WorldWideScience

Sample records for cells promote tolerance

  1. CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance.

    Science.gov (United States)

    Hu, Zicheng; Lancaster, Jessica N; Sasiponganan, Chayanit; Ehrlich, Lauren I R

    2015-10-19

    Autoimmunity results from a breakdown in central or peripheral tolerance. To establish central tolerance, developing T cells must enter the thymic medulla, where they scan antigen-presenting cells (APCs) displaying a diverse array of autoantigens. If a thymocyte is activated by a self-antigen, the cell undergoes either deletion or diversion into the regulatory T cell (T reg) lineage, thus maintaining self-tolerance. Mechanisms promoting thymocyte medullary entry and interactions with APCs are incompletely understood. CCR4 is poised to contribute to central tolerance due to its expression by post-positive selection thymocytes, and expression of its ligands by medullary thymic dendritic cells (DCs). Here, we use two-photon time-lapse microscopy to demonstrate that CCR4 promotes medullary entry of the earliest post-positive selection thymocytes, as well as efficient interactions between medullary thymocytes and DCs. In keeping with the contribution of thymic DCs to central tolerance, CCR4 is involved in regulating negative selection of polyclonal and T cell receptor (TCR) transgenic thymocytes. In the absence of CCR4, autoreactive T cells accumulate in secondary lymphoid organs and autoimmunity ensues. These studies reveal a previously unappreciated role for CCR4 in the establishment of central tolerance. PMID:26417005

  2. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance.

    Science.gov (United States)

    Soroosh, Pejman; Doherty, Taylor A; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H; Croft, Michael

    2013-04-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  3. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    OpenAIRE

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.; Croft, Michael

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, b...

  4. Ethnopoly promotes tolerance

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    On Friday 23 April, 225 primary school children from the eight schools in Meyrin-Cointrin and their accompanying adults took part in a big game of Ethnopoly. Private individuals, associations, administrations, shopkeepers and CERN all opened their doors to them to talk about their countries, their customs and what they are doing to promote tolerance and integration.   The CERN stand set up at ForumMeyrin for the Ethnopoly game. Scurrying from one place to another, the 10 and 11 year olds were made aware of the rich cultural diversity of their commune, which is home to 130 different nationalities. Physicists and engineers from CERN took up residence in the Forum Meyrin for the day in order to talk to the children about the advantages of international collaboration, a subject dear to the Organization's heart. They welcomed around fifty children in the course of the day, conveying to them a message of tolerance: despite their differences, the 10,000 scientists and other members of the CERN...

  5. Promoting tolerance to proteolipid protein-induced experimental autoimmune encephalomyelitis through targeting dendritic cells

    OpenAIRE

    Stern, Joel N. H.; Keskin, Derin B.; Kato, Zenichiro; Waldner, Hanspeter; Schallenberg, Sonja; Anderson, Ana; von Boehmer, Harald; Kretschmer, Karsten; Strominger, Jack L.

    2010-01-01

    In T cell-mediated autoimmune diseases, self-reactive T cells with known antigen specificity appear to be particularly promising targets for antigen-specific induction of tolerance without compromising desired protective host immune responses. Several lines of evidence suggest that delivery of antigens to antigen-presenting dendritic cells (DCs) in the steady state (i.e., to immature DCs) may represent a suitable approach to induce antigen-specific T-cell tolerance peripherally. Here, we repo...

  6. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  7. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model.

    Science.gov (United States)

    Xia, Fei; Cao, Hui; Du, Jiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-06-01

    The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes. PMID:26667474

  8. Regulatory T cell reprogramming towards a Th2 cell-like lineage impairs oral tolerance and promotes food allergy

    OpenAIRE

    Rivas, Magali Noval; Burton, Oliver T.; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C.; Rachid, Rima; Chatila, Talal

    2015-01-01

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible mice (Il4raF709) with enhanced IL-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of T helper 2 (Th2) cell-like phenotype, also found in peripheral blood all...

  9. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.

    Science.gov (United States)

    Svensson-Arvelund, Judit; Mehta, Ratnesh B; Lindau, Robert; Mirrasekhian, Elahe; Rodriguez-Martinez, Heriberto; Berg, Göran; Lash, Gendie E; Jenmalm, Maria C; Ernerudh, Jan

    2015-02-15

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-γ (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-β, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance. PMID:25560409

  10. Antagonism of airway tolerance by endotoxin/lipopolysaccharide through promoting OX40L and suppressing antigen-specific Foxp3+ T regulatory cells.

