1-expressing lung cancer cell invasion.

  3. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    Science.gov (United States)

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  4. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Department of Cardiology, Peking University People' s Hospital, Beijing (China); William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London (United Kingdom); Ren, Jingyi [Department of Cardiology, Peking University People' s Hospital, Beijing (China); Chan, Kenneth [William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London (United Kingdom); Chen, Hong, E-mail: chenhongbj@medmail.com.cn [Department of Cardiology, Peking University People' s Hospital, Beijing (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascular endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.

  5. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chen Wang

    2014-02-01

    Full Text Available VCAM-1 (CD106, a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1. In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.

  6. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1 antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium, CD140b (pericytes and TRA-1-60 (undifferentiated hESCs/hiPSCs. 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from h

  7. Does VEGF concentration in pre-eclamptic serum induce sVCAM-1 production in endothelial cell culture?

    Directory of Open Access Journals (Sweden)

    Sri B. Subakir

    2005-03-01

    Full Text Available Serum concentrations of VEGF (Vascular Endothelial Growth Factor are elevated in preeclampsia. In addition to inducing mitosis and increase permeability of endothelial cells, VEGF was reported to activate endothelial cells to produce cell adhesion molecules. Cell adhesion molecules play an important role in the inflammation process by inducing adherence of leukocytes in blood stream to the endothelial cells. The aim of this study is to investigate the effect of VEGF in serum from preeclamptic patients on sVCAM-1 (soluble vascular adhesion molecules-1 production in endothelial cell culture. Twelve sera from women with preeclampsia and 11 from women with normal pregnancy (controls in 20% concentration were added to human umbilical vein endothelial cell culture (HUVEC and incubated for 24 hours. All subjects have agreed to participate in this study and signed the informed consent form. sVCAM-1 concentration in the supernatant was measured by ELISA. VEGF concentration tends to be higher in preeclamptic serum than control, but the difference is not stastitically significant. The production of sVCAM-1 by endothelial cells exposed to preeclamptic serum was significantly higher than the production by endothelial cells exposed to serum from control (p<0.05. No correlation was found between the difference in VEGF concentrations in preeclamptic and control sera, and sVCAM-1 production by endothelial cell culture. (Med J Indones 2005; 14: 3-6Keywords: endothelial cell, preeclampsia, VCAM, VEGF

  8. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    Full Text Available The hematopoietic inductive microenvironment (HIM is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood-derived stromal cells (HUCBSCs and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34(+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were "homed in" to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.

  9. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  10. Soluble VCAM-1 Alters Lipid Phosphatase Activity in Epicardial Mesothelial Cells: Implications for Lipid Signaling During Epicardial Formation

    Directory of Open Access Journals (Sweden)

    Robert W. Dettman

    2013-09-01

    Full Text Available Epicardial formation involves the attachment of proepicardial (PE cells to the heart and the superficial migration of mesothelial cells over the surface of the heart. Superficial migration has long been known to involve the interaction of integrins expressed by the epicardium and their ligands expressed by the myocardium; however, little is understood about signals that maintain the mesothelium as it migrates. One signaling pathway known to regulate junctional contacts in epithelia is the PI3K/Akt signaling pathway and this pathway can be modified by integrins. Here, we tested the hypothesis that the myocardially expressed, integrin ligand VCAM-1 modulates the activity of the PI3K/Akt signaling pathway by activating the lipid phosphatase activity of PTEN. We found that epicardial cells stimulated with a soluble form of VCAM-1 (sVCAM-1 reorganized PTEN from the cytoplasm to the membrane and nucleus and activated PTEN’s lipid phosphatase activity. Chick embryonic epicardial mesothelial cells (EMCs expressing a shRNA to PTEN increased invasion in collagen gels, but only after stimulation by TGFβ3, indicating that loss of PTEN is not sufficient to induce invasion. Expression of an activated form of PTEN was capable of blocking degradation of junctional complexes by TGFβ3. This suggested that PTEN plays a role in maintaining the mesothelial state of epicardium and not in EMT. We tested if altering PTEN activity could affect coronary vessel development and observed that embryonic chick hearts infected with a virus expressing activated human PTEN had fewer coronary vessels. Our data support a role for VCAM-1 in mediating critical steps in epicardial development through PTEN in epicardial cells.

  11. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    Science.gov (United States)

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (Pcacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia.

  12. Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways.

    Science.gov (United States)

    Kwon, Ii-Seul; Yim, Joung-Han; Lee, Hong-Kum; Pyo, Suhkneung

    2016-01-01

    Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-α)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-α was significantly suppressed by the pre-treatment of lobaric acid (0.1-10 μg/ml) for 2 h. Lobaric acid abrogated TNF-α-induced NF-κB activity through preventing the degradation of IκB and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-α receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-κB signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.

  13. VCAM1 — EDRN Public Portal

    Science.gov (United States)

    VCAM1, a single-pass type I membrane protein belonging to the Ig superfamily, is a cell surface sialoglycoprotein expressed by cytokine-activated endothelium. It mediates leukocyte-endothelial cell adhesion and signal transduction. VCAM1 interacts with the beta-1 integrin VLA4 on leukocytes, and mediates both adhesion and signal transduction. The VCAM1/VLA4 interaction may play a pathophysiologic role both in immune responses and in leukocyte emigration to sites of inflammation. VCAM1 may play a role in the development of artherosclerosis and rheumatoid arthritis. VCAM1 is expressed on inflamed vascular endothelium, as well as on macrophage-like and dendritic cell types in both normal and inflammed tissue.

  14. Effect of PKC-β Signaling Pathway on Expression of MCP-1 and VCAM-1 in Different Cell Models in Response to Advanced Glycation End Products (AGEs).

    Science.gov (United States)

    Rempel, Lisienny C T; Finco, Alessandra B; Maciel, Rayana A P; Bosquetti, Bruna; Alvarenga, Larissa M; Souza, Wesley M; Pecoits-Filho, Roberto; Stinghen, Andréa E M

    2015-05-14

    Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs-endothelium interactions through the receptor for AGEs (RAGE) in the PKC-β pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-β inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-β inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-β inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease.

  15. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium.

    Science.gov (United States)

    Steiner, Oliver; Coisne, Caroline; Cecchelli, Roméo; Boscacci, Rémy; Deutsch, Urban; Engelhardt, Britta; Lyck, Ruth

    2010-10-15

    Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.

  16. Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF-α-treated human vascular endothelial cells by blocking NF-KB activation

    Institute of Scientific and Technical Information of China (English)

    Yu-ping ZHU; Tao SHEN; Ya-jun LIN; Bei-dong CHEN; Yang RUAN; Yuan CAO; Yue QIAO

    2013-01-01

    Aim:To investigate the effects ofAstragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms.Methods:HUVECs were treated with TNF-α for 24 h.The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) were determined with Western blotting.HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining,respectively.Reactive oxygen species (ROS) production was measured by DHE staining.Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function.NF-KB activation was detected with immunofluorescence.Results:TNF-α (1-80 ng/mL) caused dose-and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs,accompanied by significant augmentation of IKB phosphorylation and NF-KB translocation into the nuclei.Pretreatment with APS (10 and 50 μg/mL)significantly attenuated TNFα-induced upregulation of ICAM-1,VCAM-1,and NF-KB translocation.Moreover,APS significantly reduced apoptosis,ROS generation and adhesion function damage in TNF-α-treated HUVECs.Conclusion:APS suppresses TNFα-induced adhesion molecule expression by blocking NF-KB signaling and inhibiting ROS generation in HUVECs.The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.

  17. Genetic variation in CD36, HBA, NOS3 and VCAM1 is associated with chronic haemolysis level in sickle cell anaemia: a longitudinal study.

    Science.gov (United States)

    Coelho, Andreia; Dias, Alexandra; Morais, Anabela; Nunes, Baltazar; Ferreira, Emanuel; Picanço, Isabel; Faustino, Paula; Lavinha, João

    2014-03-01

    Chronic haemolysis stands out as one of the hallmarks of sickle cell anaemia, a clinically heterogeneous autosomal recessive monogenic anaemia. However, the genetic architecture of this sub-phenotype is still poorly understood. Here, we report the results of an association study between haemolysis biomarkers (serum LDH, total bilirubin and reticulocyte count) and the inheritance of 41 genetic variants of ten candidate genes in a series of 99 paediatric SS patients (median current age of 9.9 yr) followed up in two general hospitals in Greater Lisboa area (median follow-up per patient of 5.0 yr). Although in a large number of tests a seemingly significant (i.e. P haplotype 7 within VCAM1 gene; (ii) a lower total bilirubin was associated with the 3.7-kb deletion at HBA gene, rs2070744_T allele at NOS3 gene, and haplotype 9 within VCAM1 promoter; and (iii) a diminished reticulocyte count was associated with the 3.7-kb deletion at HBA, whereas an increased count was associated with rs1984112_G allele at CD36 gene. On the whole, our findings suggest a complex genetic architecture for the sickle cell anaemia haemolysis process involving multiple pathways, namely control of vascular cell adhesion, NO synthesis and erythrocyte volume and haemoglobinisation.

  18. VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro

    Directory of Open Access Journals (Sweden)

    Yang H

    2013-05-01

    Full Text Available Hong Yang,1 Fenglong Zhao,1 Ying Li,1 Mingming Xu,1 Li Li,1 Chunhui Wu,1 Hirokazu Miyoshi,2 Yiyao Liu11Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China; 2Radioisotope Research Center, University of Tokushima, Kuramoto-cho, Tokushima, JapanAbstract: Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1 receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe3O4@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe3O4@SiO2(FITC nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe3O4@SiO2(FITC nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe3O4@SiO2(FITC nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe3O4@SiO2(FITC nanoparticles was

  19. Kaempferol inhibits proliferation of human prostate cancer PC-3 cells via down-regulation of PCNA and VCAM-1%下调PCNA和VCAM-1表达参与山柰酚抑制人前列腺癌细胞增殖

    Institute of Scientific and Technical Information of China (English)

    仇炜; 雷宇华; 苏明; 李冬军; 张宁; 沈永青

    2011-01-01

    Aim To investigate the effects of kaempferol on the inhibition of the proliferation of human prostate cancer PC-3 cells. Methods MTT assays, cell counting ancl flow cytometry were performecl to investigate the effects of kaempferol on proliferation and apoptosis of PC -3 cells. Western blot assays were performed to analyze the expression of PCNA and VCAM -1. Results Kaempferol inhibited proliferation of PC-3 cells, and decreased the expression of PCNA and VCAM-I. Kaempferol induced S and G2/M phase cell cycle arrest to PC-3 cells, but did not significantly affect apoptosis. Conclusion Kaempferol induces S and G2/M phase cell cycle arrest ancl inhibits proliferation of PC-3 cells via down-regulation of PCNA and VCAM-1.%目的 探讨山柰酚对人前列腺癌PC-3细胞增殖的抑制作用及机制.方法 采用MTT、细胞计数、流式细胞学等方法检测山柰酚对PC-3细胞增殖及凋亡的作用;使用Western blot检测增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)及血管细胞黏附分子1(vascular cell adhesion molecule 1, VCAM-1)的表达.结果 山柰酚抑制人前列腺癌PC-3细胞增殖,降低PCNA及VCAM-1的表达水平,诱导PC-3细胞阻滞于S期及G2/M期,但山柰酚对PC-3细胞凋亡无影响.结论 山柰酚诱导PC-3细胞阻滞于S期及G2/M期,山柰酚抑制PC-3细胞增殖的作用与该药下调PCNA及VCAM-1的表达有关.

  20. Fut8基因通过促进VLA-4/VCAM-1表达影响B细胞发育%Fut8 gene affects the development of B cells by regulating the core fucosylation of VLA-4/VCAM-1

    Institute of Scientific and Technical Information of China (English)

    焦鑫艳; 马彪; 王旭; 刘庆平; 李文哲

    2012-01-01

    The aim of this study is to explore the role of fucosyltransferase VIII (Fut8) in VLA -4/VCAM-1 expression and B cell development. Firstly, Fut8 -knockdown 70Z/3 cells and Fut8 -knockdown ST2 cells were established by RNA inference using 70Z/3 cells (pre-B cell line) and ST2 cells. Then Fut8 gene-silencing effects were detected by Western blot. In cell adhesion assays and colony forming tests, we found that the loss of a core fucose in both very late antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) would lead to a decreased binding between pre-B cells and stromal cells, followed the impaired pre-B cells generation in Fut8+ mice. Flow cytometry analysis revealed that Fut8 expression was extremely required for regulating pre-B cell reproduction. These findings clearly demonstrated that the Fut8 could regulate the VLA-4/VCAM-1 interaction and the proper transition from pro-B to pre-B cells, showing the important role of Fut8 in B cell differentiation and development%目的 探讨核心岩藻糖基化修饰对VLA-4/VCAM-1表达及B细胞发育的影响.方法 通过RNA干扰技术使前B细胞(70Z/3)和基质细胞(ST2)的Fut8基因沉默,免疫沉淀和Western blot检测Fut8基因沉默效率,以细胞黏附实验和克隆形成实验分别研究Fut8基因对VLA-4/VCAM-1之间亲和力和对B细胞分化发育的影响.结果 Fut8基因沉默使VLA-4/VCAM-1之间的亲和力以及前B细胞和基质细胞之间的黏附作用降低,并使前B细胞的克隆形成能力明显下降.流式细胞仪分析结果也表明,Fut8祖B细胞向前B细胞分化过程受阻.结论 本实验揭示了Fut8基因调节VLA-4/VCAM-1之间结合能力以及前B细胞克隆形成的机理,为B细胞分化发育研究提供理论依据.

  1. VCAM1 and ICAM1 expression in oral lichen planus.

    Science.gov (United States)

    Seyedmajidi, Maryam; Shafaee, Shahryar; Bijani, Ali; Bagheri, Soodabeh

    2013-01-01

    Oral lichen planus is a chronic inflammatory immune-mediated disease. ICAM-1 and VCAM-1 are vascular adhesion molecules that their receptors are located on endothelial cells and leukocytes. The aim of this study is the immunohistochemical evaluation of VCAM1 and ICAM1 in oral lichen planus and to compare these two markers with normal mucosa for evaluation of angiogenesis. This descriptive-analytical study was performed on 70 paraffined blocks of oral lichen planus and 30 normal mucosa samples taken from around the lesions. Samples were stained with H & E and then with Immunohistochemistry using monoclonal mouse anti human VCAM1 (CD106), & monoclonal mouse anti human ICAM1(CD54) for confirmation of diagnosis. Slides were evaluated under light microscope and VCAM1 and ICAM1 positive cells (endothelial cells and leukocytes) were counted. Data were analyzed with Mann-Whitney test, Wilcoxon and Chi-Square and plichen planus according to the percentage of stained cells (p=0.000& p=0.000, Mann-Whitney test). Thirty cases of oral normal mucosa associated with lichen planus showed that the VCAM1 has increased significantly in comparison to normal mucosa (plichen planus and normal mucosa, showed a significantly difference (plichen planus was not observed (p>0.05). Regarding the results, it seems that high expression of VCAM1 and ICAM1 is related to oral lichen planus.

  2. Gender and age peculiarities of content changes of protein C, von Willebrand factor, vascular cell adhesion molecules sVCAM-1 in patients with acute left ventricle Q-wave myocardial infarction

    Directory of Open Access Journals (Sweden)

    S. M. Kyselov

    2015-04-01

    Full Text Available Markers of hemostasis have an influence on the state of postinfarction remodeling processes. Aim. In order to study the gender and age peculiarities, to determine the predictive value of the protein C, von Willebrand factor and vascular cell adhesion molecules sVCAM-1 concentration, we examined 76 patients with acute Q-wave myocardial infarction. Methods and results. On the 1st day of the disease, higher concentrations of protein C were detected in young women, vascular cell adhesion molecules sVCAM-1 - in men of any age. On the 10th day of the disease, both in men and women increase in the content of protein C, reducing the concentration of von Willebrand factor and vascular cell adhesion molecules sVCAM-1 were detected. Conclusion. Protein C has the highest prognostic potential in relation to the formation of heart aneurysm after Q-wave myocardial infarction in women of young age, and von Willebrand factor and vascular cell adhesion molecules sVCAM-1 - in older men.

  3. Lauric acid abolishes interferon-gamma (IFN-γ)-induction ofIntercellular AdhesionMolecule-1 (ICAM-1) andVascularCellAdhesionMolecule-1 (VCAM-1) expression in human macrophages

    Institute of Scientific and Technical Information of China (English)

    Wei-Siong Lim; Mary-Shi-Ying Gan; Melissa-Hui-Ling Ong; Choy-Hoong Chew

    2015-01-01

    Objective:To investigate the effect of different concentrations of lauric acid on Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) expression in IFN-γ stimulated human monocytic THP-1 cell line.Methods:THP-1 cell were cultured using Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum. THP-1 monocytes were firstly differentiated into macrophages by using phorbol-12-myristate-13-acetate. IFN-γ response test was perfomed and total cellular RNA was extracted using TRI Reagent®LS before q-RT-PCR was carried out. Subsequently, IFN-γ treated THP-1 macrophages were stimulated with increasing doses of lauric acid for another 24 hour, before q-RT-PCR. MTT assay was carried out to investigate the effect of lauric acid on undifferentiated and differentiated THP-1 cells.Results:The mRNA expression levels of ICAM-1 and VCAM-1 were normalized toβ-actin and relatived to the untreated cells. The expressions of ICAM-1 and VCAM-1 were significantly induced in cells treated with 10 ng/mL of IFN-γ. This showed that IFN-γ could up-regulate inflammatory process and may cause atheroma formation. Although lauric acid did not have any significant impact on undifferentiated and differentiated THP-1 cell viability, the normalized fold expressions of ICAM-1 and VCAM-1 in IFN-γ-treated THP-1 macrophages were decreased significantly in a dose dependent manner with the presence of increasing doses of lauric acid.Conclusions:This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  4. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  5. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis.

    Science.gov (United States)

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-02-17

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell-cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis.

  6. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yong-Bin Ding; Guo-Yu Chen; Jian-Guo Xia; Xi-Wei Zang; Hong-Yu Yang; Li Yang

    2003-01-01

    AIM: To investigate the relationship between the expression of vascular cell adhesion molecule-1 (VCAM-1) and oncogenesis,tumor angiogenesis and metastasis in gastric carcinoma,and to evaluate the clinical significance of serum VCAM-1levels in gastric cancer.METHODS: Specimens from 41 patients with gastric cancer, 8 patients with benign gastric ulcer, and 10 healthy subjects were detected for the expression of VCAM-1 by immunohistochemistry. Microvessel density (MVD) was measured by counting the endothelial cells immunostained with the monoclonal antibody CD34 at x200 magnification.Serum VCAM-1 concentrations were measured by an enzyme linked immunosorbent assay in the 41 gastric cancer patients before surgery, and at 7 days after surgery as well as in 25 healthy controls. The association between preoperative serum VCAM-1 levels and clinicopathological features, and their changes following surgery was evaluated. Tn addition, serum carcinoembryonic antigen (CEA) was also examined.RESULTS: Of the 41 gastric cancer tissues, 31 (75.6 %)were VCAM-1 positive. The VCAM-1 positive gastric cancers were more invasive and classified in the more advanced stage than the VCAM-1 negative ones. The VCAM-1 positive cancers were associated with more lymph node metastases than VCAM-1-negative ones (P<0.05). The expression of VCAM-1 was detected in tissues of two of the eight patients with gastric ulcer and two of the 10 healthy controls. The expression of VCAM-1 in gastric cancer patients was significantly more frequent than that in the healthy controls and ulcer group (both P<0.05). MVD in VCAM-1 expressing tissues was higher than that in VCAM-1 negative tissues (t=2.13,P<0.05). Serum VCAM-1 levels in gastric cancer patients were significantly higher than those in controls (t=3.4, P<0.05). There was a significant association between serum VCAM-1 levels and disease stage, as well as invasion depth of the tumor and the presence of distant metastases.The concentrations of serum

  7. Chloroform extract of aged black garlic attenuates TNF-α-induced ROS generation, VCAM-1 expression, NF-κB activation and adhesiveness for monocytes in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Eun Na; Choi, Young Whan; Kim, Hye Kyung; Park, Jin Kyeong; Kim, Hyo Jin; Kim, Myoung June; Lee, Hee Woo; Kim, Ki-Hyung; Bae, Sun Sik; Kim, Bong Seon; Yoon, Sik

    2011-01-01

    Aged black garlic is a type of fermented garlic (Allium sativum) which has been used in Oriental countries for a long time because of various biological properties of garlic derivatives. The current study explored the potential of the chloroform extract of aged black garlic (CEABG) in attenuating the activities of adhesion molecules in tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs). The study was performed on HUVECs that were pretreated with 30 μg/mL of CEABG before TNF-α treatment. Treatment of HUVECs with CEABG significantly inhibited TNF-α-induced reactive oxygen species (ROS) formation. HUVECs treated with CEABG showed markedly suppressed TNF-α-induced mRNA expression of VCAM-1, but little alteration in ICAM-1 and E-selectin mRNA expression. CEABG treatment also significantly decreased the TNF-α-induced cell surface and total protein expression of VCAM-1 without affecting ICAM-1 and E-selectin expression. In addition, treatment of HUVECs with CEABG markedly reduced THP-1 monocyte adhesion to TNF-α-stimulated HUVECs. Furthermore, CEABG significantly inhibited NF-κB transcription factor activation in TNF-α-stimulated HUVECs. The data provide new evidence of the antiinflammatory properties of CEABG that may have a potential therapeutic use for the prevention and treatment of vascular diseases such as atherosclerosis through mechanisms involving the inhibition of VCAM-1 expression and NF-κB activation in vascular endothelial cells.

  8. Inhibition of VCAM-1 expression on mouse vascular smooth muscle cells by lobastin via downregulation of p38, ERK 1/2 and NF-κB signaling pathways.

    Science.gov (United States)

    Lee, Kyoungran; Yim, Joung-Han; Lee, Hong-Kum; Pyo, Suhkneung

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease, the progression of which is associated with the increased expression of cell adhesion molecules on vascular smooth muscle cells (VSMCs). Lobastin is a new pseudodepsidone isolated from Stereocaulon alpinum, Antarctic lichen, which is known to have antioxidant and antibacterial activities. However, the nature of the biological effects of lobastin still remains unclear. In the present study, we examine the effect of lobastin on the expression of vascular cell adhesion molecules (VCAM-1) induced by TNF-α in the cultured mouse VSMC cell line, MOVAS-1. Pretreatment of VSMCs for 2 h with lobastin (0.1-10 μg/ml) concentration-dependently inhibited TNF-α-induced protein expression of VCAM-1. Lobastin also inhibited TNF-α-induced production of intracellular reactive oxygen species (ROS). Lobastin abrogated TNF-α-induced phosphorylation of p38 and ERK 1/2, but not JNK, and also inhibited TNF-α-induced NK-κB activation. In addition, lobastin suppressed TNF-α-induced IκB kinase activation, subsequent degradation of IκBα and nuclear translocation of p65 NF-κB. Our results indicate that lobastin downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the p38, ERK 1/2 and NF-κB signaling pathways and intracellular ROS generation. Thus, lobastin may be an important regulator of inflammation in the atherosclerotic lesion and a novel therapeutic drug for the treatment of atherosclerosis.

  9. 脱氢表雄酮对氧化低密度脂蛋白诱导的人脐静脉内皮细胞表达VCAM-1的影响%Effects of Dehydroepiandrosterone on Ox-LDL-induced VCAM-1 Expression in Human Umbilical Venous Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    周英; 宋雪芳; 阮秋蓉

    2005-01-01

    目的探讨雄激素脱氢表雄酮(DHEA)对氧化低密度脂蛋白(ox-LDL)诱导的人脐静脉内皮细胞(HUVECs)表达血管细胞黏附分子-1(VCAM-1)的影响.方法体外培养HUVECs,采用免疫细胞化学、Westernblot、原位杂交等方法,观察不同浓度DHEA(1,5,50μmol/L)对ox-LDL诱导的HUVECs表达VCAM-1的影响.结果ox-LDL诱导培养HUVECs后,HUVECs VCAM-1表达明显升高,预先用DHEA处理HUVECs可使VCAM-1的表达降低(P<0.01),且这种降低呈浓度依赖性.结论DHEA能浓度依赖性地抑制ox-LDL诱导的HUVECs VCAM-1的表达.

  10. 粘附分子sICAM-1,sVCAM-1,sCD44在高白细胞急性髓系白血病中的表达%Clinical Significance of Cell Adhesion Molecules sICAM-1, sVCAM-1 and sCD44 Expressions in Hyperleukocytic AML

    Institute of Scientific and Technical Information of China (English)

    杨琦; 郑雪晨; 黄涛生; 臧婷婷; 王占聚

    2014-01-01

    目的探讨高白细胞急性髓系白血病(hyperleukocytic acute myeloid leukemia,HAML)患者治疗前后血清可溶性细胞间粘附分子-1(sICAM-1)、可溶性血管细胞粘附分子(sVCAM-1)和可溶性CD44分子(sCD44)的表达水平及其临床意义。方法采用酶联免疫吸附实验(ELISA),对15例初诊高白细胞急性髓系白血病(WBC>100×109/L)和40例非高白细胞急性髓系白血病(non-hyperleukocytic acute myeloid leukemia,NHAML)(WBC100í109/L) and 40 patients with non-hyperleukocytic acute myeloid leukemia (NHAML, WBC<100í109/L) before and after treatment the serum sICAM-1, sVCAM-1 and sCD44 levels, and compared with the normal people. Results ①Before chemotherapy, NAML and NHAML patient serum sICAM-1, sVCAM-1 and sCD44 levels were significantly higher than those in the control group, the difference has statistical significance. After chemotherapy, in the two groups to achieve remission of bone marrow sICAM-1, sVCAM-1 and sCD44 levels decreased, compared with before treatment was statistical y significant; Compared with the control group, no significant difference. ②Before chemotherapy, HAML patients serum sICAM-1, sVCAM-1 and sCD44 levels were significantly higher than those in NHAML patients with serum sICAM-1, sVCAM-1 and sCD44 level ( <0. 05), HAML patients remission rate (40%) was lower than NHAML patients remission rate (72.5%)( <0.05). Conclusion For patients with HAML, detection of serum sICAM-1, sVCAM-1 and sCD44 levels, help to guide the clinical treatment, provides valuable clinical indicators for monitoring, curative effect observation and prognosis.

  11. Association of alpha-thalassemia, TNF-alpha (-308G>A) and VCAM-1 (c.1238G>C) gene polymorphisms with cerebrovascular disease in a newborn cohort of 411 children with sickle cell anemia.

    Science.gov (United States)

    Belisário, André Rolim; Nogueira, Frederico Lisboa; Rodrigues, Rahyssa Sales; Toledo, Nayara Evelin; Cattabriga, Ana Luiza Moreira; Velloso-Rodrigues, Cibele; Duarte, Filipe Otávio Chaves; Silva, Célia Maria; Viana, Marcos Borato

    2015-01-01

    Cerebrovascular disease (CVD) is a severe complication associated with sickle cell anemia. Abnormal transcranial Doppler (TCD) identifies some children at high risk, but other markers would be helpful. This cohort study was aimed at evaluating the effects of genetic biomarkers on the risk of developing CVD in children from Minas Gerais, Brazil. Clinical and hematological data were retrieved from children's records. Outcomes studied were overt ischemic stroke and CVD (overt ischemic stroke, transient ischemic attack, abnormal TCD, or abnormal cerebral angiography). Out of 411 children, 386 (93.9%) had SS genotype, 23 (5.6%) had Sβ(0)-thal and two had severe Sβ(+)-thal (0.5%). Frequency of CVD was lower in Sβ-thal group (p=0.05). No effect of VCAM-1 polymorphism on stroke or CVD risks was detected. Cumulative incidence of stroke was significantly higher for children with TNF-α A allele (p=0.02) and lower for children with HBA deletion (p=0.02). However, no association between CVD and TNF-α -308G>A was found. CVD cumulative incidence was significantly lower for children with HBA deletion (p=0.004). This study found no association between VCAM1 c.1238G>C and stroke. An association between stroke and TNF-α -308A allele has been suggested. Our results have confirmed the protective role of HBA deletion against stroke and CVD.

  12. Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent IκB kinase/NF-κB pathway.

    Science.gov (United States)

    Yan, Simin; Zhang, Xu; Zheng, Haili; Hu, Danhong; Zhang, Yongtian; Guan, Qinghua; Liu, Lifang; Ding, Qilong; Li, Yunman

    2015-01-01

    Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes-endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-β (IKK-β) activity, lowered O2(∙-) and H2O2 levels, tackled p47(phox) translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-β that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-β activity was also inhibited by (polyethylene glycol) PEG-catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte-HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis.

  13. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2014-07-01

    Full Text Available The study of human cardiogenesis would benefit from a detailed cell lineage fate map akin to that established for the haematopoietic lineages. Here we sought to define cell lineage relationships based on the expression of NKX2-5 and the cell surface markers VCAM1, SIRPA and CD34 during human cardiovascular development. Expression of NKX2-5GFP was used to identify cardiac progenitors and cardiomyocytes generated during the differentiation of NKX2-5GFP/w human embryonic stem cells (hESCs. Cardiovascular cell lineages sub-fractionated on the basis of SIRPA, VCAM1 and CD34 expression were assayed for differentiation potential and gene expression. The NKX2-5posCD34pos population gave rise to endothelial cells that rapidly lost NKX2-5 expression in culture. Conversely, NKX2-5 expression was maintained in myocardial committed cells, which progressed from being NKX2-5posSIRPApos to NKX2-5posSIRPAposVCAM1pos. Up-regulation of VCAM1 was accompanied by the expression of myofilament markers and reduced clonal capacity, implying a restriction of cell fate potential. Combinatorial expression of NKX2-5, SIRPA, VCAM1 and CD34 can be used to define discrete stages of cardiovascular cell lineage differentiation. These markers identify specific stages of cardiomyocyte and endothelial lineage commitment and, thus provide a scaffold for establishing a fate map of early human cardiogenesis.

  14. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Science.gov (United States)

    Ta, Duy Tien; Guedens, Wanda; Vranken, Tom; Vanschoenbeek, Katrijn; Steen Redeker, Erik; Michiels, Luc; Adriaensens, Peter

    2016-01-01

    Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. PMID:27399790

  15. Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide functionalized QDs (VQDs from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor [Formula: see text] (TNF-[Formula: see text] treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-[Formula: see text]-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.

  16. New insights into the dual recruitment of IgA+ B cells in the developing mammary gland.

    Science.gov (United States)

    Bourges, Dorothée; Meurens, François; Berri, Mustapha; Chevaleyre, Claire; Zanello, Galliano; Levast, Benoît; Melo, Sandrine; Gerdts, Volker; Salmon, Henri

    2008-07-01

    In monogastric mammals, transfer of passive immunity via milk and colostrum plays an important role in protecting the neonate against mucosal infections. Here we analyzed the hypothesis that during gestation/lactation IgA+ plasmablasts leave the intestinal and respiratory surfaces towards the mammary gland (MG). We compared the recruitment of lymphocytes expressing homing receptors alpha4beta1 and alpha4beta7 to expression of their vascular counter-receptors, VCAM-1 and MAdCAM-1. Furthermore, the expression of the chemokines responsible for the recruitment of IgA+ plasmablasts was analyzed. Data confirmed that expressions of CCL28 and MAdCAM-1 in the MG increased during pregnancy and alpha4beta1+ and alpha4beta7+/IgA+ cell recruitment in lactation correlated with increase of CCL28 expression. Interestingly, VCAM-1 expression was found in small blood vessels of the lactating porcine MG, while in mice VCAM-1 was expressed in large blood vessels within the MG. Thus, our results indicate that the recruitment of IgA+ plasmablasts to MG is mediated by VCAM-1/alpha4beta1 and MAdCAM-1/alpha4beta7 in conjunction with CCL28/CCR10. They support the existence of a functional link between entero- and upper respiratory surfaces and MG, thereby, conferring protection against aero-digestive pathogens in the newborn.

  17. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Directory of Open Access Journals (Sweden)

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  18. Effect of hyperlipidemia on endothelial VCAM-1 expression and the protective role of fenofibrate

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LIN Jinchao; HE Zhaochu; OU Biru; GUO Haisen

    2007-01-01

    The effect of hyperlipidemia and inflammation on endothelial functions was studied.The enrolled included control(basic chow),hyperlipidemia and fenofibrate-treated groups(high fat diet).The hyperlipidemia model was set up by four-week atherogenic diet,followed by a 16-week treatment in the fenofibrate-treated group(fenofibrate 40 mg/kg every day)and without treatment in the hypedipidemia group,respectively.In the 20th week,serum lipid level and NO levels were measured,and the expression of vascular cell adhesion molecule-1(VCAM-1)and cell adhesiveness in aortic endothelia observed by computer-aided system.Compared with the control group,hyperlipidemia rats showed lower levels of NO and increases in leukocyte accumulation on the endothelial surface,also stronger and more extensive endothelial expression of VCAM-1.In fenofibrate-treated group,the expression of VCAM-1 and leukocyte accumulation on the endothelial surface was decreased,while serum levels of NO were increased as compared with hyperlipidemia group.Hyperlipidemia can inhibit the NO activity and promote the damage of VACA-1 to aortic endothelia.Fenofibrate can effectively prevent the pathogenesis of atherosclerosis by restoring NO levels and down-regulating the VCAM-1 expression.

  19. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes.

    Directory of Open Access Journals (Sweden)

    Javier Conde

    Full Text Available BACKGROUND: Osteoarthritis (OA and rheumatoid arthritis (RA, the most common rheumatic diseases, are characterized by irreversible degeneration of the joint tissues. There are several factors involved in the pathogenesis of these diseases including pro-inflammatory cytokines, adipokines and adhesion molecules. OBJECTIVE: Up to now, the relationship between adipokines and adhesion molecules at cartilage level was not explored. Thus, the aim of this article was to study the effect of leptin and adiponectin on the expression of VCAM-1 in human and murine chondrocytes. For completeness, intracellular signal transduction pathway was also explored. METHODS: VCAM-1 expression was assessed by quantitative RT-PCR and western blot analysis upon treatment with leptin, adiponectin and other pertinent reagents in cultured human primary chondrocytes. Signal transduction pathways have been explored by using specific pharmacological inhibitors in the adipokine-stimulated human primary chondrocytes and ATDC5 murine chondrocyte cell line. RESULTS: Herein, we demonstrate, for the first time, that leptin and adiponectin increase VCAM-1 expression in human and murine chondrocytes. In addition, both adipokines have additive effect with IL-1β. Finally, we demonstrate that several kinases, including JAK2, PI3K and AMPK are at a play in the intracellular signalling of VCAM-1 induction. CONCLUSIONS: Taken together, our results suggest that leptin and adiponectin could perpetuate cartilage-degrading processes by inducing also factors responsible of leukocyte and monocyte infiltration at inflamed joints.

  20. VCAM-1 and ICAM-1 serum levels as markers of relapse in visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Alexandros Makis

    2017-01-01

    Full Text Available Objectives-Methods. Visceral leishmaniasis (VL is characterized by chronicity and relapses despite efficacious treatment. Acute and chronic inflammatory processes and concomitant disturbances in cell adhesion characterize the pathogenesis of the disease. To investigate these processes further we measured adhesion molecules (L-selectin, ICAM-1 and VCAM-1 serum levels in 16 children with VL, as well as in 20 healthy controls. All children were treated with liposomal amphotericin B (3 mg/kg on days 1 to 5, 14, and 21. Measurements were performed at days 0, 15 and 30. Results. All children responded well to treatment in both clinical and laboratory terms. In three cases relapse occurred at 3, 5 and 6 months after treatment had ended. Serum L-selectin levels, both pre-treatment and post-treatment, did not significantly differ between patients and controls. VCAM-1 and ICAM-1 median levels were similar in patients and controls (P>0.05 at day 0 and significantly increased at day 15 (P0.05, but not in the 3 patients who relapsed (P<0.05. Conclusions. Despite the small number of the patients, the changes in VCAM-1 and ICAM-1 levels indicate the anti-parasite activation of the immune system during the course of VL and the effect of treatment. Decline in post-treatment serum VCAM-1 and ICAM-1 levels might be used as a marker of treatment efficacy in childhood VL.

  1. Expression of ICAM1 and VCAM1 Serum Levels in Rheumatoid Arthritis Clinical Activity. Association with Genetic Polymorphisms

    Directory of Open Access Journals (Sweden)

    Rosa Elena Navarro-Hernández

    2009-01-01

    Full Text Available To investigate the association of sICAM-1 and sVCAM-1 with ICAM1 721G>A and VCAM1 1238G>C polymorphisms and rheumatoid arthritis (RA clinical activity, sixty RA patients and 60 healthy non-related subjects (HS matched for age and sex were recruited. Soluble adhesion molecules were determined by ELISA technique. Rheumatoid factor (RF, C reactive protein (CRP and the erythrocyte sedimentation rate (ESR were measured by routine methods. Disability and clinical activity was measured with Spanish-HAQ-DI and DAS28 scores, respectively. The ICAM1 and VCAM1 polymorphism were identified using the PCR-RFLP procedure. Inter-group comparison showed increased levels of sICAM-1 and sVCAM-1 in RA patients (284 and 481 ng/mL versus HS (132 and 280 ng/mL; in the RA group, significant correlations between sVCAM-1 and RF (r = 0.402, ESR (r = 0.426, Spanish-HAQ-DI (r = 0.276, and DAS28 (r = 0.342 were found, whereas sICAM-1 only correlated with RF (r = 0.445. In RA patients, a significant association with the 721A allele of ICAM1 polymorphism (p = 0.04, was found. In addition, the allele impact (G/A + A/A of this polymorphism was confirmed, (p = 0.038, OR = 2.3, C.I. 1.1–5.0. sVCAM-1 and sICAM-1 serum levels reflected the clinical status in RA, independently of the ICAM1 and VCAM1 polymorphism. However, the ICAM1 721A allele could be a genetic marker to RA susceptibility.

  2. Construction and expression of the eukaryotic expression vector of VCAM-1 extracellular domains%血管内皮细胞黏附分子胞外区基因真核表达载体构建及表达

    Institute of Scientific and Technical Information of China (English)

    朴君; 武翼; 朴敬爱; 李文哲

    2013-01-01

    As we know that the extracellular domains from D1 to D4 of vascular cell adhesion molecule 1 (VCAM-1) play important roles during early B cell differentiation. To express VCAM-1 extracellular domains from D1 to D4 (VCAM-1 D1-D4), the cDNA segments of VCAM-1 were amplified from NIH/3T3 cell line by PCR, and then VCAM-1 cDNA was cloned into eukaryotic expressive vector pIRES2-AcGFP1-Nuc-VCAM-1. With DNA sequencing and restriction endonuclease (Nhe Ⅰ and EcoR Ⅰ ) digestion analysis, it is confirmed that the eukaryotic expression vector pIRES2-AcGFP1 -Nuc -VCAM -1 had been constructed successfully. After transformation of pIRES2-AcGFP1-Nuc-VCAM-1 vector to Raji cells, the expression of VCAM-1 was detected in VCAM-1 transformed Raji cells. In cell binding assay, the expressed VCAM -1 was specially interacted with very late antigen-4 (VLA-4) on 70Z/3 cells. Our results suggested that the expressed VCAM-1 D1 -D4 will provide a experimental basis for further study on B cell differentiation and colony formation.%目的 构建并表达血管内皮细胞黏附分子(VCAM-1)胞外区基因真核表达载体.方法 从小鼠NIH/3T3细胞提取总RNA,以其为模板通过RT-PCR扩增VCAM-1胞外区(D1-D4结构域)cDNA.利用PCR获得VCAM-1胞外区基因,连接pMD19-T载体,进行基因序列测序.将VCAM-1 D1-D4目的片段插入到真核表达载体pIRES2-AcGFP1-Nuc中,构建重组真核表达质粒pIRES2-AcGFP1-Nuc-VCAM-1.经双酶切鉴定VCAM-1胞外区基因真核表达载体构建的成功与否.利用脂质体把pIRES2-AcGFP1-Nuc-VCAM-1导入至人B淋巴性白血病细胞株(Raji)内.结果 基因测序结果表明成功扩增出VCAM-1胞外区基因,双酶切鉴定表明重组的真核表达质粒pIRES2-AcGFP1-Nuc-VCAM-1构建成功.Western blot结果显示导入pIRES2-AcGFP1-Nuc-VCAM-1质粒的Raji细胞中VCAM-1高表达.细胞结合实验表明,表达的VCAM-1与前B细胞(70Z/3)表面的VLA-4特异性结合.结论 VCAM-1真核表达载体构建及表达成

  3. In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging.

    Directory of Open Access Journals (Sweden)

    Asim M Akhtar

    Full Text Available RATIONALE AND OBJECTIVE: Vascular cell adhesion molecule-1 (VCAM-1 is upregulated in ischemia reperfusion injury (IRI, persisting after restoration of blood flow. We hypothesized that microparticles of iron oxide targeting VCAM-1 (VCAM-MPIO would depict "ischemic memory" and enable in vivo assessment of VCAM-1 expression. METHODOLOGY AND FINDINGS: Mice subject to unilateral, transient (30 minutes renal ischemia and subsequent reperfusion received intravenous VCAM-MPIO (4.5 mg iron/kg body weight. Contrast agent bound rapidly (<30 minutes in IRI-kidneys and appeared as intensely low signal areas by MRI in vivo. Automated segmentation and quantification yielded MPIO contrast volumes of 5991±354×10(6 µm(3 in IRI vs. 87±7×10(6 µm(3 in kidneys with no surgical intervention (P<0.001; 90±8×10(6 µm(3 in IRI kidneys exposed to control (IgG-MPIO and 625±80×10(6 µm(3, in IRI kidneys pre-treated with a blocking dose of VCAM-1 antibody (P<0.001. In keeping with quantitative MRI data, VCAM-1 mRNA expression in IRI was 65-fold higher than in kidneys without surgical intervention (3.06±0.63 vs. 0.05±0.02, P<0.001. Indeed VCAM-1 mRNA expression and VCAM-MPIO contrast volume were highly correlated (R(2=0.901, P<0.01, indicating that quantification of contrast volume reflected renal VCAM-1 transcription. Serial imaging showed VCAM-MPIO accumulation at target within 30 minutes, persisting for ≥90 minutes, while unbound VCAM-MPIO was cleared rapidly from blood, with sequestration by mac-3 positive Kupffer cells in the liver and monocyte/macrophages in the spleen. CONCLUSIONS: (1 VCAM-MPIO detected VCAM-1 expression and defined its 3-dimensional distribution, revealing "ischemic memory" in renal IRI; (2 automated volumetric quantification of VCAM-MPIO accurately reflected tissue levels of VCAM-1 mRNA; and (3 VCAM-MPIO bound rapidly to target with active sequestration of unbound MPIO in the liver and spleen.