    Science.gov (United States)

    Duan, Wei; So, Takanori; Croft, Michael

    2008-12-15

    Respiratory exposure to allergens can lead to airway tolerance. Factors that antagonize tolerance mechanisms in the lung might result in susceptibility to diseases such as asthma. We show that inhalation of endotoxin/LPS with Ag prevented airway tolerance and abolished protection from T cell-driven asthmatic lung inflammation. Under conditions leading to tolerance, adaptive Ag-specific CD4(+)Foxp3(+) T regulatory cells (Treg) were generated following exposure to intranasal Ag and outnumbered IL-4- and IFN-gamma-producing CD4 T cells by 100:1 or greater. Inhaled LPS altered the ratio of Treg to IL-4(+) or IFN-gamma(+) T cells by concomitantly suppressing Treg generation and promoting effector T cell generation. LPS induced OX40L expression on dendritic cells and B cells that resulted in a synergistic activity between TLR4 and OX40 signals, leading to production of IL-4, IFN-gamma, and IL-6, which blocked Treg development. Furthermore, inhibiting OX40/OX40L interactions prevented LPS from suppressing tolerance, and resulted in the generation of greater numbers of adaptive Treg. Thus, cooperation between TLR4 and OX40 controls susceptibility to developing airway disease via modulating the balance between adaptive Treg and IL-4(+) or IFN-gamma(+) T cells. Targeting OX40L then has the potential to improve the efficacy of Ag immunotherapy to promote tolerance. PMID:19050285

  11. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C; Rachid, Rima; Chatila, Talal A

    2015-03-17

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy. PMID:25769611

  12. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion.

    Science.gov (United States)

    Zoso, Alessia; Mazza, Emilia M C; Bicciato, Silvio; Mandruzzato, Susanna; Bronte, Vincenzo; Serafini, Paolo; Inverardi, Luca

    2014-11-01

    By restraining T-cell activation and promoting Treg-cell expansion, myeloid-derived suppressor cells (MDSCs) and tolerogenic DCs can control self-reactive and antigraft effector T cells in autoimmunity and transplantation. Their therapeutic use and characterization, however, is limited by their scarce availability in the peripheral blood of tumor-free donors. In the present study, we describe and characterize a novel population of human myeloid suppressor cells, named fibrocytic MDSC, which are differentiated from umbilical cord blood precursors by 4-day culture with FDA-approved cytokines (recombinant human-GM-CSF and recombinant human-G-CSF). This MDSC subset, characterized by the expression of MDSC-, DC-, and fibrocyte-associated markers, promotes Treg-cell expansion and induces normoglycemia in a xenogeneic mouse model of Type 1 diabetes. In order to exert their protolerogenic function, fibrocytic MDSCs require direct contact with activated T cells, which leads to the production and secretion of IDO. This new myeloid subset may have an important role in the in vitro and in vivo production of Treg cells for the treatment of autoimmune diseases, and in either the prevention or control of allograft rejection. PMID:25113564

  13. Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells

    Science.gov (United States)

    Ranjbar, Benyamin; Krogh, Louise Bechmann; Laursen, Maria Bach; Primo, Maria Nascimento; Marques, Sara Correia; Dybkær, Karen; Mikkelsen, Jacob Giehm

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is characterized by great genetic and clinical heterogeneity which complicates prognostic prediction and influences treatment efficacy. The most common regimen, R-CHOP, consists of a combination of anthracycline- and immuno-based drugs including Rituximab. It remains elusive how and to which extent genetic variability impacts the response and potential tolerance to R-CHOP. Hence, an improved understanding of mechanisms leading to drug tolerance in B-cells is crucial, and modelling by genetic intervention directly in B-cells is fundamental in such investigations. Lentivirus-based gene vectors are widely used gene vehicles, which in B-cells are an attractive alternative to potentially toxic transfection-based methodologies. Here, we investigate the use of VSV-G-pseudotyped lentiviral vectors in B-cells for exploring the impact of microRNAs on tolerance to Rituximab. Notably, we find that robust lentiviral transduction of cancerous B-cell lines markedly and specifically enhances the resistance of transduced germinal center B-cells (GCBs) to Rituximab. Although Rituximab works partially through complement-mediated cell lysis, increased tolerance is not achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of Rituximab tolerance studies. Our findings stress that caution should be exercised exploiting lentiviral vectors in studies of tolerance to therapeutics in DLBCL. Importantly, however, we demonstrate the feasibility of using the lentiviral gene delivery platform in studies addressing the impact of specific microRNAs on Rituximab responsiveness. PMID:27045839

  14. Elevated levels of interferon-γ production by memory T cells do not promote transplant tolerance resistance in aged recipients.

    Directory of Open Access Journals (Sweden)

    James I Kim

    Full Text Available Immunosenescence predisposes the elderly to infectious and autoimmune diseases and impairs the response to vaccination. We recently demonstrated that ageing also impedes development of transplantation tolerance. Unlike their young counterparts (8-12 weeks of age aged male recipients (greater than 12 months of age transplanted with a full MHC-mismatched heart are resistant to tolerance mediated by anti-CD45RB antibody. Surprisingly, either chemical or surgical castration restored tolerance induction to levels observed using young recipients. Based on the strong impact of endocrine modulation on transplant tolerance, we explored the impact of ageing and castration on the immune system. Here we report a significant increase in the percentage of T cells that produce interferon-γ (IFN-γ in aged male versus young male animals and that the overall increase in IFN-γ production was due to an expansion of IFN-γ-producing memory T cells in aged animals. In contrast to IFN-γ production, we did not observe differences in IL-10 expression in young versus old male mice. We hypothesized that endocrine modulation would diminish the elevated levels of IFN-γ production in aged recipients, however, we observed no significant reduction in the percentage of IFN-γ+ T cells upon castration. Furthermore, we neutralized interferon-γ by antibody and did not observe an effect on graft survival. We conclude that while elevated levels of interferon-γ serves as a marker of tolerance resistance in aged mice, other as yet to be identified factors are responsible for its cause. Defining these factors may be relevant to design of tolerogenic strategies for aged recipients.

  15. Foxp3-modified bone marrow mesenchymal stem cells promotes liver allograft tolerance through the generation of regulatory T cells in rats

    OpenAIRE

    QI, HAIZHI; Chen, Guangshun; Huang, Yaxun; Si, Zhongzhou; Li, Jiequn

    2015-01-01

    Background The transcription factor forkhead box P3 (Foxp3) is a master regulatory gene necessary for the development and function of CD4+CD25+ regulatory T cells (Tregs). Mesenchymal stem cells (MSC) have recently emerged as promising candidates for cell-based immunosuppression/tolerance induction protocols. Thus, we hypothesized that MSC-based Foxp3 gene therapy would improve immunosuppressive capacity of MSC and induce donor-specific allograft tolerance in rat’s liver allograft model. Meth...

  16. Can Airway Tolerance be Promoted Immunopharmacologically with Aspirin in Aspirin-insensitive Allergic Bonchial Asthmatics by T Regulatory Cells (Tregs-directed Immunoregulatory Therapy?

    Directory of Open Access Journals (Sweden)

    Muzammal Hussain

    2012-07-01

    Full Text Available The pathobiology of allergic bronchial asthma is mediated by over-expressed T helper type 2 (Th2-biased immune responses to harmless environmental antigens, leading to airway inflammation and hyper-responsiveness. These Th2 responses are normally suppressed by functional T regulatory cells (Tregs, which maintain the airway tolerance. However, the Tregs activity is conceived to be compromised in allergic asthmatics. The curative therapy to counteract this immune dysregulation is not available so far, and to devise such a remedy is the current research impetus in allergic asthma therapeutics. One of the novel insights is to consider a Tregs-directed immunoregulatory therapy that could harness endogenous Tregs to redress the Th2/Tregs imbalance, thus enhancing the airway tolerance. Aspirin or acetylsalicylic acid (ASA is a prototype non-steroidal anti-inflammatory drug that possesses intriguing immunopharmacological attributes. For example, it can enhance the number or the frequency of functional Tregs, especially natural CD4+ CD25+ FoxP3+ Tregs, either directly or by inducing tolerogenic activity in dendritic cells (DCs. It is also considered to be beneficial for the induction of immunological tolerance in autoimmunity and graft rejection. This raises the question whether ASA, if exploited optimally, may be used to induce and harness endogenous Tregs activity for redressing Th2/Tregs imbalance in allergic asthma. In this paper, we hypothesise that ASA may help to counteract the underlying immune dysregulation in allergic asthma by promoting airway tolerance. Nevertheless, the future research in this regard will selectively need to be targeted to allergic asthma models, which are ASA insensitive, as ASA has some adverse background and is contraindicated in asthmatics who are sensitive to it.

  17. B cells and immunological tolerance.

    Science.gov (United States)

    Manjarrez-Orduño, Nataly; Quách, Tâm D; Sanz, Iñaki

    2009-02-01

    Work from multiple groups continues to provide additional evidence for the powerful and highly diverse roles, both protective and pathogenic, that B cells play in autoimmune diseases. Similarly, it has become abundantly clear that antibody-independent functions may account for the opposing influences that B cells exercise over other arms of the immune response and ultimately over autoimmunity itself. Finally, it is becoming apparent that the clinical impact of B-cell depletion therapy may be, to a large extent, determined by the functional balance between different B-cell subsets that may be generated by this therapeutic intervention. In this review, we postulate that our perspective of B-cell tolerance and our experimental approach to its understanding are fundamentally changed by this view of B cells. Accordingly, we first discuss current knowledge of B-cell tolerance conventionally defined as the censoring of autoantibody-producing B cells (with an emphasis on human B cells). Therefore, we discuss a different model that contemplates B cells not only as targets of tolerance but also as mediators of tolerance. This model is based on the notion that the onset of clinical autoimmune disease may require a B-cell gain-of-pathogenic function (or a B-cell loss-of-regulatory-function) and that accordingly, disease remission may depend on the restoration of the physiological balance between B-cell pathogenic and protective functions. PMID:19148217

  18. Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells

    DEFF Research Database (Denmark)

    Ranjbar, Benyamin; Krogh, Louise Bechmann; Laursen, Maria Bach; Primo, Maria Nascimento; Marques, Sara Correia; Dybkær, Karen; Mikkelsen, Jacob Giehm

    2016-01-01

    achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of...