  4. Tanshinone IIA inhibits TNF-α-mediated induction of VCAM-1 but not ICAM-1 through the regulation of GATA-6 and IRF-1.

    Science.gov (United States)

    Nizamutdinova, Irina Tsoy; Kim, Young Min; Jin, Hana; Son, Kun Ho; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2012-12-01

    The goal of this study was to investigate the differential effect of tanshinone IIA on the induction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by TNF-α and the possible molecular mechanisms by which it regulates ICAM-1 and VCAM-1 expression differentially. Stimulation of human umbilical vein endothelial cells (HUVEC) with TNF-α increased ICAM-1 and VCAM-1 expressions, and the pretreatment with tanshinone IIA concentration dependently inhibited VCAM-1 expression but not ICAM-1 expression. In previous study, PI3K/Akt, PKC and Jak/STAT-3 pathways were involved in the TNF-α-mediated induction of VCAM-1 but not ICAM-1. Thus, we examined the effect of tanshinone IIA on TNF-α-mediated activations of PI3K/Akt, PKC and Jak/STAT-3 pathways. Tanshinone IIA efficiently inhibited the phosphorylations of Akt, PKC and STAT-3 by TNF-α. Moreover, we determined the effect of tanshinone IIA on IRF-1 or GATAs induction and binding activity to VCAM-1 promoter since the upstream promoter region of VCAM-1 but not ICAM-1 contains IRF-1 and GATA binding motifs. Western blot analysis and ChIP assay showed that tanshinone IIA efficiently inhibited TNF-α-increased nuclear level of IRF-1 and GATA-6 and their binding affinity to VCAM-1 promoter region. Taken together, tanshinone IIA selectively inhibits TNF-α-mediated expression of VCAM-1 but not ICAM-1 through modulation of PI3/Akt, PKC and Jak/STAT-3 pathway as well as IRF-1 and GATA-6 binding activity.

  5. Soluble serum VCAM-1, whole blood mRNA expression and treatment response in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Petersen, E R; Søndergaard, H B; Oturai, A B;

    2016-01-01

    BACKGROUND: Natalizumab reduces disease activity in multiple sclerosis (MS). Natalizumab binds to the very late antigen-4 and inhibits vascular cell adhesion molecule-1 (VCAM-1)-mediated transmigration of immune cells across the blood-brain-barrier. This is associated with decreased serum...

  6. Clopidogrel Protects Endothelium by Hindering TNFα-Induced VCAM-1 Expression through CaMKKβ/AMPK/Nrf2 Pathway

    Directory of Open Access Journals (Sweden)

    Huabing Yang

    2016-01-01

    Full Text Available Clopidogrel (INN, an oral antiplatelet drug, has been revealed to have a number of biological properties, for instance, anti-inflammation and antioxidation. Oxidative stress plays an imperative role in inflammation, diabetes mellitus, atherosclerosis, and cancer. In the present study, human aortic endothelial cells (HAECs were employed to explore the anti-inflammatory activity of INN. INN reduced TNFα-induced reactive oxygen species (ROS generation and time-dependently prompted the expression and activity of heme oxygenase 1 (HO-1. Cellular glutathione (GSH levels were augmented by INN. shHO-1 blocked the INN suppression of TNFα-induced HL-60 cell adhesion. The CaMKKβ/AMPK pathway and Nrf2 transcriptional factor were implicated in the induction of HO-1 by INN. Additionally, TNFα dramatically augmented VCAM-1 expression at protein and mRNA levels. INN treatment strikingly repressed TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Compound C, an AMPK inhibitor, and shNrf2 abolished TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Our data suggest that INN diminishes TNFα-stimulated VCAM-1 expression at least in part via HO-1 induction, which is CaMKKβ/AMPK pathway-dependent.

  7. Expression of pulmonary mRNA encoding ICAM-1, VCAM-1, and P-selectin following thoracic irradiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino, Kayoko; Kodama, Akihisa; Nanaoka, Noriyoshi; Maruta, Tsutomu; Kono, Michio [Kobe Univ. (Japan). School of Medicine

    1999-08-01

    Recent studies have revealed that ionizing radiation induces the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin in vitro. The purpose of this study was to investigate the expression of these adhesion molecules in mouse lung following whole thoracic irradiation. C57BL/6J mice were irradiated with a single dose of 12 Gy to the thoraces and sacrificed at 4, 12, 24, and 48 hours and 1, 2, 4, and 8 weeks after irradiation. Expression of total lung mRNA for ICAM-1, VCAM-1, and P-selectin was quantified by the Northern blot method and normalized to {beta}-actin. There were increases in mRNA for ICAM-1 of 42% at 4 hours (p<0.05), 76% at 24 hours (p<0.01), and 51% at 48 hours (p<0.05) compared with the controls. There returned to the control level at 1 week. The expression of VCAM-1 mRNA was also increased by 49% (p<0.01) at 12 hours and was still increased by 25% at 1 week. P-selectin mRNA was transiently increased by 59% at 12 hours. These early inductions of mRNA for ICAM-1, VCAM-1, and P-selectin in mouse lung following thoracic irradiation were transient but significant, and are one of the most immediate changes reported in vivo. (author)

  8. Correlation of integ rin α4β1 and its two ligands with mast cell recruitment around the rat liver neoplasm

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-Yong; RUANYou-Bing; WUZhong-Bi

    2001-01-01

    Aim To study the correlation of integfin α4β1and its twoligands (vascular cell adhesion molecule-1 and fibronectin)with mast cell (MC) recruitment around the rat liverneoplasm.Methods 18 male wistar rats with liver tumor were dividedinto three different groups in terms of mast cell number inthe su .rroundings of liver tumor, 8 normal wistar rats ascontrol. The integrin VLA-4 expression of rat peritoneal mastcells was analyzed by indirect immunofluorescence and flowcytometry. We also used immunohistochemistry to investigatewhether VCAM-1 and fibronectin in liver tissues wereexpressedpositively.Results There were markedly different in mast cell numberaround rat liver neoplasms. And mast cells could expresshigh levels of integrin α4β1 on their surfaces. Furthermor,the more mast cells around liver tumor the higher levels ofintegrin VLA-4. We also found that endothelial cellsexpressed VCAM-1 and there are a number of fibronectindeposition aroundrat fiver neoplasm.Conclusion The results suggest that the integrin α4β1/VCAM-1 and fibronectin play an important role inmechanism of mast cell recruitment around liver tumor. Andthe expression levels of integrin α4β1 were paralleled by mastcell accumulation in the surroundings of liver neoplasm.

  9. Montelukast inhibition of resting and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under flow conditions appears independent of cysLT(1)R antagonism.

    Science.gov (United States)

    Robinson, Alexander J; Kashanin, Dmitry; O'Dowd, Frank; Williams, Vivienne; Walsh, Garry M

    2008-06-01

    Montelukast (MLK) is a cysteinyl leukotriene receptor-1 (cysLT(1)R) antagonist with inhibitory effects on eosinophils, key proinflammatory cells in asthma. We assessed the effect of MLK on resting and GM-CSF-stimulated eosinophil adhesion to recombinant human (rh)VCAM-1 at different flow rates using our novel microflow system. At 1 or 2 dyn cm(-2), shear-stress unstimulated eosinophils tethered immediately to rhVCAM-1, "rolled" along part of the channel until they tethered, or rolled without tethering. At flow rates greater than 2 dyn cm(-2), adherent eosinophils began to be displaced from rhVCAM-1. MLK (10 nM and 100 nM) gave partial ( approximately 40%) but significant (PMLK observed. This effect appeared specific for MLK, as the analog (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid, sodium salt, had no significant effect on eosinophil adhesion to VCAM-1. The possibility that LTC(4), released from unstimulated or GM-CSF-treated eosinophils, contributed to their adhesion to VCAM-1 was excluded as the LT biosynthesis inhibitor 3-[1-(p-Chlorobenzyl)-5-(isopropyl)-3-t-butylthioindol-2-yl]-2,2-dimethylpropanoic acid had no inhibitory effect, and exogenously added LTC(4) did not enhance eosinophil adhesion. In contrast, LTD(4) enhanced eosinophil adhesion to VCAM-1, an effect blocked by MLK (10 and 100 nM). These findings demonstrate that MLK-mediated inhibition of unstimulated and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under shear-stress conditions appears independent of cysLT(1)R antagonism.

  10. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin in patients with tuberculous pleuritis

    Directory of Open Access Journals (Sweden)

    A. Hamzaoui

    1996-01-01

    Full Text Available Tuberculosis is characterized by the presence of activated mononuclear cells both in the peripheral circulation and in pleural fluid. Expression and up-regulation of adhesion molecules is the basis of cell-cell adhesion in granuloma formation and in leukocyte migration to the inflammatory site. Soluble isoforms of adhesion molecules have been described, and their expression at high levels indicated an activated state. The purpose of this study was to evaluate levels of soluble adhesion molecules in serum and pleural fluid from patients with tuberculous pleural effusions, compared with non-tuberculous pleural effusions. We analysed levels of soluble vascular cell adhesion molecule-1 (s.VCAM-1, soluble intercellular adhesion molecule-1 (s.ICAM-1, and soluble E-selectin (sE-selectin in serum and pleural fluid from patients with tuberculous pleuritis, by sandwich ELISA. Serum levels of s.ICAM-1 and s.VCAM-1 in patients with tuberculosis were higher than those in healthy controls (p < 0.001. Levels of sE-selectin levels were in the normal range compared with control groups. In pleural fluid, levels of s.VCAM-1 and s.ICAM-1 were increased in pleural effusions. Patients with tuberculous pleural effusion exhibited high levels of s.ICAM-1 compared with patients with neoplastic pleural involvement. Up-regulation of s.VCAM-1 and s.ICAM-1 in serum, along with increased levels of sE-selectin in pleural effusions from tuberculous patients, may result in transmigration of activated inflammatory cells inducing pleural damage, which may contribute to the pathological processes involved.

  11. Expression of TGF-β1 in Placenta of the Patients with Pregnancy-induced Hypertension and Its relationship with Serum VCAM-1

    Institute of Scientific and Technical Information of China (English)

    XIANG Wenpei; XU Xiaoyan; CHEN Hanping

    2005-01-01

    The expression of transforming growth factor-β1 (TGF-β1) in placental tissue of pregnancy-induced hypertension (PIH) and the relationship between the level of expression of TGF-β1 and the amount of vascular cell adhesion molecule-1 (VCAM-1) in serum was studied. Immunohistochemistry ABC was used to detect the expression and distribution of TGF-β1 in placental tissues in 40 PIH women and 20 normal pregnancy women. High resolution pathological image analysis system was used to determine the quality of TGF-β1. The VCAM-1 in serum was examined by enzyme linked immunoabsorbent assay (ELISA). The results showed that TGF-β1 could be express in syncytiotrophoblast. The levels of TGF-β1 expression in placental tissues of the patients with moderate and severe PIH were significantly higher (P<0.05), while the serum VCAM-1 was significantly lower than in normal group (P<0.01). There was a significant positive correlation between the expression of TGF-β1 in placental tissues and the serum VCAM-1 (r=0. 969, P<0.01). It was concluded that the level of TGF-β1 expression in PIH was increased and was positively correlated with the amount of serum VCAM-1, indicating that they might be involved in the pathogenesis of PIH.

  12. Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin.

    Science.gov (United States)

    Liu, Lihua; Liu, Yun; Qi, Benling; Wu, Qinqin; Li, Yuanyuan; Wang, Zhaohui

    2014-06-01

    The anti-angina agent nicorandil has been reported to be beneficial even in patients who have angina with diabetes. However, the mechanism underlying the effect of nicorandil in patients with diabetes remains to be elucidated. In this study, the protective effect of nicorandil on thioredoxin (TRX) protein was investigated, as TRX is a multifunctional endogenous redox regulator that protects cells against various types of cellular and tissue stress. This study was conducted to examine whether nicorandil induces the expression of TRX for the protection against diabetic damage in the vascular tissue of rats. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (fasting glucose levels in STZ-induced rats were >14 mmol/l). Diabetic rats were divided into a diabetic control and a nicorandil-treated group. Nicorandil was administered at a dosage of 15 mg/kg/day by gavage feeding. After five weeks of nicorandil administration, blood samples were obtained from the angular vein to measure levels of stress markers, serum superoxide dismutase and malondialdehyde, using the ELISA. The expression of TRX in STZ-induced rat vascular tissue was analyzed by immunohistochemistry, quantitative polymerase chain reaction (qPCR) and western blot analysis. The oral administration of nicorandil induced TRX protein and mRNA expression in the vascular tissue of STZ-induced diabetic rats. In the diabetic control group, the levels of stress were markedly higher than those in the nicorandil-treated group, indicating that nicorandil reduces oxidative stress in serum. In addition to inducing TRX expression, nicorandil attenuated the expression of the vascular cell adhesion molecule-1 (VCAM-1) in diabetic rat vascular endothelial cells. In conclusion, nicorandil attenuates the formation of reactive oxygen species and induces TRX protein expression, consequently resulting in the suppression of VCAM-1 secretion in the vascular endothelial cells of STZ-induced diabetic

  13. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.-P.; Harris, K.; Chin, Y.H. [Miami Univ., FL (United States). School of Medicine; Falanga, V.; Taylor, J.R. [Miami Univ., FL (United States). School of Medicine]|[Miami Veteran Affairs Medical Center, Miami, FL (United States)

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author).

  14. The Expression of PLF in Placenta in Pregnancy-Induced Hypertension and the Relationship between the PLF and Serum VCAM-1

    Institute of Scientific and Technical Information of China (English)

    徐晓燕; 相文佩; 陈汉平

    2003-01-01

    Summary: To study the expression of placental isoferritin (PLF) in placental tissue of pregnancy-in-duced hypertension (PIH) and the relationship between the level of expression of PLF and theamount of vascular cell adhesion molecule-1 (VCAM-1) in serum, immunohistochemical techniquewas used to detect the expression of PLF in placenta tissue in 45 PIH patients (PIH group) and 15normal pregnant women (normal group). High resolution pathological image analysis system(HPIAS-100) was employed to determine the quantity of PLF. The VCAM-1 in serum was exam-ined by enzyme linked immunoabsorbent assay (ELISA). The results showed that the levels of PLFexpressions in moderate and severe PIH patients were significantly lower than that of normal group(P<0. 01). The serum VCAM-1 was significantly decreased in PIH group (1310±177 ρ/ng/ml)than that of normal group (609±72 ρ/ng/ml, P<0. 01).The significant negative correlation exist-ed between the expression of PLF in placental tissue and the serum VACM-1 (r=-0. 58, P<0. 01).It was concluded that the level of PLF expression in PIH decreases and is negatively correlated withthe amount of serum VCAM-1, indicating that these may be involved in the pathogenesis of PIH.

  15. Soluble adhesion molecules ICAM-1, VCAM-1, P-selectin in children with Helicobacter pylori infection

    Institute of Scientific and Technical Information of China (English)

    Elzbieta Maciorkowska; Maciej Kaczmarski; Anatol Panasiuk; Katarzyna Kondej-Muszynska; Andrzej Kemonai

    2005-01-01

    AIM: To assess the sICAM-1, sVCAM-1, and sP-selectin levels in children withHelicobacter pylori(H pylori)infection and to evaluate their significance for the morphological changes found in gastric mucosa.METHODS: The study included 106 children: 59children (55.7%) with chronic gastritis and positive IgG against H pylori, 29 children (27.3%) after previous H pylori infection without the bacterium colonization but with positive IgG against H pylori, and 18 children (17%) with functional disorders of the gastrointestinal system but with normal IgG against H pylori. Endoscopic and histopathological evaluation of gastric mucosa was performed based on the Sydney System classification.The evaluation of sP-selectin, sIC AM-1, sVCAM-1 levels in the sera of children was carried out using ELISA test.RESULTS: The assessment of gastritis activity degrees indicated statistically significant values in the antrum and corpus (P<0.001) of children examined. Serum sVCAM-1 levels were higher in group with gastritis due to H pylori infection than in group without infection and differed statistically (P<0.05). Serum sVCAM-1 levels proved to be the highest among other adhesive molecules in infected children and decreased after eradication of H pylori. Serum sICAM-1 levels were similar in all examined groups. Serum sP-selectin levels were similar in children with and without H pylori infection.CONCLUSION: Assessment of adhesive molecules (sPselectin, sICAM-1, sVCAM-1) in the sera of children with active H pylori infection can show the participation of sVCAM-1 in the pathogenesis of gastric mucosal inflammation, sP-selectin and sICAM-1 concentrations in the sera of children with H pylori infection after eradication cannot reveal any significant differences as compared to healthy children.

  16. Regional gene expression of LOX-1, VCAM-1, and ICAM-1 in aorta of HIV-1 transgenic rats.

    Directory of Open Access Journals (Sweden)

    Anne Mette Fisker Hag

    Full Text Available BACKGROUND: Increased prevalence of atherosclerotic cardiovascular disease in HIV-infected patients has been observed. The cause of this accelerated atherosclerosis is a matter of controversy. As clinical studies are complicated by a multiplicity of risk-factors and a low incidence of hard endpoints, studies in animal models could be attractive alternatives. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated gene expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1, vascular cell adhesion molecule-1 (VCAM-1, and intercellular adhesion molecule-1 (ICAM-1 in HIV-1 transgenic (HIV-1Tg rats; these genes are all thought to play important roles in early atherogenesis. Furthermore, the plasma level of sICAM-1 was measured. We found that gene expressions of LOX-1 and VCAM-1 were higher in the aortic arch of HIV-1Tg rats compared to controls. Also, the level of sICAM-1 was elevated in the HIV-1Tg rats compared to controls, but the ICAM-1 gene expression profile did not show any differences between the groups. CONCLUSIONS/SIGNIFICANCE: HIV-1Tg rats have gene expression patterns indicating endothelial dysfunction and accelerated atherosclerosis in aorta, suggesting that HIV-infection per se may cause atherosclerosis. This transgenic rat model may be a very promising model for further studies of the pathophysiology behind HIV-associated cardiovascular disease.

  17. 病毒性脑炎患儿S100B蛋白、NSE、sVCAM-1和神经肽Y水平变化的临床意义%Clinical significance of the level change of S100B protein, NSE, sVCAM-1 and neuropeptide Y in children with viral encephalitis

    Institute of Scientific and Technical Information of China (English)

    张永英

    2012-01-01

    Objective To explore the clinical significance of the level change of serum S100B protein, neuron enolase (NSE), soluble vascular endothelial cell adhesion molecules (sVCAM-1) and neuropeptide Y (NPY) in children with viral encephalitis. Methods 32 cases of children viral encephalitis with central nervous system infection were selected as the viral encephalitis group, and according to the illness was divided into light disease group and severe disease group, at the same time, 32 cases without central nervous system infection (by lumbar puncture) of children were chose as control group. S100B protein, NSE, sVCAM-1 and NPY level of the serum and cerebrospinal fluid in children were detected, and the results were compared. Results The levels of S100B protein, NSE, sVCAM-1 and neuropeptide Y (NPY) in the viral encephalitis group were obviously higher than those in the control group, there were significant differences (P < 0.05). For the viral encephalitis children, S100B protein, NSE, sVCAM-1 and neuropeptide Y (NPY) level in serum and cerebrospinal fluid were significantly lower in light disease group than those in severe group, there were significant differences (P < 0.05). Conclusion There is a correlation between the change and illness weight of viral encephalitis children cerebrospinal fluid and serum S100B protein, NSE, sVCAM-1 and neuropeptide Y level, which has an important value to judge the illness.%目的 探讨病毒性脑炎患儿脑脊液及血清中S100B蛋白、神经元烯醇化酶(NSE)、可溶性血管内皮细胞黏附分子(sVCAM-1)和神经肽Y(NPY)水平变化的临床意义.方法 选取32例有中枢神经系统感染的病毒性脑炎患儿为病毒性脑炎组,并根据病情分为轻症组和重症组,选择同期住院的经腰椎穿刺确定无中枢神经系统感染的病毒性脑炎患儿32例作为对照组.检测各组患儿血清和脑脊液中S100B蛋白、NSE、sVCAM-1和NPY的水平,并将结果进行比较.结果 病毒性脑炎

  18. Increased plasma concentrations of sICAM-1, sVCAM-1 and sELAM-1 in patients with Plasmodium falciparum or P. vivax malaria and association with disease severity

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S; Rønn, A;

    1994-01-01

    Increased serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble endothelial leucocyte adhesion molecule-1 (sELAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were detected in Danish malaria patients infected with sequestering Plasmodium falciparum or non......-sequestering P. vivax parasites, as well as in patients with sepsis or meningitis. Levels of soluble adhesion molecules remained elevated in the P. falciparum patients for several weeks after initiation of treatment. Plasma concentrations of sICAM-1, sVCAM-1 and sELAM-1 were higher in Gambian children...

  19. 过敏性紫癜患儿瘀血及黏附分子 sICAM-1、sVCAM-1表达水平的研究%Clinical research of blood stasis and the level of serous and urinary sICAM-1,sVCAM-1 in henoch-schonlein purpura

    Institute of Scientific and Technical Information of China (English)

    黄岩杰; 赵丽丽; 李玉蕊; 张建; 梅晓峰; 翟文生; 任献青; 丁樱

    2012-01-01

    Objective: We observed the expression of sICAM-1, sVCAM-1 in serum and urine in HSP, blood stasis and the relationship between blood stasis sICAM-1, sVCAM-1 in urine and kidney damage. Methods: 80 patients with HSP were divided into NO-HSPN (30 cases), hematuria group (23 cases) and proteinuria and hematuria group (27 cases), healthy children (10 cases) as normal group. Blood stasis was scored according to TCM symptoms for blood stasis. The concentration of sVCAM, sVCAM-1 in serum and urine was detected by enzyme linked immunosorbent assay (ELISA). Results: (DBlood stasis score in proteinuria and hematuria group was higher than NO-HSPN group(P<0.01). ㏒erous sICAM-1 was not obvious difference in each groups. Urinary sICAM-1 in proteinuria and hematuria group was higher than normal group and NO-HSPN group (P<0.05, f<0.01). 甋erous sVCAM-1 is not significant differences among all the groups. Urinary sVCAM-1 of proteinuria and hematuria group was significant higher than normal group, NO-HSPN group, hematuria group. 瓵 positive correlation can be found between urinary sVCAM-1 and sICAM-1 and blood stasis score in proteinuria and hematuria group. Conclusion: Blood stasis was involved in the renal lesion process in HSP. sICAM-1, sVCAM-1 in urine was increased in proteinuria and hematuria group, while those in serum was not changed compared with other group. These results suggested that blood stasis can increase the expression of sICAM, sVCAM-1 in kidney, and which triggered the cellular adhesion molecule-mediated inflammatory cells infiltration, followed up to increase renal lesion.%目的:观察过敏性紫癜(HSP)患儿可溶性细胞间黏附分子-1(sICAM-1)、可溶性血管细胞黏附分子-1 (sVCAM-1)表达水平及瘀血状态,分析瘀血与尿中黏附分子及肾脏损伤的关系.方法:HSP患儿80例分为无肾损( NO-HSPN)组、血尿组、血尿加蛋白尿组,正常组(健康儿童10名).根据中医瘀血症候积分表进

  20. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  1. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice.

    Science.gov (United States)

    Rouleau, Leonie; Berti, Romain; Ng, Vanessa W K; Matteau-Pelletier, Carl; Lam, Tina; Saboural, Pierre; Kakkar, Ashok K; Lesage, Frédéric; Rhéaume, Eric; Tardif, Jean-Claude

    2013-01-01

    The development of molecular probes and novel imaging modalities, allowing better resolution and specificity, is associated with an increased potential for molecular imaging of atherosclerotic plaques especially in basic and pre-clinical research applications. In that context, a photoacoustic molecular probe based on gold nanoshells targeting VCAM-1 in mice (immunonanoshells) was designed. The molecular probe was validated in vitro and in vivo, showing no noticeable acute toxic effects. We performed the conjugation of gold nanoshells displaying near-infrared absorption properties with VCAM-1 antibody molecules and PEG to increase their biocompatibility. The resulting immunonanoshells obtained under different conditions of conjugation were then assessed for specificity and sensitivity. Photoacoustic tomography was performed to determine the ability to distinguish gold nanoshells from blood both in phantoms and in vivo. Ex vivo optical projection tomography of hearts and aortas from atherosclerotic and control mice confirmed the selective accumulation of the immunonanoshells in atherosclerotic-prone regions in mice, thus validating the utility of the probe in vivo in small animals for pre-clinical research. These immunonanoshells represent an adequate mean to target atherosclerotic plaques in small animals, leading to new tools to follow the effect of therapies on the progression or regression of the disease.

  2. The effects of colloids or crystalloids on acute respiratory distress syndrome in swine (Sus scrofa models with severe sepsis: analysis on extravascular lung water, IL-8, and VCAM-1

    Directory of Open Access Journals (Sweden)

    Rismala Dewi

    2016-04-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is a fatal complication of severe sepsis. Due to its higher molecular weight, the use of colloids in fluid resuscitation may be associated with fewer cases of ARDS compared to crystalloids. Extravascular lung water (EVLW elevation and levels of interleukin-8 (IL-8 and vascular cell adhesion molecule-1 (VCAM-1 have been studied as indicators playing a role in the pathogenesis of ARDS. The aim of the study was to determine the effects of colloid or crystalloid on the incidence of ARDS, elevation of EVLW, and levels of IL-8 and VCAM-1, in swine models with severe sepsis.Methods: This was a randomized trial conducted at the Laboratory of Experimental Surgery, School of Veterinary Medicine, IPB, using 22 healthy swine models with a body weight of 8 to 12 kg. Subjects were randomly allocated to receive either colloid or crystalloid fluid resuscitation. After administration of endotoxin, clinical signs of ARDS, EVLW, IL-8, and VCAM-1 were monitored during sepsis, severe sepsis, and one- and three hours after fluid resuscitation. Analysis of data using the Wilcoxon test , Kolmogorov-Smirnov test, Mann-Whitney test, unpaired t test.Results: Mild ARDS was more prevalent in the colloid group, while moderate ARDS was more frequent in the crystalloid group. EVLW elevation was lower in the colloid compared to the crystalloid group. There was no significant difference in IL-8 and VCAM-1 levels between the two groups.Conclusion: The use of colloids in fluid resuscitation does not decrease the probability of ARDS events compared to crystalloids. Compared to crystalloids, colloids are associated with a lower increase in EVLWI, but not with IL-8 or VCAM-1 levels.

  3. COPD稳定期患者血清CRP、TNF-α与VCAM-1关系的研究

    Institute of Scientific and Technical Information of China (English)

    李磊; 夏熙郑

    2009-01-01

    目的 通过检测CRP、TNF-α及VCAM-1在稳定期COPD患者中的水平,探讨血栓前状态与全身炎症反应关系及其在稳定期COPD中的作用.方法 选取COPD稳定期患者44例,健康对照组26例.测量两组的肺功能,采用ELISA检测两组血浆中CRP、TNF-α、sVCAM-1的水平.结果 COPD组CRP水平显著高于对照组;TNF-α水平显著高于对照组;COPD组sVCAM显著高于对照组水平;COPD组患者血浆CRP、TNF-α、sVCAM-1水平与FEV1.0%预计值呈负相关;COPD组血浆CRP、TNF-α与sVCAM-1呈正相关.结论 COPD稳定期患者存在全身炎症反应和血栓前状态.CRP、TNF-α和sVCAM-1可作为判断COPD病情的指标.COPD的全身炎症反应有助于形成PTS.

  4. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    Directory of Open Access Journals (Sweden)

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  5. Effect of Thyrotropin on Osteopontin, Integrin αvβ3, and VCAM-1 in the Endothelium via Activation of Akt

    Science.gov (United States)

    Yan, Yumeng; Jiang, Fengwei; Lai, Yaxin; Wang, Haoyu; Liu, Aihua; Wang, Chuyuan; Zhang, Yuanyuan; Teng, Weiping; Shan, Zhongyan

    2016-01-01

    Numerous epidemiological studies have shown that subclinical hypothyroidism (SCH) can impair endothelial function and cause dyslipidemia. Studies have evaluated the effects of thyroid stimulating hormone (TSH) on endothelial cells, but the mechanism underlying the proatherosclerotic effect of increased TSH levels remains unclear. In the present study, SCH rat models were established in thyroidectomized Wistar rats that were given l-T4 daily. The results showed that in vivo, the expression of osteopontin (OPN) vascular cell adhesion molecule (VCAM-1), and levels of integrin αvβ3 in the aortic tissue in SCH and Hypothyroidism (CH) groups was higher than in the control group. However, the effect in the SCH group was higher than in the CH group. In vitro, results showed that different concentration and time gradients of TSH stimulation could increase the expression of OPN, VCAM-1, and integrin αvβ3, and this was accompanied by extracellular signal regulated kinase 1/2 (Erk1/2) and Akt activation in human umbilical vein endothelial cells (HUVECs). TSH induced elevation of these proatherosclerotic factors was partially suppressed by a specific Akt inhibitor but not by a specific Erk inhibitor. Findings suggested that the endothelial dysfunction caused by SCH was related to increased proatherosclerotic factors induced by TSH via Akt activation. PMID:27657042

  6. Correlation of integrinα4β1 and its two ligands with mast cell recruitment in the surroundings of rat liver tumor%整合素α4β1及其配体与大鼠肝肿瘤周边肥大细胞募集的关系

    Institute of Scientific and Technical Information of China (English)

    张志勇; 阮幼冰; 武忠弼

    2001-01-01

    目的:研究整合素α4β1(VLA-4)及其配体VCAM-1(vascular cell adhesion molecular-1)和FN(fibronectin)与肝肿瘤周边肥大细胞(mast cell, MC)募集的关系。方法:根据肝肿瘤周边肥大细胞数量,将18只雄性Wistar大鼠移植肝肿瘤模型进行分组,8只正常雄性Wistar大鼠作对照。用间接免疫荧光和流式细胞术检测各组大鼠腹腔肥大细胞整合素VLA-4分子的表达水平,同时用免疫组化研究肿瘤周边肝组织血管内皮细胞和肝窦内皮细胞表面VCAM-1和肿瘤周边FN的表达。结果:不同肝肿瘤大鼠肿瘤周边浸润肥大细胞数量有明显差异。各组大鼠腹腔MC表达整合素VLA-4分子均呈阳性,肿瘤周边肥大细胞浸润较多组,其整合素α4β1表达水平也较高。肿瘤周边血管内皮和窦内皮细胞表达VCAM-1阳性。肿瘤周边沉积大量呈阳性表达的FN与肥大细胞紧密相联。结论:整合素α4β1及其配体VCAM-1和FN在肝肿瘤周边肥大细胞募集中起重要作用;整合素α4β1的表达水平与肿瘤周边MC数呈平行关系。%Purpose To study the correlation of integrinα4β1 and its two ligands (vascular cell adhesion molecule-1 and fibronectin)with mast cell(MC)recruitment around the rat hepatocarcinoma. Methods Eighteen male Wistar rats with liver tumor were divided into three different groups in terms of mast cell numbers in the surroundings of liver tumor. Eight normal Wistar rats were used as control. Integrin VLA-4 expression in rat peritoneal mast cells was analyzed by indirect immunofluorescence and flow cytometry. Immunohistochemistry was also used to investigate whether endothelial cell VCAM-1 and fibronection were expressed positively. Results There were markedly different in mast cell numbers around rat liver tumor. Mast cells express high levels of integrin α4β1 on their surfaces. And the more mast cells around liver tumor, the higher levels of integrin VLA-4. We

  7. The impact of ICAM1 and VCAM1 gene polymorphisms on chronic allograft nephropathy and transplanted kidney function.

    Science.gov (United States)

    Kłoda, K; Domański, L; Pawlik, A; Wiśniewska, M; Safranow, K; Ciechanowski, K

    2013-01-01

    ICAM-1 and VCAM-1 adhesion molecules play important roles in the immune response and emergence of chronic allograft nephropathy (CAN). The several polymorphisms of ICAM1 and VCAM1 genes are associated with changes in molecular expression therefore affecting allograft function and immune responses after kidney transplantation. The aim of this study was to examine the impact of polymorphisms in ICAM1 and VCAM1 genes on biopsy-proven CAN and renal allograft function. The 270 Caucasian renal transplant recipients (166 men and 104 women) were genotyped for the rs5498 ICAM1 and rs1041163 and rs3170794 VCAM1 gene polymorphisms using real-time polymerase chain reaction. There was no correlation between polymorphisms and CAN. Creatinine concentrations in the first month after transplantation differed between the rs5498 ICAM1 genotypes (P = .095), being higher for GG carriers (AA + AG vs GG, P =.07) albeit not with statistical significance. Creatinine concentrations at 12, 24, and 36 months after transplantation differed significantly among rs5498 ICAM1 genotypes (P = .0046, P =.016, and P = .02) and were higher among GG carriers (AA + AG vs GG, P = .001, P = .004, and P = .006). Rs5498 ICAM1 GG genotype and receipient male gender were independent factors associated with higher creatinine concentrations. These results suggest that the rs5498 ICAM1 GG genotype may be associated with long-term allograft function.

  8. Correlation between VCAM-1, MIF and SFRP-5 content in plasma and renal impairment in patients with diabetic nephropathy

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Ji Zhang; Li-ping Tang

    2016-01-01

    Objective:To analyze the correlation between VCAM-1, MIF and SFRP-5 content in plasma and renal impairment in patients with diabetic nephropathy.Methods:A total of 119 patients with type 2 diabetic nephropathy were selected as observation group and 100 healthy subjects were selected as control group. Differences in the content of VCAM-1, MIF and SFRP-5 in plasma, the content of renal function indexes, renal fibrosis indexes and oxidative stress indexes, etc. were compared between two groups of subjects.Results: VCAM-1 and MIF content in plasma of observation group were significantly higher than those of control group while SFRP-5 content was significantly lower than that of control group;β2-MG, Scr, UA and BUN content in plasma of observation group were higher than those of control group while Alb content and Ccr level were lower than those of control group; TIMP-1, TGF-β1, CⅣ, CTGF and Prolidase content in plasma of observation group were higher than those of control group; ROS, SOD, MDA and LHP content in plasma of observation group were higher than those of control group while GSH-PX and T-AOC content were lower than those of control group. VCAM-1, MIF and SFRP-5 content in plasma of patients with type 2 diabetic nephropathy were directly correlated with renal impairment indexes.Conclusions:VCAM-1, MIF and SFRP-5 content in plasma are the reliable indexes to judge the disease severity in patients with DN and are expected to provide basis for early screening and reasonable treatment of disease.

  9. Effect of liraglutide on the expressions of NF-κB and VCAM-1 in aorta endothelium of type 2 diabetic rats%利拉鲁肽对2型糖尿病大鼠 NF-κB 及VCAM-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    綦才辉; 金勇君; 杨美子; 徐鑫淼; 张凌云; 曹鹏娟

    2014-01-01

    Objective To investigate the effect of liraglutide on the expressions of nuclear factor-kappa B ( NF-κB) and vascular cell adhesion molecule 1 (VCAM-1) in aorta endothelium of type 2 diabetic rats and the possible mechanism. Methods Forty male SD rats were divided into the normal control group (NC group), diabetic control group (DM group), glibenclamide group (DMG group) and liraglutide group (DML group).The model of type2 diabetic rats was eatablised by injecting with low-dose streptozocin( STZ) into abdominal cavity of SD rats after high-fat and high-sugar diet.Then rats in DMG and DML groups were treated with liraglutide and glibenclamide for 8 weeks.At the end of the twelfth week, blood was taken from abdominal aorta to examine biochemical indexes including fasting blood-glucose (FBG), fasting insulin(FIns), totalcholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C) and high density lipoprotein-cholesterol ( HDL-C) .The thoracic aorta was isolated to observe the histological parame-ters by HE staining.The expressions of NF-κB and VCAM-1 in aorta endothelium were determined by immunohisto-chemical method.Rusults The levels of FIns and HOMA-IR in DMG group and DML group were decreased com-pared with those in DM group (P<0.01).The levels of FIns, HOMA-IR,TG and LDL-C and the expressions of NF-κB and VCAM-1 in in aorta endothelium in DML group were decreased compared with those in DMG group ( P<0.05).Conclusion Liraglutide can decrease the expressions of NF-κB and VCAM-1 in aorta endothelium of type2 di-abetic rats and improve glucolipid metabolism.This may be involved in vascular complications of diabetes.%目的:观察利拉鲁肽对2型糖尿病大鼠主动脉核因子-κB(NF-κB)及血管细胞间黏附因子(VCAM-1)表达的影响及可能机制。方法高脂高糖饲料喂养联合小剂量链脲佐菌素腹腔注射,建立2型糖尿病大鼠模型。40只8周龄雄性SD大鼠分为4组:正常对照组( NC

  10. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  11. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Science.gov (United States)

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  12. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression

    NARCIS (Netherlands)

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-01-01

    AIMS: Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruit

  13. Cilia Control Vascular Mural Cell Recruitment in Vertebrates

    Directory of Open Access Journals (Sweden)

    Xiaowen Chen

    2017-01-01

    Full Text Available Vascular mural cells (vMCs are essential components of the vertebrate vascular system, controlling blood vessel maturation and homeostasis. Discrete molecular mechanisms have been associated with vMC development and differentiation. The function of hemodynamic forces in controlling vMC recruitment is unclear. Using transgenic lines marking developing vMCs in zebrafish embryos, we find that vMCs are recruited by arterial-fated vessels and that the process is flow dependent. We take advantage of tissue-specific CRISPR gene targeting to demonstrate that hemodynamic-dependent Notch activation and the ensuing arterial genetic program is driven by endothelial primary cilia. We also identify zebrafish foxc1b as a cilia-dependent Notch-specific target that is required within endothelial cells to drive vMC recruitment. In summary, we have identified a hemodynamic-dependent mechanism in the developing vasculature that controls vMC recruitment.

  14. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs.

    Science.gov (United States)

    Imanparast, Fatemeh; Faramarzi, Mohammad Ali; Vatannejad, Akram; Paknejad, Maliheh; Deiham, Behnas; Kobarfard, Farzad; Amani, Amir; Doosti, Mahmood

    2017-02-02

    Endothelial dysfunction is initial and critical step of atherosclerosis. Impaired bioavailability of endothelial nitric oxide synthase (eNOS) is one of the main reasons of endothelial dysfunction. Improving bioavailability of eNOS by increasing its expression or activity using statins is an effective therapeutic strategy in restoring endothelial dysfunction. In this study, simvastatin (SIM) as a poorly water-soluble drug was loaded in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (SIM-PLGA-NPs). NPs were then conjugated with mZD7349 peptide (mZD7349-SIM-PLGA-NPs) and directed against vascular cell adhesion molecule 1 (VCAM-1). In vitro evaluation of the NPs for targeted delivery of SIM was performed on activated Human Umbilical Cord Vascular Endothelial Cells (HUVECs) by tumor necrosis factor alpha (TNF-α). Effect of mZD7349-SIM-PLGA-NPs and SIM-PLGA-NPs was compared on eNOS phosphorylation (ser-1177). Results of western blot showed SIM post-treatment increased significantly phosphor-eNOS (Ser1177) expression but no total eNOS expression. The study showed that mZD7349-SIM-PLGA-NPs have particle size, zeta potential value, polydispersity index (PDI) and encapsulation efficacy % of 233±18nm, -9.6±1.1mV, 0.59±0.066 and 69±17.3%, respectively. Also phosphor-eNOS (Ser1177) expression in activated HUVECs treated with mZD7349-SIM-PLGA-NPs was significantly (p<0.05) better than treated cells with SIM-PLGA-NPs. The results suggest that mZD7349-SIM-PLGA-NPs may be usable as an appropriate drug carrier for restoring endothelial dysfunction.

  15. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR.

    Science.gov (United States)

    Banerjee, Nivedita; Kim, Hyemee; Talcott, Stephen; Mertens-Talcott, Susanne

    2013-12-01

    The antitumorigenic activities of polyphenols such as ellagitannins and anthocyanins in pomegranate (Punica granatum L.) have been previously studied where cytotoxic, anti-inflammatory and antioxidant effects were evident in various cancer models. The objective of this study was to investigate the role of miR-126/vascular cell adhesion molecule 1 (VCAM-1) and miR-126/phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) in pomegranate-mediated anti-inflammatory and anticarcinogenic effects in vivo and in vitro. Sprague-Dawley rats (n = 10 per group) received pomegranate juice (2504.74 mg gallic acid equivalents/l) or a polyphenol-free control beverage ad libitum for 10 weeks and were injected with azoxymethane (AOM) subcutaneously (15mg/kg) at weeks 2 and 3. Consumption of pomegranate juice suppressed the number of aberrant crypt foci (ACF) and dysplastic ACF by 29 and 53.5% (P = 0.05 and 0.04), respectively, and significantly lowered proliferation of mucosa cells. Pomegranate juice significantly downregulated proinflammatory enzymes nitric oxide synthase and cyclooxygenase-2 messenger RNA (mRNA) and protein expression. In addition, it suppressed nuclear factor-κB and VCAM-1 mRNA and protein expression in AOM-treated rats. Pomegranate also inhibited phosphorylation of PI3K/AKT and mTOR expression and increased the expression of miR-126. The specific target and functions of miR-126 were investigated in HT-29 colon cancer cell lines. In vitro, the involvement of miR-126 was confirmed using the antagomiR for miR-126, where pomegranate reversed the effects of the antagomiR on the expression of miR-126, VCAM-1 and PI3K p85β. In summary, therapeutic potentials of pomegranate in colon tumorigenesis were due in part to targeting miR-126-regulated pathways, which contributes in the underlying anti-inflammatory mechanisms.

  16. Cyclophosphamide-induced blood and tissue eosinophilia in contact sensitivity: mechanism of hapten-induced eosinophil recruitment into the skin.

    Science.gov (United States)

    Satoh, T; Chen, Q J; Sasaki, G; Yokozeki, H; Katayama, I; Nishioka, K

    1997-01-01

    The mechanism leading to selective production and accumulation of eosinophils in certain allergic skin diseases is unknown. Cyclophosphamide treatment (150 mg/kg) of BALB/c mice 48 h before sensitization with picryl chloride (PCl) resulted in striking blood and tissue eosinophilia, maximal at 13 days. Blood eosinophilia was not induced by the sensitization with oxazolone and 2,4-dinitrofluorobenzene. Challenge with 1 % PCl, but not croton oil caused preferential eosinophil accumulation into the dermis, which was associated with the enhanced expression of vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells. Intravenous administration of anti-VCAM-1 monoclonal antibody abrogated eosinophil infiltration. In this murine model, we examined the role of several cytokines, including chemokines in inducing selective tissue eosinophilia in vivo. Local administration of antibodies against interleukin (IL)-1beta, IL-4, tumor necrosis factor (TNF)-alpha, and RANTES, but not against IL-5 before challenge inhibited hapten-induced eosinophil recruitment. Intradermal injection of recombinant (r)IL-1beta, rIL-4, rTNF-alpha, rRANTES, and rMIP-1alpha induced marked eosinophil accumulation. Nonetheless, intradermal rIL-5 was not a chemoattractant for eosinophils in vivo. Our findings suggest that IL-1beta, IL-4, TNF-alpha, and RANTES contribute to the selective accumulation of eosinophils in contact sensitivity reaction. Although circulating IL-5 can activate eosinophils and prolong their survival, locally secreted IL-5 is not crucial for inducing eosinophil recruitment into the skin.

  17. Strategies for recruitment of stem cells to treat myocardial infarction.

    Science.gov (United States)

    Shafiq, Muhammad; Lee, Sang-Hoon; Jung, Youngmee; Kim, Soo Hyun

    2015-01-01

    Heart failure is one of the most prominent causes of morbidity and mortality worldwide. According to the World Health Organization, coronary artery disease and myocardial infarction (MI) are responsible for 29% of deaths worldwide. MI results in obstruction of the blood supply to the heart and scar formation, and causes substantial death of cardiomyocytes in the infarct zone followed by an inflammatory response. Current treatment methodologies of MI and heart failure include organ transplantation, coronary artery bypass grafting, ventricular remodeling, cardiomyoplasty, and cellular therapy. Each of these methodologies has associated risks and benefits. Cellular cardiomyoplasty is a viable option to decrease the fibrosis of infarct scars, adverse post-ischemic remodeling, and improve heart function. However, the low rate of cell survival, shortage of cell sources and donors, tumorigenesis, and ethical issues hamper full exploitation of cell therapy for MI treatment. Consequently, the mobilization and recruitment of endogenous stem/progenitor cells from bone marrow, peripheral circulation, and cardiac tissues has immense potential through harnessing the host's own reparative capacities that result from interplay among cytokines, chemokines, and adhesion molecules. Therapeutic treatments to enhance the mobilization and homing of stem cells are under development. In this review, we present state-of-the-art approaches that are being pursued for stem cell mobilization and recruitment to regenerate infarcted myocardium. Potential therapeutic interventions and delivery strategies are discussed in detail.