  19. Persimmon leaf flavonoid promotes brain ischemic tolerance**

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Ming Bai; Linan Wang

    2013-01-01

    Persimmon leaf flavonoid has been shown to enhance brain ischemic tolerance in mice, but its mechanism of action remains unclear. The bilateral common carotid arteries were occluded using a micro clip to block blood flow for 10 minutes. After 10 minutes of ischemic preconditioning, 200, 100, and 50 mg/kg persimmon leaf flavonoid or 20 mg/kg ginaton was intragastrical y administered per day for 5 days. At 1 hour after the final administration, ischemia/reperfusion models were estab-lished by blocking the middle cerebral artery for 2 hours. At 24 hours after model establishment, compared with cerebral ischemic rats without ischemic preconditioning or drug intervention, plasma endothelin, thrombomodulin and von Wil ebrand factor levels significantly decreased and intercel-lular adhesion molecule-1 expression markedly reduced in brain tissue from rats with ischemic pre-conditioning. Simultaneously, brain tissue injury reduced. Ischemic preconditioning combined with drug exposure noticeably improved the effects of the above-mentioned indices, and the effects of 200 mg/kg persimmon leaf flavonoid were similar to 20 mg/kg ginaton treatment. These results indicate that ischemic preconditioning produces tolerance to recurrent severe cerebral ischemia. However, persimmon leaf flavonoid can elevate ischemic tolerance by reducing inflammatory reactions and vascular endothelial injury. High-dose persimmon leaf flavonoid showed an identical effect to ginaton.

  20. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Directory of Open Access Journals (Sweden)

    Yok-Ai Que

    Full Text Available Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA, a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  1. Bile signalling promotes chronic respiratory infections and antibiotic tolerance.

    Science.gov (United States)

    Reen, F Jerry; Flynn, Stephanie; Woods, David F; Dunphy, Niall; Chróinín, Muireann Ní; Mullane, David; Stick, Stephen; Adams, Claire; O'Gara, Fergal

    2016-01-01

    Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease. PMID:27432520

  2. Mast cell degranulation breaks peripheral tolerance

    OpenAIRE

    De Vries, V. C.; Wasiuk, A.; Bennett, K A; Benson, M. J.; Elgueta, R.; Waldschmidt, T. J.; Noelle, R J

    2009-01-01

    Mast cells (MC) have been shown to mediate regulatory T-cell (T(reg))-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, T(reg) have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and T(reg) in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of T(reg) suppressor activities with t...

  3. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  4. How some T cells escape tolerance induction.

    Science.gov (United States)

    Gammon, G; Sercarz, E

    1989-11-01

    A feature common to many animal models of autoimmune disease, for example, experimental allergic encephalomyelitis, experimental autoimmune myasthenia gravis and collagen-induced arthritis, is the presence of self-reactive T cells in healthy animals, which are activated to produce disease by immunization with exogenous antigen. It is unclear why these T cells are not deleted during ontogeny in the thymus and, having escaped tolerance induction, why they are not spontaneously activated by self-antigen. To investigate these questions, we have examined an experimental model in which mice are tolerant to an antigen despite the presence of antigen-reactive T cells. We find that the T cells that escape tolerance induction are specific for minor determinants on the antigen. We propose that these T cells evade tolerance induction because some minor determinants are only available in relatively low amounts after in vivo processing of the whole antigen. For the same reason, these T cells are not normally activated but can be stimulated under special circumstances to circumvent tolerance. PMID:2478888

  5. The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia

    International Nuclear Information System (INIS)

    Background and purpose: Tumor hypoxia is associated with therapy resistance and malignancy. Previously we demonstrated that activation of autophagy and the unfolded protein response (UPR) promote hypoxia tolerance. Here we explored the importance of ULK1 in hypoxia tolerance, autophagy induction and its prognostic value for recurrence after treatment. Material and methods: Hypoxic regulation of ULK1 mRNA and protein was assessed in vitro and in primary human head and neck squamous cell carcinoma (HNSCC) xenografts. Its importance in autophagy induction, mitochondrial homeostasis and tolerance to chronic and acute hypoxia was evaluated in ULK1 knockdown cells. The prognostic value of ULK1 mRNA expression was assessed in 82 HNSCC patients. Results: ULK1 enrichment was observed in hypoxic tumor regions. High enrichment was associated with a high hypoxic fraction. In line with these findings, high ULK1 expression in HNSCC patients appeared associated with poor local control. Exposure of cells to hypoxia induced ULK1 mRNA in a UPR and HIF1α dependent manner. ULK1 knockdown decreased autophagy activation, increased mitochondrial mass and ROS exposure and sensitized cells to acute and chronic hypoxia. Conclusions: We demonstrate that ULK1 is a hypoxia regulated gene and is associated with hypoxia tolerance and a worse clinical outcome

  6. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance.

    Science.gov (United States)

    Oertli, Mathias; Noben, Manuel; Engler, Daniela B; Semper, Raphaela P; Reuter, Sebastian; Maxeiner, Joachim; Gerhard, Markus; Taube, Christian; Müller, Anne