  18. Expression of vascular cell adhesion molecule-1 facilitates angiogenesis in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yongbin Ding; Tianson Xia; Guoyu Chen; Jianguo Xia

    2006-01-01

    Objective: To investigate the relationship between the expression of VCAM-1 and oncogenesis, tumor angiogenesis and metastasis in gastric carcinoma. Methods: Using RT-PCR and immunohistochemistry technique, the expression of VCAM-1 were detected in specimens from 44 patients with gastric cancer, 8 with ulcer. Microvessel density (MVD) was also counted by endothelial cells immunostained with monoclonal antibodies CD34. In addition, Circulating sVCAM-1 concentrations were measured by an enzyme linked immunosorbent assay. Results:Of 44 gastric cancer tumor tissues, 36were detected the ex pressions of VCAM-1 mRNA. The rates of VCAM-1 mRNA in the primary gastric cancer tissues were significantly higher than those in the para-cancerous tissues and benign ulcer tissues (P < 0.05). The VCAM-1 posithoseive isolates had more lymph node metastases than that of VCAM-l-negative ones (P < 0.05). MVD of positive VCAM-1 expression tissues were higher than those of negative VCAM-1 (P < 0.05). Circulating sVCAM-1 levels decreased significantly after operation (P < 0.05). Furthermore, the levels of sVCAM-1 were positively correlated with the expressions of VCAM-1 in the tumor tissues (r = 0.64, P <0.05). Conclusion: Expressions of VCAM-1 mRNA was closely related to oncogenesis, tumor angiogenesis and metastasis in gastric carcinoma. The concentration of sVCAM-1 may be considered as an effective mark of tumor burden of gastric cancer.

  19. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r...eceptors involved in recruitment of inflammatory cells. Authors Ben-Baruch A, Mic

  20. 苦参对急性白血病患者 sICA M-1 和 sVCA M-1 水平的影响%Effects of radix sophorae flavescentis on serum levels of sICAM-1 and sVCAM-1 in patients with acute leukemia

    Institute of Scientific and Technical Information of China (English)

    马玲娣; 唐跃华; 董艳芬; 朱志超; 蒋丽佳; 何晓清; 刘娟

    2016-01-01

    目的 探讨苦参对急性白血病患者可溶性细胞间黏附分子-1(sICAM-1)和可溶性血管细胞黏附分子-1(sVCAM-1)水平的影响.方法 选取2013年3月至2015年3月该院收治的急性白血病患者60例 ,按照治疗方式的不同将患者分为常规化疗组和苦参治疗组 ,每组各30例.常规化疗组患者给予常规化疗方案实施治疗 ,苦参治疗组患者在常规化疗基础上加用苦参治疗.另选取同期该院健康体检者60例作为健康对照组.采用酶联免疫吸附试验(ELISA)分析急性白血病患者治疗前后和健康体检者血清sICAM-1、sVCAM-1水平.结果 急性白血病患者血清sICAM-1、sVCAM-1水平在治疗前及治疗后均明显高于健康对照组 ,两者比较差异有统计学意义(P<0 .05).常规化疗组及苦参治疗组 ,治疗后患者血清sICAM-1、sVCAM-1水平均有下降 ,苦参治疗组sICAM-1、sV-CAM-1的水平下降程度较常规化疗组更明显 ,差异有统计学意义(P<0 .05).苦参治疗组治疗有效率为90 .00% ,高于常规化疗组的67 .67% ,差异有统计学意义(P<0 .05).结论 苦参可明显降低急性白血病患者血清sICAM-1、sVCAM-1水平 ,改善常规化疗药物疗效 ,促进患者康复.%Objective To investigate the effect of radix sophorae flavescentis on the levels of soluble intercellu-lar adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1(sVCAM-1) in the patients with a-cute leukemia .Methods 60 cases of acute leukemia in our hospital from March 2013 to March 2015 were selected and divided into the conventional chemotherapy group and the radix sophorae flavescentis therapy group according to dif-ferent therapeutic methods ,30 cases in each group .The conventional chemotherapy group was given the routine chemotherapy regimen for implementing the therapy ,while on this basis the radix sophorae flavescentis therapy group was added with radix sophorae flavescentis .Contemporaneous 60 individuals undergoing

  1. Interleukin-18-induced cell adhesion molecule expression is associated with feedback regulation by PPAR-γ and NF-κB in Apo E-/- mice.

    Science.gov (United States)

    Bhat, Owais Mohammad; Uday Kumar, P; Harishankar, N; Ravichandaran, L; Bhatia, A; Dhawan, Veena

    2017-02-07

    Focal recruitment of monocytes and lymphocytes is one of the earliest detectable cellular responses in atherosclerotic lesion formation. Endothelium may regulate leukocyte recruitment by expressing specific adhesion molecules. Interleukin-18 is a proinflammatory cytokine that plays an important role in vascular pathologies. The present study highlights the modulation of adhesion molecules and PPAR-γ by IL-18 and proposes a novel feedback mechanism by which PPAR-γ may regulate IL-18 expression. Three groups of normal chow diet-fed, male Apo E-/- mice, aged 12 weeks (n = 6/group) were employed: Gp I, phosphate-buffered saline (PBS) (2 mo): Gp II, recombinant IL-18 (rIL-18) (1 mo) followed by PBS (1 mo); Gp III, rIL-18 (1 mo) followed by pyrrolidine dithiocarbamate (PDTC) (1 mo). Significantly augmented mRNA expression of ICAM-1 (~5.7-fold), VCAM-1 (~3.6-fold), and NF-κB (~7-fold) was observed in Gp II mice as compared to Gp I, whereas PPAR-γ expression was not altered. PDTC treatment caused a significant downregulation of ICAM-1 (~4.2-fold), VCAM-1(~2-fold), and NF-κB (~4.5-fold) and upregulation of PPAR-γ expression (~5-fold) in Gp III mice. A similar trend was observed in protein expression. In vivo imaging results demonstrated a marked increase in probe (CF750 dye conjugated to VCAM-1 antibody) fluorescence intensity for VCAM-1 expression in Gp II mice, whereas it was moderately decreased in Gp III. PPAR-γ was found to significantly downregulate both IL-18 levels and IL-18-induced adhesion molecules. The underlying mechanism was found to be via inhibition of NF-κB activity by PDTC, thereby leading to decreased adherence of monocytes to the activated endothelial cells and a step to halt the progression and development of atherosclerotic lesions.

  2. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

    Science.gov (United States)

    Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; Caluwé, Lien De; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva

    2017-01-13

    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.

  3. Clinical significance of serum vascular cell adhesion molecule-1 levels in patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Joanna W. Ho; Ronnie T. Poon; Cindy S. Tong; Sheung Tat Fan

    2004-01-01

    AIM: To evaluate the correlation between serum vascular cellular adhesion molecule-1 (VCAM-1) levels and clinicopathological features in patients with hepatocellular carcinoma (HCC).METHODS: Ninety-six patients who underwent HCC resection were recruited in the study. Preoperative serum levels of soluble VCAM-1 were measured by enzyme-linked immunosorbent assay.RESULTS: Serum VCAM-1 level in HCC patients was inversely correlated with platelet count (r=-0.431, P<0.001)and serum albumin level (r=-0.279, P<0.001), and positively correlated with serum bilirubin level (r=0.379, P<0.001).Serum VCAM-1 level was not associated with tumor characteristics such as tumor size, venous invasion,presence of microsatellite nodules, tumor grade and tumor stage. Serum VCAM-1 level was significantly higher in HCC patients with cirrhosis compared with those without cirrhosis (median 704 vs 546 ng/mL, P<0.001). Furthermore, a significantly better disease-free survival was observed in HCC patients with low VCAM-1 level (P=0.019).CONCLUSION: Serum VCAM-1 level appears to reflect the severity of underlying chronic liver disease rather than the tumor status in HCC patients, and low preoperative serum VCAM-1 level is predictive of better disease-free survival after surgery.

  4. The Role of NK Cell in T Cell Recruitment in Murine Liver Infected with Adenovirus

    Institute of Scientific and Technical Information of China (English)

    游上游; 艾洪武; 黄巍; 张楚瑜

    2003-01-01

    To study the role of natural killer (NK) cells in T cell recruitment in murine liver infected with virus, mice wereintravenously injected daily with anti-NK1.1+ antibody to deplete NK cells. Lymphocytes in the liver tissue of mice infectedwith type 5 adenovirus depleted in the E1 and E3 regions were assessed by fluorometric activated cell sorting (FACS). Ex-pression of chemokine IP-10 and its receptor CXCR3 mRNA in the liver, hepatic lymphocytes and spleen tissue were examined by reverse transcription polymerase chain reaction (RT-PCR). Serum almfine aminotransferase (ALT) was measured asan indicator of liver injury. It was found that infection of adenovims and anfi-Fas monoclonal antibody (mAb) into mice caused liver injury and high expression of interfemn-γ inducible protein-10 (IP-10) mRNA in the liver. Anfi-NK1.1+ mAb, which was intraperitoneally injected into the mice infected with adenovirus, suppresses T cell recruitment and expression of IP-10 mRNA in the hver. Slighter hver injury was also observed. After vires infection, expression of CXCR3 mRNAin spleen and hver tissue was observed at different time. The results suggested that T cell recruitment was initiated by NKcell dependent chemokine IP-10, which induced activated T cells priming in the spleen to the hver of the mouse. NK cells played a key role in T cell recruitment in the liver of mouse infected with adenovims.

  5. 电针对OLETF大鼠sICAM-1、sVCAM-1及PAI-1表达的影响%Effect of Electroacupuncture on Plasma Levels of sICAM-1, sVCAM-1 and PAI-1 in OLETF Rats

    Institute of Scientific and Technical Information of China (English)

    蓝丹纯; 易玮; 许能贵; 孙健; 陈婧; 李知行; 张弘弢

    2016-01-01

    目的:探讨电针对自发性胰岛素抵抗模型大鼠血浆中细胞间黏附分子(sICAM-1)及血管间黏附分子(sVCAM-1)、纤溶酶原激活物抑制物-1(PAI-1)的影响.方法:以8只雄性LETO大鼠(Long-Evans Tokushima rats)作为空白组,将16只雄性OLETF大鼠(Otsuka Long-Evans Tokushima Fatty rats)随机分为两组,即电针组及模型组,每组8只.空白组及模型组进行正常饲养,不给予其他处理.电针组针刺双侧内关、三阴交、足三里及肾俞,并予双侧足三里及三阴交加电.1次/d,每次20 min,持续4周.治疗结束后,禁食12 h,次晨眼眶静脉窦采血.检测各组大鼠空腹血糖(FPG)、空腹胰岛素(FINS)、sICAM-1及sVCAM-1、PAI-1.HE染色观察主动脉病理变化.结果:模型组的FPG、FINS、HOMA-IR、C-P及sICAM-1、sVCAM-1、PAI-1水平相比空白组显著升高(P<0.01).电针组的FPG、FINS和HOMA-IR与空白组相比,差异无统计学意义(P>0.05).电针组的FPG、FINS、C-P及sICAM-1、sVCAM-1及PAI-1水平较模型组显著降低(P<0.01).HOMA-IR与大鼠血浆sICAM-1、sVCAM-1及PAI-1均成正相关关系.光镜显示,电针干预能总体病理损伤有不同程度的改善.结论:电针能改善胰岛素抵抗水平,控制血浆中过高的sICAM-1、sVCAM-1及PAI-1水平,对糖尿病血管并发症的防治有良性作用.

  6. Inhibitory effects of muscone on PMNs adherence to HUVEC and the expression of ICAM-1,VCAM-1 and CD44 of HUVEC%麝香酮抑制血管内皮细胞与中性粒细胞黏附及其表面ICAM-1、VCAM-1和CD44表达

    Institute of Scientific and Technical Information of China (English)

    何秀娟; 李萍; 邱全瑛; 盛巡; 王芳; 娄金丽

    2006-01-01

    目的:从中性粒细胞与血管内皮细胞黏附的角度探讨麝香对创伤愈合的作用基础.方法:以TNF处理体外培养的人脐静脉内皮细胞(HUVEC)为模型,应用MTT法、虎红法、荧光免疫组化法研究麝香酮对人外周血中性粒细胞(PMN)与HUVEC黏附及HUVEC表面黏附分子表达的影响.结果:TNF处理HUVEC 12小时,能明显增强PMN与HUVEC黏附(P<0.01),并能明显促进HUVEC表面ICAM-1、VCAM-1和CD44表达(P<0.05).75~150 μg/ml麝香酮作用于TNF活化的HUVEC,明显抑制PMN与HUVEC黏附(P<0.01),仅150 μg/ml时降低HUVEC表面ICAM-1表达(P<0.05),37.5 μg/ml和150 μg/ml时减少其表面VCAM-1表达(P<0.05),75~150 μg/ml时抑制其表面CD44表达(P<0.05或P<0.01).结论:麝香酮通过降低HUVEC表面ICAM-1、VCAM-1和CD44表达而抑制中性粒细胞与血管内皮细胞黏附,可能是麝香促进慢性创面愈合的机制之一.

  7. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment.

    Science.gov (United States)

    Orinska, Zane; Bulanova, Elena; Budagian, Vadim; Metz, Martin; Maurer, Marcus; Bulfone-Paus, Silvia

    2005-08-01

    Mast cells play an important role in host defense against various pathogens, but their role in viral infection has not been clarified in detail. dsRNA, synthesized by various types of viruses and mimicked by polyinosinic-polycytidylic acid (poly(I:C)) is recognized by Toll-like receptor 3 (TLR3). In this study, we demonstrate that poly(I:C) injection in vivo potently stimulates peritoneal mast cells to up-regulate a number of different costimulatory molecules. Therefore, we examined the expression and the functional significance of TLR3 activation in mast cells. Mast cells express TLR3 on the cell surface and intracellularly. After stimulation of mast cells with poly(I:C) and Newcastle disease virus (NDV), TLR3 is phosphorylated and the expression of key antiviral response cytokines (interferon beta, ISG15) and chemokines (IP10, RANTES) is upregulated. Interestingly, mast cells activated via TLR3-poly(I:C) potently stimulate CD8+ T-cell recruitment. Indeed, mast-cell-deficient mice (KitW/KitW-v) given an intraperitoneal injection of poly(I:C) show a decreased CD8+ T-cell recruitment, whereas granulocytes normally migrate to the peritoneal cavity. Mast-cell reconstitution of KitW/KitW-v mice normalizes the CD8+ T-cell influx. Thus, mast cells stimulated through engagement of TLR3 are potent regulators of CD8+ T-cell activities in vitro and in vivo.

  8. MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model.

    Science.gov (United States)

    Aplin, Alfred C; Fogel, Eric; Nicosia, Roberto F

    2010-09-01

    Rings of rat or mouse aorta embedded in collagen gels produce angiogenic outgrowths in response to the injury of the dissection procedure. Aortic outgrowths are composed of branching endothelial tubes and surrounding mural cells. Mural cells emerge following endothelial sprouting and gradually increase during the maturation of the neovessels. Treatment of aortic cultures with angiopoietin-1 (Ang-1), an angiogenic factor implicated in vascular maturation and remodeling, stimulates the mural cell recruitment process. Ang-1 induces expression of many cytokines and chemokines including monocyte chemotactic protein-1 (MCP-1). Inhibition of p38 MAP kinase, a signaling molecule required for mural cell recruitment, blocks Ang1-induced MCP-1 expression. Recombinant MCP-1 dose-dependently increases mural cell number while an anti-MCP-1 blocking antibody reduces it. In addition, antibody mediated neutralization of MCP-1 abrogates the stimulatory effect of Ang-1 on mural cell recruitment. Aortic rings from genetically modified mice deficient in MCP-1 or its receptor CCR2 have fewer mural cells than controls. MCP-1 deficiency also impairs the mural cell recruitment activity of Ang-1. Our studies indicate that spontaneous and Ang1-induced mural cell recruitment in the aortic ring of model of angiogenesis are in part mediated by MCP-1. These results implicate MCP-1 as one of the mediators of mural cell recruitment in the aortic ring model, and suggest that chemokine pathways may contribute to the assembly of the vessel wall during the angiogenesis response to injury.

  9. Dynamic observation'the levels of slCAM-1ard sVCAM-1 in the patients with acute ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Xia Bin; Shao Fuyuan; Zhao Zhongxin

    2000-01-01

    Background Adhesion molecules play a role in the ischemic injury. It has been shown that there were changes in the patients with ischemic stroke. Objective To approach the serum level of sICAM-I and sVCAM-i in patients with acute ischemic stroke. Methods sICAM-1 and sVCAM-i were measured by enzyme-lined imunosorbent assay and were serially detemined(within 6 hours and at first. third seventh day) in 16 patients with acute ischemic stroke. Results The result showed the serum sICAM-1 in patient with acute ischemic stroke was higher within 6 hours[ (558. 8±174. 8) ng/ml]. at first day [ (655. 1±89.4) ng/ml]and third day[ (571.4±104. 4) ng/ml] than in the controls[ (435. 3±86.6) ng/ml] (P<0.05), especially within the first day. sVCAM-I was higher within 6 hours[ (930.5.±181.7) mg/ml]、 at first day[(1174. 9±179.1)ng/ml]、 third day[( 1215.4±187.4)mg/mi] and seventh day [(988.5 ± 148. 8) ng/ml] than in the controls [ (704.2:± 125.8) ng/ml ] (P<0. 05), especially wi thin the first and third day. There was no significant correlation betwsen sICAM、 sVCAMt-1 levels and the extent of neurological deficits. (P>0.05). Conclusions Serum level of sICAM-I and sVCAM-1 were elevated in acute ischemic stroke and this changes were correlated with the time after stroke

  10. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  11. 突发性耳聋、耳鸣患者应用龙胆泻肝胶囊对血清sVCAM-1、免疫球蛋白及SOD水平影响研究%Study on the effect of Longdanxiegan capsule on serum sVCAM-1, immune globulin and SOD level in patients with sudden deafness and tinnitus

    Institute of Scientific and Technical Information of China (English)

    张兆东; 吴顺; 周朝阳; 邵婧; 白丽媛; 王志勇

    2015-01-01

    Objective To analysis the effect of Longdanxiegan capsule on serum sVCAM-1, immune globulin and SOD level in patients with sudden deafness and tinnitus.Methods 48 patients who were diagnosed with sudden deafness and tinnitus were collected.All patients were randomly divided into experimental group and control group,24 cases in each group.Patients in the control group received conventional western medicine treatment, patients in the experimental group were given Erlongzuoci pill on the basis of control group treatment , after the treatment, the serum levels of sVCAM-1, IgG, IgA, IgM and SOD were detected in all patients.Results After treatment, compared with control group, the serum levels of sVCAM-1 was lower in the experimental group,and the difference was statistically significant(P<0.05);the serum IgG, IgA and IgM levels were lower in the experimental group (P<0.05); the serum SOD level was higher in the experimental group (P<0.05).Conclusion The Longdanxiegan capsule can reduce significantly the serum sVCAM-1, IgG, IgA and IgM levels, improve serum SOD level in patients with sudden deafness and tinnitus, improve immune function and the ability to remove free radicals , and have a guiding significance for clinica .%目的:探讨突发性耳聋、耳鸣患者应用龙胆泻肝胶囊血清sVCAM-1、免疫球蛋白及SOD水平变化。方法收集突发性性耳聋伴耳鸣患者48例,随机分为对照组和实验组,每组各24例,对照组患者给予常规西药治疗,实验组在对照组基础上给予龙胆泻肝胶囊治疗,治疗结束后,对所有患者的血清可溶性血管细胞粘附分子( soluble vascular cell adhesion molecule ,sVCAM-1)、免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)水平以及超氧化物歧化酶(superoxide dismutase,SOD)水平进行检测。结果治疗后,与对照组比较,实验组患者血清sVCAM-1水平较低(P<0.05);实验组患者的血

  12. β-Carotene Attenuates Angiotensin II-Induced Aortic Aneurysm by Alleviating Macrophage Recruitment in Apoe(-/- Mice.

    Directory of Open Access Journals (Sweden)

    Kaliappan Gopal

    Full Text Available Abdominal aortic aneurysm (AAA is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe(-/- mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II, and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002 increased (2.24±0.20 mm in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm. Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm in the aneurysm-induced mice (β-carotene, P = 0.0002. It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe(-/- mice.

  13. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    Science.gov (United States)

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  14. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Silvia Affò

    Full Text Available Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+ and mature dendritic (MHCII+CD11c+ cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  15. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    Science.gov (United States)

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  16. REST-mediated recruitment of polycomb repressor complexes in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Nikolaj Dietrich

    Full Text Available Polycomb Repressive Complex (PRC 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1. Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest⁻/⁻ and Eed⁻/⁻ mouse embryonic stem (mES cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest⁻/⁻ mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands.

  17. Human progenitor cell recruitment via SDF-1α coacervate-laden PGS vascular grafts.

    Science.gov (United States)

    Lee, Kee-Won; Johnson, Noah R; Gao, Jin; Wang, Yadong

    2013-12-01

    Host cell recruitment is crucial for vascular graft remodeling and integration into the native blood vessel; it is especially important for cell-free strategies which rely on host remodeling. Controlled release of growth factors from vascular grafts may enhance host cell recruitment. Stromal cell-derived factor (SDF)-1α has been shown to induce host progenitor cell migration and recruitment; however, its potential in regenerative therapies is often limited due to its short half-life in vivo. This report describes a coacervate drug delivery system for enhancing progenitor cell recruitment into an elastomeric vascular graft by conferring protection of SDF-1α. Heparin and a synthetic polycation are used to form a coacervate, which is incorporated into poly(glycerol sebacate) (PGS) scaffolds. In addition to protecting SDF-1α, the coacervate facilitates uniform scaffold coating. Coacervate-laden scaffolds have high SDF-1α loading efficiency and provide sustained release under static and physiologically-relevant flow conditions with minimal initial burst release. In vitro assays showed that coacervate-laden scaffolds enhance migration and infiltration of human endothelial and mesenchymal progenitor cells by maintaining a stable SDF-1α gradient. These results suggest that SDF-1α coacervate-laden scaffolds show great promise for in situ vascular regeneration.

  18. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes.

    Science.gov (United States)

    Watson, C; Whittaker, S; Smith, N; Vora, A J; Dumonde, D C; Brown, K A

    1996-07-01

    Using a quantitative monolayer adhesion assay, the current report shows that treatment of human umbilical vein endothelial cells (HUVEC) with IL-6 increases their adhesiveness for blood lymphocytes, particularly CD4+ cells, but not for polymorphonuclear cells and monocytes. This effect, which was most pronounced when using low concentrations of the cytokine (0.1-1.0 U/ml) and a short incubation period (4h), was also apparent with microvascular endothelial cells and a hybrid endothelial cell line. Skin lesions from patients with mycosis fungoides contain high levels of IL-6, and blood lymphocytes from patients with this disorder also exhibited an enhanced adhesion to IL-6-treated HUVEC. The cytokine enhanced intercellular adhesion molecule-1 (ICAM-1) expression and induced the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on endothelial cells. Antibody blocking studies demonstrated that the vascular adhesion molecules ICAM-1, VCAM-1 and E-selectin and the leucocyte integrin LFA-1 all contributed to lymphocyte binding to endothelium activated by IL-6. It is proposed that IL-6 may be involved in the recruitment of lymphocytes into non-lymphoid tissue.

  19. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  20. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation

    Science.gov (United States)

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood–brain barrier, conventional CD11b+CD27+ NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  1. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  2. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  3. The Type IVa Pilus Machinery Is Recruited to Sites of Future Cell Division.

    Science.gov (United States)

    Carter, Tyson; Buensuceso, Ryan N C; Tammam, Stephanie; Lamers, Ryan P; Harvey, Hanjeong; Howell, P Lynne; Burrows, Lori L

    2017-01-31

    Type IVa pili (T4aP) are ubiquitous microbial appendages used for adherence, twitching motility, DNA uptake, and electron transfer. Many of these functions depend on dynamic assembly and disassembly of the pilus by a megadalton-sized, cell envelope-spanning protein complex located at the poles of rod-shaped bacteria. How the T4aP assembly complex becomes integrated into the cell envelope in the absence of dedicated peptidoglycan (PG) hydrolases is unknown. After ruling out the potential involvement of housekeeping PG hydrolases in the installation of the T4aP machinery in Pseudomonas aeruginosa, we discovered that key components of inner (PilMNOP) and outer (PilQ) membrane subcomplexes are recruited to future sites of cell division. Midcell recruitment of a fluorescently tagged alignment subcomplex component, mCherry-PilO, depended on PilQ secretin monomers-specifically, their N-terminal PG-binding AMIN domains. PilP, which connects PilO to PilQ, was required for recruitment, while PilM, which is structurally similar to divisome component FtsA, was not. Recruitment preceded secretin oligomerization in the outer membrane, as loss of the PilQ pilotin PilF had no effect on localization. These results were confirmed in cells chemically blocked for cell division prior to outer membrane invagination. The hub protein FimV and a component of the polar organelle coordinator complex-PocA-were independently required for midcell recruitment of PilO and PilQ. Together, these data suggest an integrated, energy-efficient strategy for the targeting and preinstallation-rather than retrofitting-of the T4aP system into nascent poles, without the need for dedicated PG-remodeling enzymes.

  4. The Type IVa Pilus Machinery Is Recruited to Sites of Future Cell Division

    Science.gov (United States)

    Carter, Tyson; Buensuceso, Ryan N. C.; Tammam, Stephanie; Lamers, Ryan P.; Harvey, Hanjeong

    2017-01-01

    ABSTRACT Type IVa pili (T4aP) are ubiquitous microbial appendages used for adherence, twitching motility, DNA uptake, and electron transfer. Many of these functions depend on dynamic assembly and disassembly of the pilus by a megadalton-sized, cell envelope-spanning protein complex located at the poles of rod-shaped bacteria. How the T4aP assembly complex becomes integrated into the cell envelope in the absence of dedicated peptidoglycan (PG) hydrolases is unknown. After ruling out the potential involvement of housekeeping PG hydrolases in the installation of the T4aP machinery in Pseudomonas aeruginosa, we discovered that key components of inner (PilMNOP) and outer (PilQ) membrane subcomplexes are recruited to future sites of cell division. Midcell recruitment of a fluorescently tagged alignment subcomplex component, mCherry-PilO, depended on PilQ secretin monomers—specifically, their N-terminal PG-binding AMIN domains. PilP, which connects PilO to PilQ, was required for recruitment, while PilM, which is structurally similar to divisome component FtsA, was not. Recruitment preceded secretin oligomerization in the outer membrane, as loss of the PilQ pilotin PilF had no effect on localization. These results were confirmed in cells chemically blocked for cell division prior to outer membrane invagination. The hub protein FimV and a component of the polar organelle coordinator complex—PocA—were independently required for midcell recruitment of PilO and PilQ. Together, these data suggest an integrated, energy-efficient strategy for the targeting and preinstallation—rather than retrofitting—of the T4aP system into nascent poles, without the need for dedicated PG-remodeling enzymes. PMID:28143978

  5. Pseudomonas aeruginosa airway infection recruits and modulates neutrophilic myeloid-derived suppressor cells

    Directory of Open Access Journals (Sweden)

    Hasan Halit Öz

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (cystic fibrosis transmembrane conductance regulator, CFTR modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo.

  6. The mobilization and recruitment of c-kit+ cells contribute to wound healing after surgery.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Takemoto

    Full Text Available Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit(+ cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP(+ bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit(+ and CD34(+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP(+ cells and GFP(+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP(+ cells were positively expressed specific markers of macrophages (F4/80, endothelial cells (CD31, and myofibroblasts (αSMA. The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF-1/CXCR4 signaling pathway, reduced the number of GFP(+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery.

  7. Antigen-induced recruitment of eosinophils: importance of CD4+ T cells, IL5, and mast cells.

    Science.gov (United States)

    Hom, J T; Estridge, T

    1994-12-01

    Eosinophils of sensitized mice readily recruit to the site of antigen challenge. In the present study, experiments were performed to determine the involvement of different cell types in the antigen-induced recruitment of eosinophils. We demonstrated that a single treatment with anti-L3T4 monoclonal antibody (mAb) on the day of allergen challenge significantly decreased antigen-induced recruitment of eosinophils. Treatments with anti-L3T4 mAb during the sensitization period also caused a substantial reduction in the migration of eosinophils into the site of challenge with antigen. Thus, it appears that both stages of eosinophil recruitment, sensitization and antigen-challenge, are dependent upon the presence of L3T4+ T cells. Moreover, while treatments with anti-IL5 mAb blocked eosinophil migration, anti-IL2 mAb failed to alter the antigen-induced recruitment of eosinophils. In addition, significant numbers of eosinophils from the mast-cell-deficient mice were found to migrate into the peritoneal cavities upon allergen challenge. Eosinophil migration was also observed in several mouse strains of different H-2 haplotypes. The present findings suggest that CD4+ T cells and IL5 but not IL2 may play important roles in modulating the recruitment of eosinophils. Moreover, the involvement of mast cells does not appear to be essential for eosinophil migration. Finally, the development of antigen-induced recruitment of eosinophils is probably not under the immunogenetic regulation by genes within the H-2 complex.

  8. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P treatment, compared with placebo [net difference between groups 151.8 microg/liter (95...

  9. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques.

    Science.gov (United States)

    Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F

    2008-02-01

    Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.

  10. s-ICAM-1 and s-VCAM-1 in healthy men are strongly associated with traits of the metabolic syndrome, becoming evident in the postprandial response to a lipid-rich meal

    Directory of Open Access Journals (Sweden)

    Nothnagel Michael

    2008-09-01

    Full Text Available Abstract Background The importance of the postprandial state for the early stages of atherogenesis is increasingly acknowledged. We conducted assessment of association between postprandial triglycerides, insulin and glucose after ingestion of a standardized lipid-rich test meal, and soluble cellular adhesion molecules (sCAM in young healthy subjects. Methods Metabolic parameters and sICAM-1, sVCAM-1 and E-selectin were measured before and hourly until 6 hours after ingestion of a lipid-rich meal in 30 healthy young men with fasting triglycerides 260 mg/dl. Levels of CAM were compared in HR and NR, and correlation with postprandial triglyceride, insulin and glucose response was assessed. Results Fasting sICAM-1 and sVCAM-1 levels were significantly higher in HR as compared to NR (p = 0.046, p = 0.03. For sE-selectin there was such a trend (p = 0.05. There was a strong positive and independent correlation between sICAM-1 and postprandial insulin maxima (r = 0.70, p Conclusion This independent association of postprandial triglycerides with sICAM-1 may indicate a particular impact of postprandial lipid metabolism on endothelial reaction.

  11. A study on the pathogenesis of the radiation pneumonitis. Alterations in pulmonary mRNA encoding adhesion molecules ICAM-1, VCAM-1, and P-selectin following thoracic irradiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino, Kayoko; Kodama, Akihisa; Kono, Michio [Kobe Univ. (Japan). School of Medicine

    1997-12-01

    To investigate the role of the adhesion molecules in the pathogenesis of the radiation pneumonitis, we quantified the mRNA expression of the adhesion molecules in the lung by Northern blot method following whole thorax irradiation to C57BL/6J mice. After irradiation of 12 Gy to the whole thorax, there were increase of mRNA for ICAM-1 by 42% at 4 hours (p<0.05), 76% at 24 hours (p<0.01) and 51% at 48 hours (p<0.05) compared with controls. And it returned to control level at 1 week. No significant change was observed thereafter until 8 weeks. The expression of VCAM-1 mRNA were also increased by 49% (p<0.01) at 12 hours and were still increased by 25% at 1 week. P-selectin mRNA as transiently increased by 59% at 12 hours. We examined the relationship between the ICAM-1 induction and the radiation dose, and found that ICAM-1 expression was increased by 3 Gy of irradiation and it was increased in radiation dose dependent manner up to 24 Gy. These early inductions of mRNA for ICAM-1, VCAM-1 and P-selectin in mice lungs following thoracic irradiation were transient but significant, and they were one of the most immediate change reported in vivo. It is suggested that these adhesion molecules are possibly related to the pathogenesis of the radiation pneumonitis. (author)

  12. REST-mediated recruitment of polycomb repressor complexes in mammalian cells

    DEFF Research Database (Denmark)

    Dietrich, Nikolaj; Lerdrup, Mads; Landt, Eskild;

    2012-01-01

    , and increased gene expression. Genome-wide analysis of Polycomb binding in Rest¿/¿ and Eed¿/¿ mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently......, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3......Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1...

  13. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  14. Preferential recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway.

    Science.gov (United States)

    Yu, Qing; Lou, Xiang-ming; He, Yan

    2015-01-01

    Our previous studies suggest that Th17 cells accumulate within tumor tissues and correlate with recurrence of cervical cancer patients. However, the source of the increased tumor-infiltrating Th17 cells remains poorly understood. We investigated the prevalence, phenotype and trafficking property of Th17 cells in patients with cervical cancer. Our results showed that Th17 cells highly aggregated within tumor tissues in an activated phenotype with markedly increased expression of CCR6. Correspondingly, level of CCL20 in the tumor tissues was significantly higher than that in non-tumor and normal control tissues, and strongly positively associated with Th17 cells. Further, in vitro migration assay showed CCL20 had effective chemotaxis to circulating Th17 cells. In conclusion, Th17 cells are recruited into tumor tissues preferentially through CCR6-CCL20 pathway, which can serve as a novel therapeutic target for cervical cancer.

  15. Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury.

    Science.gov (United States)

    Roy, Edwige; Seppanen, Elke; Ellis, Rebecca; Lee, Eddy S; Khosrotehrani, Kiarash; Khosroterani, Kiarash; Fisk, Nicholas M; Bou-Gharios, George

    2014-03-01

    Fetal microchimeric cells (FMCs) enter the maternal circulation and persist in tissue for decades. They have capacity to home to injured maternal tissue and differentiate along that tissue's lineage. This raises the question of the origin(s) of cells transferred to the mother during pregnancy. FMCs with a mesenchymal phenotype have been documented in several studies, which makes mesenchymal stem cells an attractive explanation for their broad plasticity. Here we assessed the recruitment and mesenchymal lineage contribution of FMCs in response to acute kidney fibrosis induced by aristolochic acid injection. Serial in vivo bioluminescence imaging revealed a biphasic recruitment of active collagen-producing FMCs during the repair process of injured kidney in post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter. The presence of FMCs long-term post injury (day 60) was associated with profibrotic molecules (TGF-β/CTGF), serum urea levels, and collagen deposition. Immunostaining confirmed FMCs at short term (day 15) using post-partum wild-type mothers that had delivered green fluorescent protein-positive pups and suggested a mainly hematopoietic phenotype. We conclude that there is biphasic recruitment to, and activity of, FMCs at the injury site. Moreover, we identified five types of FMC, implicating them all in the reparative process at different stages of induced renal interstitial fibrosis.

  16. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial

    Directory of Open Access Journals (Sweden)

    David Roy

    2016-07-01

    Full Text Available Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  17. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial.

    Science.gov (United States)

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-07-07

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H-a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  18. In situ regeneration of skeletal muscle tissue through host cell recruitment.

    Science.gov (United States)

    Ju, Young Min; Atala, Anthony; Yoo, James J; Lee, Sang Jin

    2014-10-01

    Standard reconstructive procedures for restoring normal function after skeletal muscle defects involve the use of existing host tissues such as muscular flaps. In many instances, this approach is not feasible and delays the rehabilitation process and restoration of tissue function. Currently, cell-based tissue engineering strategies have been used for reconstruction; however, donor tissue biopsy and ex vivo cell manipulation are required prior to implantation. The present study aimed to overcome these limitations by demonstrating mobilization of muscle cells into a target-specific site for in situ muscle regeneration. First, we investigated whether host muscle cells could be mobilized into an implanted scaffold. Poly(l-lactic acid) (PLLA) scaffolds were implanted in the tibialis anterior (TA) muscle of rats, and the retrieved scaffolds were characterized by examining host cell infiltration in the scaffolds. The host cell infiltrates, including Pax7+ cells, gradually increased with time. Second, we demonstrated that host muscle cells could be enriched by a myogenic factor released from the scaffolds. Gelatin-based scaffolds containing a myogenic factor were implanted in the TA muscle of rats, and the Pax7+ cell infiltration and newly formed muscle fibers were examined. By the second week after implantation, the Pax7+ cell infiltrates and muscle formation were significantly accelerated within the scaffolds containing insulin-like growth factor 1 (IGF-1). Our data suggest an ability of host stem cells to be recruited into the scaffolds with the capability of differentiating to muscle cells. In addition, the myogenic factor effectively promoted host cell recruitment, which resulted in accelerating muscle regeneration in situ.

  19. Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach.

    Directory of Open Access Journals (Sweden)

    Jessica M Donnelly

    Full Text Available Studies using Helicobacter-infected mice show that bone marrow-derived mesenchymal stem cells (MSCs can repopulate the gastric epithelium and promote gastric cancer progression. Within the tumor microenvironment of the stomach, pro-inflammatory cytokine interferon-gamma (IFNγ and Sonic hedgehog (Shh are elevated. IFNγ is implicated in tumor proliferation via activation of the Shh signaling pathway in various tissues but whether a similar mechanism exists in the stomach is unknown. We tested the hypothesis that IFNγ drives MSC proliferation and recruitment, a response mediated by Shh signaling. The current study uses transplantation of an in vitro transformed mesenchymal stem cell line (stMSC(vect, that over-expresses hedgehog signaling, in comparison to non-transformed wild-type MSCs (wtMSCs, wtMSCs transfected to over-express Shh (wtMSC(Shh, and stMSCs transduced with lentiviral constructs containing shRNA targeting the Shh gene (stMSC(ShhKO. The effect of IFNγ on MSC proliferation was assessed by cell cycle analysis in vitro using cells treated with recombinant IFNγ (rmIFNγ alone, or in combination with anti-Shh 5E1 antibody, and in vivo using mice transplanted with MSCs treated with PBS or rmIFNγ. In vitro, IFNγ significantly increased MSC proliferation, a response mediated by Shh that was blocked by 5E1 antibody. The MSC population collected from bone marrow of PBS- or IFNγ-treated mice showed that IFNγ significantly increased the percentage of all MSC cell lines in S phase, with the exception of the stMSCs(ShhKO cells. While the MSC cell lines with intact Shh expression were recruited to the gastric mucosa in response to IFNγ, stMSCs(ShhKO were not. Hedgehog signaling is required for MSC proliferation and recruitment to the stomach in response to IFNγ.

  20. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  1. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways.

    Science.gov (United States)

    Axelrod, J D; Miller, J R; Shulman, J M; Moon, R T; Perrimon, N

    1998-08-15

    In Drosophila, planar cell polarity (PCP) signaling is mediated by the receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling also requires Dsh and may utilize DFz2 as a receptor. Using a heterologous system, we show that Dsh is recruited selectively to the membrane by Fz but not DFz2, and this recruitment depends on the DEP domain but not the PDZ domain in Dsh. A mutation in the DEP domain impairs both membrane localization and the function of Dsh in PCP signaling, indicating that translocation is important for function. Further genetic and molecular analyses suggest that conserved domains in Dsh function differently during PCP and Wg signaling, and that divergent intracellular pathways are activated. We propose that Dsh has distinct roles in PCP and Wg signaling. The PCP signal may selectively result in focal Fz activation and asymmetric relocalization of Dsh to the membrane, where Dsh effects cytoskeletal reorganization to orient prehair initiation.

  2. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    Science.gov (United States)

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.

  3. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  4. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Science.gov (United States)

    Appleby, Sarah L; Cockshell, Michaelia P; Pippal, Jyotsna B; Thompson, Emma J; Barrett, Jeffrey M; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F; Bonder, Claudine S

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+) population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from 'early' endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  5. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons.

    Science.gov (United States)

    Strong, J A; Fox, A P; Tsien, R W; Kaczmarek, L K

    The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.

  6. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche.

    Science.gov (United States)

    Erler, Janine T; Bennewith, Kevin L; Cox, Thomas R; Lang, Georgina; Bird, Demelza; Koong, Albert; Le, Quynh-Thu; Giaccia, Amato J

    2009-01-06

    Tumor cell metastasis is facilitated by "premetastatic niches" formed in destination organs by invading bone marrow-derived cells (BMDCs). Lysyl oxidase (LOX) is critical for premetastatic niche formation. LOX secreted by hypoxic breast tumor cells accumulates at premetastatic sites, crosslinks collagen IV in the basement membrane, and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells adhere to crosslinked collagen IV and produce matrix metalloproteinase-2, which cleaves collagen, enhancing the invasion and recruitment of BMDCs and metastasizing tumor cells. LOX inhibition prevents CD11b+ cell recruitment and metastatic growth. CD11b+ cells and LOX also colocalize in biopsies of human metastases. Our findings demonstrate a critical role for LOX in premetastatic niche formation and support targeting LOX for the treatment and prevention of metastatic disease.

  7. Expression of ICAM-1 and VCAM-1 in human chronic renal allograft rejection%细胞间粘附分子-1和血管细胞粘附分子-1在慢性排斥反应中的表达

    Institute of Scientific and Technical Information of China (English)

    潘晓鸣; 陈勇; 邢俊平

    1998-01-01

    To study the mechanism of human chronic renal allograft rejection, kidney tissues were taken from 16 patients with chronic renal allograft rejection and from 5 healthy subjects, and underwent the frazed section staining for ICAM-1 and VCAM-1 to anti-ICAM-1 and anti-VCAM-1 respectively by using immunohistochemistry(ABC).The results showed that there were differ-ent distribution of ICAM-1 and VCAM-1 expression in nomal kidney and renal allograft during chronic rejection.It was suggested that ICAM-1 and VCAM-1 might play an important role in the pathogenesis of human chronic renal allograft rejection.%为了探讨移植肾慢性排斥反应的发病机制,应用免疫组化技术(ABC法)对16例肾移植术后发生慢性排斥反应患者的移植肾组织及5例正常肾组织行细胞间粘附分子-1(ICAM-1)、血管细胞粘附分子-1(VCAM-1)染色及HE染色.结果表明ICAM-1、VCAM-1在正常肾脏和慢性排斥反应移植肾脏上的表达分布不同;结果提示,它们在移植肾慢性排斥反应的发生、发展过程中起重要作用

  8. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces

    NARCIS (Netherlands)

    Willemse, J.; Borst, J.W.; Waal, de E.; Bisseling, T.; Wezel, van G.P.