    2013-02-19

    Infection with the gastric bacterial pathogen Helicobacter pylori is typically contracted in early childhood and often persists for decades. The immunomodulatory properties of H. pylori that allow it to colonize humans persistently are believed to also account for H. pylori's protective effects against allergic and chronic inflammatory diseases. H. pylori infection efficiently reprograms dendritic cells (DCs) toward a tolerogenic phenotype and induces regulatory T cells (Tregs) with highly suppressive activity in models of allergen-induced asthma. We show here that two H. pylori virulence determinants, the γ-glutamyl transpeptidase GGT and the vacuolating cytotoxin VacA, contribute critically and nonredundantly to H. pylori's tolerizing effects on murine DCs in vitro and in vivo. The tolerance-promoting effects of both factors are independent of their described suppressive activity on T cells. Isogenic H. pylori mutants lacking either GGT or VacA are incapable of preventing LPS-induced DC maturation and fail to drive DC tolerization as assessed by induction of Treg properties in cocultured naive T cells. The Δggt and ΔvacA mutants colonize mice at significantly reduced levels, induce stronger T-helper 1 (Th1) and T-helper 17 (Th17) responses, and/or trigger more severe gastric pathology. Both factors promote the efficient induction of Tregs in vivo, and VacA is required to prevent allergen-induced asthma. The defects of the Δggt mutant in vitro and in vivo are phenocopied by pharmacological inhibition of the transpeptidase activity of GGT in all readouts. In conclusion, our results reveal the molecular players and mechanistic basis for H. pylori-induced immunomodulation, promoting persistent infection and conferring protection against allergic asthma. PMID:23382221

  7. The enigmatic role of mast cells in dominant tolerance

    OpenAIRE

    de Vries, Victor C.; Pino-Lagos, Karina; Elgueta, Raul; Noelle, Randolph J.

    2009-01-01

    PURPOSE OF REVIEW: The role of regulatory T cells (Treg) in peripheral tolerance has been studied extensively in transplantation research. Recently, mast cells have been shown to play an indispensable role in allograft tolerance. The purpose of this review is to inform the reader on the current standings of the role of mast cells in dominant tolerance with an emphasis on the interaction of mast cells with Treg.RECENT FINDINGS: Mast cells are required to sustain peripheral tolerance via Treg. ...

  8. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  9. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  10. Transplantation Tolerance Induction: Cell Therapies and Their Mechanisms

    Science.gov (United States)

    Scalea, Joseph R.; Tomita, Yusuke; Lindholm, Christopher R.; Burlingham, William

    2016-01-01

    Cell-based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types are being tested as possible routes to tolerance induction, in the absence of donor-derived stem cells. Early data with each of these cell types have been encouraging. However, the induction regimen capable of achieving consistent tolerance, while avoiding unwanted sided effects, and which is scalable to the human patient, has yet to be identified. Here, we present the status of investigations of various tolerogenic cell types and the mechanistic rationale for their use in tolerance induction protocols. PMID:27014267

  11. The significance of non-T cell pathways in graft rejection--implications for transplant tolerance

    Science.gov (United States)

    Li, Xian Chang

    2010-01-01

    Both innate and adaptive immune cells are actively involved in the initiation and destruction of allotransplants, there is a true need now to look beyond T cells in the allograft response, examining various non-T cell types in transplant models and how such cell types interact with T cells in determining the fate of an allograft. Studies in this area may lead to further improvement in transplant outcomes. SUMMARY The “T cell-centric paradigm” has dominated transplant research for decades. While T cells are undeniably quintessential in allograft rejection, recent studies have demonstrated unexpected roles for non-T cells such as NK cells, B cells, macrophage and mast cells in regulating transplant outcomes. It has been shown that depending on models, context, and tolerizing protocols, the innate immune cells contribute significantly to both graft rejection and graft acceptance. Some innate immune cells are potent inflammatory cells directly mediating graft injury while others regulate effector programs of alloreactive T cells and ultimately determine whether the graft is rejected or accepted. Furthermore, when properly activated, some innate immune cells promote the induction of Foxp3+ Tregs whereas others readily kill them, thereby differentially affecting the induction of tolerance. In addition, B cells can induce graft damage by producing alloantibodies or by promoting T cell activation. However, B cells also contribute to transplant tolerance by acting as regulatory cells or by stimulating Foxp3+ Tregs. These new findings unravel unexpected complexities for non-T cells in transplant models and may have important clinical implications. In this overview, we highlight recent advances on the role of B cells, NK cells, dendritic cells, and macrophages in the allograft response, and discuss whether such cells can be therapeutically targeted for the induction of transplant tolerance. PMID:20686444

  12. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4+ T Cell Tolerance

    Science.gov (United States)

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-01-01

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study’s aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4+ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4+ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4+ IFN-γ+ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca2+ and p-ERK) in CD4+ T cells. We observed that Aire cells-induced CD4+ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4+IFN-γ+ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire. PMID:26729097

  13. AN OVERVIEW ON NON-T CELL PATHWAYS IN TRANSPLANT REJECTION AND TOLERANCE

    Science.gov (United States)

    Liu, Wentao; Li, Xian C.