    2011-01-01

    In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the

  9. Regulation of angiogenesis, mural cell recruitment and adventitial macrophage behavior by Toll-like receptors.

    Science.gov (United States)

    Aplin, Alfred C; Ligresti, Giovanni; Fogel, Eric; Zorzi, Penelope; Smith, Kelly; Nicosia, Roberto F

    2014-01-01

    The angiogenic response to injury can be studied by culturing rat or mouse aortic explants in collagen gels. Gene expression studies show that aortic angiogenesis is preceded by an immune reaction with overexpression of Toll-like receptors (TLRs) and TLR-inducible genes. TLR1, 3, and 6 are transiently upregulated at 24 h whereas TLR2, 4, and 8 expression peaks at 24 h but remains elevated during angiogenesis and vascular regression. Expression of TLR5, 7 and 9 steadily increases over time and is highest during vascular regression. Studies with isolated cells show that TLRs are expressed at higher levels in aortic macrophages compared to endothelial or mural cells with the exception of TLR2 and TLR9 which are more abundant in the aortic endothelium. LPS and other TLR ligands dose dependently stimulate angiogenesis and vascular endothelial growth factor production. TLR9 ligands also influence the behavior of nonendothelial cell types by blocking mural cell recruitment and inducing formation of multinucleated giant cells by macrophages. TLR9-induced mural cell depletion is associated with reduced expression of the mural cell recruiting factor PDGFB. The spontaneous angiogenic response of the aortic rings to injury is reduced in cultures from mice deficient in myeloid differentiation primary response 88 (MyD88), a key adapter molecule of TLRs, and following treatment with an inhibitor of the NFκB pathway. These results suggest that the TLR system participates in the angiogenic response of the vessel wall to injury and may play an important role in the regulation of inflammatory angiogenesis in reactive and pathologic processes.

  10. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment.

    Science.gov (United States)

    Zamproni, Laura N; Mundim, Mayara V; Porcionatto, Marimelia A; des Rieux, Anne

    2017-03-15

    Recruiting neural stem cell (NSC) at the lesion site is essential for central nervous system repair. This process could be triggered by the local delivery of the chemokine SDF-1. We compared two PLGA formulations for local brain SDF-1 delivery: SDF-1 loaded microspheres (MS) and SDF-1 loaded nanoparticles (NP). Both formulations were able to encapsulate more than 80% of SDF-1 but presented different release profiles, with 100% of SDF-1 released after 6days for the MS and with 25% of SDF-1 released after 2 weeks for NP. SDF-1 bioactivity was demonstrated by a chemotactic assay. When injected in mouse brain after traumatic brain injury, only SDF-1 nanoparticles induced NSC migration to the damage area. More neuroblasts (DCX+ cells) could be visualized around the lesions treated with NP SDF-1 compared to the other conditions. Rostral migratory stream destabilization with massive migration of DCX+ cell toward the perilesional area was observed 2 weeks after NP SDF-1 injection. Local injection of SDF-1-loaded nanoparticles induces recruitment of NSC and could be promising for brain injury lesion.

  11. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane.

    Science.gov (United States)

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2015-02-12

    To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.

  12. CD43 deficiency has no impact in competitive in vivo assays of neutrophil or activated T cell recruitment efficiency.

    Science.gov (United States)

    Carlow, Douglas A; Ziltener, Hermann J

    2006-11-01

    Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.

  13. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kowarik Markus C

    2012-05-01

    Full Text Available Abstract Background The chemokines and cytokines CXCL13, CXCL12, CCL19, CCL21, BAFF and APRIL are believed to play a role in the recruitment of B cells to the central nervous system (CNS compartment during neuroinflammation. To determine which chemokines/cytokines show the strongest association with a humoral immune response in the cerebrospinal fluid (CSF, we measured their concentrations in the CSF and correlated them with immune cell subsets and antibody levels. Methods Cytokine/chemokine concentrations were measured in CSF and serum by ELISA in patients with non-inflammatory neurological diseases (NIND, n = 20, clinically isolated syndrome (CIS, n = 30, multiple sclerosis (MS, n = 20, Lyme neuroborreliosis (LNB, n = 8 and patients with other inflammatory neurological diseases (OIND, n = 30. Albumin, IgG, IgA and IgM were measured by nephelometry. CSF immune cell subsets were determined by seven-color flow cytometry. Results CXCL13 was significantly elevated in the CSF of all patient groups with inflammatory diseases. BAFF levels were significantly increased in patients with LNB and OIND. CXCL12 was significantly elevated in patients with LNB. B cells and plasmablasts were significantly elevated in the CSF of all patients with inflammatory diseases. CXCL13 showed the most consistent correlation with CSF B cells, plasmablasts and intrathecal Ig synthesis. Conclusions CXCL13 seems to be the major determinant for B cell recruitment to the CNS compartment in different neuroinflammatory diseases. Thus, elevated CSF CXCL13 levels rather reflect a strong humoral immune response in the CNS compartment than being specific for a particular disease entity.

  14. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production.

    Science.gov (United States)

    Tinning, Anne R; Jensen, Boye L; Schweda, Frank; Machura, Katharina; Hansen, Pernille B L; Stubbe, Jane; Gramsbergen, Jan Bert; Madsen, Kirsten

    2014-12-01

    Both the processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin (AQP)1 directly contributes to the recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and AQP1(+/+) mice were fed a low-salt (LS) diet [0.004% (wt/wt) NaCl] for 7 days and given enalapril [angiotensin-converting enzyme inhibitor (ACEI), 0.1 mg/ml] in drinking water for 3 days. There were no differences in plasma renin concentration at baseline. After LS-ACEI, plasma renin concentrations increased markedly in both genotypes but was significantly lower in AQP1(-/-) mice compared with AQP1(+/+) mice. Tissue renin concentrations were higher in AQP1(-/-) mice, and renin mRNA levels were not different between genotypes. Mean arterial blood pressure was not different at baseline and during LS diet but decreased significantly in both genotypes after the addition of ACEI; the response was faster in AQP1(-/-) mice but then stabilized at a similar level. Renin release after 200 μl blood withdrawal was not different. Isoprenaline-stimulated renin release from isolated perfused kidneys did not differ between genotypes. Cortical tissue norepinephrine concentrations were lower after LS-ACEI compared with baseline with no difference between genotypes. Plasma nitrite/nitrate concentrations were unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared with AQP1(+/+) mice after LS-ACEI. We conclude that AQP1 is not necessary for acutely stimulated renin secretion in vivo and from isolated perfused kidneys, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice.

  15. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    Science.gov (United States)

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS.

  16. Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment.

    Science.gov (United States)

    Lorquet, Sophie; Berndt, Sarah; Blacher, Silvia; Gengoux, Emily; Peulen, Olivier; Maquoi, Erik; Noël, Agnès; Foidart, Jean-Michel; Munaut, Carine; Péqueux, Christel

    2010-10-01

    Two soluble forms of vascular endothelial growth factor (VEGF) receptors, sVEGFR-1 and sVEGFR-2, are physiologically released and overproduced in some pathologies. They are known to act as anti-VEGF agents. Here we report that these soluble receptors contribute to vessel maturation by mediating a dialogue between endothelial cells (ECs) and mural cells that leads to blood vessel stabilization. Through a multidisciplinary approach, we provide evidence that these soluble VEGF receptors promote mural cell migration through a paracrine mechanism involving interplay in ECs between VEGF/VEGFR-2 and sphingosine-1-phosphate type-1 (S1P)/S1P1 pathways that leads to endothelial nitric oxyde synthase (eNOS) activation. This new paradigm is supported by the finding that sVEGFR-1 and -2 perform the following actions: 1) induce an eNOS-dependent outgrowth of a mural cell network in an ex vivo model of angiogenesis, 2) increase the mural cell coverage of neovessels in vitro and in vivo, 3) promote mural cell migration toward ECs, and 4) stimulate endothelial S1P1 overproduction and eNOS activation that promote the migration and the recruitment of neighboring mural cells. These findings provide new insights into mechanisms regulating physiological and pathological angiogenesis and vessel stabilization.

  17. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  18. Microchimeric fetal cells are recruited to maternal kidney following injury and activate collagen type I transcription.

    Science.gov (United States)

    Bou-Gharios, George; Amin, Farhana; Hill, Peter; Nakamura, Hiroyuki; Maxwell, Patrick; Fisk, Nicholas M

    2011-01-01

    Fetal cells enter the maternal circulation from the early first trimester of pregnancy, where they persist in tissue decades later. We investigated in mice whether fetal microchimeric cells (FMCs) can be detected in maternal kidney, and whether they play a role in kidney homeostasis. FMCs were identified in vivo in two models: one an adaptive model following unilateral nephrectomy, the other an injury via unilateral renal ischaemia reperfusion. Both models were carried out in mothers that had been mated with transgenic mice expressing luciferase transgene under the control of collagen type I, and had given birth to either 1 or 3 litters. FMCs were detected by Y-probe fluorescent in situ hybridization (FISH) and bioluminescence, and the cell number quantified by real-time polymerase chain reaction. In the adaptive model, the remaining kidney showed more cells by all 3 parameters compared with the nephrectomized kidney, while ischaemia reperfusion resulted in higher levels of FMC participation in injured compared to contralateral kidneys. Bioluminescence showed that FMCs switch on collagen type I transcription implicating mesenchymal lineage cells. After injury, Y-probe in situ hydridization was found mainly in the tubular epithelial network. Finally, we compared FMCs with bone marrow cells and found similar dynamics but altered distribution within the kidney. We conclude that FMCs (1) are long-term sequelae of pregnancy and (2) are recruited to the kidney as a result of injury or adaptation, where they activate the transcriptional machinery of matrix proteins.

  19. Random migration and signal integration promote rapid and robust T cell recruitment.

    Directory of Open Access Journals (Sweden)

    Johannes Textor

    2014-08-01

    Full Text Available To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs, and reliably localize the antigen (Ag within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.

  20. Random migration and signal integration promote rapid and robust T cell recruitment.

    Science.gov (United States)

    Textor, Johannes; Henrickson, Sarah E; Mandl, Judith N; von Andrian, Ulrich H; Westermann, Jürgen; de Boer, Rob J; Beltman, Joost B

    2014-08-01

    To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.

  1. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells.

    Science.gov (United States)

    Felmy, Felix

    2009-06-01

    Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-beta-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-beta-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal-spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

  2. Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour.

    Science.gov (United States)

    Di Carlo, E; Modesti, A; Coletti, A; Colombo, M P; Giovarelli, M; Forni, G; Diodoro, M G; Musiani, P

    1998-12-01

    Injection of interleukin-4 (IL4) gene-transduced tumour cells into syngeneic immunocompetent mice resulted in tumour rejection in which a key role for eosinophils was suggested. To evaluate whether IL5 inhibits tumour growth by selectively inducing eosinophil recruitment and activation, a poorly differentiated mammary adenocarcinoma cell line (TSA) was transfected with the IL5 gene and the cells secreting IL5 (TSA-IL5) were injected subcutaneously (s.c.) in syngeneic mice. The oncogenicity of TSA-IL5 was compared with that exhibited by TSA cells transfected with the IL4 gene (TSA-IL4) and with the neomycin resistance gene only (TSA-neo). At progressive times after subcutaneous challenge, tumour growth areas were studied histologically, ultrastructurally, and immunohistochemically to identify the reactive cells, visualize tumour vessels, and detect the cytokines and chemokines involved in the anti-tumour reaction. Both the morphological and the functional data showed that TSA-IL5, despite the large eosinophil infiltrate, grew progressively like TSA-neo, suggesting that eosinophils per se do not play a crucial role in TSA tumour rejection. Furthermore, our data indicate that the rejection of TSA-IL4 depends on the IL4-induced expression of VCAM-1 and MCP-1 by endothelial cells. MCP-1 together with VCAM-1 results in recruitment and activation of basophils, mast cells, and macrophages, and hence a pro-inflammatory cytokine cascade that initially favours the influx and activation of neutrophils and finally tumour rejection. In this context, the rejection of TSA-IL4 seems to involve a variety of reactive cells and rests on a continuous cross-talk between basophils, mast cells, macrophages, CD8-positive lymphocytes, and granulocyte subsets, mostly neutrophils.

  3. Recruitment of calcineurin to the TCR positively regulates T cell activation.

    Science.gov (United States)

    Dutta, Debjani; Barr, Valarie A; Akpan, Itoro; Mittelstadt, Paul R; Singha, Laishram I; Samelson, Lawrence E; Ashwell, Jonathan D

    2017-02-01

    Calcineurin is a phosphatase whose primary targets in T cells are NFAT transcription factors, and inhibition of calcineurin activity by treatment with cyclosporin A (CsA) or FK506 is a cornerstone of immunosuppressive therapies. Here we found that calcineurin was recruited to the T cell antigen receptor (TCR) signaling complex, where it reversed inhibitory phosphorylation of the tyrosine kinase Lck on Ser59 (Lck(S59)). Loss of calcineurin activity impaired phosphorylation of Tyr493 of the tyrosine kinase ZAP-70 (ZAP-70(Y493)), as well as some downstream pathways in a manner consistent with signaling in cells expressing Lck(S59A) (Lck that cannot be phosphorylated) or Lck(S59E) (a phosphomimetic mutant). Notably, CsA inhibited integrin-LFA-1-dependent and NFAT-independent adhesion of T cells to the intercellular adhesion molecule ICAM-1, with little effect on cells expressing mutant Lck. These results provide new understanding of how widely used immunosuppressive drugs interfere with essential processes in the immune response.

  4. Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing.

    Science.gov (United States)

    Feng, Guang; Hao, Daifeng; Chai, Jiake

    2014-11-01

    High blood sugar levels result in defective wound healing processes in diabetic patients. Endothelial progenitor cells (EPCs) play an important role in vasculogenesis, and thereby contribute to reconstitution of the microcirculation and healing. This study aimed to determine the possible mechanism by which the numbers of circulating EPCs are regulated in response to tissue wounding. In the streptozotocin-induced diabetic mouse model, we found that phagocytes activated by local inflammatory cytokines in the wound interfere with the mobilization and recruitment of EPCs to the lesion area. Specifically, the activated macrophages inactivate CXCL12, the major chemokine for EPC recruitment, via matrix metalloproteinases (MMPs), and thereby prevent local chemotaxis and subsequent homing of EPCs to the wound. The wound healing process is delayed by local administration of inflammatory cytokines, and its rate is increased by MMP inhibitors. This study indicates that local inhibition of MMPs is beneficial for regeneration of damaged vessels, and may explain poor wound healing in diabetic patients, thus demonstrating its potential utility as a local treatment therapy to promote diabetic wound healing.

  5. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells

    Science.gov (United States)

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C. A.; Wetzel, Ronald

    2014-01-01

    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either L- or D-polyQ peptides and found that D-fibrils are as cytotoxic as L-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced L-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized D- and L-polyQ in vitro. We found that, as expected, D-polyQ monomers are not recognized by proteins that recognize L-polyQ monomers. However, amyloid fibrils prepared from D-polyQ peptides can efficiently seed the aggregation of L-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment, but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins. PMID:24291210

  6. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  7. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  8. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells.

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C; Côté, Maxime C; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-14

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  9. Interleukin 7-engineered stromal cells: a new approach for hastening naive T cell recruitment.

    Science.gov (United States)

    Di Ianni, Mauro; Del Papa, Beatrice; De Ioanni, Maria; Terenzi, Adelmo; Sportoletti, Paolo; Moretti, Lorenzo; Falzetti, Franca; Gaozza, Eugenia; Zei, Tiziana; Spinozzi, Fabrizio; Bagnis, Claude; Mannoni, Patrice; Bonifacio, Elisabetta; Falini, Brunangelo; Martelli, Massimo F; Tabilio, Antonio

    2005-06-01

    In this study we determined whether human stromal cells could be engineered with a retroviral vector carrying the interleukin 7 (IL-7) gene and investigated the effects on T cells in vitro and in vivo in a murine model. Transduced mesenchymal cells strongly express CD90 (98.15%), CD105 (87.6%), and STRO-1 (86.7%). IL-7 production was 16.37 (+/-2 SD) pg/ml, which remained stable for 60 days. In vitro-immunoselected naive T cells maintained the CD45RA+ CD45RO- naive phenotype (4.2 times more than controls) after 7 days of culture with IL-7-engineered stromal cells. The apoptosis rate (4.7%) of the naive T cells cultured with transduced stromal cells overlapped with that of freshly isolated cells. Immunohistological analysis detected stromal cells in bone marrow, spleen, and thymus. Cotransplantation of IL-7-engineered stromal cells with CD34+ cells improved engraftment in terms of CD45+ cells and significantly increased the CD3+ cell count in peripheral blood, bone marrow, and spleen. These data demonstrate the following: (1) human stromal cells can be transduced, generating a normal layer; (2) transduced stromal cells in vitro maintain the naive T cell phenotype; and (3) IL-7-transduced stromal cells in vivo home to lymphoid organs and produce sufficient IL-7 in loco, supporting T cell development in a cotransplantation model. Because of their efficient cytokine production and homing, IL-7-engineered stromal cells might be an ideal vehicle to hasten immunological reconstitution in T cell-depleted hosts.

  10. Macrophage Recruitment and Epithelial Repair Following Hair Cell Injury in the Mouse Utricle

    Directory of Open Access Journals (Sweden)

    Tejbeer eKaur

    2015-04-01

    Full Text Available The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT. In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1GFP/GFP lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ~70% of utricular hair cells within seven days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of ‘corpse removal’ in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1+/GFP mice vs. CX3CR1GFP/GFP mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  11. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.

    Science.gov (United States)

    Tatzuke, Yuki; Sunanaga, Takeshi; Fujiwara, Shigeki; Kawamura, Kaz

    2012-08-15

    A homolog of receptor for activated protein kinase C1 (RACK1) was cloned from the budding tunicate Polyandrocarpa misakiensis. By RT-PCR and in situ hybridization analyses, PmRACK1 showed biphasic gene expression during asexual and sexual reproduction. In developing buds, the signal was exclusively observed in the multipotent atrial epithelium and undifferentiated mesenchymal cells that contributed to morphogenesis by the mesenchymal-epithelial transition (MET). In juvenile zooids, the signal was first observable in germline precursor cells that arose as mesenchymal cell aggregated in the ventral hemocoel. In mature zooids, the germinal epithelium in the ovary and the pharynx were the most heavily stained parts. GFP reporter assay indicated that the ovarian expression of PmRACK1 was constitutive from germline precursor cells to oocytes. To elucidate the in vivo function of PmRACK1, RNA interference was challenged. When growing buds were incubated with 5 nmol/mL siRNA, most mesenchymal cells remained round and appeared to have no interactions with the extracellular matrix (ECM), causing lower activity of MET without any apparent effects on cell proliferation. The resultant zooids became growth-deficient. The dwarf zooids did not form buds or mature gonads. Prior to RNAi, buds were treated with human BMP4 that could induce PmRACK1 expression, which resulted in MET activity. We conclude that in P. misakiensis, PmRACK1 plays roles in mesenchymal cell recruitment during formation of somatic and gonad tissues, which contributes to zooidal growth and sexual and asexual reproduction.

  12. CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16.

    Science.gov (United States)

    Tuzova, Marina; Richmond, Jillian; Wolpowitz, Deon; Curiel-Lewandrowski, Clara; Chaney, Keri; Kupper, Thomas; Cruikshank, William

    2015-02-01

    Mycosis fungoides (MF) is characterized by skin accumulation of CCR4+CCR7- effector memory T cells; however the mechanism for their recruitment is not clearly identified. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that triggers Th2 immunity and is associated with T cell recruitment to the skin in atopic dermatitis. Interleukin-16 (IL-16) is a chemoattractant and growth factor for CD4+T cells. We hypothesized that TSLP and IL-16 could contribute to recruitment of malignant T cells in MF. We found elevated TSLP and IL-16 in very early stage patients' plasma and skin biopsies, prior to elevation in CCL22. Both TSLP and IL-16 induced migratory responses of CCR4+TSLPR+CD4+CCR7-CD31+cells, characteristic of malignant T cells in the skin. Co-stimulation also resulted in significant proliferative responses. We conclude that TSLP and IL-16, expressed at early stages of disease, function to recruit malignant T cells to the skin and contribute to their enhanced proliferation.

  13. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment.

    Science.gov (United States)

    Ravanelli, Andrew M; Appel, Bruce

    2015-12-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2(+) cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis.

  14. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment

    Science.gov (United States)

    Klopp, Ann H.; Spaeth, Erika L.; Dembinski, Jennifer L.; Woodward, Wendy A.; Munshi, Anupama; Meyn, Raymond E.; Cox, James D.; Andreeff, Michael; Marini, Frank C.

    2011-01-01

    Mesenchymal stem cells (MSC) migrate to and proliferate within sites of inflammation and tumors as part of the tissue remodeling process. Radiation increases the expression of inflammatory mediators that could enhance the recruitment of MSC into the tumor microenvironment. To investigate this, bilateral murine 4T1 breast carcinomas (expressing renilla luciferase) were irradiated unilaterally (1 or 2 Gy). Twenty-four hours later, 2 × 105 MSC-expressing firefly luciferase were injected i.v. Mice were then monitored with bioluminescent imaging for expression of both renilla (tumor) and firefly (MSC) luciferase. Forty-eight hours postirradiation, levels of MSC engraftment were 34% higher in tumors receiving 2 Gy (P = 0.004) than in the contralateral unirradiated limb. Immunohistochemical staining of tumor sections from mice treated unilaterally with 2 Gy revealed higher levels of MSC in the parenchyma of radiated tumors, whereas a higher proportion of MSC remained vasculature-associated in unirradiated tumors. To discern the potential mediators involved in MSC attraction, in vitro migration assays showed a 50% to 80% increase in MSC migration towards conditioned media from 1 to 5 Gy-irradiated 4T1 cells compared with unirradiated 4T1 cells. Irradiated 4T1 cells had increased expression of the cytokines, transforming growth factor-β1, vascular endothelial growth factor, and platelet-derived growth factor-BB, and this up-regulation was confirmed by immunohistochemistry in tumors irradiated in vivo. Interestingly, the chemokine receptor CCR2 was found to be up-regulated in MSC exposed to irradiated tumor cells and inhibition of CCR2 led to a marked decrease of MSC migration in vitro. In conclusion, clinically relevant low doses of irradiation increase the tropism for and engraftment of MSC in the tumor microenvironment. PMID:18089798

  15. Colonic inflammation in mice is improved by cigarette smoke through iNKT cells recruitment.

    Directory of Open Access Journals (Sweden)

    Muriel Montbarbon

    Full Text Available Cigarette smoke (CS protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS. This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio. This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p=0.0169, IFNγ (p<0.0001, and IL-17 (p=0.0008. Smoke exposure also induced an increased expression of IL-10 mRNA (p=0.0035 and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+ cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.

  16. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells.

    Science.gov (United States)

    Caires, Hugo R; Esteves, Tiago; Quelhas, Pedro; Barbosa, Mário A; Navarro, Melba; Almeida, Catarina R

    2016-09-01

    Despite the importance of immune cell-biomaterial interactions for the regenerative outcome, few studies have investigated how distinct three-dimensional biomaterials modulate the immune cell-mediated mesenchymal stem/stromal cells (MSC) recruitment and function. Thus, this work compares the response of varied primary human immune cell populations triggered by different model scaffolds and describes its functional consequence on recruitment and motility of bone marrow MSC. It was found that polylactic acid (PLA) and chitosan scaffolds lead to an increase in the metabolic activity of macrophages but not of peripheral blood mononuclear cells (PBMC), natural killer (NK) cells or monocytes. PBMC and NK cells increase their cell number in PLA scaffolds and express a secretion profile that does not promote MSC recruitment. Importantly, chitosan increases IL-8, MIP-1, MCP-1 and RANTES secretion by macrophages while PLA stimulates IL-6, IL-8 and MCP-1 production, all chemokines that can lead to MSC recruitment. This secretion profile of macrophages in contact with biomaterials correlates with the highest MSC invasion. Furthermore, macrophages enhance stem cell motility within chitosan scaffolds by 44% but not in PLA scaffolds. Thus, macrophages are the cells that in contact with engineered biomaterials become activated to secrete bioactive molecules that stimulate MSC recruitment.

  17. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.

    2009-01-01

    Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functi

  18. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections.

    Science.gov (United States)

    Pashenkov, Mikhail; Teleshova, Natalia; Kouwenhoven, Mathilde; Smirnova, Tatiana; Jin, Ya Ping; Kostulas, Vasilios; Huang, Yu Min; Pinegin, Boris; Boiko, Alexey; Link, Hans

    2002-01-01

    Dendritic cells (DC) accumulate in the CNS during inflammation and may contribute to local immune responses. Two DC subsets present in human cerebrospinal fluid (CSF) are probably recruited from myeloid (CD11c(+)CD123(dim)) and plasmacytoid (CD11c(-)CD123(high)) blood DC. In bacterial meningitis and especially in Lyme meningoencephalitis, numbers of myeloid and plasmacytoid DC in CSF were increased, compared to non-inflammatory neurological diseases, and correlated with chemotactic activity of CSF for immature monocyte-derived DC (moDC). Multiple DC chemoattractants, including macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-1, MCP-3, RANTES and stromal cell-derived factor (SDF)-1alpha were elevated in CSF in these two neuroinfections. Chemotaxis of immature moDC induced by these CSFs could be partially inhibited by mAbs against CXCR4, the receptor for SDF-1alpha, and CD88, the receptor for C5a. SDF-1alpha present in CSF also chemoattracted mature moDC, which in vivo could correspond to a diminished migration of antigen-bearing DC from the CSF to secondary lymphoid organs. Regulation of DC trafficking to and from the CSF may represent a mechanism of controlling the CNS inflammation.

  19. Molecular mechanisms involved in secretory vesicle recruitment to the plasma membrane in beta-cells.

    Science.gov (United States)

    Varadi, Aniko; Ainscow, E K; Allan, V J; Rutter, G A

    2002-04-01

    Glucose stimulates the release of insulin in part by activating the recruitment of secretory vesicles to the cell surface. While this movement is known to be microtubule-dependent, the molecular motors involved are undefined. Active kinesin was found to be essential for vesicle translocation in live beta-cells, since microinjection of cDNA encoding dominant-negative KHC(mut) (motor domain of kinesin heavy chain containing a Thr(93)-->Asn point mutation) blocked vesicular movements. Moreover, expression of KHC(mut) strongly inhibited the sustained, but not acute, stimulation of secretion by glucose. Thus, vesicles released during the first phase of insulin secretion exist largely within a translocation-independent pool. Kinesin-driven anterograde movement of vesicles is then necessary for the sustained (second phase) of insulin release. Kinesin may, therefore, represent a novel target for increases in intracellular ATP concentrations in response to elevated extracellular glucose and may be involved in the ATP-sensitive K+channel-independent stimulation of secretion by the sugar.

  20. 黄连温胆汤对代谢综合征大鼠炎性因子及血管粘附因子的影响%The Effect of Huanglian Wendan Decoction on Inflammatory Factors and VCAM - 1 of Metabolic Syndrome Rats

    Institute of Scientific and Technical Information of China (English)

    刘莉; 邓晓威

    2012-01-01

    Objective:To study the effects of Huanglian Wendan decoction on inflammatory factors and VCAM - 1 of rats with metabolic syndrome induced by dietary, and analyse the mechanism. Method: Male SD rats were fed by high ener-getic diet for 20 weeks to copy the model of metabolic syndrome. 37 model rats with metabolic syndrome were randomly divided into 4 groups: model group, herb high - dose group, herb low - dose group and control group, and each group was lavaged with drugs for 4 weeks to detect H - E staining of aorta, inflammatory factors and VCAM - 1 . Result: Com-pared with the normal group, the level of IL - 6 and ADPN in model group had a statistical significance (P <0. 05). Contrast to model group, the serum level of IL - 6 and ADPN in herb high - dose group, low - dose group and control group had a statistical significance (P <0. 05). The expression of VCAM - 1 of rats in herb high - dose group,low -dose group and control group decreased obviously which had a statistical significance (P<0.05). Conclusion: Huangli-an Wendan decoction can regulate the serum level of IL - 6 and ADPN and repress the over - expression of VCAM -1.%目的:研究黄连温胆汤对代谢综合征大鼠炎性因子及血管粘附因子等指标的影响,探讨其作用机制.方法:通过膳食喂养建立MS大鼠模型,将成模的MS大鼠随机分成模型组,中药高、低剂量组,格华止组,灌胃4周后,检测主动脉HE染色、炎性因子及血管粘附因子.结果:与空白组比较,模型组血清ADPN、IL -6具有统计学意义(P<0.05),中药高、低剂量组及格华止组血清ADPN、IL -6水平与模型组相比,有统计学意义(P<0.05),中药高、低剂量组及格华止组大鼠血管VCAM -1表达均明显降低(P<0.05).结论:黄连温胆汤可调控MS大鼠血清ADPN、IL -6水平,且可抑制VCAM-1过度表达.

  1. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63

    Science.gov (United States)

    Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula

    2014-04-01

    To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.

  2. Endogenous Stem Cells Were Recruited by Defocused Low-Energy Shock Wave in Treating Diabetic Bladder Dysfunction.

    Science.gov (United States)

    Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang

    2016-12-05

    Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU(+)Stro-1(+)CD34(-) endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU(+) cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.

  3. Study of the Mechanism of Essential Garlic Oil Inhibiting Interleukin-1α-Induced Monocyte Adhesion to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    葛璐璐; 张薇; 戴云; 臧燕; 黄纯洁

    2001-01-01

    To observe the effects of essential garlic oil (EGO) on vascular cell adhesive molecule-1 (VCAM-1) expression of endothelial cells and monocyte-endothelial cell adhesion rate induced by interleukin-1α (IL-1α). Methods: Human umbilical vein endothelial cells (HUVEC) were isolated by trypsin digestion method and co-cultured with IL-1α or EGO+IL-1α in the absence or presence of U937 monocyte. Monocyte-endothelial cell adhesion rate was examined with reverted microscope. VCAM-1 expression of endothelial cells was measured by ACAS 570 confocal microscope, and the data were presented as mean fluorescent intensity. Results: EGO significantly inhibited IL-1α-induced endothelial expression of VCAM-1, and thus markedly decreased monocyte-endothelial cell adhesion rate. Conclusion: EGO has the effect on antagonizing adhesion of monocyte and vascular endothelial cell, which might be due to its inhibition on adhesive molecular expression on the surface of endothelial cells.

  4. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Directory of Open Access Journals (Sweden)

    Abigail Morris

    Full Text Available Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/- mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  5. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Science.gov (United States)

    Morris, Abigail; Wang, Bo; Waern, Ida; Venkatasamy, Radhakrishnan; Page, Clive; Schmidt, Eric P; Wernersson, Sara; Li, Jin-Ping; Spina, Domenico

    2015-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  6. Decidual stromal cells recruit Th17 cells into decidua to promote proliferation and invasion of human trophoblast cells by secreting IL-17.

    Science.gov (United States)

    Wu, Hai-Xia; Jin, Li-Ping; Xu, Bing; Liang, Shan-Shan; Li, Da-Jin

    2014-05-01

    T helper 17 (Th17) cells have both regulatory and protective roles in physiological conditions. The Th17 subset and the cytokine interleukin-17A (IL-17A) have been implicated in the pathogenesis of certain autoimmune diseases, several types of cancer and allograft rejection. However, the role of Th17 cells at the maternal/fetal interface remains unknown. Here, we demonstrate that Th17 cells are present in decidua and are increased in the peripheral blood of 10 clinically normal pregnancies based on intracellular cytokine analysis. Our results suggest a potential role of Th17 cells in sustaining pregnancy in humans. Furthermore, we demonstrate that decidual stromal cells (DSCs) but not trophoblast cells recruit peripheral Th17 cells into the decidua by secreting CCL2. The recruited Th17 cells promote proliferation and invasion and inhibit the apoptosis of human trophoblast cells by secreting IL-17 during the first trimester of pregnancy. These findings indicate a novel role for Th17 cells in controlling the maternal-fetal relationship and placenta development.

  7. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    DEFF Research Database (Denmark)

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    cells that infiltrate the muscle at the site of DNA delivery in vaccinated fish and the chemokines that may be involved in their infiltration. It was observed that B lymphocytes, both IgM+ and IgT+, represent a major infiltrating cell type in fish vaccinated with a viral hemorrhagic septicemia virus...... (VHSV) DNA vaccine, whereas in control fish injected with an oil adjuvant mainly granulocytes were attracted. While IgM+ cells were the major B cell population at early time points post vaccination, IgT+ cells represented the predominant cell type later on. Among twelve chemokine genes studied...... might explain the recruitment of immune cells to the site of DNA injection. Our results suggest that B cells are involved in the initial phase of the immune response to intramuscular DNA vaccination against VHSV. This appears to be a major difference to what we know from mammalian models where T cells...

  8. Diagnostic and prognosis assessment values of serum sICAM-1, sVCA-1 and P-selectin detection for the patients with pancreatic carcinoma%sICAM-1、sVCAM-1和P选择素检测对胰腺癌诊断和预后评估的价值

    Institute of Scientific and Technical Information of China (English)

    朱伟; 黄文; 武新颖; 徐纪平; 蔡全才; 李兆申

    2009-01-01

    目的 探讨血清可溶性细胞间黏附分子-1(slCAM-1)、可溶性血管内皮细胞黏附因-1(sVCAM-1)和 P 选择素检测对胰腺癌诊断和预后评估的临床价值.方法 2007年10月-2008年6月收治的胰腺癌患者70例,包括胰头癌45例,胰体、胰尾癌25例;TNM 分期Ⅰ-Ⅱ期34例,Ⅲ-Ⅳ期36例,采用酶联免疫法(ELISA)法测定患者手术前后血清sICAM-1、sVCAM-1和 P 选择素水平,并与30例胰腺良性病变患者进行比较.结果 胰腺癌患者血清sICAM-1、sVCAM-1和 P 选择素水平明显高于胰腺良性病变患者(P0.05).结论 血清sI-CAM-1、sVCAM-1和P选择素水平是胰腺癌诊断和预后判断的敏感性指标,三者联合应用可提高胰腺癌早期诊断的敏感性.

  9. Nuclear factor of activated T cells regulates neutrophil recruitment, systemic inflammation, and T-cell dysfunction in abdominal sepsis.

    Science.gov (United States)

    Zhang, Su; Luo, Lingtao; Wang, Yongzhi; Gomez, Maria F; Thorlacius, Henrik

    2014-08-01

    The signaling mechanisms regulating neutrophil recruitment, systemic inflammation, and T-cell dysfunction in polymicrobial sepsis are not clear. This study explored the potential involvement of the calcium/calcineurin-dependent transcription factor, nuclear factor of activated T cells (NFAT), in abdominal sepsis. Cecal ligation and puncture (CLP) triggered NFAT-dependent transcriptional activity in the lung, spleen, liver, and aorta in NFAT-luciferase reporter mice. Treatment with the NFAT inhibitor A-285222 prior to CLP completely prevented sepsis-induced NFAT activation in all these organs. Inhibition of NFAT activity reduced sepsis-induced formation of CXCL1, CXCL2, and CXCL5 chemokines and edema as well as neutrophil infiltration in the lung. Notably, NFAT inhibition efficiently reduced the CLP-evoked increases in HMBG1, interleukin 6 (IL-6), and CXCL5 levels in plasma. Moreover, administration of A-285222 restored sepsis-induced T-cell dysfunction, as evidenced by markedly decreased apoptosis and restored proliferative capacity of CD4 T cells. Along these lines, treatment with A-285222 restored gamma interferon (IFN-γ) and IL-4 levels in the spleen, which were markedly reduced in septic mice. CLP-induced formation of regulatory T cells (CD4(+) CD25(+) Foxp3(+)) in the spleen was also abolished in A-285222-treated animals. All together, these novel findings suggest that NFAT is a powerful regulator of pathological inflammation and T-cell immune dysfunction in abdominal sepsis. Thus, our data suggest that NFAT signaling might be a useful target to protect against respiratory failure and immunosuppression in patients with sepsis.

  10. The Shc family protein adaptor, Rai, negatively regulates T cell antigen receptor signaling by inhibiting ZAP-70 recruitment and activation.

    Directory of Open Access Journals (Sweden)

    Micol Ferro

    Full Text Available Rai/ShcC is a member of the Shc family of protein adaptors expressed with the highest abundance in the central nervous system, where it exerts a protective function by coupling neurotrophic receptors to the PI3K/Akt survival pathway. Rai is also expressed, albeit at lower levels, in other cell types, including T and B lymphocytes. We have previously reported that in these cells Rai attenuates antigen receptor signaling, thereby impairing not only cell proliferation but also, opposite to neurons, cell survival. Here we have addressed the mechanism underlying the inhibitory activity of Rai on TCR signaling. We show that Rai interferes with the TCR signaling cascade one of the earliest steps--recruitment of the initiating kinase ZAP-70 to the phosphorylated subunit of the TCR/CD3 complex, which results in a generalized dampening of the downstream signaling events. The inhibitory activity of Rai is associated to its inducible recruitment to phosphorylated CD3, which occurs in the physiological signaling context of the immune synapse. Rai is moreover found as a pre-assembled complex with ZAP-70 and also constitutively interacts with the regulatory p85 subunit of PI3K, similar to neuronal cells, notwithstanding the opposite biological outcome, i.e. impairment of PI-3K/Akt activation. The data highlight the ability of Rai to establish interactions with the TCR and key signaling mediators which, either directly (e.g. by inhibiting ZAP-70 recruitment to the TCR or sequestering ZAP-70/PI3K in the cytosol or indirectly (e.g. by promoting the recruitment of effectors responsible for signal extinction prevent full triggering of the TCR signaling cascade.

  11. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Wang, X; Lang, M; Zhao, T; Feng, X; Zheng, C; Huang, C; Hao, J; Dong, J; Luo, L; Li, X; Lan, C; Yu, W; Yu, M; Yang, S; Ren, H

    2016-12-19

    Forkheadbox protein 3 (FOXP3), initially identified as a key transcription factor for regulatory T cells (Treg cells), was also expressed in many tumors including pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC progression remains elusive. In this study, we utilized 120 PDAC tissues after radical resection to detect cancer-FOXP3 and Treg cells by immunohistochemistry and evaluated clinical and pathological features of these patients. Cancer-FOXP3 was positively correlated with Treg cells accumulation in tumor tissues derived from PDAC patients. In addition, high cancer-FOXP3 expression was associated with increased tumor volumes and poor prognosis in PDAC especially combined with high levels of Treg cells. Overexpression of cancer-FOXP3 promoted the tumor growth in immunocompetent syngeneic mice but not in immunocompromised or Treg cell-depleted mice. Furthermore, CCL5 was directly trans-activated by cancer-FOXP3 and promoted the recruitment of Treg cells from peripheral blood to the tumor site in vitro and in vivo. This finding has been further reinforced by the evidence that Treg cells recruitment by cancer-FOXP3 was impaired by neutralization of CCL5, thereby inhibiting the growth of PDAC. In conclusion, cancer-FOXP3 serves as a prognostic biomarker and a crucial determinant of immunosuppressive microenvironment via recruiting Treg cells by directly trans-activating CCL5. Therefore, cancer-FOXP3 could be used to select patients with better response to CCL5/CCR5 blockade immunotherapy.Oncogene advance online publication, 19 December 2016; doi:10.1038/onc.2016.458.

  12. IL-15 Expression on RA Synovial Fibroblasts Promotes B Cell Survival

    Science.gov (United States)

    Benito-Miguel, Marta; García-Carmona, Yolanda; Balsa, Alejandro; Bautista-Caro, María-Belén; Arroyo-Villa, Irene; Cobo-Ibáñez, Tatiana; Bonilla-Hernán, María Gema; de Ayala, Carlos Pérez; Sánchez-Mateos, Paloma; Martín-Mola, Emilio; Miranda-Carús, María-Eugenia

    2012-01-01

    Introduction The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib) IL-15 expression on B cell survival. Methods Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. Results RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/−8% (p<0.001). IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/−6% (p<0.05). Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. Conclusion IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains. PMID:22792388

  13. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Directory of Open Access Journals (Sweden)

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  14. Tumour cell recruitment of the JB-1 and L 1210 ascites tumour determined directly by double labelling with [14C]- and [3H]-thymidine.

    Science.gov (United States)

    Maurer-Schultze, B; Kondziella, U; Böswald, M

    1988-07-01

    Tumour cell recruitment of the JB-1 and L 1210 ascites tumour has been demonstrated directly by a double-labelling method with [14C]- and [3H]-thymidine (TdR). After [14C]-labelling of all proliferating tumour cells by multiple injections of [14C]TdR, recruitment of resting cells was stimulated by removal of the majority of tumour cells, i.e. by maximum aspiration of ascitic fluid. The number of recruited resting cells in the remaining tumour that re-enter the cell cycle after stimulation was demonstrated directly by a single injection of [3H]TdR given at different times after stimulation. The increase in the percentage of purely [3H]-labelled cells, i.e. recruited cells, with increasing time after stimulation, shows that recruitment is not a synchronous but a continuous process, the maximum of which occurs earlier in the case of the L 1210 than the JB-1 tumour. This suggests that there seems to be a relationship between the time required for maximum recruitment and the corresponding cell cycle parameters of the unperturbed tumour. There is a transitory increase of the growth fraction to about 100% and a considerable shortening of the cycle time at the maximum of recruitment.

  15. Multichannel fluorescence spinning disk microscopy reveals early endogenous CD4 T cell recruitment in contact sensitivity via complement.

    Science.gov (United States)

    Norman, M Ursula; Hulliger, Sara; Colarusso, Pina; Kubes, Paul

    2008-01-01

    Contact sensitivity (CS) is one of the primary in vivo models of T cell-mediated inflammation. The presence of CS-initiating CD4 T lymphocytes at the time of challenge is essential for transfer and full development of the late phase CS inflammatory response. From this observation investigators have speculated that early recruitment of CD4 T cells to the site of challenge must occur. Moreover, there must be rapid synthesis/release and disappearance of an important mediator during the first hours after hapten challenge. Using spinning disk confocal microscopy, we observed the very early effector events of the immune response. Simultaneous, real-time visualization of predominant neutrophil and extremely rare CD4 T cell trafficking in the challenged skin vasculature was noted (one rolling CD4 T cell for every 10-18 rolling and adherent neutrophils). We demonstrate that neutrophil adhesion during the early CS response was reduced in C5a receptor-deficient (C5aR-/-) mice or leukotriene B4 receptor antagonist-treated mice, whereas CD4 T cell recruitment was only inhibited in C5aR-/- mice. In line with these observations, leukocyte infiltration and the associated tissue damage were significantly reduced in C5aR-/- mice but not in leukotriene B4 receptor antagonist-treated wild-type mice 24 h after challenge. C5a receptor expression on T cells and not on tissue resident cells was important for the development of a CS response. Thus, by using spinning disk confocal microscopy we visualized the early events of an adaptive immune response and identified the rare but essential recruitment of CD4 T cells via the complement pathway.

  16. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  17. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Directory of Open Access Journals (Sweden)

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  18. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Science.gov (United States)

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  19. Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells.

    Science.gov (United States)

    Roy, Ananya; Coum, Antoine; Marinescu, Voichita D; Põlajeva, Jelena; Smits, Anja; Nelander, Sven; Uhrbom, Lene; Westermark, Bengt; Forsberg-Nilsson, Karin; Pontén, Fredrik; Tchougounova, Elena

    2015-09-15

    Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.

  20. Endometriosis impairs bone marrow-derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment.

    Science.gov (United States)

    Sakr, Sharif; Naqvi, Hanyia; Komm, Barry; Taylor, Hugh S

    2014-04-01

    Endometriosis is a disease defined by the ectopic growth of uterine endometrium. Stem cells contribute to the generation of endometriosis as well as to repair and regeneration of normal endometrium. Here we demonstrate that the selective estrogen receptor modulator bazedoxifene (BZA), administered with conjugated estrogens (CEs), leads to regression of endometriosis lesions as well as reduction in stem cell recruitment to the lesions. Female mice underwent transplantation of male bone marrow. Endometrium was transplanted in the peritoneal cavity of half to create experimental endometriosis. Mice with or without experimental endometriosis were randomized to BZA/CE or vehicle treatment. Endometriosis lesions, bone marrow-derived mesenchymal stem cell engraftment of the lesions, and eutopic endometrium as well as ovarian stimulation were assessed. BZA treatment significantly reduced lesion size, gland number, and expression of proliferation marker proliferating cell nuclear antigen. Ovarian weight was not affected. Stem cells were recruited to the endometriosis lesions, and this recruitment was dramatically reduced by BZA/CE treatment. Stem cell engraftment was reduced in the uterus of animals with endometriosis; however the number of stem cells engrafting the uterus was completely restored by treatment with BZA/CE. Competition between endometriosis and the eutopic endometrium for a limited supply of stem cells and depletion of normal stem cells flux to the uterus is a novel mechanism by which endometriosis interferes with endometrial function and fertility. BZA/CE not only treats lesions of endometriosis, it also dramatically reduces stem cell recruitment to the lesions and restores stem cell engraftment of the uterine endometrium.

  1. Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Travelstead, Anna L; Ransohoff, Richard M; Ness, Jayne M; Colliver, Jerry A

    2012-02-29

    To study aberrant B cell trafficking into the CSF in opsoclonus-myoclonus syndrome (OMS), chemoattractants CXCL13 and CXCL12, and B cell frequency and CXCR5 expression, were evaluated. CSF CXCL13 concentration and the CSF/serum ratio were higher in untreated OMS than controls, related directly to OMS severity and inversely to OMS duration, and correlated with CSF B cell frequency and oligoclonal bands. CXCL12 showed the opposite pattern. Selective accumulation of CXCR5+ memory B cells in CSF was found. In ACTH-treated OMS, CXCL13, but not CXCL12, was lower. These data implicate the chemokine/chemoreceptor pair CXCL13/CXR5 in B cell recruitment to the CNS in OMS. CXCL13 and CXCL12 may serve as reciprocal biomarkers of disease activity, but CXCL13 also had utility as a treatment biomarker.

  2. Deficiency of the Sialyltransferase St3Gal4 Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest

    Science.gov (United States)

    Döring, Yvonne; Noels, Heidi; Mandl, Manuela; Kramp, Birgit; Neideck, Carlos; Lievens, Dirk; Drechsler, Maik; Megens, Remco T.A.; Tilstam, Pathricia V.; Langer, Marcella; Hartwig, Helene; Theelen, Wendy; Marth, Jamey D.; Sperandio, Markus; Soehnlein, Oliver; Weber, Christian

    2014-01-01

    Rationale Sialylation by α2,3-sialyltransferases has been shown to be a crucial glycosylation step in the generation of functional selectin ligands. Recent evidence suggests that sialylation also affects the binding of chemokines to their corresponding receptor. Objective Because the chemokine receptors for Ccl5 and Ccl2 are important in atherogenic recruitment of neutrophils and monocytes, we here investigated the role of α2,3-sialyltransferase IV (ST3Gal-IV) in Ccl5- and Ccl2-mediated myeloid cell arrest and further studied its relevance in a mouse model of atherosclerosis. Methods and Results St3Gal4-deficient myeloid cells showed a reduced binding of Ccl5 and an impaired Ccl5-triggered integrin activation. Correspondingly, Ccl5-induced arrest on tumor necrosis factor-α–stimulated endothelium was almost completely abrogated, as observed in flow chamber adhesion assays and during ex vivo perfusion or intravital microscopy of carotid arteries. Moreover, Ccl5-triggered neutrophil and monocyte extravasation into the peritoneal cavity was severely reduced in St3Gal4−/− mice. In contrast, St3Gal4 deficiency did not significantly affect Ccl2 binding and only marginally decreased Ccl2-induced flow arrest of myeloid cells. In agreement with the crucial role of leukocyte accumulation in atherogenesis, and the importance of Ccl5 chemokine receptors mediating myeloid cell recruitment to atherosclerotic vessels, St3Gal4 deficiency drastically reduced the size, stage, and inflammatory cell content of atherosclerotic lesions in Apoe−/− mice on high-fat diet. Conclusions In summary, these findings identify ST3Gal-IV as a promising target to reduce inflammatory leukocyte recruitment and arrest. PMID:24425712

  3. 疏风通络方对哮喘大鼠嗜酸细胞跨膜迁移相关因子VCAM-1/PI3K/Rac-1/NOX2/NOX4/SHP-2表达影响的研究%Influence of Shufeng Tongluo prescription on expression of VCAM-1/PI3K/Rac-1/NOX2/NOX4/SHP-2 related factors in eosinophils transendothelia migration in lung of rats with asthma

    Institute of Scientific and Technical Information of China (English)

    刘贵颖; 张慧琪; 尹新中; 朱振刚; 刘旻; 乔亚珍; 窦迎婷; 刘文彬; 刘超武

    2013-01-01

    [目的]探讨疏风通络方对哮喘大鼠嗜酸细胞跨膜迁移的影响.[方法]选择SPF级雄性Wistar大鼠70只为研究对象,随机分为正常组、模型组、地塞米松组、DPI组、中药低、中、高剂量组,共7组,每组大鼠10只.第1天致敏:正常组给予生理盐水1 mL腹腔注射致敏,而其他6组给予1 mL造模液(含Ⅴ级卵清蛋白100 mg,氢氧化铝100 mg和灭活百日咳杆菌6×109个)腹腔注射致敏;第15天开始激发:将各组大鼠分别置于相同大小的雾化箱内,正常组给予生理盐水6 mL雾化激发,其他6组给予5%的Ⅴ级卵清蛋白溶液6 mL雾化激发,每次激发前2h正常组给予生理盐水1 mL灌胃,而其他6组给予相应的药物灌胃.各组每天激发1次,每次激发30 min,连续激发10d后处死大鼠,并采集相应标本,并进一步检测影响嗜酸细胞跨膜迁移的相关指标.[结果]模型组肺组织嗜酸细胞跨膜迁移相关调节因子血管内皮黏附分子-Ⅰ(VCAM-1)、磷脂酰肌醇3激酶(PI3K)、Rac-1、NADPH氧化酶2(NOX2)、NADPH氧化酶4(NOX4)、酪氨酸磷酸酶(SHP-2)出现高表达,高于正常组(P<0.001);各治疗组与模型组相比,地塞米松组抑制上述因子表达的效果最好(P<0.001),中药高剂量组的抑制效果略差于地塞米松组,但两者差异无统计学意义(P>0.05),氯化二联苯碘(DPI)组、中药低、中剂量组抑制效果一般.[结论]疏风通络方对哮喘大鼠嗜酸细胞跨膜迁移有一定的阻抑作用,这可能是其平喘作用机制之一.%[Objective] To explore the effect of Shufeng Tongluo decoction on eosinophils transendothelia migration in lung of rats with asthma. [Methods] Seventy Wistar rats (SPF) were randomly divided into seven groups: normal group, model group, dexamethasone group, DPI group, low-dose group of Chinese medicine, medium-dose group of Chinese medicine, and high-dose group of Chinese medicine with 10 rats in each group. The rats in normal group were

  4. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  5. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    Science.gov (United States)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  6. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche

    Science.gov (United States)

    Erler, Janine T.; Bennewith, Kevin L.; Cox, Thomas R.; Lang, Georgina; Bird, Demelza; Koong, Albert; Le, Quynh-Thu; Giaccia, Amato J.

    2010-01-01

    Summary Tumor cell metastasis is facilitated by “pre-metastatic niches” formed in destination organs by invading bone marrow-derived cells (BMDCs). Lysyl oxidase (LOX) is critical for pre-metastatic niche formation. LOX secreted by hypoxic breast tumor cells accumulates at pre-metastatic sites, cross-links collagen-IV in the basement membrane, and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells adhere to cross-linked collagen-IV and produce matrix metalloproteinase-2 which cleaves collagen, enhancing the invasion and recruitment of BMDCs and metastasizing tumor cells. LOX inhibition prevents CD11b+ cell recruitment and metastatic growth. CD11b+ cells and LOX also co-localize in biopsies of human metastases. Our findings demonstrate a critical role for LOX in pre-metastatic niche formation and support targeting LOX for the treatment and prevention of metastatic disease. PMID:19111879

  7. Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection.

    Science.gov (United States)

    Kisseleva, Tatiana; von Köckritz-Blickwede, Maren; Reichart, Donna; McGillvray, Shauna M; Wingender, Gerhard; Kronenberg, Mitchell; Glass, Christopher K; Nizet, Victor; Brenner, David A

    2011-10-01

    Bone marrow (BM)-derived fibrocytes are a population of CD45(+) and collagen Type I-expressing cells that migrate to the spleen and to target injured organs, such as skin, lungs, kidneys, and liver. While CD45(+)Col(+) fibrocytes contribute to collagen deposition at the site of injury, the role of CD45(+)Col(+) cells in spleen has not been elucidated. Here, we demonstrate that hepatotoxic injury (CCl(4)), TGF-β1, lipopolysaccharide, or infection with Listeria monocytogenes induce rapid recruitment of CD45(+)Col(+) fibrocyte-like cells to the spleen. These cells have a gene expression pattern that includes antimicrobial factors (myleoperoxidase, cathelicidin, and defensins) and MHC II at higher levels than found on quiescent or activated macrophages. The immune functions of these splenic CD45(+)Col(+) fibrocyte-like cells include entrapment of bacteria into extracellular DNA-based structures containing cathelicidin and presentation of antigens to naïve CD8(+) T cells to induce their proliferation. Stimulation of these splenic fibrocyte-like cells with granulocyte macrophage-colony stimulating factor or macrophage-colony stimulating factor induces downregulation of collagen expression and terminal differentiation into the dendritic cells or macrophage. Thus, splenic CD45(+)Col(+) cells are a population of rapidly mobilized BM-derived fibrocyte-like cells that respond to inflammation or infection to participate in innate and adaptive immune responses.

  8. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication.

    Science.gov (United States)

    Schmid, Michael A; Harris, Eva

    2014-12-01

    Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/β receptor (Ifnar(-/-)), which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103(+) classical dendritic cells (cDCs), Ly6C(-) CD11b(+) cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6C(high) monocytes from wild-type and Ifnar(-/-) origin to the DENV-infected dermis and differentiation to Ly6C(+) CD11b(+) monocyte-derived DCs (moDCs), which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6C(high) monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that ∼ 100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.

  9. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    OpenAIRE

    Alessandra Castiglioni; Gianfranca Corna; Elena Rigamonti; Veronica Basso; Michela Vezzoli; Antonella Monno; Almada, Albert E; Anna Mondino; Wagers, Amy J.; Angelo A. Manfredi; Patrizia Rovere-Querini

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the musc...

  10. Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-α.

    Science.gov (United States)

    Chai, Ok Hee; Han, Eui-Hyeog; Lee, Hern-Ku; Song, Chang Ho

    2011-01-31

    Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.

  11. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.

    Science.gov (United States)

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S; von Appen, Alexander; Ladinsky, Mark S; Redd, Michael J; Nikolova, Linda; Bjorkman, Pamela J; Sundquist, Wesley I; Ullman, Katharine S; Frost, Adam

    2017-03-14

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.

  12. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes

    Science.gov (United States)

    González-Sánchez, Ana; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Herrero-González, Sandra; Medina, José M.; Tabernero, Arantxa

    2016-01-01

    Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition. PMID:27391443

  13. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration.

    Science.gov (United States)

    Patten, Daniel A; Wilson, Garrick K; Bailey, Dalan; Shaw, Robert K; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Chris J; Adams, David H; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs.

  14. Human periodontal ligament cells facilitate leukocyte recruitment and are influenced in their immunomodulatory function by Th17 cytokine release.

    Science.gov (United States)

    Konermann, A; Beyer, M; Deschner, J; Allam, J P; Novak, N; Winter, J; Jepsen, S; Jäger, A

    2012-01-01

    The objective of this in vitro study was to examine the immunomodulatory impact of human periodontal ligament (PDL) cells on the nature and magnitude of the leukocyte infiltrate in periodontal inflammation, particularly with regard to Th17 cells. PDL cells were challenged with pro-inflammatory cytokines (IL-1ß, IL-17A, and IFN-γ) and analyzed for the expression of cytokines involved in periodontal immunoinflammatory processes (IL-6, MIP-3 alpha, IL-23A, TGFß1, IDO, and CD274). In order to further investigate a direct involvement of PDL cells in leukocyte function, co-culture experiments were conducted. The expression of the immunomodulatory cytokines studied was significantly increased under pro-inflammatory conditions in PDL cells. Although PDL cells did not stimulate leukocyte proliferation or Th17 differentiation, these cells induced the recruitment of leukocytes. The results of our study suggest that PDL cells might be involved in chronic inflammatory mechanisms in periodontal tissues and thus in the transition to an adaptive immune response in periodontitis.

  15. Phenotypes of lung mononuclear phagocytes in HIV seronegative tuberculosis patients: evidence for new recruitment and cell activation

    Directory of Open Access Journals (Sweden)

    José R Lapa e Silva

    1996-06-01

    Full Text Available Mycobacterium tuberculosis preferentially resides in mononuclear phagocytes. The mechanisms by which mononuclear phagocytes keep M. tuberculosis in check or by which the microbe evades control to cause disease remain poorly understood. As an initial effort to delineate these mechanisms, we examined by immunostaining the phenotype of mononuclear phagocytes obtained from lungs of patients with active tuberculosis. From August 1994 to March 1995, consecutive patients who had an abnormal chest X-ray, no demostrable acid-fast bacilli in sputum specimens and required a diagnostic bronchoalveolar lavage (BAL were enrolled. Of the 39 patients enrolled, 21 had microbiologically diagnosed tuberculosis. Thirteen of the 21 tuberculosis patients were either HIV seronegative (n = 12 or had no risk factor for HIV and constituted the tuberculosis group. For comparison, M. tuberculosis negative patients who had BAL samples taken during this time (n = 9 or normal healthy volunteers (n = 3 served as control group. Compared to the control group, the tuberculosis group had significantly higher proportion of cells expressing markers of young monocytes (UCHM1 and RFD7, a marker for phagocytic cells, and increased expression of HLA-DR, a marker of cell activation. In addition, tuberculosis group had significantly higher proportion of cells expressing dendritic cell marker (RFD1 and epithelioid cell marker (RFD9. These data suggest that despite recruitment of monocytes probably from the peripheral blood and local cell activation, host defense of the resident lung cells is insufficient to control M. tuberculosis.

  16. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells.

    Science.gov (United States)

    Cárdenas, Ana María; Marengo, Fernando D

    2016-06-01

    The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca(2+) signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca(2+) channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels, whereas longer or more intense stimulation will provoke a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca(2+) signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca(2+) . In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels (A), whereas longer or high-frequency stimulation provokes a global Ca(2+) increase, promoting exocytosis irrespective of

  17. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection.

    Directory of Open Access Journals (Sweden)

    Bradley S Schneider

    Full Text Available West Nile virus (WNV is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-beta and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively, whilst transiently enhancing interleukin-10 (IL-10 expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively in the skin and draining lymph nodes. These results suggest that mosquito

  18. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine.

    Science.gov (United States)

    Mauro, Annunziata; Russo, Valentina; Di Marcantonio, Lisa; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mattioli, Mauro; Barboni, Barbara

    2016-04-01

    Recently, we have demonstrated that ovine amniotic epithelial cells (oAECs) allotransplanted into experimentally induced tendon lesions are able to stimulate tissue regeneration also by reducing leukocyte infiltration. Amongst leukocytes, macrophages (Mφ) M1 and M2 phenotype cells are known to mediate inflammatory and repairing processes, respectively. In this research it was investigated if, during tendon regeneration induced by AECs allotransplantation, M1Mφ and M2Mφ phenotype cells are recruited and differently distributed within the lesion site. Ovine AECs treated and untreated (Ctr) tendons were explanted at 7, 14, and 28 days and tissue microarchitecture was analyzed together with the distribution and quantification of leukocytes (CD45 positive), Mφ (CD68 pan positive), and M1Mφ (CD86, and IL12b) and M2Mφ (CD206, YM1 and IL10) phenotype related markers. In oAEC transplanted tendons CD45 and CD68 positive cells were always reduced in the lesion site. At day 14, oAEC treated tendons began to recover their microarchitecture, contextually a reduction of M1Mφ markers, mainly distributed close to oAECs, and an increase of M2Mφ markers was evidenced. CD206 positive cells were distributed near the regenerating areas. At day 28 oAECs treated tendons acquired a healthy-like structure with a reduction of M2Mφ. Differently, Ctr tendons maintained a disorganized morphology throughout the experimental time and constantly showed high values of M1Mφ markers. These findings indicate that M2Mφ recruitment could be correlated to tendon regeneration induced by oAECs allotransplantation. Moreover, these results demonstrate oAECs immunomodulatory role also in vivo and support novel insights into their allogeneic use underlying the resolution of tendon fibrosis.

  19. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia.

    Science.gov (United States)

    Knopf, Julia D; Tholen, Stefan; Koczorowska, Maria M; De Wever, Olivier; Biniossek, Martin L; Schilling, Oliver

    2015-10-01

    Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.

  20. Specific recruitment of γδ regulatory T cells in human breast cancer

    OpenAIRE

    Ye, Jian; MA, CHUNLING; Wang, Fang; Hsueh, Eddy C; Toth, Karoly; Huang, Yi; Mo, Wei; Liu, Shuai; Han, Bing; Varvares, Mark A.; Hoft,Daniel F; Peng, Guangyong

    2013-01-01

    Understanding the role of different subtypes of tumor-infiltrating lymphocytes (TILs) in the immunosuppressive tumor microenvironment is essential to improving cancer treatment. Enriched γδ1 T cell populations in tumor-infiltrating lymphocytes (TILs) suppress T cell responses and dendritic cell maturation in breast cancer, where their presence is correlated negatively with clinical outcomes. However, mechanism(s) that explain the increase in this class of T regulatory cells (γδ Treg) in breas...

  1. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Alessandra Castiglioni

    Full Text Available Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  2. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Science.gov (United States)

    Castiglioni, Alessandra; Corna, Gianfranca; Rigamonti, Elena; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E; Mondino, Anna; Wagers, Amy J; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  3. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    Science.gov (United States)

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis, as well as for arterial and venous thrombosis. However, the mechanisms through which elevated circulating levels of homocysteine cause vascular injury and promote thrombosis remain unclear. Here, we tested the hypothesis that homocysteine (Hcy) sensitizes endothelial cells to the effect of inflammatory mediators. Human umbilical vein endothelial cells (HUVEC) were incubated with Hcy 1.0 mM for varying time points, and then treated in the absence or presence of 1.5 U/ml thrombin or 10 ng/ml lipopolysaccharide (LPS). Hcy alone had no effect on the expression of vascular cell adhesion molecule (VCAM)-1. However, Hcy enhanced thrombin- and LPS-mediated induction of VCAM-1 mRNA and protein levels. Consistent with these results, pretreatment of HUVEC with Hcy resulted in a two-fold increase in LSP-mediated induction of leukocyte adhesion. The latter effect was significantly inhibited by anti-VCAM-1 antibodies. Together, these findings suggest that Hcy sensitizes HUVEC to the effect of inflammatory mediators thrombin and LPS, at least in part through VCAM-1 expression and function. PMID:18406566

  4. Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines

    Directory of Open Access Journals (Sweden)

    Maria Notara

    2015-11-01

    Full Text Available Ultraviolet light B (UVB-irradiation is linked to various ocular pathologies such as limbal stem cell defects in pterygium. Despite the large circumstantial evidence linking UVB irradiation and limbal epithelial stem cell damage, the precise molecular responses of limbal stem cells to UVB irradiation are unclear. Here the effect of UVB irradiation on the putative stem cell phenotype, limbal niche cells and the subsequent effects on corneal (lymphangiogenic privilege were investigated. Primary human limbal epithelial stem cells and fibroblasts were irradiated with 0.02 J/cm2 of UVB, a low dose corresponding to 3 min of solar irradiation. UVB irradiation caused significant reduction of limbal epithelial and limbal fibroblast proliferation for 24 h, but apoptosis of limbal epithelial stem cells only. Moreover, UVB induced stem-like character loss of limbal epithelial cells, as their colony forming efficiency and putative stem cell marker expression significantly decreased. Interestingly, limbal epithelial cells co-cultured with UVB-irradiated limbal fibroblasts also exhibited loss of stem cell character and decrease of colony forming efficiency. Conditioned media from limbal epithelial cells inhibited lymphatic endothelial cell proliferation and tube network complexity; however this effect diminished following UVB irradiation. In contrast, pro-inflammatory and macrophage-recruiting cytokines such as TNFα, IFNγ and MCP1 were significantly upregulated following cell irradiation of limbal fibroblasts. These data demonstrate the key role of the limbal stem cell niche in response to UVB and subsequent (lymphangiogenic and inflammatory events. These data suggest that the known pro(lymphangiogenic effect of UVB irradiation in pterygium is not linked to a direct up-regulation of pro-angiogenic cytokines, but rather to indirect macrophage-recruiting cytokines being upregulated after UVB irradiation.

  5. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart.

    Science.gov (United States)

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-02-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  6. ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation

    Institute of Scientific and Technical Information of China (English)

    Elisabetta Donzelli; Caterina Lucchini; Elisa Ballarini; Arianna Scuteri; Fabrizio Carini; Giovanni Tredici; Mariarosaria Miloso

    2011-01-01

    Adipocytes' biology and the mechanisms that control adipogenesis have gained importance because of the need to develop therapeutic strategies to control obesity and the related pathologies. Human mesenchymal stem cells (hMSCs), undifferentiated stem cells present in the bone marrow that are physiological precursors of adipocytes, were induced to adipogenic differentiation. The molecular mechanisms on the basis of the adipogenesis were evaluated, focusing on the MAPKinases ERK1 and ERK2, which are involved in many biological and cellular processes. ERK1 and ERK2 phosphorylation was reduced with different timing and intensity for the two isoforms in treated hMSCs in comparison with control cells until day 10 and then at 14-28 days, it reached the level of untreated cultures. The total amount of ERK1 was also decreased up to day 10 and then was induced to the level of untreated cultures, whereas the expression of ERK2 was not changed following adipogenic induction. Treatment with the specific ERK1/2 inhibitor U0126 during the whole differentiation period hampered hMSCs' adipogenic differentiation, as lipid droplets appeared in very few cells and were reduced in number and size. When U0126 was administered only during the initial phase of differentiation, the number of hMSCs recruited to adipogenesis was reduced while, when it was administered later, hMSCs did not acquire a mature adipocytic phenotype. ERK1 and ERK2 are important for hMSC adipogenic differentiation since any alteration to the correct timing of their phosphorylation affects either the recruitment into the differentiation program and the extent of their maturation.

  7. Controlled delivery of SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery.

    Science.gov (United States)

    Rybalko, Viktoriya Y; Pham, Chantal B; Hsieh, Pei-Ling; Hammers, David W; Merscham-Banda, Melissa; Suggs, Laura J; Farrar, Roger P

    2015-11-01

    Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient.

  8. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

    Science.gov (United States)

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-09-19

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.

  9. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  10. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    Science.gov (United States)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  11. Anti-Mullerian hormone recruits BMPR-IA in immature granulosa cells.

    Directory of Open Access Journals (Sweden)

    Lauriane Sèdes

    Full Text Available Anti-Müllerian hormone (AMH is a member of the TGF-β superfamily secreted by the gonads of both sexes. This hormone is primarily known for its role in the regression of the Müllerian ducts in male fetuses. In females, AMH is expressed in granulosa cells of developing follicles. Like other members of the TGF-β superfamily, AMH transduces its signal through two transmembrane serine/threonine kinase receptors including a well characterized type II receptor, AMHR-II. The complete signalling pathway of AMH involving Smads proteins and the type I receptor is well known in the Müllerian duct and in Sertoli and Leydig cells but not in granulosa cells. In addition, few AMH target genes have been identified in these cells. Finally, while several co-receptors have been reported for members of the TGF-β superfamily, none have been described for AMH. Here, we have shown that none of the Bone Morphogenetic Proteins (BMPs co-receptors, Repulsive guidance molecules (RGMs, were essential for AMH signalling. We also demonstrated that the main Smad proteins used by AMH in granulosa cells were Smad 1 and Smad 5. Like for the other AMH target cells, the most important type I receptor for AMH in these cells was BMPR-IA. Finally, we have identified a new AMH target gene, Id3, which could be involved in the effects of AMH on the differentiation of granulosa cells and its other target cells.

  12. HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells.

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou

    2011-06-01

    Full Text Available Male circumcision reduces acquisition of HIV-1 by 60%. Hence, the foreskin is an HIV-1 entry portal during sexual transmission. We recently reported that efficient HIV-1 transmission occurs following 1 h of polarized exposure of the inner, but not outer, foreskin to HIV-1-infected cells, but not to cell-free virus. At this early time point, Langerhans cells (LCs and T-cells within the inner foreskin epidermis are the first cells targeted by the virus. To gain in-depth insight into the molecular mechanisms governing inner foreskin HIV-1 entry, foreskin explants were inoculated with HIV-1-infeceted cells for 4 h. The chemokine/cytokine milieu secreted by the foreskin tissue, and resulting modifications in density and spatial distribution of T-cells and LCs, were then investigated. Our studies show that in the inner foreskin, inoculation with HIV-1-infected cells induces increased CCL5/RANTES (1.63-fold and decreased CCL20/MIP-3-alpha (0.62-fold secretion. Elevated CCL5/RANTES mediates recruitment of T-cells from the dermis into the epidermis, which is blocked by a neutralizing CCL5/RANTES Ab. In parallel, HIV-1-infected cells mediate a bi-phasic modification in the spatial distribution of epidermal LCs: attraction to the apical surface at 1 h, followed by migration back towards the basement membrane later on at 4 h, in correlation with reduced CCL20/MIP-3-alpha at this time point. T-cell recruitment fuels the continuous formation of LC-T-cell conjugates, permitting the transfer of HIV-1 captured by LCs. Together, these results reveal that HIV-1 induces a dynamic process of immune cells relocation in the inner foreskin that is associated with specific chemokines secretion, which favors efficient HIV-1 entry at this site.

  13. TWIST Represses Estrogen Receptor-alpha Expression by Recruiting the NuRD Protein Complex in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Junjiang Fu, Lianmei Zhang, Tao He, Xiuli Xiao, Xiaoyan Liu, Li Wang, Luquan Yang, Manman Yang, Tiandan Zhang, Rui Chen, Jianming Xu

    2012-01-01

    Full Text Available Loss of estrogen receptor α (ERα expression and gain of TWIST (TWIST1 expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.

  14. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Science.gov (United States)

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  15. Recruitment of stem cells into the injured retina after laser injury.

    Science.gov (United States)

    Singh, Tajinder; Prabhakar, Sudesh; Gupta, Amod; Anand, Akshay

    2012-02-10

    Retinal degeneration is a devastating complication of diabetes and other disorders. Stem cell therapy for retinal degeneration has shown encouraging results but functional regeneration has not been yet achieved. Our study was undertaken to evaluate the localization of stem cells delivered to the retina by intravenous versus intravitreal infusion, because stem cell localization is a key factor in ultimate in vivo function. We used lineage-negative bone marrow-derived stem cells in a model wherein retina of mice was induced by precise and reproducible laser injury. Lin(-ve) bone marrow cells (BMCs) were labeled with a tracking dye and their homing capacity was analyzed at time points after infusion. We found that Lin(-ve) BMCs get incorporated into laser-injured retina when transplanted through either the intravitreal or intravenous route. The intravenous route resulted in optimal localization of donor cells at the site of injury. These cells incorporated into injured retina in a dose-dependent manner. The data presented in this study reflect the importance of dose and route for stem cell-based treatment designed to result in retinal regeneration.

  16. Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis.

    Science.gov (United States)

    Meinecke, Anna-Katharina; Nagy, Nadine; Lago, Gabriela D'Amico; Kirmse, Santina; Klose, Ralph; Schrödter, Katrin; Zimmermann, Annika; Helfrich, Iris; Rundqvist, Helene; Theegarten, Dirk; Anhenn, Olaf; Orian-Rousseau, Véronique; Johnson, Randall S; Alitalo, Kari; Fischer, Jens W; Fandrey, Joachim; Stockmann, Christian

    2012-06-14

    Pulmonary fibrosis is a progressive disease with unknown etiology that is characterized by extensive remodeling of the lung parenchyma, ultimately resulting in respiratory failure. Lymphatic vessels have been implicated with the development of pulmonary fibrosis, but the role of the lymphatic vasculature in the pathogenesis of pulmonary fibrosis remains enigmatic. Here we show in a murine model of pulmonary fibrosis that lymphatic vessels exhibit ectopic mural coverage and that this occurs early during the disease. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by expression of platelet-derived growth factor B (PDGF-B) in lymphatic endothelial cells and signaling through platelet-derived growth factor receptor (PDGFR)-β in associated mural cells. Because of impaired lymphatic drainage, aberrant mural cell coverage fostered the accumulation of fibrogenic molecules and the attraction of fibroblasts to the perilymphatic space. Pharmacologic inhibition of the PDGF-B/PDGFR-β signaling axis disrupted the association of mural cells and lymphatic vessels, improved lymphatic drainage of the lung, and prevented the attraction of fibroblasts to the perilymphatic space. Our results implicate aberrant mural cell recruitment to lymphatic vessels in the pathogenesis of pulmonary fibrosis and that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes.

  17. Trichosanthin inhibits T cell activation by interfering with the recruitment of ZAP—70 to CD3 chain

    Institute of Scientific and Technical Information of China (English)

    HONGJIAN; SAILIFU; 等

    1998-01-01

    Plant protein Trichosanthin(Tk) has been shown in our previous experiments to suppress antigenic response of T cells.Here we explored its inhibitory mechanisms on the proliferation of human Jurkat leukemia T cell triggered by anti-CD3 McAb,By examination of tyrosine phosphorylation of cell lysate,we were able to show that Tk could interfere with the PTK-related activity in the TCR/CD3-initiated signal transduction in addition to blocking the phosphorylation of PKC.As shown in our experiment the expression intensity of ZAP-70,a kind of protein tyrosine kinase,was not changed but its phosphorylation could be inhibited.When physical link between CD3 ζ chain and ZAP-70 was further examined by using coimmunoprecipitation after pluse-treatment of the cell line with Tk,the anti-CD3 McAb-induced recruitment of ZAP-70 to CD3 ζ chain was observed to be blocked in some extent.This may account for,at least in part,how Trichosanthin was able to inhibit the TCR-triggered T cell proliferation.

  18. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution.

    Science.gov (United States)

    Patterson, Larissa B; Bain, Emily J; Parichy, David M

    2014-11-06

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation.

  19. Recruitment of quiet cells at the onset of vasomotion in mesenteric arteries

    DEFF Research Database (Denmark)

    Brings Jacobsen, Jens Christian; Aalkjær, Christian; Matchkov, Vladimir

    2008-01-01

    quiet. At the onset of vasomotion however, all cells, including those that were previously quiet, are forced into synchronized oscillation. We hypothesize that this entrainment of previously quiet cells is caused by the driving force from a collective cyclic variation in membrane potential.   Methods...... of cellular heterogeneity and synchronized variation in membrane potential in coupled cells may provide a simple explanation for the observed entrainment of quiet cells at the onset of vasomotion....... and causes the onset of oscillations in membrane potential and intercellular synchronization. Previously quiet cells are forced into an oscillatory mode by the recurring collective variation in membrane potential which causes cyclic fluxes of calcium across the plasma membrane.   Conclusion: The combination...

  20. The Neurorepellent Slit2 Inhibits Postadhesion Stabilization of Monocytes Tethered to Vascular Endothelial Cells.

    Science.gov (United States)

    Mukovozov, Ilya; Huang, Yi-Wei; Zhang, Qiuwang; Liu, Guang Ying; Siu, Allan; Sokolskyy, Yaroslav; Patel, Sajedabanu; Hyduk, Sharon J; Kutryk, Michael J B; Cybulsky, Myron I; Robinson, Lisa A

    2015-10-01

    The secreted neurorepellent Slit2, acting through its transmembrane receptor, Roundabout (Robo)-1, inhibits chemotaxis of varied cell types, including leukocytes, endothelial cells, and vascular smooth muscle cells, toward diverse attractants. The role of Slit2 in regulating the steps involved in recruitment of monocytes in vascular inflammation is not well understood. In this study, we showed that Slit2 inhibited adhesion of monocytic cells to activated human endothelial cells, as well as to immobilized ICAM-1 and VCAM-1. Microfluidic live cell imaging showed that Slit2 inhibited the ability of monocytes tethered to endothelial cells to stabilize their actin-associated anchors and to resist detachment in response to increasing shear forces. Transfection of constitutively active plasmids revealed that Slit2 inhibited postadhesion stabilization of monocytes on endothelial cells by preventing activation of Rac1. We further found that Slit2 inhibited chemotaxis of monocytes toward CXCL12 and CCL2. To determine whether Slit2 and Robo-1 modulate pathologic monocyte recruitment associated with vascular inflammation and cardiovascular disease, we tested PBMC from patients with coronary artery disease. PBMC from these patients had reduced surface levels of Robo-1 compared with healthy age- and sex-matched subjects, and Slit2 failed to inhibit chemotaxis of PBMC of affected patients, but not healthy control subjects, toward CCL2. Furthermore, administration of Slit2 to atherosclerosis-prone LDL receptor-deficient mice inhibited monocyte recruitment to nascent atherosclerotic lesions. These results demonstrate that Slit2 inhibits chemotaxis of monocytes, as well as their ability to stabilize adhesions and resist detachment forces. Slit2 may represent a powerful new tool to inhibit pathologic monocyte recruitment in vascular inflammation and atherosclerosis.

  1. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Luechtefeld, Thomas; Coppens, Isabelle

    2015-05-01

    Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.

  2. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yu-Hai; Chen, Jian; Zhou, Jing; Nong, Feng; Lv, Jin-Han; Liu, Jia

    2017-01-01

    Therapy using acellular spinal cord (ASC) scaffolds seeded with bone marrow stromal cells (BMSCs) has previously been shown to restore function of the damaged spinal cord and improve functional recovery in a rat model of acute hemisected spinal cord injury (SCI). The aim of the present study was to determine whether BMSCs and ASC scaffolds promote the functional recovery of the damaged spinal cord in a rat SCI model through regulation of apoptosis and immune responses. Whether this strategy regulates secondary inflammation, which is characterized by the infiltration of immune cells and inflammatory mediators to the lesion site, in SCI repair was investigated. Basso, Beattie, and Bresnahan scores revealed that treatment with BMSCs seeded into an ASC scaffold led to a significant improvement in motor function recovery compared with treatment with an ASC scaffold alone or untreated controls at 2 and 8 weeks after surgery (Pscaffold significantly decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, as compared with the ASC scaffold only and control groups. These results suggested that the use of BMSCs decreased the apoptosis of neural cells and thereby limited tissue damage at the lesion site. Notably, the use of BMSCs with an ASC scaffold also decreased the recruitment of macrophages (microglia; Pscaffold only groups. BMSCs regulated inflammatory cell recruitment to promote functional recovery. However, there was no significant difference in IgM-positive expression among the three groups (P>0.05). The results of this study demonstrated that BMSCs seeded into ASC scaffolds for repair of spinal cord hemisection defects promoted functional recovery through the early regulation of inflammatory cell recruitment with inhibition of apoptosis and secondary inflammation.

  3. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell

    OpenAIRE

    Mori, M; Gähwiler, B; Gerber, U.

    2007-01-01

    The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto b...

  4. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells.

    Science.gov (United States)

    Sun, Jie; Zhao, Yannan; Li, Qingguo; Chen, Bing; Hou, Xianglin; Xiao, Zhifeng; Dai, Jianwu

    2016-05-26

    Stromal cell-derived factor-1α (SDF-1α) is a well-characterized chemokine that mobilizes stem cells homing to the ischemic heart, which is beneficial for cardiac regeneration. However, clinically administered native SDF-1α diffuses quickly, thus decreasing its local concentration, and results in side effects. Thus, a controlled release system for SDF-1α is required to produce an effective local concentration in the ischemic heart. In this study, we developed a recombinant chemokine, consisting of SDF-1α and a collagen-binding domain, which retains both the SDF-1α and collagen-binding activity (CBD-SDF-1α). In an in vitro assay, CBD-SDF-1α could specifically bind to a collagen gel and achieve sustained release. An intramyocardial injection of CBD-SDF-1α after acute myocardial infarction demonstrated that the protein was largely tethered in the ischemic area and that controlled release had been achieved. Furthermore, CBD-SDF-1α enhanced the recruitment of c-kit positive (c-kit(+)) stem cells, increased capillary density and improved cardiac function, whereas NAT-SDF-1α had no such beneficial effects. Our findings demonstrate that CBD-SDF-1α can specifically bind to collagen and achieve controlled release both in vitro and in vivo. Local delivery of this protein could mobilize endogenous stem cells homing to the ischemic heart and improve cardiac function after myocardial infarction.

  5. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  6. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stefano Rocca

    Full Text Available Following Mycobacterium tuberculosis (Mtb infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS. Interferon regulatory factor-8 (IRF-8 plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8⁻/⁻ were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6 counterparts. Tuberculosis (TB progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8⁻/⁻ mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8⁻/⁻, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8⁻/⁻ mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions.

  7. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis.

    Science.gov (United States)

    Rocca, Stefano; Schiavoni, Giovanna; Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia

    2013-01-01

    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8⁻/⁻) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8⁻/⁻ mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8⁻/⁻, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8⁻/⁻ mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions.

  8. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.

    Science.gov (United States)

    Sandoval-Guzmán, Tatiana; Wang, Heng; Khattak, Shahryar; Schuez, Maritta; Roensch, Kathleen; Nacu, Eugeniu; Tazaki, Akira; Joven, Alberto; Tanaka, Elly M; Simon, András

    2014-02-06

    Salamanders regenerate appendages via a progenitor pool called the blastema. The cellular mechanisms underlying regeneration of muscle have been much debated but have remained unclear. Here we applied Cre-loxP genetic fate mapping to skeletal muscle during limb regeneration in two salamander species, Notophthalmus viridescens (newt) and Ambystoma mexicanum (axolotl). Remarkably, we found that myofiber dedifferentiation is an integral part of limb regeneration in the newt, but not in axolotl. In the newt, myofiber fragmentation results in proliferating, PAX7(-) mononuclear cells in the blastema that give rise to the skeletal muscle in the new limb. In contrast, myofibers in axolotl do not generate proliferating cells, and do not contribute to newly regenerated muscle; instead, resident PAX7(+) cells provide the regeneration activity. Our results therefore show significant diversity in limb muscle regeneration mechanisms among salamanders and suggest that multiple strategies may be feasible for inducing regeneration in other species, including mammals.

  9. NF-κB p65 recruited SHP regulates PDCD5-mediated apoptosis in cancer cells.

    Science.gov (United States)

    Murshed, Farhan; Farhana, Lulu; Dawson, Marcia I; Fontana, Joseph A

    2014-03-01

    Transcription factor NF-κB promotes cell proliferation in response to cell injury. Increasing evidence, however, suggests that NF-κB can also play an apoptotic role depending on the stimulus and cell type. We have previously demonstrated that novel retinoid 4-[3-Cl-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC)-mediated apoptosis in breast carcinoma cells requires activation of canonical and non-canonical NF-κB pathways. The mechanism NF-κB uses to induce apoptosis remains largely unknown. NF-κB subunit p65 (RelA) was identified as one potent transcriptional activator in 3-Cl-AHPC-mediated apoptosis in cells. Here we used ChIP-on-chip to identify NF-κB p65 genes activated in 3-Cl-AHPC mediated apoptosis. This paper focuses on one hit: pro-apoptotic protein programmed cell death 5 (PDCD5). 3-Cl-AHPC mediated apoptosis in MDA-MB-468 had three related effects on PDCD5: NF-κB p65 binding to the PDCD5 gene, enhanced PDCD5 promoter activity, and increased PDCD5 protein expression. Furthermore, 3-Cl-AHPC increased orphan nuclear receptor small heterodimer partner (SHP) mRNA expression, increased SHP protein bound to NF-κB p65, and found the SHP/NF-κB p65 complex attached to the PDCD5 gene. PDCD5 triggered apoptosis through increased Bax protein and release of cytochrome C from mitochondria to cytosol. Lastly, knockdown of PDCD5 protein expression blocked 3-Cl-AHPC mediated apoptosis, while over-expression of PDCD5 enhanced apoptosis, suggesting PDCD5 is necessary and sufficient for NF-κB p65 mediated apoptosis. Our results demonstrate a novel pathway for NF-κB p65 in regulating apoptosis through SHP and PDCD5.

  10. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice.

    Directory of Open Access Journals (Sweden)

    Mélanie Charmoy

    2010-02-01

    Full Text Available Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3(-/- mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens.

  11. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  12. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment.

    Science.gov (United States)

    Inokuchi, Mayu; Kaneko, Toyoji

    2012-07-01

    Cellular recruitment and degeneration of branchial mitochondrion-rich (MR) cells were examined in Mozambique tilapia transferred from hypoosmotic to hyperosmotic water. To examine apoptosis in the gills associated with salinity change, tilapia were directly transferred from freshwater to 70% seawater. The TUNEL assay showed that apoptotic cells in the gills were significantly increased at 1 day after transfer, which was supported by an electron-microscopic observation that gill MR cells underwent morphological changes characteristic of apoptosis such as an irregularly shaped electron-dense nucleus and distension of the tubular system. To further examine MR-cell recruitment, freshwater-acclimated tilapia were transferred either to freshwater or to 70% seawater after BrdU injection. Immunohistochemical detection of BrdU-labeled nuclei and Na(+)/K(+)-ATPase-rich MR cells allowed us to classify BrdU-labeled MR cells into two subtypes: a single MR cell and an MR-cell complex. Although newly generated single MR cells were observed similarly in both freshwater and 70% seawater-transferred fish, the density of MR-cell complexes was much higher in 70% seawater than in freshwater. Our findings indicated that transfer from hypoosmotic to hyperosmotic water enhanced apoptosis of freshwater-type MR cells, resulting in reduction in hyperosmoregulatory ability for freshwater adaptation, and stimulated the recruitment of MR-cell complexes to develop hypoosmoregulatory ability for seawater adaptation.

  13. Leukocyte TLR5 deficiency inhibits atherosclerosis by reduced macrophage recruitment and defective T-cell responsiveness

    Science.gov (United States)

    Ellenbroek, Guilielmus H.J.M.; van Puijvelde, Gijs H.M.; Anas, Adam A.; Bot, Martine; Asbach, Miriam; Schoneveld, Arjan; van Santbrink, Peter J.; Foks, Amanda C.; Timmers, Leo; Doevendans, Pieter A.; Pasterkamp, Gerard; Hoefer, Imo E.; van der Poll, Tom; Kuiper, Johan; de Jager, Saskia C.A.