    2015-01-01

    Purpose of review Recent studies have demonstrated unexpected roles for non-T cells, especially innate immune cells, in the regulation of transplant outcomes. In this review, we highlight our recent understanding on the role of NK cells, dendritic cells, and macrophages in the allograft response, and discuss whether such cells can be targeted for the induction of transplant tolerance. Recent findings There are unexpected roles for non-T cells in regulating transplant outcomes, and depending on the models and tolerizing protocols, the innate immune cells contribute significantly to both graft rejection and graft acceptance. Some innate immune cells are potent inflammatory cells directly mediating graft injury, while others regulate effector programs of alloreactive T cells and ultimately determine whether the graft is rejected or accepted. Furthermore, when properly activated, some innate immune cells promote the induction of Foxp3+ Tregs whereas others efficiently kill them, thereby differentially affecting the induction of tolerance. These new findings unravel unexpected complexities of non-T cells in transplant models and may have important clinical implications. Summary The innate immune cells contribute to both graft rejection and acceptance. Thus, a detailed understanding of the exact mechanisms and pathways that govern such opposing effects in transplant models may lead to the design of new tolerance protocols. PMID:20531193

  14. Suppressor cells in transplantation tolerance: the mechanisms of tolerance in radiation chimeras

    International Nuclear Information System (INIS)

    Histoincompatible-complete radiation chimeras, after resolving acute graft-vs-host (GVHD), establish specific tolerance to host and donor alloantigens. This tolerance can be perturbed with immunosuppressive agents and infusions of small numbers of donor-type cells with infusions of massive numbers of donor-type cells, or with infusions of a small number of donor-type cells, that were sensitized against host antigens prior to transfer. These chimeras possess T lymphocytes in the spleen that specifically suppress donor to host mixed lymphocyte reactions and adoptively transfer suppression of GVHD to secondary hosts. Nylon-wool fractionation of chimeric spleen cells restores the response of chimeric lymphocytes to host alloantigens, suggesting that transplantation tolerance is not attributable to clonal deletion but the activity of nylon-wool-adherent T suppressor spleen cells

  15. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria.

    Science.gov (United States)

    Vurukonda, Sai Shiva Krishna Prasad; Vardharajula, Sandhya; Shrivastava, Manjari; SkZ, Ali

    2016-03-01

    Drought is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with drought stress. Plant growth promoting rhizobacteria (PGPR) could play a significant role in alleviation of drought stress in plants. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds, inducing accumulation of osmolytes, antioxidants, upregulation or down regulation of stress responsive genes and alteration in root morphology in acquisition of drought tolerance. The term Induced Systemic Tolerance (IST) was coined for physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses. In the present review we elaborate on the role of PGPR in helping plants to cope with drought stress. PMID:26856449

  16. Regulatory T Cells and Immune Tolerance in the Intestine

    OpenAIRE

    Harrison, Oliver J.; Powrie, Fiona M.

    2013-01-01

    A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this p...

  17. Cell motility and antibiotic tolerance of bacterial swarms

    Science.gov (United States)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  18. Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance.

    Science.gov (United States)

    Gupta, Nimesh; Culina, Slobodan; Meslier, Yann; Dimitrov, Jordan; Arnoult, Christophe; Delignat, Sandrine; Gangadharan, Bagirath; Lecerf, Maxime; Justesen, Sune; Gouilleux-Gruart, Valérie; Salomon, Benoit L; Scott, David W; Kaveri, Srinivas V; Mallone, Roberto; Lacroix-Desmazes, Sébastien

    2015-02-18

    Central tolerance plays a key role in modulating immune responses to self and exogenous antigens. The absence of self-antigen expression, as in patients with genetic deficiencies, prevents the development of antigen-specific immune tolerance. Hence, a substantial number of patients develop neutralizing antibodies to the corresponding protein therapeutics after replacement treatment. In this context, the administration of missing antigens during fetal development, a key period for self-tolerance establishment, should confer early and long-lasting antigen-specific tolerance. To this end, we exploited the physiological pathway of the neonatal Fc receptor (FcRn) through which maternal immunoglobulins are transplacentally transferred to fetuses. We demonstrate that Fc-fused antigens administered to pregnant mice reach fetal lymphoid organs in an FcRn-dependent manner, accumulate in antigen-presenting cells of myeloid origin, and promote the generation of both thymic and peripheral antigen-specific regulatory T cells. This strategy was successfully pursued in a mouse model of hemophilia A, where maternofetal transfer of the Fc-fused immunodominant domains of coagulation factor VIII conferred antigen-specific tolerance. Transplacental tolerance induction with Fc-fused proteins may thus prove valuable to prevent alloimmunization after replacement protein therapy for congenital deficiencies. PMID:25696000

  19. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    OpenAIRE

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P

  20. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    OpenAIRE

    Sheikh Hasna Habib; Hossain Kausar; Halimi Mohd Saud

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzym...

  1. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    OpenAIRE

    Muhaimin Rifa’i

    2010-01-01

    Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg) cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune respo...

  2. Erythropoietin signaling promotes transplanted progenitor cell survival

    OpenAIRE

    Jia, Yi; Warin, Renaud; Yu, Xiaobing; Epstein, Reed; Noguchi, Constance Tom

    2009-01-01

    We examine the potential for erythropoietin signaling to promote donor cell survival in a model of myoblast transplantation. Expression of a truncated erythropoietin receptor in hematopoietic stem cells has been shown to promote selective engraftment in mice. We previously demonstrated expression of endogenous erythropoietin receptor on murine myoblasts, and erythropoietin treatment can stimulate myoblast proliferation and delay differentiation. Here, we report that enhanced erythropoietin re...