    2017-01-01

    Toll-like receptors (TLR) provide a critical link between innate and adaptive immunity, both important players in atherosclerosis. Since evidence for the role of TLR5 is lacking, we aimed to establish this in the immune axis of atherosclerosis. We assessed the effect of the TLR5-specific ligand Flagellin on macrophage maturation and T-cell polarisation. Next, we generated TLR5−/−LDLr−/− chimeras to study the effect of hematopoietic TLR5 deficiency on atherosclerosis formation. Flagellin stimulation did not influence wildtype or TLR5−/− macrophage maturation. Only in wildtype macrophages, Flagellin exposure increased MCP-1 and IL6 expression. Flagellin alone reduced T-helper 1 proliferation, which was completely overruled in the presence of T-cell receptor activation. In vivo, hematopoietic TLR5 deficiency attenuated atherosclerotic lesion formation by ≈25% (1030*103 ± 63*103 vs. 792*103 ± 61*103 μm2; p = 0.013) and decreased macrophage area (81.3 ± 12.0 vs. 44.2 ± 6.6 μm2; p = 0.011). In TLR5−/− chimeric mice, we observed lower IL6 plasma levels (36.4 ± 5.6 vs. 15.1 ± 2.2 pg/mL; p = 0.003), lower (activated) splenic CD4+ T-cell content (32.3 ± 2.1 vs. 21.0 ± 1.2%; p = 0.0018), accompanied by impaired T-cell proliferative responses. In conclusion, hematopoietic TLR5 deficiency inhibits atherosclerotic lesion formation by attenuated macrophage accumulation and defective T-cell responsiveness. PMID:28202909

  14. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Science.gov (United States)

    Lenzi, Jessica; De Santis, Riccardo; de Turris, Valeria; Morlando, Mariangela; Laneve, Pietro; Calvo, Andrea; Caliendo, Virginia; Chiò, Adriano; Rosa, Alessandro; Bozzoni, Irene

    2015-01-01

    ABSTRACT Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis. PMID:26035390

  15. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  16. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Directory of Open Access Journals (Sweden)

    Jessica Lenzi

    2015-07-01

    Full Text Available Patient-derived induced pluripotent stem cells (iPSCs provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis.

  17. The role of chemokines in regualating mast cell recruitment around rat liver tumor

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-Yong; RUANYou-Bing

    2001-01-01

    Aim To explore the correlation of stem cell factor (SCF)and monocyte chemoattractant protein-1 (MCP-1) with number difference of mast cell (MC) around the liver tumor.Methods 40 male wistar rats with liver neoplasm were divided into three different groups by numbers of MC in the surroundings of tumor. We performed ELISA for SCF and MCP-1 in serums. And chemotaxis assays of rat peritoneal MCs to SCF and MCP-1 in serums were measured in 48-wellmicroboyden chambers. We also used immunohistochemistryto investigate whether rat MCs express SCF positively.RESULTE There were marked differences in MC numbersaround tumor between different groups. The group that has more MCs around tumor has the higher levels of SCF andMCP-1 in serums and the stronger chemotaxis to ratperitoneal MCs. SCF washigher than MCP-1 in bothchemotactic activity to MCs and levels in serums. And ratMCs positively express SCF.Conclusion SCF and MCP-1 were found to be two particularly efficacious chemoattractants for MCs. The levels of SCF and MCP-1 in serums may be closely correlated with MCs numbers around tumor. The production of SCF by MCs might act on mast cell migration and proliferation of MC.

  18. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    Science.gov (United States)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  19. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells

    Science.gov (United States)

    Coffelt, Seth B.; Marini, Frank C.; Watson, Keri; Zwezdaryk, Kevin J.; Dembinski, Jennifer L.; LaMarca, Heather L.; Tomchuck, Suzanne L.; zu Bentrup, Kerstin Honer; Danka, Elizabeth S.; Henkle, Sarah L.; Scandurro, Aline B.

    2009-01-01

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells. PMID:19234121

  20. IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival.

    Science.gov (United States)

    Lu, Lin; Pan, Ke; Zheng, Hai-Xia; Li, Jian-Jun; Qiu, Hui-Juan; Zhao, Jing-Jing; Weng, De-Sheng; Pan, Qiu-Zhong; Wang, Dan-Dan; Jiang, Shan-Shan; Chang, Alfred E; Li, Qiao; Xia, Jian-Chuan

    2013-10-01

    We previously reported that tumor-infiltrating interleukin (IL)-17A-producing cells play a protective role in human esophageal squamous cell carcinoma (ESCC). However, the potential mechanisms involved remain unclear. In the present study, we investigated the effects of IL-17A on immune cell recruitment and function in ESCC. In vitro chemotaxis assays using the ESCC cell lines EC109 and KYSE30 demonstrated that although IL-17A showed no significant direct effects on the migration of T cells, natural killer (NK) cells as well as dendritic cells (DCs), it could induce ESCC tumor cells to produce inflammatory chemokines, for example, CXCL9, CXCL10 and CCL2, CCL20, which are associated with the migration of T cells, NK cells, and DCs, respectively. In addition, IL-17A enhanced the cytotoxic effects of NK cells against tumor cells by augmenting the expression of cytotoxic molecules, for example, tumor necrosis factor-α, interferon-γ, Perforin, and Granzyme B and activation receptors, for example, NKp46, NKp44, NTB-A, and NKG2D on NK cells. Furthermore, immunohistochemical analysis revealed that the density of IL-17A-producing cells was positively and significantly associated with the density of CD1a DCs in tumor tissues. With the analyses of 181 ESCC patients, we found a correlation of higher number of tumor-infiltrating CD1a DCs with significantly improved overall survival of patients with ESCC. This study provides further understanding of the roles of Th17 cells in ESCC, which may contribute to the development of novel cancer immunotherapy strategies.

  1. Host Cell Factor-1 Recruitment to E2F-Bound and Cell-Cycle-Control Genes Is Mediated by THAP11 and ZNF143

    Directory of Open Access Journals (Sweden)

    J. Brandon Parker

    2014-11-01

    Full Text Available Host cell factor-1 (HCF-1 is a metazoan transcriptional coregulator essential for cell-cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct coregulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell-cycle control genes and leads to reduced cell proliferation, cell-cycle progression, and cell viability. These data establish a model in which a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation.

  2. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model.

    Directory of Open Access Journals (Sweden)

    Charlotte E Egan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR or susceptible (BALB/c and C57BL/6 to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6 but not resistant AKR mice. Ccr2(-/- mice were completely protected from hepatitis and Cd44(-/- mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45(+CD44(+ cells bound to hyaluronic acid (HA in diet fed B6 mice but not Cd44(-/- or Ccr2(-/- mice. Ccr2(-/- mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8(+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.

  3. Increase in cholinergic modulation with pyridostigmine induces anti-inflammatory cell recruitment soon after acute myocardial infarction in rats.

    Science.gov (United States)

    Rocha, Juraci Aparecida; Ribeiro, Susan Pereira; França, Cristiane Miranda; Coelho, Otávio; Alves, Gisele; Lacchini, Silvia; Kallás, Esper Georges; Irigoyen, Maria Cláudia; Consolim-Colombo, Fernanda M

    2016-04-15

    We tested the hypothesis that an increase in the anti-inflammatory cholinergic pathway, when induced by pyridostigmine (PY), may modulate subtypes of lymphocytes (CD4+, CD8+, FOXP3+) and macrophages (M1/M2) soon after myocardial infarction (MI) in rats. Wistar rats, randomly allocated to receive PY (40 mg·kg(-1)·day(-1)) in drinking water or to stay without treatment, were followed for 4 days and then were subjected to ligation of the left coronary artery. The groups-denominated as the pyridostigmine-treated infarcted (IP) and infarcted control (I) groups-were submitted to euthanasia 3 days after MI; the heart was removed for immunohistochemistry, and the peripheral blood and spleen were collected for flow cytometry analysis. Noninfarcted and untreated rats were used as controls (C Group). Echocardiographic measurements were registered on the second day after MI, and heart rate variability was measured on the third day after MI. The infarcted groups had similar MI areas, degrees of systolic dysfunction, blood pressures, and heart rates. Compared with the I Group, the IP Group showed a significant higher parasympathetic modulation and a lower sympathetic modulation, which were associated with a small, but significant, increase in diastolic function. The IP Group showed a significant increase in M2 macrophages and FOXP3(+)cells in the infarcted and peri-infarcted areas, a significantly higher frequency of circulating Treg cells (CD4(+)CD25(+)FOXP3(+)), and a less extreme decrease in conventional T cells (CD25(+)FOXP3(-)) compared with the I Group. Therefore, increasing cholinergic modulation with PY induces greater anti-inflammatory cell recruitment soon after MY in rats.

  4. Demineralized Bone Matrix Scaffolds Modified by CBD-SDF-1α Promote Bone Regeneration via Recruiting Endogenous Stem Cells.

    Science.gov (United States)

    Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu

    2016-10-07

    The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34(+) and c-kit(+) endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.

  5. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  6. Cell adhesion molecules and hyaluronic acid as markers of inflammation, fibrosis and response to antiviral therapy in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Esther Granot

    2001-01-01

    Full Text Available Objective: Cell adhesion molecules (intracellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1 and hyaluronic acid, markers of inflammation and fibrosis were monitored in hepatitis C patients to determine whether changes in plasma levels, during antiviral treatment, can predict long-term response to therapy.

  7. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells.

    Science.gov (United States)

    Bergot, Anne-Sophie; Ford, Neill; Leggatt, Graham R; Wells, James W; Frazer, Ian H; Grimbaldeston, Michele A

    2014-10-01

    Human Papillomavirus (HPV) 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.

  8. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Bergot

    2014-10-01

    Full Text Available Human Papillomavirus (HPV 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.

  9. Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice

    Science.gov (United States)

    Nakashima, Hiroyuki; Nakashima, Masahiro; Kinoshita, Manabu; Ikarashi, Masami; Miyazaki, Hiromi; Hanaka, Hiromi; Imaki, Junko; Seki, Shuhji

    2016-01-01

    We have recently reported that Kupffer cells consist of two subsets, radio-resistant resident CD68+ Kupffer cells and radio-sensitive recruited CD11b+ Kupffer cells/macrophages (Mφs). Non-alcoholic steatohepatitis (NASH) is characterized not only by hepatic steatosis but also chronic inflammation and fibrosis. In the present study, we investigated the immunological mechanism of diet-induced steatohepatitis in fibroblast growth factor 5 (FGF5) deficient mice. After consumption of a high fat diet (HFD) for 8 weeks, FGF5 null mice developed severe steatohepatitis and fibrosis resembling human NASH. F4/80+ Mφs which were both CD11b and CD68 positive accumulated in the liver. The production of TNF and FasL indicated that they are the pivotal effectors in this hepatitis. The weak phagocytic activity and lack of CRIg mRNA suggested that they were recruited Mφs. Intermittent exposure to 1 Gy irradiation markedly decreased these Mφs and dramatically inhibited liver inflammation without attenuating steatosis. However, depletion of the resident subset by clodronate liposome (c-lipo) treatment increased the Mφs and tended to exacerbate disease progression. Recruited CD11b+ CD68+ Kupffer cells/Mφs may play an essential role in steatohepatitis and fibrosis in FGF5 null mice fed with a HFD. Recruitment and activation of bone marrow derived Mφs is the key factor to develop steatohepatitis from simple steatosis. PMID:27708340

  10. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.

    Science.gov (United States)

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Crother, Timothy R; Arditi, Moshe

    2015-04-15

    Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.

  11. Fibroblast Growth Factor-2 Enhanced The Recruitment of Progenitor Cells and Myelin Repair in Experimental Demyelination of Rat Hippocampal Formations

    Directory of Open Access Journals (Sweden)

    Mahdieh Azin

    2015-10-01

    Full Text Available Objective: Hippocampal insults have been observed in multiple sclerosis (MS patients. Fibroblast growth factor-2 (FGF2 induces neurogenesis in the hippocampus and enhances the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs. In the current study, we have investigated the effect of FGF2 on the processes of gliotoxin induced demyelination and subsequent remyelination in the hippocampus. Materials and Methods: In this experimental study adult male Sprague-Dawley rats received either saline or lysolecithin (LPC injections to the right hippocampi. Animals received intraperitoneal (i.p. injections of FGF2 (5 ng/g on days 0, 5, 12 and 26 post-LPC. Expressions of myelin basic protein (Mbp as a marker of myelination, Olig2 as a marker of OPC proliferation, Nestin as a marker of neural progenitor cells, and glial fibrillary acidic protein (Gfap as a marker of reactive astrocytes were investigated in the right hippocampi by reverse transcriptase-polymerase chain reaction (RT-PCR. Results: There was reduced Mbp expression at seven days after LPC injection, increased expressions of Olig2 and Nestin, and the level of Gfap did not change. FGF2 treatment reversed the expression level of Mbp to the control, significantly enhanced the levels of Olig2 and Nestin, but did not change the level of Gfap. At day-28 post- LPC, the expression level of Mbp was higher than the control in LPC-treated animals that received FGF2. The levels of Olig2, Nestin and Gfap were at the control level in the non-treated LPC group but significantly higher in the FGF2-t reated LPC group. Conclusion: FGF2 enhanced hippocampal myelination and potentiated the recruitment of OPCs and neural stem cells (NSCs to the lesion area. Long-term application of FGF2 might also enhance astrogliosis in the lesion site.

  12. Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure

    Institute of Scientific and Technical Information of China (English)

    YANG; ZhiJian; WANG; Wei; MA; DongChao; ZHANG; YouRong; WANG; LianSheng; ZHANG; YuQing; XU; ShunLin; CHEN; Bo; MIAO; DengShun; CAO; KeJiang

    2007-01-01

    We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.

  13. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells.

    Science.gov (United States)

    Pinton, Paolo; Tsuboi, Takashi; Ainscow, Edward K; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A

    2002-10-01

    The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.

  14. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  15. Exchange of extracellular domains of CCR1 and CCR5 reveals confined functions in CCL5-mediated cell recruitment.

    Science.gov (United States)

    Kramp, Birgit K; Megens, Remco T A; Sarabi, Alisina; Winkler, Sabine; Projahn, Delia; Weber, Christian; Koenen, Rory R; von Hundelshausen, Philipp

    2013-10-01

    The chemokine CCL5 recruits monocytes into inflamed tissues by triggering primarily CCR1-mediated arrest on endothelial cells, whereas subsequent spreading is dominated by CCR5. The CCL5-induced arrest can be enhanced by heteromer formation with CXCL4. To identify mechanisms for receptor-specific functions, we employed CCL5 mutants and transfectants expressing receptor chimeras carrying transposed extracellular regions. Mutation of the basic 50s cluster of CCL5, a coordinative site for CCL5 surface presentation, reduced CCR5- but not CCR1-mediated arrest and transmigration. Impaired arrest was restored by exchanging the CCR5-N-terminus for that of CCR1, which supported arrest even without the 50s cluster, whereas mutation of the basic 40s cluster essential for proteoglycan binding of CCL5 could not be rescued. The enhancement of CCL5-induced arrest by CXCL4 was mediated by CCR1 requiring its third extracellular loop. The domain exchanges did not affect formation and co-localisation of receptor dimers, indicating a sensing role of the third extracellular loop for hetero-oligomers in an arrest microenvironment. Our data identify confined targetable regions of CCR1 specialised to facilitate CCL5-induced arrest and enhanced responsiveness to the CXCL4-CCL5 heteromer.

  16. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  17. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    Science.gov (United States)

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component.

  18. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: differential effects on CXCR2 ligands and Duffy Antigen Receptor for Chemokines.

    Science.gov (United States)

    Zerfaoui, Mourad; Naura, Amarjit S; Errami, Youssef; Hans, Chetan P; Rezk, Bashir M; Park, Jiwon; Elsegeiny, Waleed; Kim, Hogyoung; Lord, Kevin; Kim, Jong G; Boulares, A Hamid

    2009-12-01

    We reported that PARP-1 exhibits differential roles in expression of inflammatory factors. Here, we show that PARP-1 deletion was associated with a significant reduction in inflammatory cell recruitment to mouse airways upon intratracheal administration of LPS. However, PARP-1 deletion exerted little effect in response to TNF exposure. LPS induced massive neutrophilia and moderate recruitment of macrophages, and TNF induced recruitment of primarily macrophages with smaller numbers of neutrophils in the lungs. Following either exposure, macrophage recruitment was blocked severely in PARP-1(-/-) mice, and this was associated with a marked reduction in MCP-1 and MIP-1alpha. This association was corroborated partly by macrophage recruitment in response to intratracheal administration of MCP-1 in PARP-1(-/-) mice. Surprisingly, although neutrophil recruitment was reduced significantly in LPS-treated PARP-1(-/-) mice, neutrophil numbers increased in TNF-treated mice, suggesting that PARP-1 deletion may promote a macrophagic-to-neutrophilic shift in the inflammatory response upon TNF exposure. Neutrophil-specific chemokines mKC and MIP-2 were reduced significantly in lungs of LPS-treated but only partially reduced in TNF-treated PARP-1(-/-) mice. Furthermore, the MIP-2 antagonist abrogated the shift to a neutrophilic response in TNF-exposed PARP-1(-/-) mice. Although CXCR2 expression increased in response to either stimulus in PARP-1(+/+) mice, the DARC increased only in lungs of TNF-treated PARP-1(+/+) mice; both receptors were reduced to basal levels in treated PARP-1(-/-) mice. Our results show that the balance of pro-neutrophilic or pro-macrophagic stimulatory factors and the differential influence of PARP-1 on these factors are critical determinants for the nature of the airway inflammatory response.

  19. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours.

    Science.gov (United States)

    Kamata, Tamihiro; Jin, Hong; Giblett, Susan; Patel, Bipin; Patel, Falguni; Foster, Charles; Pritchard, Catrin

    2015-07-16

    The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the (V600) (E)BRAF-driven mouse lung model that develop premalignant lesions to understand stroma-tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial-mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.

  20. Rhein lysinate inhibits monocyte adhesion to human umbilical vein endothelial cells by blocking p38 signaling pathway.

    Science.gov (United States)

    Lin, Yajun; Zhen, Yongzhan; Liu, Jiang; Wei, Jie; Tu, Ping; Hu, Gang

    2013-11-01

    The objective of this study was to investigate the effect of rhein lysinate (RHL) on monocyte adhesion and its mechanism. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the growth inhibition by drugs. The monocyte chemoattractant protein (MCP)-1 levels were assayed using MCP-1 ELISA. The expression of proteins was detected by Western blotting analysis. The results indicated that RHL inhibited monocyte adhesion in a dose- and time-dependent manner. RHL (<20 μmol/L) and lipopolysaccharide (LPS) had no effect on viability of human umbilical vein endothelial cells. Therefore, 20 μmol/L RHL was selected for this study. RHL inhibited secretion of MCP-1 induced by LPS and expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1. In the meantime, both RHL and p38 inhibitor (SB203580) inhibited phosphorylation of p38 and mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK-2) and transcription and expression of ICAM-1 and VCAM-1. In conclusion, RHL inhibits the transcription and expression of ICAM-1 and VCAM-1 by the p38/MAPKAPK-2 signaling pathway, and the effect of RHL on transcription and expression of ICAM-1 and VCAM-1 is similar to p38 inhibitor. RHL could be a prophylactic drug for atherosclerosis.

  1. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  2. CXC chemokine ligand 10 controls viral infection in the central nervous system: evidence for a role in innate immune response through recruitment and activation of natural killer cells.

    Science.gov (United States)

    Trifilo, Matthew J; Montalto-Morrison, Cynthia; Stiles, Linda N; Hurst, Kelley R; Hardison, Jenny L; Manning, Jerry E; Masters, Paul S; Lane, Thomas E

    2004-01-01

    How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1(-/-) mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.

  3. Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats.

    Science.gov (United States)

    Cao, Jian; Wang, Lei; Du, Zhao-jie; Liu, Peng; Zhang, Ya-bo; Sui, Jian-fu; Liu, Yan-pu; Lei, De-lin

    2013-12-01

    Distraction osteogenesis is widely used in orthopaedic and craniofacial surgery. However, its exact mechanism is still poorly understood. The purpose of this study was to find out whether there is systemic recruitment of mesenchymal stem cells (MSC) to the neocallus in the distraction gap by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis during osteogenesis. We examined the migration of MSC towards a gradient of SDF-1 in vitro. We also transplanted MSC labelled with green fluorescent protein (GFP) intravenously, with or without treatment with CXCR4-blocking antibody, into rats that had had unilateral mandibular distraction osteogenesis, and investigated the distribution of cells labelled with GFP in the soft callus after 24 h. We found that SDF-1 facilitated the migration potency of MSC both in vitro and in vivo, and this migration could be inhibited by AMD3100, an antagonist of CXCR4, and promoted by local infusion of exogenous SDF-1 into the distraction gap. This study provides a new insight into the molecular basis of how new bone is regenerated during distraction osteogenesis.

  4. CD43 Functions as an E-Selectin Ligand for Th17 Cells In Vitro and Is Required for Rolling on the Vascular Endothelium and Th17 Cell Recruitment during Inflammation In Vivo.

    Science.gov (United States)

    Velázquez, Francisco; Grodecki-Pena, Anna; Knapp, Andrew; Salvador, Ane M; Nevers, Tania; Croce, Kevin J; Alcaide, Pilar

    2016-02-01

    Endothelial E- and P-selectins mediate lymphocyte trafficking in inflammatory processes by interacting with lymphocyte selectin ligands. These are differentially expressed among different T cell subsets and function alone or in cooperation to mediate T cell adhesion. In this study, we characterize the expression and functionality of E-selectin ligands in Th type 17 lymphocytes (Th17 cells) and report that CD43 functions as a Th17 cell E-selectin ligand in vitro that mediates Th17 cell rolling on the vascular endothelium and recruitment in vivo. We demonstrate Th17 cells express CD44, P-selectin glycoprotein ligand (PSGL)-1, and CD43. Few PSGL-1(-/-)CD43(-/-) Th17 cells accumulated on E-selectin under shear flow conditions compared with wild-type cells. CD43(-/-) Th17 cell accumulation on E-selectin was impaired as compared with wild-type and PSGL-1(-/-), and similar to that observed for PSGL-1(-/-)CD43(-/-) Th17 cells, indicating that CD43 alone is a dominant ligand for E-selectin. Notably, this finding is Th17 cell subset specific because CD43 requires cooperation with PSGL-1 in Th1 cells for binding to E-selectin. In vivo, Th17 cell recruitment into the air pouch was reduced in CD43(-/-) mice in response to CCL20 or TNF-α, and intravital microscopy studies demonstrated that CD43(-/-) Th17 cells had impaired rolling on TNF-α-treated microvessels. Furthermore, CD43(-/-) mice were protected from experimental autoimmune encephalomyelitis and had impaired recruitment of Th17 cells in the spinal cord. Our findings demonstrate that CD43 is a major E-selectin ligand in Th17 cells that functions independent of PSGL-1, and they suggest that CD43 may hold promise as a therapeutic target to modulate Th17 cell recruitment.

  5. G protein-coupled receptor kinase 2 and beta-arrestins are recruited to FSH receptor in stimulated rat primary Sertoli cells.

    Science.gov (United States)

    Marion, Sébastien; Kara, Elodie; Crepieux, Pascale; Piketty, Vincent; Martinat, Nadine; Guillou, Florian; Reiter, Eric

    2006-08-01

    FSH-receptor (FSH-R) signaling is regulated by agonist-induced desensitization and internalization. It has been shown, in a variety of overexpression systems, that G protein-coupled receptor kinases (GRKs) phosphorylate the activated FSH-R, promote beta-arrestin recruitment and ultimately lead to internalization. The accuracy of this mechanism has not yet been demonstrated in cells expressing these different molecules at physiological levels. Using sucrose gradient fractionation, we show that FSH induces the recruitment of the endogenous GRK 2 and beta-arrestin 1/2 from the cytoplasm to the plasma membrane of rat primary Sertoli cells. As assessed by ligand binding, the FSH-R was found expressed in the fractions where GRK 2 and beta-arrestins were recruited upon FSH treatment. In addition, the endogenous beta-arrestin 1 was found dephosphorylated in an agonist-dependent manner. Finally, a significant FSH-binding activity was co-immunoprecipitated with the endogenous beta-arrestins from agonist-stimulated but not from untreated Sertoli cell extracts. This FSH-R interaction with beta-arrestins was sustained for up to 30 min. In conclusion, our data strongly suggest that the GRK/beta-arrestin machinery plays a physiologically relevant role in the regulation of the FSH signaling.

  6. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  7. The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Mandy J. Ludford-Menting

    2011-01-01

    Full Text Available Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.

  8. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3.

    Science.gov (United States)

    Saxena, Neeraj K; Vertino, Paula M; Anania, Frank A; Sharma, Dipali

    2007-05-01

    Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes.

  9. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart.

    Science.gov (United States)

    Cheng, Min; Huang, Kai; Zhou, Junlan; Yan, Dewen; Tang, Yao-Liang; Zhao, Ting C; Miller, Richard J; Kishore, Raj; Losordo, Douglas W; Qin, Gangjian

    2015-04-01

    The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.

  10. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation.

    Directory of Open Access Journals (Sweden)

    Sara O Dean

    Full Text Available BACKGROUND: Myosin II recruitment to the equatorial cortex is one of the earliest events in establishment of the cytokinetic contractile ring. In Drosophila S2 cells, we previously showed that myosin II is recruited to the furrow independently of F-actin, and that Rho1 and Rok are essential for this recruitment [1]. Rok phosphorylates several cellular proteins, including the myosin regulatory light chain (RLC. METHODOLOGY/PRINCIPAL FINDINGS: Here we express phosphorylation state mimic constructs of the RLC in S2 cells to examine the role of RLC phosphorylation involving Rok in the localization of myosin. Phosphorylation of the RLC is required for myosin localization to the equatorial cortex during mitosis, and the essential role of Rok in this localization and for cytokinesis is to maintain phosphorylation of the RLC. The ability to regulate the RLC phosphorylation state spatio-temporally is not essential for the myosin localization. Furthermore, the essential role of Citron in cytokinesis is not phosphorylation of the RLC. CONCLUSIONS/SIGNIFICANCE: We conclude that the Rho1 pathway leading to myosin localization to the future cytokinetic furrow is relatively straightforward, where only Rok is needed, and it is only needed to maintain phosphorylation of the myosin RLC.

  11. Targeting Polycomb to Pericentric Heterochromatin in Embryonic Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment

    Directory of Open Access Journals (Sweden)

    Sarah Cooper

    2014-06-01

    Full Text Available The mechanisms by which the major Polycomb group (PcG complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs, CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.

  12. Recruitment of HDAC4 by transcription factor YY1 represses HOXB13 to affect cell growth in AR-negative prostate cancers

    DEFF Research Database (Denmark)

    Ren, Guoling; Zhang, Guocui; Dong, Zhixiong;

    2008-01-01

    HOXB13 is a homeodomain protein implicated to play a role in growth arrest in AR (androgen receptor)-negative prostate cancer cells. Expression of HOXB13 is restricted to the AR-expressing prostate cells. In this report, we demonstrate that the HDAC inhibitor NaB (sodium butyrate) was able...... to induce cell growth arrest and to increase HOXB13 expression in AR-negative prostate cancer cells. We also show that both HDAC4 and YY1 participated in the repression of HOXB13 expression through an epigenetic mechanism involving histone acetylation modification. Specifically, co...... essential for the recruitments of YY1 and HDAC4. Data presented in this report suggest that YY1 and HDAC4 affected cell growth by repressing transcriptional regulation of HOXB13 through an epigenetic modification of histones....

  13. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration.Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc.Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  14. Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells.

    Science.gov (United States)

    Lu, Te-Ling; Huang, Guan-Jhong; Lu, Te-Jung; Wu, Jin-Bin; Wu, Chieh-Hsi; Yang, Tung-Chuan; Iizuka, Akira; Chen, Yuh-Fung

    2009-08-01

    The MDM2 proto-oncogene is overexpressed in many human tumors. Although MDM2 inhibits tumor-suppressor function of p53, there exists a p53-independent role for MDM2 in tumorigenesis. Therefore, downregulation of MDM2 has been considered an attractive therapeutic strategy. Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. However, the mechanisms are not fully understood. Herein, we report our findings that hispolon inhibited breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment. We also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. Based on this finding, we investigated whether the sensitivity of cells to hispolon was related to ERK1/2 activity. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126. In conclusion, hispolon ubiquitinates and downregulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

  15. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  16. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  17. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium.

    Science.gov (United States)

    Chinthamani, Sreedevi; Odusanwo, Olutayo; Mondal, Nandini; Nelson, Joel; Neelamegham, Sriram; Baker, Olga J

    2012-04-01

    Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).

  18. Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p

    Energy Technology Data Exchange (ETDEWEB)

    Broisat, A.; Riou, L.M.; Ardisson, V.; Fagret, D.; Ghezzi, C. [INSERM, U340, Radiopharmaceutiques Biocliniques, La Tronche (France); Universite de Grenoble, Saint Martin d' Heres (France); Boturyn, D.; Dumy, P. [Universite de Grenoble, Saint Martin d' Heres (France); LEDSS V - Ingenierie Moleculaire, CNRS UMR 5616, Saint Martin d' Heres (France)

    2007-06-15

    VCAM-1 plays a major role in the chronic inflammatory processes present in vulnerable atherosclerotic plaques. The residues 75-84 (B2702-p) and 84-75/75-84 (B2702-rp) of the major histocompatibility complex-1 (MHC-1) molecule B2702 were previously shown to bind specifically to VCAM-1. We hypothesised that radiolabelled B2702-p and B2702-rp might have potential for the molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) expression in atherosclerotic plaques. Preliminary biodistribution studies indicated that {sup 125}I-B2702-rp was unsuitable for in vivo imaging owing to extremely high lung uptake. {sup 123}I- or {sup 99m}Tc-labelled B2702-p was injected intravenously to Watanabe heritable hyperlipidaemic rabbits (WHHL, n = 6) and control animals (n = 6). After 180 min, aortas were harvested for ex vivo autoradiographic imaging, gamma-well counting, VCAM-1 immunohistology and Sudan IV lipid staining. Robust VCAM-1 immunostaining was observed in Sudan IV-positive and to a lesser extent in Sudan IV-negative areas of WHHL animals, whereas no expression was detected in control animals. Significant 2.9-fold and 1.9-fold increases in {sup 123}I-B2702-p and {sup 99m}Tc-B2702-p aortic-to-blood ratios, respectively, were observed between WHHL and control animals (p < 0.05). Tracer uptake on ex vivo images co-localised with atherosclerotic plaques. Image quantification indicated a graded increase in {sup 123}I-B2702-p and {sup 99m}Tc-B2702-p activities from control to Sudan IV-negative and to Sudan IV-positive areas, consistent with the observed pattern of VCAM-1 expression. Sudan IV-positive to control area tracer activity ratios were 17.0 {+-} 9.0 and 5.9 {+-} 1.8 for {sup 123}I-B2702-p and {sup 99m}Tc-B2702-p, respectively. Radiolabelled B2702-p is a potentially useful radiotracer for the molecular imaging of VCAM-1 in atherosclerosis. (orig.)

  19. Cytokine-Induced Cell Surface Expression of Adhesion Molecules in Vascular Endothelial Cells In vitro

    Institute of Scientific and Technical Information of China (English)

    陈红辉; 刘昌勤; 孙圣刚; 梅元武; 童萼塘

    2001-01-01

    Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF-α (1-250 U/ml) or IL-1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF-α (100 U/ml) or IL-1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM-1 and VCAM-1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up-regulated by TNF-α, IL-1β in a concentration- and time-dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM-1 and on VCAM-1 expression. Cytokines might directly induce the expression of ICAM-1 and VCAM-1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.

  20. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration.

    Science.gov (United States)

    Serrano-Pertierra, Esther; Cernuda-Morollón, Eva; Brdička, Tomáš; Hoøejši, Václav; López-Larrea, Carlos

    2014-09-01

    Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.

  1. RECRUITMENT AND RECRUITMENT MODELS IN FISHERY SCIENCE

    Directory of Open Access Journals (Sweden)

    Merica Slišković

    2006-04-01

    Full Text Available Recruitment and growth of individuals bring the most to enlargement of fish stock biomass. Recruitment can be independent on stock size during the development of the fishery, but experience has showed that many fisheries have come to the point when recruitment decreases due to over fishing. Large parental stock does not give large number of juveniles because large number of individuals influences survival of juveniles (competition for food. In period between 1984 and 1987 this phenomenon was recorded in sardine population in the Adriatic Sea, when large biomass of parental stock resulted in twice less recruitment. In the period between 1993 and 2000 there was no significant recruitment of the sardine population in the Adriatic Sea and it reflected on biomass of the sardine. Large recruitment was recorded in 2001 and 2002. There are numerous mathematical models which give relation between stock and recruitment. Beverton–Holt’s and Ricker’s models are usually used. Beverton–Holt’s model assumes that recruitment depends on the density of population. Ricker’s model is based on assumption that all resources are evenly distributed among the individuals; therefore the rise in density causes the exhaustion of resources. This model is suitable for species as the sardine, which migrates in the breeding area.

  2. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.

    Science.gov (United States)

    Lin, Jibin; He, Shaolin; Sun, Xinghui; Franck, Gregory; Deng, Yihuan; Yang, Dafeng; Haemmig, Stefan; Wara, A K M; Icli, Basak; Li, Dazhu; Feinberg, Mark W

    2016-09-01

    Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-β, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and

  3. Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission.

    Science.gov (United States)

    Giugliano, Silvia; Petroff, Margaret G; Warren, Bryce D; Jasti, Susmita; Linscheid, Caitlin; Ward, Ashley; Kramer, Anita; Dobrinskikh, Evgenia; Sheiko, Melissa A; Gale, Michael; Golden-Mason, Lucy; Winn, Virginia D; Rosen, Hugo R

    2015-10-15

    Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications.

  4. Clinical research of Effects of Astragali on sICAM-1 and sVCAM-1 Levels in Patients with Acute Leucemia%黄芪对急性白血病患者血清黏附分子水平影响的临床研究

    Institute of Scientific and Technical Information of China (English)

    朱飞跃; 张卓; 曹朝晖; 姜志平

    2007-01-01

    目的:探讨黄芪对急性白血病病人可溶性细胞间黏附分子-1和可溶性血管细胞黏附分子-1水平的影响.方法:64例初治急性白血病患者随机分为化疗组32例和化疗加黄芪组32例,采用酶联免疫吸附测定方法(ELISA法),对治疗前后的血清可溶性细胞间黏附分子-1和可溶性血管细胞黏附分子-1水平进行检测.结果:①与正常组比较,急性白血病病人治疗前后可溶性细胞间黏附分子-1和可溶性血管细胞黏附分子-1水平升高(P<0 05).②治疗后,化疗加黄芪组与化疗组血清可溶性细胞间黏附分子-1和可溶性血管细胞黏附分子-1水平均下降(P<0 05),化疗加黄芪组下降尤为明显(P<0 05).结论黄芪可通过降低白血病血清sICAM-1和sVCAM-1水平的而发挥抗肿瘤作用.

  5. Genistein inhibits human TNF-α-induced porcine endothelial cell adhesiveness for human monocytes and natural killer cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cellular immune response is a major barrier to xenotransplantation. Human tumor necrosis factor-α (hTNF-α) possesses cross-species activity and directly amplifies the immune rejection via the upregulation of adhesion molecules on porcine endothelium. We investigated the role of protein tyrosine phosphorylation in the induction of expression of E-sclectin and vascular cell adhesion molecule-1 (VCAM-1), and the augmentation of adhesion of human peripheral blood monocytes (PBMo) and natural killer cells (PBNK), after rhTNF-α-stimulation of porcine aortic endothelial cells (PAEC) in vitro, rhTNF-α-increased adhesiveness of PAEC for both PBMo and PBNK was dose-dependently reduced by pretreatment of PAEC with the selective protein tyrosine kinase (PTK) inhibitor genistein. The inhibitory effect occurred at the early time of PAEC activation triggered by rhTNF-α, and was completely reversible. PTK activity assay indicated that genistein also suppressed rhTNF-α stimulated activation of protein tyrosine kinases (PTKs) in PAEC in a dose-dependent manner. Flow cytometric analysis showed that genistein inhibited the upregulation of E-selectin and VCAM-1 by rhTNF-α. These results suggest that PTKs may regulate the expression of E-selectin and VCAM-1 on PAEC and the adherence of PBMo and PBNK induced by rhTNF-α. Moreover, dietary genistein, used as an adhesion antagonist, may contribute to managing the cell-mediated rejection in the clinical application.

  6. E-recruitment

    DEFF Research Database (Denmark)

    Holm, Anna

    2012-01-01

    E-recruitment, also known as online or web-based recruitment, is little discussed in research from an organizational perspective. The purpose of this chapter is therefore to analyze and discuss the process of e-recruitment, its key constituents and organizing principles. In doing so I draw on the...

  7. Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment

    Science.gov (United States)

    Das, Amitava; Shergill, Uday; Thakur, Lokendra; Sinha, Sutapa; Urrutia, Raul; Mukhopadhyay, Debabrata

    2010-01-01

    Chemotaxis signals between hepatic stellate cells (HSC) and sinusoidal endothelial cells (SEC) maintain hepatic vascular homeostasis and integrity and also regulate changes in sinusoidal structure in response to liver injury. Our prior studies have demonstrated that the bidirectional chemotactic signaling molecules EphrinB2 and EphB4 are expressed in HSC. The aim of our present study was to explore whether and how the EphrinB2/EphB4 system in HSC could promote SEC recruitment, which is essential for sinusoidal structure and remodeling. Stimulation of human HSC (hHSC) with chimeric agonists (2 μg/ml) of either EphrinB2 or EphB4 (EphrinB2 Fc or EphB4 Fc, respectively) significantly increased VEGF mRNA levels in hHSC as assessed by quantitative PCR, with respective small interfering RNAs for EphrinB2 and EphB4 inhibiting this increase (P < 0.05, n = 3). EphrinB2 agonist-induced increase in VEGF mRNA levels in hHSC was associated with increased phosphorylation of Erk and was significantly blocked by U0126 (20 μM), an inhibitor of MEK, which is a kinase upstream from Erk (P < 0.05, n = 3). The EphB4 agonist also significantly increased human VEGF promoter activity (P < 0.05, n = 3) as assessed by promoter reporter luciferase assay in transfected LX2-HSC. This was associated with upregulation of the vasculoprotective transcription factor, Kruppel-like factor 2 (KLF2). In Boyden chamber assays, conditioned media from hHSC stimulated with agonists of EphrinB2 or EphB4 increased SEC chemotaxis in a VEGF-dependent manner, compared with control groups that included basal media with agonists of EphrinB2, EphB4, or HSC-conditioned media from HSC in absence of agonist stimulation (P < 0.05, n = 3). EphB4 expression was detected in situ within liver sinusoidal vessels of rats after carbon tetrachloride-induced liver injury. In summary, activation of the EphrinB2/EphB4 signaling pathway in HSC promotes chemotaxis of SEC through a pathway that involves Erk, KLF2, and VEGF. These

  8. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    DEFF Research Database (Denmark)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus;

    2009-01-01

    ) and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white...... precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. CONCLUSIONS/SIGNIFICANCE: Using both in vitro and in vivo model systems of white and brown fat cell...

  9. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration.

    Science.gov (United States)

    Shafiq, M; Jung, Y; Kim, S H

    2015-11-27

    In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone) (PLCL) and substance P (SP)-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs) in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+) cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  10. The Recruitment Process:

    DEFF Research Database (Denmark)

    Holm, Anna

    The aim of this research was to determine whether the introduction of e-recruitment has an impact on the process and underlying tasks, subtasks and activities of recruitment. Three large organizations with well-established e-recruitment practices were included in the study. The three case studies......, which were carried out in Denmark in 2008-2009 using qualitative research methods, revealed changes in the sequence, divisibility and repetitiveness of a number of recruitment tasks and subtasks. The new recruitment process design was identified and presented in the paper. The study concluded...... that the main task of the process shifted from processing applications to communicating with candidates....

  11. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  12. Increase of circulating CD11b(+)Gr1(+) cells and recruitment into the synovium in osteoarthritic mice with hyperlipidemia.

    Science.gov (United States)

    Uchida, Kentaro; Naruse, Kouji; Satoh, Masashi; Onuma, Kenji; Ueno, Masaki; Takano, Shotaro; Urabe, Ken; Takaso, Masashi

    2013-01-01

    Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis (OA), the link between OA and hyperlipidemia is not fully understood. As the number of activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow cytometry. To examine the influence of the hematopoietic environment, including abnormal stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was examined by evaluating biochemical parameters and spleen weight of F2 animals (STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b(+)Gr1(+) cells in spleens and peripheral blood was increased, and CD11b(+)Gr1(+) cells were also present in synovial tissue. Splenomegaly was observed and correlated with the ratio of CD11b(+)Gr1(+) cells. When bone marrow from GFP-expressing mice was transplanted into STR/Ort mice, no difference in the percentage of CD11b(+)Gr1(+) cells was observed between transplanted and age-matched STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen weight correlated with serum total cholesterol. These results suggest that the increase in circulating and splenic CD11b(+)Gr1(+) cells in STR/Ort mice originates from hypercholesterolemia. Further investigation of the function of CD11b(+)Gr1(+) cells in synovial tissue may reveal the pathology of OA in STR/Ort mice.

  13. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Vita S Salsman

    Full Text Available Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF" is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant "Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES." This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications.

  14. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    Science.gov (United States)

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  15. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Directory of Open Access Journals (Sweden)

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  16. Recruitment of CCR6-expressing Th17 cells by CCL20 secreted from plasmin-stimulated macrophages

    Institute of Scientific and Technical Information of China (English)

    Qun Li; Yves Laumonnier; Tatiana Syrovets; Thomas Simmet

    2013-01-01

    In the present study,monocyte-derived human macrophages were differentiated from buffy coats.Na(i)ve CD4+ T-cells enriched from peripheral blood mononuclear cells using anti-CD4 magnetic beads and the autoMACS separation system were polarized under T-helper 17 (Th17)-promoting conditions for 6 days to get Th17 cells.The frequency of Th17 cell differentiation and the expression of C-C chemokine receptor type 6 (CCR6) on Th17 cells were investigated by flow cytometry.Plasmin-triggered induction of macrophage inflammatory protein-3alpha/C-C chemokine ligand 20 (CCL20) genes in macrophages was assessed by reverse transcription-polymerase chain reaction,and secreted protein levels were measured by enzymelinked immunosorbent assay.Th17 cell migration induced by CCL20 secreted from plasmin-stimulated macrophages was tested in vitro by chemotaxis using a transwell system.These results demonstrate that plasmin triggers the expression of chemokine CCL20 messenger RNA and the release of CCL20 protein in human monocyte-derived macrophages,which critically depend on the proteolytic activity of plasmin and activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways.Expression of CCR6 was detected on 87.23 ± 8.6% of Th17 cells in vitro.Similar to chemotaxis triggered by recombinant human CCL20,supernatants collected from plasmin-stimulated macrophage-induced chemotactic migration of Th17 cells,which could be inhibited by an anti-CCL20 neutralizing antibody.These results suggest that plasmin generated in inflamed tissues might elicit production of chemokine CCL20 by human macrophages leading to the recruitmentof CCR6 positive Th17 cells to the inflammatory sites.

  17. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells

    Science.gov (United States)

    Lin, Hwai-Jeng; Hsu, Fang-Yu; Chen, Wei-Wei; Lee, Che-Hsin; Lin, Ying-Ju; Chen, Yi-Ywan M.; Chen, Chih-Jung; Huang, Mei-Zi; Kao, Min-Chuan; Chen, Yu-An; Lai, Hsin-Chih; Lai, Chih-Ho

    2016-01-01

    Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases. PMID:27667993

  18. Adhesion molecule expression stimulated by Bacteroides thetaiotaomicron cell-surface antigens.

    Science.gov (United States)

    Rokosz, A; Meisel-Mikołajczyk, F; Malchar, C; Nowaczyk, M; Górski, A

    1999-01-01

    Bacteroides thetaiotaomicron, a Gram-negative anaerobic rod belonging to the Bacteroides fragilis group (BFG), is involved in many systemic and local, most frequently suppurative infections in man. The cell envelope of these rods is composed of two carbohydrate-containing antigens: lipopolysaccharide (LPS) and capsular polysaccharide (CPS). Adhesion molecules ICAM-1, VCAM-1 and E-selectin (ELAM-1) are induced on the endothelial cells by mediators of inflammation. The aim of this study was to assay the ability of B. thetaiotaomicron surface antigens to induce adhesion molecule expression on the endothelial cells. The influence of LPS and CPS on the expression of adhesion molecules on HMEC-1 cell line was examined in an ELISA test. ELISA was performed with monoclonal mouse anti-human: ICAM-1, VCAM-1 and E-selectin antibodies of the IgG class. B. thetaiotaomicron lipopolysaccharides revealed the ability to induce ICAM-1, VCAM-1 and E-selectin expression on the endothelial cells. Their activities were similar, but lower than the activity of Eschericha coli LPS. ICAM-1 was the most stimulated adhesion molecule. The strongest activation by LPS was achieved at the concentrations of 10.0 and 1.0 micrograms/ml. The ability of capsular polysaccharide to induce the expression of adhesion molecules was considerably weaker.

  19. CCR9 Is Not Required for the Homing of Pro-inflammatory Effector T cells, but Is Crucial for Recruitment and Expansion of FoxP3+ CD8+ Tregs in the Small Intestine

    DEFF Research Database (Denmark)

    Gomez-Casado, Cristina; Joeris, Thorsten; Holmkvist, Petra;

    did not only differentiate into Teff, but also into FoxP3+ CD8+ Tregs, which in contrast to Teff cells expressed high levels of CCR9. Indeed, recruitment and expansion of this regulatory subset in the small intestine was strongly dependent on CCR9. Hence, our data show that Teff and regulatory T cell...

  20. Manassantin A and B isolated from Saururus chinensis inhibit TNF-alpha-induced cell adhesion molecule expression of human umbilical vein endothelial cells.

    Science.gov (United States)

    Kwon, Oh Eok; Lee, Hyun Sun; Lee, Seung Woong; Chung, Mi Yeon; Bae, Ki Hwan; Rho, Mun-Chual; Kim, Young-Kook

    2005-01-01

    Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and B (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with TNF-alpha, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with IC50 values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited TNF-alpha-induced up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by TNF-alpha, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

  1. Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis.

    Science.gov (United States)

    Yuan, Ke; Orcholski, Mark E; Panaroni, Cristina; Shuffle, Eric M; Huang, Ngan F; Jiang, Xinguo; Tian, Wen; Vladar, Eszter K; Wang, Lingli; Nicolls, Mark R; Wu, Joy Y; de Jesus Perez, Vinicio A

    2015-01-01

    Pericytes are perivascular cells localized to capillaries that promote vessel maturation, and their absence can contribute to vessel loss. Whether impaired endothelial-pericyte interaction contributes to small vessel loss in pulmonary arterial hypertension (PAH) is unclear. Using 3G5-specific, immunoglobulin G-coated magnetic beads, we isolated pericytes from the lungs of healthy subjects and PAH patients, followed by lineage validation. PAH pericytes seeded with healthy pulmonary microvascular endothelial cells failed to associate with endothelial tubes, resulting in smaller vascular networks compared to those with healthy pericytes. After the demonstration of abnormal polarization toward endothelium via live-imaging and wound-healing studies, we screened PAH pericytes for abnormalities in the Wnt/planar cell polarity (PCP) pathway, which has been shown to regulate cell motility and polarity in the pulmonary vasculature. PAH pericytes had reduced expression of frizzled 7 (Fzd7) and cdc42, genes crucial for Wnt/PCP activation. With simultaneous knockdown of Fzd7 and cdc42 in healthy pericytes in vitro and in a murine model of angiogenesis, motility and polarization toward pulmonary microvascular endothelial cells were reduced, whereas with restoration of both genes in PAH pericytes, endothelial-pericyte association was improved, with larger vascular networks. These studies suggest that the motility and polarity of pericytes during pulmonary angiogenesis are regulated by Wnt/PCP activation, which can be targeted to prevent vessel loss in PAH.

  2. Evidence for eosinophil recruitment, leukotriene B4 production and mast cell hyperplasia following Toxocara canis infection in rats

    Directory of Open Access Journals (Sweden)

    D. Carlos

    2011-04-01

    Full Text Available It is well known that eosinophilia is a key pathogenetic component of toxocariasis. The objective of the present study was to determine if there is an association between peritoneal and blood eosinophil influx, mast cell hyperplasia and leukotriene B4 (LTB4 production after Toxocara canis infection. Oral inoculation of 56-day-old Wistar rats (N = 5-7 per group with 1000 embryonated eggs containing third-stage (L3 T. canis larvae led to a robust accumulation of total leukocytes in blood beginning on day 3 and peaking on day 18, mainly characterized by eosinophils and accompanied by higher serum LTB4 levels. At that time, we also noted increased eosinophil numbers in the peritoneal cavity. In addition, we observed increased peritoneal mast cell number in the peritoneal cavity, which correlated with the time course of eosinophilia during toxocariasis. We also demonstrated that mast cell hyperplasia in the intestines and lungs began soon after the T. canis larvae migrated to these compartments, reaching maximal levels on day 24, which correlated with the complete elimination of the parasite. Therefore, mast cells appear to be involved in peritoneal and blood eosinophil infiltration through an LTB4-dependent mechanism following T. canis infection in rats. Our data also demonstrate a tight association between larval migratory stages and intestinal and pulmonary mast cell hyperplasia in the toxocariasis model.

  3. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    González-Guerrero, Cristian, E-mail: cristian.gonzalez@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Ocaña-Salceda, Carlos, E-mail: carlos.ocana@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Berzal, Sergio, E-mail: sberzal@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Carrasco, Susana, E-mail: scarrasco@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Fernández-Fernández, Beatriz, E-mail: bfernandez@fjd.es [Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); and others

    2013-11-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  4. PI 3 kinase related kinases-independent proteolysis of BRCA1 regulates Rad51 recruitment during genotoxic stress in human cells.

    Directory of Open Access Journals (Sweden)

    Ian Hammond-Martel

    Full Text Available BACKGROUND: The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress. METHODOLOGY/PRINCIPAL FINDINGS: We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS (generating bulky DNA adducts or alkylated bases respectively induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombination machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks. CONCLUSION/SIGNIFICANCE: Taken together our results demonstrate that (i the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner

  5. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Directory of Open Access Journals (Sweden)

    Zahra Hassani

    Full Text Available MAIN OBJECTIVES: Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke. METHODS: We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation. RESULTS: We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells. CONCLUSIONS: Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  6. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo.

    Science.gov (United States)

    Bienvenu, Thomas C M; Busti, Daniela; Magill, Peter J; Ferraguti, Francesco; Capogna, Marco

    2012-06-21

    Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.

  7. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiayao [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China); Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Chen, Xiangmei, E-mail: xmchen301@126.com [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that

  8. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    2015-12-01

    Full Text Available During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

  9. ICAM-1 expression and organization in human endothelial cells is sensitive to gravity

    Science.gov (United States)

    Zhang, Yu; Sang, Chen; Paulsen, Katrin; Arenz, Andrea; Zhao, Ziyan; Jia, Xiaoling; Ullrich, Oliver; Zhuang, Fengyuan

    2010-11-01

    Transendothelial migration (TEM) of immune cells is a crucial process during a multitude of physiological and pathological conditions such as development, defense against infections and wound healing. Migration within the body tissues and through endothelial barriers is strongly dependent and regulated both by cytoskeletal processes and by expression of surface adhesion molecules such as ICAM-1 and VCAM-1. Space flight experiments have confirmed that TEM will be inhibited and may cause astronauts' immune function decreased and make them easy for infection. We used NASA RCCS to provide a simulated microgravity environment; endothelial cells were cultured on microcarrier beads and activated by TNF-α. Results demonstrate after clinorotation ICAM-1 expression increased, consistent with the notion in parabolic flights. However, VCAM-1 showed no significant change between activated or inactivated cells. Depolymerization of F-actin and clustering of ICAM-1 on cell membrane were also observed in short-term simulated microgravity, and after 24 h clinorotation, actin fiber rearrangement was initiated and clustering of ICAM-1 became stable. ICAM-1 mRNA and VCAM-1 mRNA were up-regulated after 30 min clinorotation, and returned to the same level with controls after 24 h clinorotation.

  10. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Energy Technology Data Exchange (ETDEWEB)

    Khatami, Mahin [Inflammation and Cancer Biology, National Cancer Institute (Ret), the National Institutes of Health, Bethesda, MD 20817 (United States)

    2014-01-27

    Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mϕs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  11. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs and Eosinophils (Eos with Host Mast Cells (MCs and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    Directory of Open Access Journals (Sweden)

    Mahin Khatami

    2014-01-01

    Full Text Available Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates is heavy investment on numerous genetic mutations (molecular false-flags in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance. Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs demonstrated at least three stages of interactions between resident (host and recruited immune cells: (a, acute phase; activation of mast cells (MCs, IgE Abs, histamine and prostaglandin synthesis; (b, intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos infiltrations into epithelia and goblet cells (GCs, tissue hypertrophy and neovascularization; and (c, chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mfs, increased (irregular size B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth and/or thinning (necrosis and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  12. Associations of Unilateral Whisker and Olfactory Signals Induce Synapse Formation and Memory Cell Recruitment in Bilateral Barrel Cortices: Cellular Mechanism for Unilateral Training Toward Bilateral Memory

    Science.gov (United States)

    Gao, Zilong; Chen, Lei; Fan, Ruicheng; Lu, Wei; Wang, Dangui; Cui, Shan; Huang, Li; Zhao, Shidi; Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2016-01-01

    Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex (CBC) were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveal the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory. PMID:28018178

  13. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  14. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ana M. Santander

    2015-01-01

    Full Text Available The relationship between obesity and breast cancer (BC has focused on serum factors. However, the mammary gland contains adipose tissue (AT which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations. In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  15. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Science.gov (United States)

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  16. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  17. Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity.

    Science.gov (United States)

    Sun, Shan; Yu, Huiqian; Yu, Hui; Honglin, Mei; Ni, Wenli; Zhang, Yanping; Guo, Luo; He, Yingzi; Xue, Zhen; Ni, Yusu; Li, Jin; Feng, Yi; Chen, Yan; Shao, Ruijin; Chai, Renjie; Li, Huawei

    2015-02-01

    One of the most unfortunate side effects of aminoglycoside (AG) antibiotics such as neomycin is that they target sensory hair cells (HCs) and can cause permanent hearing impairment. We have observed HC loss and microglia-like cell (MLC) activation in the inner ear (cochlea) following neomycin administration. We focused on CX3CL1, a membrane-bound glycoprotein expressed on neurons and endothelial cells, as a way to understand how the MLCs are activated and the role these cells play in HC loss. CX3CL1 is the exclusive ligand for CX3CR1, which is a chemokine receptor expressed on the surface of macrophages and MLCs. In vitro experiments showed that the expression levels of CX3CL1 and CX3CR1 increased in the cochlea upon neomycin treatment, and CX3CL1 was expressed on HCs, while CX3CR1 was expressed on MLCs. When cultured with 1 μg/mL exogenous CX3CL1, MLCs were activated by CX3CL1, and the cytokine level was increased in the cochleae leading to apoptosis in the HCs. In CX3CR1 knockout mice, a significantly greater number of cochlear HCs survived than in wild-type mice when the cochlear explants were cultured with neomycin in vitro. Furthermore, inhibiting the activation of MLCs with minocycline reduced the neomycin-induced HC loss and improved the hearing function in neomycin-treated mice in vivo. Our results demonstrate that CX3CL1-induced MLC activation plays an important role in the induction of HC death and provide evidence for CX3CL1 and CX3CR1 as promising new therapeutic targets for the prevention of hearing loss.

  18. Phosphorylation of Def Regulates Nucleolar p53 Turnover and Cell Cycle Progression through Def Recruitment of Calpain3

    Science.gov (United States)

    Tao, Ting; Shi, Hui; Lo, Li Jan; Wang, Yingchun; Chen, Jun; Peng, Jinrong

    2016-01-01

    Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis. PMID:27657329

  19. The Effects of Scaffold Remnants in Decellularized Tissue Engineered Cardiovascular Constructs on the Recruitment of Blood Cells.

    Science.gov (United States)

    Sanders, Bart; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank

    2017-03-17

    Decellularized tissue engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants prior to implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human granulocyte and agranulocyte fractions were isolated, stained, brought back in suspension, and implemented in the system. Three different types of biomaterials were exposed to the circulating blood cells, consisting of decellularized tissue engineered constructs (DTEC) with or without scaffold remnants, or only bare scaffold. After 5 hours of testing, the granulocyte fraction was depleted faster from the circulation than the agranulocyte fraction. However, only the granulocytes infiltrated into the DTEC with scaffold, migrating towards the scaffold remnants. The agranulocyte population, on the other hand, was only observed on the outer surface. Active cell infiltration was associated with increased levels of MMP-1 secretion in the DTEC including scaffold remnants. Pro-inflammatory cytokines such as IL-1α, IL-6 and TNF-α were significantly upregulated in the DTEC without scaffold remnants. These results indicate that scaffold remnants can influence the immune response in DTEC, being responsible for rapid cell infiltration.

  20. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.

    Science.gov (United States)

    Timpano, Sara; Uniacke, James

    2016-05-13

    Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5' cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or "normoxia," is far from physiological or "normal." In fact, oxygen in human tissues ranges from 1-11% or "physioxia." Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1-11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins.

  1. Trypanosoma cruzi infection: a continuous invader-host cell cross talk with participation of extracellular matrix and adhesion and chemoattractant molecules

    Directory of Open Access Journals (Sweden)

    Marino A.P.M.P.

    2003-01-01

    Full Text Available Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.

  2. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  3. The stem cell-expressed receptor Lgr5 possesses canonical and functionally active molecular determinants critical to β-arrestin-2 recruitment.

    Directory of Open Access Journals (Sweden)

    Joshua C Snyder

    Full Text Available Lgr5 is a membrane protein related to G protein-coupled receptors (GPCRs whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and βarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit βarr2. Among them, a "SSS" serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail, is in a region consistent with other GPCRs that bind βarr2 with high-affinity. To test its functionality, a ligand-independent βarr2 translocation assay was implemented. We show that Lgr5 recruits βarr2 and that the "SSS" amino acids (873-875 are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and βarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease.

  4. The Stem Cell-Expressed Receptor Lgr5 Possesses Canonical and Functionally Active Molecular Determinants Critical to β-arrestin-2 Recruitment

    Science.gov (United States)

    Snyder, Joshua C.; Rochelle, Lauren K.; Barak, Larry S.; Caron, Marc G.

    2013-01-01

    Lgr5 is a membrane protein related to G protein-coupled receptors (GPCR)s whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and βarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit βarr2. Among them, a “SSS” serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail), is in a region consistent with other GPCRs that bind βarr2 with high-affinity. To test its functionality, a ligand-independent βarr2 translocation assay was implemented. We show that Lgr5 recruits βarr2 and that the “SSS” amino acids (873-875) are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and βarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease. PMID:24386388

  5. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Science.gov (United States)

    Neuvonen, Maarit; Kazlauskas, Arunas; Martikainen, Miika; Hinkkanen, Ari; Ahola, Tero; Saksela, Kalle

    2011-11-01

    Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  6. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  7. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction.

    Directory of Open Access Journals (Sweden)

    Christopher J Scarlett

    Full Text Available BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA. Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that

  8. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanqin [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Zhi, Hui [Cardiovascular Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Hou, Xiuyun [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Jiang, Bingbing, E-mail: bjiang1@rics.bwh.harvard.edu [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Cardiovascular Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin

  9. Possible recruitment of osteoblastic precursor cells from hypertrophic chondrocytes during initial osteogenesis in cartilaginous limbs of young rats.

    Science.gov (United States)

    Franzen, A; Oldberg, A; Solursh, M

    1989-08-01

    The appearance of the bone phenotype during rat embryogenesis was studied by in situ hybridization using a cDNA clone to osteopontin. Radiolabeled sense and antisense RNA probes were prepared from the osteopontin cDNA by in vitro transcription. The probes were used to hybridize paraffin sections of the cartilaginous diaphysis from embryonic rats at day 17 of gestation. The hybridization pattern was analyzed by autoradiography. Hybridization with the antisense probe gave patterns of silver grain labeling, indicating the presence of osteopontin mRNA among the hypertrophic chondrocytes. No silver grains could be detected in the corresponding region following hybridization of consecutive sections with the sense probe, showing the specificity of the technique being used. Whether these results indicate that the osteopontin gene is transiently expressed by hypertrophic chondrocytes or that osteopontin is an early marker for osteoblastic precursor cells will have to be explored further.

  10. Oral feeding with ethinyl estradiol suppresses and treats experimental autoimmune encephalomyelitis in SJL mice and inhibits the recruitment of inflammatory cells into the central nervous system.

    Science.gov (United States)

    Subramanian, Sandhya; Matejuk, Agata; Zamora, Alex; Vandenbark, Arthur A; Offner, Halina

    2003-02-01

    There is much interest in the possible ameliorating effects of estrogen on various autoimmune diseases. We previously established the protective effects of 17 beta-estradiol (E2) on experimental autoimmune encephalomyelitis (EAE). In the current study we investigated the effectiveness of oral treatment with ethinyl estradiol (EE) on EAE and the mechanisms involved. Ethinyl estradiol is a semisynthetic estrogen compound found in birth control pills, and its chemical structure allows this compound to retain activity when given orally. We found that oral EE, like E2, drastically suppressed EAE induced by proteolipid protein 139-151 peptide when given at initiation of EAE. However, unlike E2, EE reduced clinical severity when given after the onset of clinical signs. Treatment with EE significantly decreased the secretion of proinflammatory cytokines (IFN-gamma, TNF-alpha, and IL-6) by activated T cells as well as the expression of a key matrix metalloproteinase, disease-mediating chemokines/receptors, and IgG2a levels, but increased the expression of TGF-beta 3 in the CNS. The absence of infiltrating lymphocytes together with the suppression of cytokines, matrix metalloproteinase, and chemokines/receptors suggests that EE, like E2, protects mice from EAE by inhibiting the recruitment of T cells and macrophages into the CNS. These results suggest that oral ethinyl estradiol might be a successful candidate as therapy for multiple sclerosis.

  11. Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke.

    Science.gov (United States)

    Regueiro, Ander; Cuadrado-Godia, Elisa; Bueno-Betí, Carlos; Diaz-Ricart, Maribel; Oliveras, Anna; Novella, Susana; Gené, Gemma González; Jung, Carole; Subirana, Isaac; Ortiz-Pérez, Jose Tomás; Roqué, Mercè; Freixa, Xavier; Núñez, Julio; Escolar, Gines; Marrugat, Jaume; Hermenegildo, Carlos; Valverde, Miguel Angel; Roquer, Jaume; Sanchis, Juan; Heras, Magda

    2015-03-01

    The mobilization pattern and functionality of endothelial progenitor cells after an acute ischemic event remain largely unknown. The aim of our study was to characterize and compare the short- and long-term mobilization of endothelial progenitor cells and circulating endothelial cells after acute myocardial infarction or atherothrombotic stroke, and to determine the relationship between these cell counts and plasma concentrations of vascular cell adhesion molecule (VCAM-1) and Von Willebrand factor (VWF) as surrogate markers of endothelial damage and inflammation. In addition, we assessed whether endothelial progenitor cells behave like functional endothelial cells. We included 150 patients with acute myocardial infarction or atherothrombotic stroke and 145 controls. Endothelial progenitor cells [CD45-, CD34+, KDR+, CD133+], circulating endothelial cells [CD45-, CD146+, CD31+], VWF, and VCAM-1 levels were measured in controls (baseline only) and in patients within 24h (baseline) and at 7, 30, and 180 days after the event. Myocardial infarction patients had higher counts of endothelial progenitor cells and circulating endothelial cells than the controls (201.0/mL vs. 57.0/mL; pstroke patients, the number of endothelial progenitor cells - but not circulating endothelial cells - was higher than in controls (90.0/mL vs. 37.0/mL; p=0.01; 105.0/mL vs. 71.0/mL; p=0.11). At 30 days after stroke, however, VCAM-1 peaked (628.1/mL vs. 869.1/mL; pafter stroke, circulating endothelial cells and VWF decreased, compared to baseline. Cultured endothelial progenitor cells from controls and myocardial infarction patients had endothelial phenotype characteristics and exhibited functional differences in adhesion and Ca(2+) influx, but not in proliferation and vasculogenesis. In myocardial infarction patients, VCAM-1 levels and mobilization of endothelial progenitor cells peaked at 30 days after the ischemic event. Although a similar VCAM-1 kinetic was observed in stroke patients

  12. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  13. GM-CSF Exhibits Anti-Inflammatory Activity on Endothelial Cells Derived from Chronic Venous Disease Patients

    Directory of Open Access Journals (Sweden)

    Veronica Tisato

    2013-01-01

    Full Text Available Twenty patients affected by chronic venous disease (CVD in tertiary venous network and/or saphenous vein were analyzed before surgical ablation by echo-color-doppler for the hemodynamic parameters reflux time (RT and resistance index (RI, a negative and a positive prognostic factor, respectively. RT and RI were next correlated with relevant in vitro parameters of venous endothelial cells (VEC obtained from surgical specimens, such as cell migration in response to serum gradient, proliferation index, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 expression, as well as cytokines release. Of interest, ICAM-1 expression in patient-derived VEC cultures correlated positively with RT and negatively with RI. Moreover, RT showed a positive correlation with the baseline osteoprotegerin (OPG expression by VEC and an inverse correlation with VEC proliferation index. On the other hand, RI correlated positively with TNF-related apoptosis inducing ligand (TRAIL expression. Among the cytokines released by VEC, GM-CSF showed a positive correlation with VEC proliferation and TRAIL expression and a negative correlation with OPG, ICAM-1 and VCAM-1 expression. Since in vitro recombinant GM-CSF induced VEC proliferation and counteracted the induction of ICAM-1, VCAM-1 and OPG upon exposure to TNF-α, our data suggest an anti-inflammatory activity of GM-CSF on venous endothelial cells.

  14. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway.

    Science.gov (United States)

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  15. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  16. R2* and R2 mapping for quantifying recruitment of superparamagnetic iron oxide-tagged endothelial progenitor cells to injured liver: tracking in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Q

    2014-04-01

    injured livers.Keywords: EPC, magnetic resonance imaging, cell recruitment

  17. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.

  18. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site.

    Science.gov (United States)

    Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V

    2013-01-01

    Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.

  19. Recruiter Selection Model

    Science.gov (United States)

    2006-05-01

    interests include feature selection, statistical learning, multivariate statistics, market research, and classification. He may be contacted at...current youth market , and reducing barriers to Army enlistment. Part of the Army Recruiting Initiatives was the creation of a recruiter selection...Selection Model DevelPed by the Openuier Reseach Crate of E...lneSstm Erapseeeng Depce-teo, WViitd Ntt. siliec Academy, NW..t Point, 271 Weau/’itt 21M

  20. Electronic Recruitment at CERN

    CERN Multimedia

    2004-01-01

    The Human Resources Department switches to electronic recruitment. From now on whenever you are involved in a recruitment action you will receive an e-mail giving you access to a Web folder. Inside you will find a shortlist of applications drawn up by the Human Resources Department. This will allow you to consult the folder, at the same time as everyone else involved in the recruitment process, for the vacancy you are interested in. This new electronic recruitment system, known as e-RT, will be introduced in a presentation given at 10 a.m. on 11 February in the Main Auditorium. Implemented by AIS (Administrative Information Services) and the Human Resources Department, e-RT will cover vacancies open in all of CERN's recruitment programmes. The electronic application system was initially made available to technical students in July 2003. By December it was extended to summer students, fellows, associates and Local Staff. Geraldine Ballet from the Recruitment Service prefers e-RT to mountains of paper! The Hu...

  1. An increase in milk IgA correlates with both pIgR expression and IgA plasma cell accumulation in the lactating mammary gland of PRM/Alf mice.

    Science.gov (United States)

    Boumahrou, Nisrine; Chevaleyre, Claire; Berri, Mustapha; Martin, Patrice; Bellier, Sylvain; Salmon, Henri

    2012-12-01

    In mice, during late pregnancy and lactation, maternal precursors of IgA-containing cells (cIgA-cells) are primed in the gut and home to the mammary gland where they secrete IgA. In turn, the ensuing increase in milk IgA mediates immune protection of the newborn gastrointestinal tract. PRM/Alf is an inbred mouse strain which exhibits a substantial post-natal intestinal lengthening which develops throughout the neonatal suckling period, suggesting that the availability of cIg-A cells and the level of protective IgA in milk might also be increased. We confirmed that PRM/Alf milk contains higher amounts of IgA than C57BL/6J throughout lactation, concomitantly with an increase of pIgR on epithelial cells and a higher density of cIgA-cells in the PRM/Alf mammary gland. Furthermore, a search for variations in cellular and humoral factors implicated in regulating cIgA-cell migration towards the mammary gland, including the vascular addressins MAdCAM-1 (mucosal addressin cell adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) as well as the mucosal epithelial chemokine CCL28, did not reveal any quantitative differences in expression between PRM/Alf and C57BL/6J mice strains. Thus our results indicate that these factors are not limiting in the recruitment of cIgA-cells released from the elongated gut of PRM/Alf mice. In the context of intestinal lengthening, these findings strengthen the notion of an entero-mammary gland link, where the neonatal gut is protected by the maternal gut through the immune function of the mammary gland.

  2. Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A(+) and CD1c(+) myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease.

    Science.gov (United States)

    Kassianos, Andrew J; Wang, Xiangju; Sampangi, Sandeep; Muczynski, Kimberly; Healy, Helen; Wilkinson, Ray

    2013-11-15

    Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.

  3. Association of serum soluble intercellular cell adhesion molecule-1, soluble vascular cell adhesion molecule-1 and hypersensitivity-CRP levels with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus%2型糖尿病患者血清可溶性细胞间和血管细胞黏附分子1及CRP与下肢血管病变的关系

    Institute of Scientific and Technical Information of China (English)

    谭擎缨; 王静; 阮芸; 阮勇; 王秀景; 姚佳琦; 姚乐燕

    2013-01-01

    Objective To investigate the association of serum levels of soluble intercellular cell adhesion molecule-1 (sICAM-1),soluble vascular cell adhesion molecule-1 (sVCAM-1) and high sensitivity C-reactive protein (hs-CRP) with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus (T2DM).Methods One hundred and thirty T2DM patients admitted from October 2011 to October 2012,and 30 age/sex-matched healthy subjects were enrolled in the study.The serum levels of sICAM-1,sVCAM-1,hs-CRP and other clinical parameters were measured; the peripheral blood vessels of lower limbs were examined with color Doppler ultrasonography.Based on the extent of angiopathy of lower limbs T2DM patients were classified as normal vascular group (n =26),mild angiopathy group (n =45),moderate/severe angiopathy group (n =59).Results The serum levels of sICAM-1 and sVCAM-1 in moderate/ severe angiopathy group of T2DM patients were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:4.15-8.93,all P <0.05) ; the serum levels of hs-CRP in moderate/severe angiopathy group were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:2.18-4.27,all P < 0.05).The serum sICAM-1 level was positively correlated with total cholesterol (TC),low density lipoprotein cholesterol (LDL-C) and sVCAM-1.The serum sVCAM-1 level was positively correlated with course of disease,systolic blood pressure and CRP.Conclusions Serum levels of sICAM-1,sVCAM-1 and hs-CRP are correlated with the extent of angiopathy of lower limbs in T2DM patients,and the elevated sICAM-1 ; sVCAM-1 and hs-CRP levels are also associated with hyper blood pressure,dislipidemia and chronic inflammation.%目的 探讨2型糖尿病患者血清可溶性细胞间黏附分子1(sICAM-1)、血管细胞黏附分子1(sVCAM-1)及高敏CRP(hsCRP)水平与下肢大血管病变程度的关系.方法 对130例2型糖尿病患者(糖尿病组)与30例年龄匹配

  4. Relationship between the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 on lymphocytes and cardiac function in elderly patients with chronic heart failure%老年慢性心力衰竭患者淋巴细胞细胞间黏附分子-1、血管细胞间黏附分子-1的表达及与心功能的关系探讨

    Institute of Scientific and Technical Information of China (English)

    孟松艳; 于卫刚; 张一娜; 杨奕; 裴丽春

    2015-01-01

    目的:探讨老年慢性心力衰竭(简称心衰)患者淋巴细胞细胞间黏附分子-1(ICAM-1)、血管细胞间黏附分子-1(VCAM-1)水平与血红蛋白(Hb)的关系及与心室重构、心功能的关系。方法对入选的76例老年慢性心衰患者(心衰组)行实验室和超声心动图检查,按 Hb水平又分为贫血组(27例)和非贫血组(49例);并进行心功能分级。同时选择25例同期健康体检老年人为对照组,比较各组间淋巴细胞 ICAM-1、VCAM-1、Hb 、左室射血分数(LVEF)、左心室质量指数(LVMI)和平均室壁应力(MWS)。结果与对照组比较,心衰组患者 ICAM-1、VCAM-1和LVMI、MWS 明显升高,Hb 和 LVEF 降低(P <0.01),随着心功能恶化,淋巴细胞 ICAM-1和 VCAM-1的水平以及 LVMI 和 MWS 逐渐升高,而 Hb 水平则逐渐降低;心衰贫血组患者淋巴细胞 ICAM-1和VCAM-1的水平以及 LVMI 和 MWS 明显高于非贫血组(P <0.05);心衰患者淋巴细胞 ICAM-1和VCAM-1的水平与 LVMI 和 MWS 均呈正相关(P <0.01)。结论心衰患者淋巴细胞 ICAM-1和VCAM-1水平升高和 Hb 水平的降低参与了心功能不全、心室重构发生发展的病理生理过程。%Objective To study the change of intercellular adhesion molecule-1 (ICAM-1)and vascular cell adhesion molecule-1(VCAM-1)and the possible association between ICAM-1,VCAM-1 and hemoglobin(Hb),and their effects on left ventricular mass index(LVMI),mean wall stress(MWS)and cardiac function in elderly patients with chronic heart failure (CHF).Methods 76 inpatients with chronic cardiac failure were selected in the study.The patients were classified with NYHA-class,and were divided into anemia group and non-anemia group according to hemoglobin (Hb)level.25 healthy old persons were selected as control group.Levels of ICAM-1,VCAM-1,and Hb were measured.Left ventricu-lar ejection fraction(LVEF)was determined by echocardiography

  5. β7 Integrin controls mast cell recruitment, whereas αE integrin modulates the number and function of CD8+ T cells in immune complex-mediated tissue injury.

    Science.gov (United States)

    Yamada, Daisuke; Kadono, Takafumi; Masui, Yuri; Yanaba, Koichi; Sato, Shinichi

    2014-05-01

    Immune complex (IC) deposition causes significant tissue injury associated with various autoimmune diseases such as vasculitis. In the cascade of inflammation, cell-to-cell and cell-to-matrix adhesion via adhesion molecules are essential. To assess the role of αE and β7 integrin in IC-mediated tissue injury, peritoneal and cutaneous reverse-passive Arthus reaction was examined in mice lacking αE integrin (αE(-/-)) or β7 integrin (β7(-/-)). Both αE(-/-) and β7(-/-) mice exhibited significantly attenuated neutrophil infiltration in the peritoneal and cutaneous Arthus reaction. β7 integrin deficiency, not αE integrin deficiency, significantly reduced the number of mast cells in the peritoneal cavity, which was consistent with the result that mast cells expressed only α4β7 integrin, not αEβ7 integrin. αE(-/-) mice instead revealed the reduction of CD8(+) T cells in the peritoneal cavity, and nearly half of them in wild-type mice expressed αE integrin. These αE(+)CD8(+) T cells produced more proinflammatory cytokines than αE(-)CD8(+) T cells, and adoptive transfer of αE(+)CD8(+) T cell into αE(-/-) recipients restored cutaneous and peritoneal Arthus reaction. These results suggest that in the peritoneal and cutaneous reverse-passive Arthus reaction, α4β7 integrin is involved in the migration of mast cells for initial IC recognition. αEβ7 integrin, in contrast, contributes by recruiting αE(+)CD8(+) T cells, which produce more proinflammatory cytokines than αE(-)CD8(+) T cells and amplify IC-mediated inflammation.

  6. Seminal Fluid Regulates Accumulation of FOXP3(+) Regulatory T Cells in the Preimplantation Mouse Uterus Through Expanding the FOXP3(+) Cell Pool and CCL19-Mediated Recruitment

    NARCIS (Netherlands)

    Guerin, Leigh R.; Moldenhauer, Lachlan M.; Prins, Jelmer R.; Bromfield, John J.; Hayball, John D.; Robertson, Sarah A.

    2011-01-01

    Regulatory T (Treg) cells facilitate maternal immune tolerance of the semiallogeneic conceptus in early pregnancy, but the origin and regulation of these cells at embryo implantation is unclear. During the preimplantation period, factors in the seminal fluid delivered at coitus cause expansion of a

  7. Effects of Estrogen Level on the Function of Vascular Endothelial Cells and Expression of Vascular Cell Adhesion Molecule - 1φ

    Institute of Scientific and Technical Information of China (English)

    WU Saizhu(吴赛珠); LIU Jiangguo(刘建国); TAN Jiayu(谭家余); ZHoU Kexiang(周可祥); Gorge D Webb; WEI Heming(隗和明); GUO Zhiguang(郭志刚)

    2002-01-01

    Objectives To ob- serve the effect of different estrogen levels on the se- cretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptorin vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentrationof endothelin and PGI2, and copper-cadmium re-duction was employed to measure the serum content ofnitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogenreceptor and vascular cell adhesion molecule (VCAM-1 ) of vascular endothelial cells respectively. Re-sults 1. The serum concentration of nitric oxide andPGI2 decreased when the ovaries of female rats wereremoved. In ovariectomized rats, given estrogen, theconcentration rose ( P < 0.05), but the plasma con-centration of endothelin was adverse to it. 2. Theconcentration of estrogen receptor of vascular endothe-lial cells decreased remarkably when the ovaries of fe-male rats were removed. When given estrogen, it in-creased. 3. The percent of expressed VCAM - 1 in-creased siguificantly after interleukin- lβoperated onthe cells, but 17 - βestradiol at 3 × 10-8 ~ 10-6 mol/lall decreased the percent. Conclusions Estrogenlevel can influence the secretion of nitrogen monoxide,PGI2 and endothlin of vascular endothelial cells, andalso influence the concentration of estrogen receptor ofvascular endothelial cells. 17 -β Estradiol at 3 × 10-8~ 10-6 M can decrease the elevation of VCAM - 1 ofvascular endothelial cells induced by interleukin - 1 β.

  8. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells.

    Science.gov (United States)

    Park, Myoung Soo; Kim, Cuk-Seong; Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Kim, Soo Jin; Choi, Sunga; Lee, Sang Do; Park, Jin Bong; Jeon, Byeong Hwa

    2013-11-01

    Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and transcriptional regulation of gene expression. APE1/Ref-1 is mainly localized in the nucleus, but cytoplasmic localization has also been reported. However, the functional role of cytoplasmic APE1/Ref-1 and its redox cysteine residue are still unknown. We investigated the role of cytoplasmic APE1/Ref-1 on tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) expressions in endothelial cells. Endogenous APE1/Ref-1 was mainly observed in the nucleus, however, cytoplasmic APE1/Ref-1 was increased by TNF-α. Cytoplasmic APE1/Ref-1 expression was not blunted by cycloheximide, a protein synthesis inhibitor, suggesting cytoplasmic translocation of APE1/Ref-1. Transfection of an N-terminus deletion mutant APE1/Ref-1(29-318) inhibited TNF-α-induced VCAM-1 expression, indicating an anti-inflammatory role for APE1/Ref-1 in the cytoplasm. In contrast, redox mutant of APE1/Ref-1 (C65A/C93A) transfection led to increased TNF-α-induced VCAM-1 expression. Our findings suggest cytoplasmic APE1/Ref-1 localization and redox cysteine residues of APE1/Ref-1 are associated with its anti-inflammatory activity in endothelial cells.

  9. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  10. Recruitment of general practices

    DEFF Research Database (Denmark)

    Riis, Allan; Jensen, Cathrine Elgaard; Maindal, Helle Terkildsen;

    2016-01-01

    Introduction: Health service research often involves the active participation of healthcare professionals. However, their ability and commitment to research varies. This can cause recruitment difficulties and thereby prolong the study period and inflate budgets. Solberg has identified seven R......, which was fewer than planned (100 practices). In this evaluation, five of Solberg’s seven R-factors were successfully addressed and two factors were not. The need to involve (reciprocity) end users in the development of new software and the amount of time needed to conduct recruitment (resolution) were...

  11. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sixt, M; Engelhardt, B; Pausch, F; Hallmann, R; Wendler, O; Sorokin, L M

    2001-05-28

    An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE). Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.

  12. [Recruitment in presbycusis].

    Science.gov (United States)

    Sánchez Legaza, E; Ciges Juan, M; González Pérez, M; Miranda Caravallo, J I

    2006-01-01

    Presbycusis is characterised by a sensorineural hearing loss, mainly in high frequencies, symmetrical and progressive and poor understanding. Recuritment, typical in cochlear hearing loss, would be present in cases of sensorial presbycusis which runs mainly in cochlear pathologies. We analyse variables and their possible interrelations with recruitment in 241 presbycusic patients.

  13. Recruitment. Hello, goodbye.

    Science.gov (United States)

    Moore, Alison

    2008-07-10

    The UK is "moving to a policy of self-sufficiency" according to the Department of Health. The numbers of new overseas entrants into healthcare, including doctors, nurses and midwives has slumped. Several other countries, including Canada, the US and Australia, are aggressively recruiting from overseas, including from the UK. There is an increasing perception the UK does not want overseas staff.

  14. Pre-diagnostic levels of adiponectin and soluble vascular cell adhesion molecule-1 are associated with colorectal cancer risk

    Institute of Scientific and Technical Information of China (English)

    Mathilde Touvier; Pilar Galan; Sébastien Czernichow; Léopold Fezeu; Namanjeet Ahluwalia; Chantal Julia; Nathalie Charnaux; Angela Sutton; Caroline Méjean; Paule Latino-Martel; Serge Hercberg

    2012-01-01

    AIM:To examine the relationships between pre-diag-nostic biomarkers and colorectal cancer risk and assess their relevance in predictive models.METHODS:A nested case-control study was designed to include all first primary incident colorectal cancer cases diagnosed between inclusion in the SUpplementation en VItamines et Minéraux AntioXydants cohort in 1994 and the end of follow-up in 2007.Cases (n =50) were matched with two randomly selected controis (n =100).Conditional logistic regression models were used to investigate the associations between prediagnostic levels of hs-CRP,adiponectin,leptin,soluble vascular cell adhesion molecule-1 (sVCAM-1),soluble intercellular adhesion molecule-1,E-selectin,monocyte chemoattractant protein-1 and colorectal cancer risk.Area under the receiver operating curves (AUC) and relative integrated discrimination improvement (RIDI) statistics were used to assess the discriminatory poten tial of the models.RESULTS:Plasma adiponectin level was associated with decreased colorectal cancer risk (P for linear trend =0.03).Quartiles of sVCAM-1 were associated with increased colorectal cancer risk (P for linear trend =0.02).No association was observed with any of the other biomarkers.Compared to standard models with known risk factors,those including both adiponectin and sVCAM-1 had substantially improved performance for colorectal cancer risk prediction (P for AUC improvement =0.01,RIDI =26.5%).CONCLUSION:These results suggest that pre-diagnostic plasma adiponectin and sVCAM-1 levels are associated with decreased and increased colorectal cancer risk,respectively.These relationships must be confirmed in large validation studies.

  15. Anti-TNF-α therapy reduces endothelial cell activation in non-diabetic ankylosing spondylitis patients.

    Science.gov (United States)

    Genre, Fernanda; López-Mejías, Raquel; Miranda-Filloy, José A; Ubilla, Begoña; Mijares, Verónica; Carnero-López, Beatriz; Gómez-Acebo, Inés; Dierssen-Sotos, Trinidad; Remuzgo-Martínez, Sara; Blanco, Ricardo; Pina, Trinitario; González-Juanatey, Carlos; Llorca, Javier; González-Gay, Miguel A

    2015-12-01

    Endothelial dysfunction can be detected by the presence of elevated levels of biomarkers of endothelial cell activation. In this study, we aimed to establish whether correlations of these biomarkers with characteristics of patients with ankylosing spondylitis (AS) exist. We also studied the effect of anti-TNF-α therapy on these biomarkers. Serum sE-selectin, MCP-1 and sVCAM-1 levels were measured by ELISA in 30 non-diabetic AS patients undergoing anti-TNF-α therapy, immediately before and after an infusion of infliximab. Correlations of these biomarkers with clinical features, systemic inflammation, metabolic syndrome and other serum and plasma biomarkers of cardiovascular risk were studied. Potential changes in the concentration of these biomarkers following an infliximab infusion were also assessed. sE-selectin showed a positive correlation with CRP (p = 0.02) and with other endothelial cell activation biomarkers such as sVCAM-1 (p = 0.019) and apelin (p = 0.008). sVCAM-1 negatively correlated with BMI (p = 0.018), diastolic blood pressure (p = 0.008) and serum glucose (p = 0.04). sVCAM-1 also showed a positive correlation with VAS spinal pain (p = 0.014) and apelin (p < 0.001). MCP-1 had a negative correlation with LDL cholesterol (p = 0.026) and ESR (p = 0.017). Patients with hip involvement and synovitis and/or enthesitis in other peripheral joints showed higher levels of MCP-1 (p = 0.004 and 0.02, respectively). A single infliximab infusion led to a significant reduction in sE-selectin (p = 0.0015) and sVCAM-1 (p = 0.04). Endothelial dysfunction correlates with inflammation and metabolic syndrome features in patients with AS. A beneficial effect of the anti-TNF-α blockade on endothelial dysfunction, manifested by a reduction in levels of biomarkers of endothelial cell activation, was observed.

  16. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement.

    Directory of Open Access Journals (Sweden)

    Masanori Kaido

    2014-11-01

    Full Text Available The formation of virus movement protein (MP-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV, a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A, which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.

  17. Targeted Intra-arterial Transplantation of Stem Cells to the Injured CNS is More Effective than Intravenous Administration - Engraftment is Dependent on Cell Type and Adhesion Molecule Expression

    DEFF Research Database (Denmark)

    Lundberg, Johan; Södersten, Erik; Sundström, Erik

    2011-01-01

    Stem cell transplantation procedures using intraparenchymal injections cause tissue injury in addition to associated surgical risks. Intra-venous cell administration give engraftment in parenchymal lesions although the method has low efficacy and specificity. In pathological conditions...... with inflammation, such as traumatic brain injury, there is a transient up-regulation of ICAM-1 and VCAM-1 which might provide enviromental cues for migration of stem cells from blood to parenchyma. The aim of this study was to i) analyze the effect of intra-arterial administration on cellular engraftment, ii......) compare engraftment and side effects between three different stem cell systems and iii) analyze gene expression in these three systems....

  18. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus.

    Science.gov (United States)

    Shechter, Ravid; Miller, Omer; Yovel, Gili; Rosenzweig, Neta; London, Anat; Ruckh, Julia; Kim, Ki-Wook; Klein, Eugenia; Kalchenko, Vyacheslav; Bendel, Peter; Lira, Sergio A; Jung, Steffen; Schwartz, Michal

    2013-03-21

    Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.