  3. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    Science.gov (United States)

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S

    1998-06-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subunit AChR gene. In addition to expression in muscle cells, thymic expression was observed in both mouse lines (mainly in myoid cells in Tg1 and myoid cells and epithelial cells in Tg2). After challenge with beta-gal, Tg1 mice produced Th2-dependent anti-beta-gal antibodies, while Tg2 mice were almost unresponsive. By contrast, in a proliferation assay both Tg lines were unresponsive to beta-gal. Cells from Tg1 mice produce Th2-dependent cytokine whereas cells from Tg2 mice were nonproducing in response to beta-gal. These data indicate that the level of expression in Tg1 mice could be sufficient to induce tolerance of Th1 cells but not of Th2 cells, while both populations are tolerated in Tg2 mice. These findings are compatible with the hypothesis that AChR expression is not sufficiently abundant in MG thymus to induce a full tolerance. PMID:9616205

  4. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation

    Directory of Open Access Journals (Sweden)

    Niloufar eSafinia

    2015-08-01

    Full Text Available Regulatory T cells (Tregs play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy.Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.

  5. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  6. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity.

    Science.gov (United States)

    Gonzalez-Martin, Alicia; Adams, Brian D; Lai, Maoyi; Shepherd, Jovan; Salvador-Bernaldez, Maria; Salvador, Jesus M; Lu, Jun; Nemazee, David; Xiao, Changchun

    2016-04-01

    Autoreactive B cells have critical roles in a large diversity of autoimmune diseases, but the molecular pathways that control these cells remain poorly understood. We performed an in vivo functional screen of a lymphocyte-expressed microRNA library and identified miR-148a as a potent regulator of B cell tolerance. Elevated miR-148a expression impaired B cell tolerance by promoting the survival of immature B cells after engagement of the B cell antigen receptor by suppressing the expression of the autoimmune suppressor Gadd45α, the tumor suppressor PTEN and the pro-apoptotic protein Bim. Furthermore, increased expression of miR-148a, which occurs frequently in patients with lupus and lupus-prone mice, facilitated the development of lethal autoimmune disease in a mouse model of lupus. Our studies demonstrate a function for miR-148a as a regulator of B cell tolerance and autoimmunity. PMID:26901150

  7. Interferon-α abrogates tolerance induction by human tolerogenic dendritic cells.

    Directory of Open Access Journals (Sweden)

    Nicole Bacher

    Full Text Available BACKGROUND: Administration of interferon-α (IFN-α represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC that are known to induce anergic regulatory T cells (iTregs. METHODOLOGY/PRINCIPAL FINDINGS: IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4(+ and CD8(+ T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells. CONCLUSIONS/SIGNIFICANCE: IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC.

  8. Intrathecal Lamotrigine Attenuates Antinociceptive Morphine Tolerance and Suppresses Spinal Glial Cell Activation in Morphine-Tolerant Rats

    OpenAIRE

    Jun, In-Gu; Kim, Sung-Hoon; Yoon, Yang-In; Park, Jong-Yeon

    2013-01-01

    Glial cells play a critical role in morphine tolerance, resulting from repeated administration of morphine. Both the development and the expression of tolerance are suppressed by the analgesic lamotrigine. This study investigated the relationship between the ability of lamotrigine to maintain the antinociceptive effect of morphine during tolerance development and glial cell activation in the spinal cord. In a rat model, morphine (15 µg) was intrathecally injected once daily for 7 days to indu...

  9. Transplantation tolerance mediated by regulatory T cells in mice

    Institute of Scientific and Technical Information of China (English)

    冯宁翰; 吴宏飞; 吴军; 张炜; 眭元庚; 贺厚光; 张春雷; 郑峻松

    2004-01-01

    Background With potent suppressive effect on responder T cells, CD4+CD25+ regulatory T (Treg) cells have become the focus of attention only recently and they may play an important role in transplantation tolerance. However, the mechanism of action is not clear. This study was designed to assess the possibility of using CD4+CD25+ Treg cells to induce transplantation tolerance and to investigate their mechanism of action.Methods CD4+CD25+ Treg cells were isolated using magnetic cell separation techniques. Mixed lymphocyte reactions were used to assess the ability of Treg cells to suppress effector T cells. Before skin transplantation, various numbers of CD4+CD25+Treg cells, which have been induced using complex skin antigens from the donor, were injected into the host mice either intraperitoneally (0.5×105, 1×105, 2×105, 3×105, 4×105, or 5×105) or by injection through the tail vein (5×103, 1×104, 2×104, 5×104, 1×105, 2×105). Skin grafts from two different donor types were used to assess whether the induced Treg cells were antigen-specific. The survival time of the allografts were observed. Single photon emission computed tomography was also used to determine the distribution of Treg cells before and after transplantation.Results Treg cells have suppressive effect on mixed lymphocyte reactions. Grafts survived longer in mice receiving CD4+CD25+ Treg cell injections than in control mice. There was a significant difference between groups receiving intraperitoneal injection of either 2×105 or 3×105 CD4+CD25+Treg cells and the control group (P<0.05, respectively). Better results were achieved when Treg cells were injected via the tail vein than when injected intraperitoneally. The transplantation tolerance induced by CD4+CD25+ Treg cells was donor-specific. Analysis of the localization of Treg cells revealed that Treg cells mainly migrated from the liver to the allografts and the spleen.Conclusions CD4+CD25+Treg cells can induce donor