  19. 二苯乙烯苷对H2O2诱导血管内皮细胞黏附分子表达的影响%Effect of TSG on expression of adhesion molecule induced by H2O2 on vascular endothelial cell

    Institute of Scientific and Technical Information of China (English)

    张彩平; 杨滢; 田英; 乔新惠; 龙石银; 陈志军; 田汝芳

    2012-01-01

    Aim To study the effect of 2,3,5,4' -tetra-hydroxystilbene-2-O-β-D-glucoside on expression of adhesion molecules P-selectin, E-selectin, ICAM-1, VCAM-1 and MCP-1 induced by H2O2 on human umbilical vein endothelial cells ( HUVECs). Methods HUVECs were cultured in vitro. The experiment was divided into four groups: control group, H2 O2 group, positive group, and TSG group. The expression of P-selectin, E-selectin, ICAM-1, VCAM-1 and MCP-1 mRNA and protein were respectively detected by re-verse transcriptase polymerase chain reaction ( RT-PCR ) and enzyme-linked immunosorbent assay ( ELISA). Results After endothelial cells treated with 200 μmol · L-1 H2O2 for 24 h, the expression of P-se-lectin, E-selectin, ICAM-1, VCAM-1 and MCP-1 mR-NA and protein level was significant higher. After TSG pretreatment endothelial cells for 4h before treated with 200 μmol · L-1 H2O2, results showed that TSG could inhibit the expression of P-selectin, E-selectin, ICAM-1, VCAM-1 and MCP-1 mRNA and protein level induced by H2O2 on endothelial cells. Conclusion TSG can inhibit the expression of adhesion molecules induced by H2O2 on human umbilical vein endothelial cells and accordingly slow down atherosclerosis.%目的 研究二苯乙烯苷(TSG)对过氧化氢(H2O2)诱导损伤的人脐静脉内皮细胞P-selectin、E-selectin、ICAM-1、VCAM-1和MCP-1表达的影响.方法 体外培养人脐静脉内皮细胞,实验分为空白对照组、H2O2组、辛伐他汀组、TSG组,运用逆转录聚合酶链式反应和酶联免疫吸附试验分别检测P-selectin、E-selectin、ICAM-1、VCAM-1和MCP-1 mRNA与蛋白的表达.结果 200 μmol·L-1的H2O2作用内皮细胞24 h后,P-selectin、E-selectin、ICAM-1、VCAM-1和MCP-1的mRNA和蛋白表达水平均明显上调;经TSG预处理内皮细胞4 h后,再加200 μmol·L-1的H2O2作用内皮细胞24 h,结果显示:TSG能抑制H2O2诱导的内皮细胞P-selnecti、E-selectin、ICAM-1、VCAM-1和MCP-1的 mRNA和蛋白的表达.结论 TSG

  20. Recruitment Requires an Informed Public

    Science.gov (United States)

    Boucher, Leon

    1975-01-01

    The personal approach of the Ohio Recruitment Commission for Agricultural Education has been very effective in recruiting potential vocational agriculture teachers from junior and senior high school classes. (EA)

  1. HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC.

    Science.gov (United States)

    Zhu, Guiquan; Tang, Yaling; Geng, Ning; Zheng, Min; Jiang, Jian; Li, Ling; Li, Kaide; Lei, Zhengge; Chen, Wei; Fan, Yunlong; Ma, Xiangrui; Li, Longjiang; Wang, Xiaoyi; Liang, Xinhua

    2014-02-01

    CD11b+Gr-1+ myeloid cells have gained much attention due to their roles in tumor immunity suppression as well as promotion of angiogenesis, invasion, and metastases. However, the mechanisms by which CD11b+Gr-1+ myeloid cells recruit to the tumor site have not been well clarified. In the present study, we showed that hypoxia could stimulate the migration of CD11b+Gr-1+ myeloid cells through increased production of macrophage migration inhibitory factor (MIF) and interleukin-6 (IL-6) by head and neck squamous cell carcinoma (HNSCC) cells. Hypoxia-inducible factor-1α (HIF-1α)- and HIF-2α-dependent MIF regulated chemotaxis, differentiation, and pro-angiogenic function of CD11b+Gr-1+ myeloid cells through binding to CD74/CXCR2, and CD74/CXCR4 complexes, and then activating p38/mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinases (PI3K)/AKT signaling pathways. Knockdown (KD) of HIF-1α and HIF-2α in HNSCC cells decreased MIF level but failed to inhibit the CD11b+Gr-1+ myeloid cell migration, because HIF-1α/2α KD enhanced nuclear factor κB (NF-κB) activity that increased IL-6 secretion. Simultaneously blocking NF-κB and HIF-1α/HIF-2α had better inhibitory effect on CD11b+Gr-1+ myeloid cell recruitment in the hypoxic zone than individually silencing HIF-1α/2α or NF-κB. In conclusion, the interaction between HIF-α/MIF and NF-κB/IL-6 axes plays an important role in the hypoxia-induced accumulation of CD11b+Gr-1+ myeloid cells and tumor growth in HNSCC.

  2. 10 Ways to Recruit Teachers.

    Science.gov (United States)

    Stewart, Daisy

    1999-01-01

    Suggestions for recruiting teachers are as follow: talk to teens, recruit from within, involve counselors, target uncertain students, network, build relationships with tech prep, enlist military personnel, recruit extension agents, contact outplacement and employment services, and use distance-learning methods. (JOW)

  3. Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Angel-Morales, Gabriela; Noratto, Giuliana; Mertens-Talcott, Susanne U

    2012-12-01

    The anti-inflammatory effects of curcuminoids have been extensively investigated. However, few studies investigate the mechanistic involvement of microRNAs (miRNAs) in their activity. The objective of this study was to examine the protective effects of standardized curcuminoid extract (SCE) in vascular inflammation of human umbilical vein endothelial cells (HUVEC) and the potential involvement of miRNA-126 and miRNA-146a. Escherichia coli lipopolysacharides (LPS) were used to induce inflammation. LPS-challenge increased gene-expression of toll-like receptor-4 (TLR-4) and downstream genes IL-1 receptor-associated kinase 1 (IRAK-1) and tumor necrosis factor receptor-associated factor 6 (TRAF-6) up to 2.58-, 2.39-, and 3.73-fold, respectively, relative to DMSO-treated controls that were not challenged with LPS. LPS up-regulated TLR-4, IRAK-1, and TRAF-6 in SCE pretreated cells (5 mg L(-1)), only up to 0.69-, 1.28-, and 1.15-fold, respectively. miRNA-146a can be up-regulated by transcription nuclear factor kappa B (NF-κB) and acts as a negative feedback loop regulator involving IRAK-1 and TRAF-6 downregulation. In this study, the down-regulation of NF-κB was accompanied by reduced miRNA-146a expression. LPS-challenge induced mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) up to 5.65- and 10.65-fold, respectively. SCE prevented this effect and increases of up to only 2.92- and 5.26-fold of DMSO-treated controls not challenged with LPS were observed. miRNA-126 regulates endothelial expression of VCAM-1, but was not inversely correlated to the expression of its target gene VCAM-1 upon SCE treatment; therefore, miRNA-126 does not appear to be involved in the down-regulation of VCAM-1. Overall, curcuminoids are confirmed to have anti-inflammatory properties in HUVEC; however, neither miRNA-146a nor miRNA-126 seem to be involved in the SCE-induced down-regulation of the NF-κB-target genes IRAK-1, TRAF-6, and

  4. CXC Chemokine Ligand 10 Controls Viral Infection in the Central Nervous System: Evidence for a Role in Innate Immune Response through Recruitment and Activation of Natural Killer Cells

    OpenAIRE

    Trifilo, Matthew J.; Montalto-Morrison, Cynthia; Stiles, Linda N.; Hurst, Kelley R.; Hardison, Jenny L.; Manning, Jerry E.; Masters, Paul S.; Lane, Thomas E.

    2004-01-01

    How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the C...

  5. Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation

    Science.gov (United States)

    Hiruma, Yuko; Honjo, Tadashi; Jelinek, Diane F.; Windle, Jolene J.; Shin, Jaekyoon; Roodman, G. David

    2009-01-01

    Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serves as a platform to facilitate formation of signaling complexes for these pathways. Therefore, we determined if targeting only p62 would inhibit multiple signaling pathways activated in the MM microenvironment and thereby decrease MM cell growth and osteoclast formation. Signaling through NF-κB and p38 MAPK was increased in primary stromal cells from MM patients. Increased interleukin-6 (IL-6) production by MM stromal cells was p38 MAPK-dependent while increased vascular cell adhesion molecule-1 (VCAM-1) expression was NF-κB–dependent. Knocking-down p62 in patient-derived stromal cells significantly decreased protein kinase Cζ (PKCζ), VCAM-1, and IL-6 levels as well as decreased stromal cell support of MM cell growth. Similarly, marrow stromal cells from p62−/− mice produced much lower levels of IL-6, tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL) and supported MM cell growth and osteoclast formation to a much lower extent than normal cells. Thus, p62 is an attractive therapeutic target for MM. PMID:19282458

  6. Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation

    Science.gov (United States)

    Xu, Guoshuang; Liu, Kai; Anderson, Judy; Patrene, Kenneth; Lentzsch, Suzanne; Roodman, G. David

    2012-01-01

    BM stromal cells (BMSCs) are key players in the microenvironmental support of multiple myeloma (MM) cell growth and bone destruction. A spliced form of the X-box–binding protein-1 (XBP1s), a major proximal effector of unfolded protein response signaling, is highly expressed in MM cells and plays an indispensable role in MM pathogenesis. In the present study, we found that XBP1s is induced in the BMSCs of the MM microenvironment. XBP1s overexpression in healthy human BMSCs enhanced gene and/or protein expression of VCAM-1, IL-6, and receptor activator of NF-κB ligand (RANKL), enhancing BMSC support of MM cell growth and osteoclast formation in vitro and in vivo. Conversely, deficiency of XBP1 in healthy donor BMSCs displayed a range of effects on BMSCs that were opposite to those cells with overexpression of XBP1s. Knock-down of XBP1 in MM patient BMSCs greatly compromised their increased VCAM-1 protein expression and IL-6 and RANKL secretion in response to TNFα and reversed their enhanced support of MM-cell growth and osteoclast formation. Our results demonstrate that XBP1s is a pathogenic factor underlying BMSC support of MM cell growth and osteoclast formation and therefore represents a therapeutic target for MM bone disease. PMID:22427205

  7. From Traditional Recruiting To E-Recruiting in Public Organizations

    Directory of Open Access Journals (Sweden)

    ARTENE Adela Suzana

    2013-05-01

    Full Text Available Recruiting is the activity that determines, in quantitative and qualitative terms, the structure of the sample of people from which the selection will be made for a specific position and / or public office, for a position that is already created in the organizational structure. The recruitment process is triggered when in the organizational structure of public institutions appear new functions or positions, or when the existing ones become vacant through retirement, death, transfer or dismissal. E-Recruiting represents the process through which the personnel is recruited using electronic resources.

  8. Differential Recruitment of Distinct Amygdalar Nuclei across Appetitive Associative Learning

    Science.gov (United States)

    Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D.

    2013-01-01

    The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…

  9. Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs.

    Science.gov (United States)

    Fons, Pierre; Gueguen-Dorbes, Geneviève; Herault, Jean-Pascal; Geronimi, Fabien; Tuyaret, Joël; Frédérique, Dol; Schaeffer, Paul; Volle-Challier, Cécile; Herbert, Jean-Marc; Bono, Françoise

    2015-01-01

    Tumor angiogenesis is accompanied by vasculogenesis, which is involved in the differentiation and mobilization of human bone marrow cells. In order to further characterize the role of vasculogenesis in the tumor growth process, the effects of FGF2 on the differentiation of human bone marrow AC133(+) cells (BM-AC133(+)) into vascular precursors were studied in vitro. FGF2, like VEGFA, induced progenitor cell differentiation into cell types with endothelial cell characteristics. SSR128129E, a newly discovered specific FGFR antagonist acting by allosteric interaction with FGFR, abrogated FGF2-induced endothelial cell differentiation, showing that FGFR signaling is essential during this process. To assess the involvement of the FGF/FRGR signaling in vivo, the pre-clinical model of Lewis lung carcinoma (LL2) in mice was used. Subcutaneous injection of LL2 cells into mice induced an increase of circulating EPCs from peripheral blood associated with tumor growth and an increase of intra-tumoral vascular index. Treatment with the FGFR antagonist SSR128129E strongly decreased LL2 tumor growth as well as the intra-tumoral vascular index (41% and 50% decrease vs. vehicle-treated mice respectively, P FGFR pathway by SSR128129E reduces EPC recruitment during angiogenesis-dependent tumor growth. In this context, circulating EPCs could be a reliable surrogate marker for tumor growth and angiogenic activity.

  10. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Directory of Open Access Journals (Sweden)

    Ying An

    2011-01-01

    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  11. Recruit and ADVANCE

    Science.gov (United States)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  12. Recruitment Practices And Institutional Change

    DEFF Research Database (Denmark)

    Holm, Anna; Ulhøi, John Parm

    , and individuals’ social cognition. Among other things, this is reflected in the use of online recruitment and employer branding. The study concludes that the recruitment field has transformed and reviewed its practices due to institutional changes in how individuals search for employment and expect to be hired....

  13. Recruiting and Supporting Latino Volunteers.

    Science.gov (United States)

    Hobbs, Beverly B.

    This booklet is intended to help volunteer recruiters better understand characteristics of the Latino community that might impact volunteering. It also suggests strategies or steps to use in successfully recruiting and supporting Latino volunteers. Information is based on a study of Latinos and volunteerism conducted in Oregon in 1999. The…

  14. Diversity employment and recruitment sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Effective human resources management has been identified as one of four critical success factors in the Department of Energy Strategic Plan. The Plan states relative to this factor: ``The Department seeks greater alignment of resources with agency priorities and increased diversification of the workforce, including gender, ethnicity, age, and skills. This diversification will bring new thinking and perspectives that heretofore have not had a voice in departmental decision-making.`` This Guide has been developed as a key tool to assist Department of Energy management and administrative staff in achieving Goal 2 of this critical success factor, which is to ``Ensure a diverse and talented workforce.`` There are numerous sources from which to recruit minorities, women and persons with disabilities. Applying creativity and proactive effort, using traditional and non-traditional approaches, and reaching out to various professional, academic and social communities will increase the reservoir of qualified candidates from which to make selections. In addition, outreach initiatives will undoubtedly yield further benefits such as a richer cultural understanding and diversity awareness. The resource listings presented in this Guide are offered to encourage active participation in the diversity recruitment process. This Guide contains resource listings by state for organizations in the following categories: (1) African American Recruitment Sources; (2) Asian American/Pacific Islander Recruitment Sources; (3) Hispanic Recruitment Sources; (4) Native American/Alaskan Native Recruitment Sources; (5) Persons with Disabilities Recruitment Sources; and (6) Women Recruitment Sources.

  15. Three Keys to Better Recruiting

    Science.gov (United States)

    Brazington, Alicia

    2012-01-01

    Recruitment is an expensive business: In 2010-2011, the median cost to recruit an undergraduate was $2,185 among private colleges and universities, according to Noel-Levitz, an enrollment management consultancy. In these tough fiscal times, admissions departments are under pressure to keep those costs down even as they pursue higher enrollment and…

  16. Smooth muscle cell phenotype alters cocultured endothelial cell response to biomaterial-pretreated leukocytes.

    Science.gov (United States)

    Rose, Stacey L; Babensee, Julia E

    2008-03-01

    Model in vitro culturing systems were developed to analyze roles of biomaterial-induced leukocyte activation on endothelial cell (EC) and smooth muscle cell (SMC) phenotype, and their crosstalk. Isolated monocytes or neutrophils were pretreated with model biomaterial beads and applied directly to "more secretory" (cultured in media containing 5% fetal bovine serum) or forced contractile (serum and growth factor starved) human aortic SMCs (HASMCs), or to the human aortic EC (HAEC) surface of HAEC/HASMC cocultures (HASMC phenotype varied to be "more or less secretory") for 5 or 24 h of static culture. Surface expression of proinflammatory [ICAM-1, VCAM-1, E-selectin], procoagulant (tissue factor), and anticoagulant (thrombomodulin) markers, as well as HAEC proliferation, were assessed by flow cytometry. Incubation of HAEC with biomaterial-pretreated monocytes (and neutrophils to lesser degree) suppressed HAEC proliferation and induced a proinflammatory/procoagulant HAEC phenotype. This HAEC phenotype was amplified in coculture with "more secretory" HASMCs and subdued in coculture with "less secretory" HASMCs. Direct incubation of biomaterial-pretreated monocytes or neutrophils with "more secretory" HASMCs further increased HASMC ICAM-1 and tissue factor expression. Direct incubation of biomaterial-pretreated monocytes or neutrophils with forced contractile HASMCs upregulated ICAM-1, VCAM-1, and tissue factor expression above the presence of serum-containing media alone.

  17. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution.

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D; Cheng, C Yan

    2013-01-15

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII-IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.

  18. NADPH OXIDASE AND LIPID RAFT-ASSOCIATED REDOX SIGNALING ARE REQUIRED FOR PCB153-INDUCED UPREGULATION OF CELL ADHESION MOLECULES IN HUMAN BRAIN ENDOTHELIAL CELLS

    Science.gov (United States)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  19. Neurotrophin/Trk receptor signaling mediates C/EBPα, -β and NeuroD recruitment to immediate-early gene promoters in neuronal cells and requires C/EBPs to induce immediate-early gene transcription

    Directory of Open Access Journals (Sweden)

    von Bohlen und Halbach Oliver

    2007-01-01

    Full Text Available Abstract Background Extracellular signaling through receptors for neurotrophins mediates diverse neuronal functions, including survival, migration and differentiation in the central nervous system, but the transcriptional targets and regulators that mediate these diverse neurotrophin functions are not well understood. Results We have identified the immediate-early (IE genes Fos, Egr1 and Egr2 as transcriptional targets of brain derived neurotrophic factor (BDNF/TrkB signaling in primary cortical neurons, and show that the Fos serum response element area responds to BDNF/TrkB in a manner dependent on a combined C/EBP-Ebox element. The Egr1 and Egr2 promoters contain homologous regulatory elements. We found that C/EBPα/β and NeuroD formed complexes in vitro and in vivo, and were recruited to all three homologous promoter regions. C/EBPα and NeuroD co-operatively activated the Fos promoter in transfection assays. Genetic depletion of Trk receptors led to impaired recruitment of C/EBPs and NeuroD in vivo, and elimination of Cebpa and Cebpb alleles reduced BDNF induction of Fos, Egr1 and Egr2 in primary neurons. Finally, defective differentiation of cortical dendrites, as measured by MAP2 staining, was observed in both compound Cebp and Ntrk knockout mice. Conclusion We here identify three IE genes as targets for BDNF/TrkB signaling, show that C/EBPα and -β are recruited along with NeuroD to target promoters, and that C/EBPs are essential mediators of Trk signaling in cortical neurons. We show also that C/EBPs and Trks are required for cortical dendrite differentiation, consistent with Trks regulating dendritic differentiation via a C/EBP-dependent mechanism. Finally, this study indicates that BDNF induction of IE genes important for neuronal function depends on transcription factors (C/EBP, NeuroD up-regulated during neuronal development, thereby coupling the functional competence of the neuronal cells to their differentiation.

  20. Telomerase recruitment requires both TCAB1 and Cajal bodies independently.

    Science.gov (United States)

    Stern, J Lewis; Zyner, Katherine G; Pickett, Hilda A; Cohen, Scott B; Bryan, Tracy M

    2012-07-01

    The ability of most cancer cells to grow indefinitely relies on the enzyme telomerase and its recruitment to telomeres. In human cells, recruitment depends on the Cajal body RNA chaperone TCAB1 binding to the RNA subunit of telomerase (hTR) and is also thought to rely on an N-terminal domain of the catalytic subunit, hTERT. We demonstrate that coilin, an essential structural component of Cajal bodies, is required for endogenous telomerase recruitment to telomeres but that overexpression of telomerase can compensate for Cajal body absence. In contrast, recruitment of telomerase was sensitive to levels of TCAB1, and this was not rescued by overexpression of telomerase. Thus, although Cajal bodies are important for recruitment, TCAB1 has an additional role in this process that is independent of these structures. TCAB1 itself localizes to telomeres in a telomerase-dependent but Cajal body-independent manner. We identify a point mutation in hTERT that largely abolishes recruitment yet does not affect association of telomerase with TCAB1, suggesting that this region mediates recruitment by an independent mechanism. Our results demonstrate that telomerase has multiple independent requirements for recruitment to telomeres and that the function of TCAB1 is to directly transport telomerase to telomeres.

  1. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  2. Human Resources Marketing and Recruiting: Essentials of Digital Recruiting

    CERN Document Server

    Purvis, James

    2016-01-01

    This chapter will cover digital recruitment from its definition thru to its history in recruitment and trends. The subject itself could cover an entire book or an entire module at university, so this chapter will broadly touch upon the key elements and considerations. Under cultural perspective, the recruitment life cycle will be broken down into its individual parts, and digital solutions will be examined for each individual part of the process together with the impact this has on the knowledge and challenges for the manager and team. The economic perspective will assist in prioritizing initiatives and building a business case for the introduction of digital recruiting solutions. The risk perspective will raise awareness of the potential pitfalls and the operational perspective on the key considerations for a successful implementation. Finally, the key messages of this chapter are summarized in the Do’s and Don’ts.

  3. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    Science.gov (United States)

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  4. Selective recruitment of Th I cells induced by re-infection of succeptible and resistant mice with Pseudomonas aerugionosa in the lungs indicates protective role of IL-12

    DEFF Research Database (Denmark)

    Moser, C; Jensen, P O; Kobayashi, O;

    2002-01-01

    for improved clearance of bacteria, was observed when compared with singly-infected mice. The improved outcome in re-infected mice correlated with changes in CD4 cell numbers. Surface expression of LFA-1 on pulmonary CD4 cells was increased in re-infected compared with singly-infected mice. Moreover...

  5. Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells

    NARCIS (Netherlands)

    Tamma, G.; Procino, G.; Svelto, M.; Valenti, G.

    2007-01-01

    Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho famil

  6. The in vitro effect of desflurane preconditioning on endothelial adhesion molecules and mRNA expression.

    Science.gov (United States)

    Biao, Zhu; Zhanggang, Xue; Hao, Jiang; Changhong, Miao; Jing, Cang

    2005-04-01

    Lower expression of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin may be responsible for attenuated ischemic-reperfusion neutrophil adhesion to vascular endothelium. Desflurane reduces ischemia-reperfusion injury. Therefore, we assessed whether desflurane affects the protein expression of ICAM-1 and E-selectin and mRNA expression of ICAM-1 and VCAM-1 of human umbilical venous endothelial cells (HUVEC) stimulated with tumor necrosis factor-alpha (TNF-alpha). HUVEC were preconditioned for 60 min with 1 minimum alveolar concentration desflurane before stimulating with TNF-alpha. Protein expression of adhesion molecules ICAM-1 and E-selectin of HUVEC were evaluated via immunocytochemical techniques combined with image cytometry. ICAM-1 and VCAM-1 mRNA expression of HUVEC were determined via reverse transcription-polymerase chain reaction. Desflurane not only reduced the protein expression of ICAM-1 and E-selectin but also ICAM-1 and VCAM-1 mRNA expression of the HUVEC. The adhesion rate of neutrophils with desflurane-treated HUVEC was slower. The decreased neutrophil adhesion on the desflurane-treated HUVEC correlated well with the decrease in adhesion molecule expression. These results show that desflurane affects the expression of adhesion molecules involved in the multistep process of neutrophil recruitment. Desflurane related ischemia-reperfusion injury reduction correlates well with expression inhibition of ICAM-1, VCAM-1, and E-selectin that mediates neutrophil rotation and firm adhesion on the vascular endothelium.

  7. Sales Training for Army Recruiter Success: Interviews with Excellent Recruiters

    Science.gov (United States)

    1987-11-01

    merit of an expert modeling system of the skills and strategies used by excel- lent Army recruiters. Neurolinguistic programming (NLP) was used as the...7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s) Steven R. Frieman 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK U.S...Recruiting 2M AUSTIRACT (rcnttm ame r orw am nssry i Identify by block number) s-This report describes a program of research on communication strategies and

  8. Navy Enlisted Recruiting: Alternatives for Improving Recruiter Productivity

    Science.gov (United States)

    2013-03-01

    screening process and understanding the differences in cognitive ability, the different cultures of each rating, and their correlation to recruiting...process and understanding the differences in cognitive ability, the different cultures of each rating, and their correlation to recruiting performance...of the seven months that it took to complete this research. A special Bravo Zulu to my advisors, Professor Jeremy Arkes, Professor Steve Mehay, and

  9. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles

    Directory of Open Access Journals (Sweden)

    Zhang K

    2015-07-01

    Full Text Available Kefeng Zhang,1 Zhongyang Xu,1 Zhaoyun Sun2 1Spinal Surgery, Jining No 1 People’s Hospital, Jining, 2Department of Orthopedics, The People’s Hospital of Laiwu City, Laiwu, Shandong Province, People’s Republic of China Objective: To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM. Methods: Microarray data (GSE13591 were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene, and tumor-associated gene (TAG databases. A protein–protein interaction (PPI network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING database. Results: A total of 63 DEGs (42 downregulated, 21 upregulated were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion: Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There

  10. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  11. Tumor-Derived Tissue Factor Aberrantly Activates Complement and Facilitates Lung Tumor Progression via Recruitment of Myeloid-Derived Suppressor Cells

    OpenAIRE

    Xiao Han; Haoran Zha; Fei Yang; Bo Guo; Bo Zhu

    2017-01-01

    The initiator of extrinsic coagulation, tissue factor (TF), and its non-coagulant isoform alternatively spliced TF (asTF) are closely associated with tumor development. In the tumor microenvironment, the role of TF-induced coagulation in tumor progression remains to be fully elucidated. Using TF-knockdown lung tumor cells, we showed that TF is the dominant component of procoagulant activity but is dispensable in the cellular biology of tumor cells. In a xenograft model, using immunohistochemi...

  12. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

    Science.gov (United States)

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng

    2015-07-31

    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.

  13. Information networks and worker recruitment

    NARCIS (Netherlands)

    Schram, A.; Brandts, J.; Gërxhani, K.

    2007-01-01

    This paper studies experimentally how the existence of social information networks affects the ways in which firms recruit new personnel. Through such networks firms learn about prospective employees' performance in previous jobs. Assuming individualistic preferences social networks are predicted no

  14. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles the reso......In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles...... action in the microvasculature and restored normal microvascular function by increasing the microvascular recruitment similar to in control animals. This effect of GLP-1 on microvascular recruitment was associated with a restoration of both whole body insulin sensitivity and muscle glucose uptake when co...

  15. Recruiting for Prior Service Market

    Science.gov (United States)

    2008-06-01

    perceptions, expectations and issues for re-enlistment • Develop potential marketing and advertising tactics and strategies targeted to the defined...01 JUN 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Recruiting for Prior Service Market 5a. CONTRACT NUMBER 5b. GRANT...Command First Handshake to First Unit of Assignment An Army of One Proud to Be e e to Serve Recruiting for Prior Service Market MAJ Eric Givens / MAJ Brian

  16. Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Saïdi M Soudja

    Full Text Available Migration of dendritic cells (DC from the tumor environment to the T cell cortex in tumor-draining lymph nodes (TDLN is essential for priming naïve T lymphocytes (TL to tumor antigen (Ag. We used a mouse model of induced melanoma in which similar oncogenic events generate two phenotypically distinct melanomas to study the influence of tumor-associated inflammation on secondary lymphoid organ (SLO organization. One tumor promotes inflammatory cytokines, leading to mobilization of immature myeloid cells (iMC to the tumor and SLO; the other does not. We report that inflammatory tumors induced alterations of the stromal cell network of SLO, profoundly altering the distribution of TL and the capacity of skin-derived DC and TL to migrate or home to TDLN. These defects, which did not require tumor invasion, correlated with loss of fibroblastic reticular cells in T cell zones and in impaired production of CCL21. Infiltrating iMC accumulated in the TDLN medulla and the splenic red pulp. We propose that impaired function of the stromal cell network during chronic inflammation induced by some tumors renders spleens non-receptive to TL and TDLN non-receptive to TL and migratory DC, while the entry of iMC into these perturbed SLO is enhanced. This could constitute a mechanism by which inflammatory tumors escape immune control. If our results apply to inflammatory tumors in general, the demonstration that SLO are poorly receptive to CCR7-dependent migration of skin-derived DC and naïve TL may constitute an obstacle for proposed vaccination or adoptive TL therapies of their hosts.

  17. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells.

    Science.gov (United States)

    Rozan, Caroline; Cornillon, Amélie; Pétiard, Corinne; Chartier, Martine; Behar, Ghislaine; Boix, Charlotte; Kerfelec, Brigitte; Robert, Bruno; Pèlegrin, André; Chames, Patrick; Teillaud, Jean-Luc; Baty, Daniel

    2013-08-01

    Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.

  18. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels.

    Directory of Open Access Journals (Sweden)

    Marc B Bigler

    Full Text Available Acute stress drives a 'high-alert' response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans.3,4-methylenedioxymethamphetamine (MDMA, methylphenidate (MPH, or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells.MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment.The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.

  19. Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination.

    Science.gov (United States)

    Sherafat, Mohammad Amin; Heibatollahi, Motahareh; Mongabadi, Somayeh; Moradi, Fatemeh; Javan, Mohammad; Ahmadiani, Abolhassan

    2012-09-01

    Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague-Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.

  20. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes.

    Science.gov (United States)

    Heine, Shannon J; Diaz-McNair, Jovita; Andar, Abhay U; Drachenberg, Cinthia B; van de Verg, Lillian; Walker, Richard; Picking, Wendy L; Pasetti, Marcela F

    2014-02-15

    Shigella is one of the leading pathogens contributing to the vast pediatric diarrheal disease burden in low-income countries. No licensed vaccine is available, and the existing candidates are only partially effective and serotype specific. Shigella type III secretion system proteins IpaB and IpaD, which are conserved across Shigella spp., are candidates for a broadly protective, subunit-based vaccine. In this study, we investigated the immunogenicity and protective efficacy of IpaB and IpaD administered intradermally (i.d.) with a double-mutant of the Escherichia coli heat-labile enterotoxin (dmLT) adjuvant using microneedles. Different dosage levels of IpaB and IpaD, with or without dmLT, were tested in mice. Vaccine delivery into the dermis, recruitment of neutrophils, macrophages, dendritic cells, and Langerhans cells, and colocalization of vaccine Ag within skin-activated APC were demonstrated through histology and immunofluorescence microscopy. Ag-loaded neutrophils, macrophages, dendritic cells, and Langerhans cells remained in the tissue at least 1 wk. IpaB, IpaD, and dmLT-specific serum IgG- and IgG-secreting cells were produced following i.d. immunization. The protective efficacy was 70% against Shigella flexneri and 50% against Shigella sonnei. Similar results were obtained when the vaccine was administered intranasally, with the i.d. route requiring 25-40 times lower doses. Distinctively, IgG was detected in mucosal secretions; secretory IgA, as well as mucosal and systemic IgA Ab-secreting cells, were seemingly absent. Vaccine-induced T cells produced IFN-γ, IL-2, TNF-α, IL-17, IL-4, IL-5, and IL-10. These results demonstrate the potential of i.d. vaccination with IpaB and IpaD to prevent Shigella infection and support further studies in humans.

  1. Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity

    DEFF Research Database (Denmark)

    Wood, Stephanie M; Meeths, Marie; Chiang, Samuel C C

    2009-01-01

    of perforin-containing lytic granules induced by signals for natural and antibody-dependent cellular cytotoxicity. We demonstrate here that these signals fail to induce degranulation in resting NK cells from Rab27a-deficient patients. In resting NK cells from healthy subjects, endogenous Rab27a and Munc13...... functional antigen-1, NKG2D, or 2B4 induced colocalization of Rab27a, but not Munc13-4, with perforin. Conversely, engagement of antibody-dependent cellular cytotoxicity receptor CD16 induced colocalization of Munc13-4, but not Rab27a, with perforin. Furthermore, colocalization of Munc13-4 with perforin...

  2. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells.

    Science.gov (United States)

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Seol, So Mi; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2016-01-05

    Although recent studies have reported cardioprotective effects of C1q/TNF-related protein 9 (CTRP9), the closet adiponectin paralog, its role on cytokine-induced endothelial inflammation is unknown. We investigated whether CTRP9 prevented inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation and inhibited the expression of adhesion molecules and a chemokine in the vascular endothelial cell. We used human aortic endothelial cells (HAECs) to examine the effects of CTRP9 on NF-κB activation and the expression of NF-κB-mediated genes, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1). Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. In an adhesion assay using THP-1 cells, CTRP9 reduced TNFα-induced adhesion of monocytes to HAECs. Treatment with CTRP9 significantly decreased TNFα-induced activation of NF-κB, as well as the expression of ICAM-1, VCAM-1, and MCP-1. In addition, treatment with CTRP9 significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), the downstream target of AMPK. The inhibitory effect of CTRP9 on the expression of ICAM-1, VCAM-1, and MCP-1 and monocyte adhesion to HAECs was abolished after transfection with an AMPKα1-specific siRNA. Our study is the first to demonstrate that CTRP9 attenuates cytokine-induced vascular inflammation in endothelial cells mediated by AMPK activation.

  3. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  4. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling......-terminal peptide versus osterix, and (ii) canopy cell densities, found to decline with age, and canopy-capillary contacts above eroded surfaces correlated positively with osteoblast density on bone-forming surfaces. Furthermore, we showed that bone remodeling compartment canopies arise from a mesenchymal envelope...

  5. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    Science.gov (United States)

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.

  6. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex.

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Chang

    Full Text Available We previously showed that treating vascular endothelial cells with 3-methylcholanthrene (3MC caused cell-cycle arrest in the Go/G1 phase; this resulted from the induction of p21 and p27 and a decreased level and activity of the cyclin-dependent kinase, Cdk2. We further investigated the molecular mechanisms that modulate cell-cycle regulatory proteins through the aryl-hydrocarbon receptor (AhR/Ras homolog gene family, member A (RhoA dependent epigenetic modification of histone. AhR/RhoA activation mediated by 3MC was essential for the upregulation of retinoblastoma 2 (pRb2 and histone deacetylase 1 (HDAC1, whereas their nuclear translocation was primarily modulated by RhoA activation. The combination of increased phosphatase and tensin homolog (PTEN activity and decreased phosphatidylinositide 3-kinase (PI3K activation by 3MC led to the inactivation of the Ras-cRaf pathway, which contributed to pRb2 hypophosphorylation. Increased HDAC1/pRb2 recruitment to the E2F1 complex decreased E2F1-transactivational activity and H3/H4 deacetylation, resulting in the downregulation of cell-cycle regulatory proteins (Cdk2/4 and Cyclin D3/E. Co-immunoprecipitation and electrophoretic mobility shift assay (EMSA results showed that simvastatin prevented the 3MC-increased binding activities of E2F1 proteins in their promoter regions. Additionally, RhoA inhibitors (statins reversed the effect of 3MC in inhibiting DNA synthesis by decreasing the nuclear translocation of pRb2/HDAC1, leading to a recovery of the levels of cell-cycle regulatory proteins. In summary, 3MC decreased cell proliferation by the epigenetic modification of histone through an AhR/RhoA-dependent mechanism that can be rescued by statins.

  7. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  8. Understanding Millennials to Improve Recruiting Efficiency

    Science.gov (United States)

    2011-03-24

    to the authors of Generations at Work, when recruiting Millennials one must “be tolerant of their “swiss cheese scheduling”-an hour or two here, a...Recruiting Command, Recruiting Operations, 4-3. 32 Ibid., 6-4. 33 U.S. Army Recruiting Command, The Recruiter Handbook , United States Army Recruiting...6-1. 35 U.S. Army Recruiting Command, The Recruiter Handbook , 1-3. 36 Lynn C. Lancaster and David Stillman, When Generations Collide: Who They Ar

  9. Recruiting of somatotroph cells after combined somatostatin, GHRH and growth hormone (GH) secretagogue stimulation in a study of pituitary GH reserve in prepuberal female rats

    OpenAIRE

    Jiménez Reina, L.; García-Martínez, E.; Rojas, J.P.; Cañete, M.D.; G. Bernal; Cañete, R.

    2006-01-01

    Diagnostic confirmation of growth hormone (GH) deficiency in children and adults is based on stimulation tests designed to assess the pituitary reserve by measuring the amount of GH released into the bloodstream; however, the results obtained by this means cannot provide any direct indication of the amount of GH actually produced by pituitary somatotroph cells. The present paper sought to test the hypothesis that release of GH following administration of sp...

  10. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells

    Science.gov (United States)

    Rouger, Caroline; Pagie, Sylvain; Derbré, Séverine; Le Ray, Anne-Marie; Richomme, Pascal; Charreau, Béatrice

    2016-01-01

    Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium. PMID:27907087

  11. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  12. Effect of tetramethylpyrazine on expression of vascular cell adhension molecule-1 in mice with ulcerative colitis%川芎嗪对结肠炎模型小鼠血管细胞黏附分子-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈文敏; 江琼

    2012-01-01

    Objective To investigate the effect of tetramethylpyrazine(TMP) on expression of vascular cell adhension molecule-1 (VCAM-l) in mice with ulcerative colitis (UC) as well as role of TMP in treatment of UC. Methods Mice were randomly divided into normal control, model and TMP groups. Mouse model of UC was established by induction with dextran sulfate sodium (DSS), then observed for inflammation evaluation indexes, such as disease activity index (DAI) as well as morphology and lesion of colon tissue,and determined for expression of VCAM-l in colon mucosa by immunohistochemical assay. Results The inflammation evaluation indexes of mice in model group were significantly higher than those in normal control group (P < 0. 01). Though little expression of VCAM-l was observed in colon mucosa of mice in normal control group, the expression level increased significantly in model group (P < 0. 01) and decreased significantly in TMP group (P < 0. 01). Conclusion The expression of VCAM-l increased in mouse model of UC induced by DSS, which was inhibited by TMP.%目的 研究川芎嗪对结肠炎模型小鼠血管细胞黏附分子-1(Vascular cell adhension molecule-1,VCAM-1)表达的影响,探讨川芎嗪在治疗溃疡性结肠炎(Ulcerative colitis,UC)中的作用.方法 将小鼠随机分为正常对照组、模型组和川芎嗪组,采用葡聚糖硫酸钠(Dextran sulfate sodium,DSS)诱导小鼠UC模型,观察UC炎症评价指标[疾病活动指数(Disease activity index,DAI)、结肠组织形态学及组织学损伤],采用免疫组化法检测VCAM-1在结肠黏膜中的表达.结果 与正常对照组比较,模型组的炎症评价指标均明显增高(P<0.01);正常对照组结肠黏膜中几乎不表达VCAM-1,模型组VCAM-1的表达明显升高(P<0.01),而川芎嗪组VCAM-1的表达较模型组明显降低(P<0.01).结论 DSS诱导的结肠炎模型小鼠中VCAM-1表达增强,川芎嗪具有抑制VCAM-1表达的作用.

  13. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells.

    Science.gov (United States)

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong

    2006-02-01

    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  14. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface.

    Science.gov (United States)

    Jinadasa, Tushare; Szabó, Elöd Z; Numat, Masayuki; Orlowski, John

    2014-07-25

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.

  15. Integrin Regulation during Leukocyte Recruitment.

    Science.gov (United States)

    Herter, Jan; Zarbock, Alexander

    2013-05-01

    Integrins are recognized as vital players in leukocyte recruitment. Integrin malfunction causes severe disease patterns characterized by the inability to fight pathogens. Although inflammatory reactions are beneficial and necessary for host defense, these reactions have to be controlled to prevent tissue destruction and harmful sequelae. In this review, we discuss the different signaling pathways leading to the change of integrin adhesiveness in neutrophils, monocytes, and lymphocytes. We thereby focus on the importance of integrin activation for the different steps of the leukocyte recruitment cascade, including rolling, adhesion, postadhesion strengthening, intravascular crawling, and transmigration, as each step necessitates the proper functioning of a distinct set of integrin molecules that has to be activated specifically. Additionally, we discuss endogenous mechanisms that balance and counteract integrin activation and limit leukocyte recruitment at the site of inflammation. Further insight into these complex mechanisms may provide new approaches for developing new anti-inflammatory therapies.

  16. Uncover the recruiter in you!

    CERN Multimedia

    2013-01-01

    2013 saw the launch of the one-day training course "Selecting the best person for CERN". So far, 10 courses have taken place and over 100 participants have taken part in this interactive, hands on experience.   The course has been met with much enthusiasm and positive feedback, with participants not only feeling better prepared and organised for the recruitment boards, but also equipped with concrete tools on how to prepare and conduct an effective selection interview. Following on from this success, further sessions are planned in 2014: we look forward to welcoming recruiting supervisors and board members who are likely to take part in a recruitment process, whether for LD or LD2IC, and who are interested in finding out more about how to get the most out of this important process! To enrol to this course, please follow this link: "Selecting the best person for CERN".

  17. Effects of static magnetic field on human umbilical vessel endothelial cell

    Institute of Scientific and Technical Information of China (English)

    LI Fei; XU Ke-wei; WANG Hai-chang; GUO Wen-yi; HAN Yong; LIU Bing; ZHANG Rong-qing

    2007-01-01

    Objective:To investigate the effects of static magnetic field(SMF) on the viability,adhesion molecule expression of human umbilical vessel endothelial cell.Methods:Magnetic flux intensity was 0.1 mT,1 mT,10 mT.Cell viability and proliferation were measured with 3H-TdR and MTT methods; and apoptosis of human umbilical vein endothelial cell (HUVEC) was studied by flow cytometry and transmission electric microscopy.ELISA was used to measure the expression of ICAM-1 and VCAM-1 on endothelium.Results:0.1 mT SMF had no effects on the growth of HUVEC,however,SMF of 1 mT,10 mT attenuated growth of HUVEC.10 mT static magnetic field could induce apoptosis and necrosis of HUVEC.10 mT SMF enhanced the expression of ICAM-1 and VCAM-1 on endothelium.Conclusion:The effect of SMF depends on the intensity of SMF.10 mT SMF has adverse effects on human umbilical vessel endothelial cell.

  18. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia.

    Science.gov (United States)

    Yamamoto, Kazuko; Ahyi, Ayele-Nati N; Pepper-Cunningham, Zachary A; Ferrari, Joseph D; Wilson, Andrew A; Jones, Matthew R; Quinton, Lee J; Mizgerd, Joseph P

    2014-02-01

    Epithelial cells line the respiratory tract and interface with the external world. Epithelial cells contribute to pulmonary inflammation, but specific epithelial roles have proven difficult to define. To discover unique epithelial activities that influence immunity during infection, we generated mice with nuclear factor-κB RelA mutated throughout all epithelial cells of the lung and coupled this approach with epithelial cell isolation from infected and uninfected lungs for cell-specific analyses of gene induction. The RelA mutant mice appeared normal basally, but in response to pneumococcus in the lungs they were unable to rapidly recruit neutrophils to the air spaces. Epithelial cells expressed multiple neutrophil-stimulating cytokines during pneumonia, all of which depended on RelA. Cytokine expression by nonepithelial cells was unaltered by the epithelial mutation of RelA. Epithelial cells were the predominant sources of CXCL5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas nonepithelial cells were major sources for other neutrophil-activating cytokines. Epithelial RelA mutation decreased whole lung levels of CXCL5 and GM-CSF during pneumococcal pneumonia, whereas lung levels of other neutrophil-recruiting factors were unaffected. Defective neutrophil recruitment in epithelial mutant mice could be rescued by administration of CXCL5 or GM-CSF. These results reveal a specialized immune function for the pulmonary epithelium, the induction of CXCL5 and GM-CSF, to accelerate neutrophil recruitment in the infected lung.

  19. Screening scFv Specific to Vcam-1 by Phage Display Library and Its Activity Evaluation%噬菌体展示库筛选构建