  10. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    Science.gov (United States)

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  11. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  12. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    Science.gov (United States)

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress. PMID:26951880

  13. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Science.gov (United States)

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress. PMID:26951880

  14. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    of this thesis has been to explore the tolerance mechanisms of yeast biofilms to systemic antifungal agents and to identify the molecular target of a novel peptidomimetic with anti-biofilm activity. The genetic tractable S. cerevisiae was used as biofilm model system for the pathogenic Candida...... species in an attempt to take advantage of the molecular tools available for S. cerevisiae. Mature biofilms containing mainly growth arrested cells were shown to be tolerant to three out of four tested antifungals, while all drugs had inhibitory activity against proliferating biofilm cells, demonstrating...... physiological state of the cell and the mechanism of action of the drug, and this is independent of mode of growth. Based on these results, it can be suggested that future drug treatment strategies should focus on targeting growth arrested cells, rather than distinguishing between modes of growth. At last, we...

  15. Myeloid-derived suppressor cells: Natural regulators for transplant tolerance

    OpenAIRE

    Boros, Peter; Ochando, Jordi C.; Chen, Shu-hsia; Bromberg, Jonathan S.

    2010-01-01

    Myeloid derived suppressor cells (MDSC) contribute to the negative regulation of immune response in cancer patients. This review summarizes results on important issues related to MDSC biology, including expansion and activation of MDSC, phenotype, and subsets as well pathways and different mechanisms by which these cells exert their suppressive effect. Recent observations suggesting that MDSC may have roles in transplant tolerance are presented. Although therapeutic targeting and destruction ...

  16. Altered tumor cell glycosylation promotes metastasis

    Directory of Open Access Journals (Sweden)

    LuborBorsig

    2014-02-01

    Full Text Available Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompasses aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors - lectins. In this review we will discuss current concepts how tumor cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins and selectins. Siglecs are present on virtually all hematopoetic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor cell survival. Selectins are vascular adhesion receptors that promote tumor cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis and aid to develop clinical strategies to prevent metastasis.

  17. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells

    International Nuclear Information System (INIS)

    A comprehensive review of the investigations performed in search for development of electrocatalysts with enhanced reformate tolerance for low temperature polymer electrolyte membrane (PEM) fuel cells are presented. Remarkable efforts have been made to attain improved catalytic activities and robustness by adding second element to Pt/C or third element to Pt–Ru/C, commercial catalysts for PEM fuel cell applications. The enhanced CO tolerance of the developed catalysts is strongly dependent on the type, composition and atomic ratios of the added elements/groups, and type and structure of the support materials. The synthesis method of the catalysts also plays a remarkable role in the catalytic activity and stability since it determines the structure, morphology and size distribution of the catalyst nanoparticles, which are directly effective on the stability and activity. Choosing a proper synthesis method, inclusion of appropriate content of suitable promoters to Pt-based catalysts, and using a proper support material are the major requirements of an effective catalyst. The CO tolerance enhancement has been attributed to the bi-functional mechanism and electronic effects. Understanding the underlying mechanisms and the activity–structure correlations will shed a light in designing novel electrocatalysts via innovative routes for excellent robust CO tolerant electrocatalysts

  18. A Low Cost Rad-Tolerant Standard Cell Library

    Science.gov (United States)

    Gambles, Jody W.; Maki, Gary K.

    1997-01-01

    This paper describes circuit design techniques developed at the NASA Institute of Advanced Microelectronics that have been shown to protect CMOS circuits from the deleterious effects of the natural space radiation environment. The IAuE is leading a program to incorporate these radiation-tolerance providing design techniques into a commercial standard cell library that will be used in conjunction with available Electronic Design Automation tools to produce space flight qualified microelectronics fabricated at modern commercial CMOS foundries.

  19. Mast cells contribute to peripheral tolerance and attenuate autoimmune vasculitis.

    Science.gov (United States)

    Gan, Poh-Yi; Summers, Shaun A; Ooi, Joshua D; O'Sullivan, Kim M; Tan, Diana S Y; Muljadi, Ruth C M; Odobasic, Dragana; Kitching, A Richard; Holdsworth, Stephen R

    2012-12-01

    Mast cells contribute to the modulation of the immune response, but their role in autoimmune renal disease is not well understood. Here, we induced autoimmunity resulting in focal necrotizing GN by immunizing wild-type or mast cell-deficient (Kit(W-sh/W-sh)) mice with myeloperoxidase. Mast cell-deficient mice exhibited more antimyeloperoxidase CD4+ T cells, enhanced dermal delayed-type hypersensitivity responses to myeloperoxidase, and more severe focal necrotizing GN. Furthermore, the lymph nodes draining the sites of immunization had fewer Tregs and reduced production of IL-10 in mice lacking mast cells. Reconstituting these mice with mast cells significantly increased the numbers of Tregs in the lymph nodes and attenuated both autoimmunity and severity of disease. After immunization with myeloperoxidase, mast cells migrated from the skin to the lymph nodes to contact Tregs. In an ex vivo assay, mast cells enhanced Treg suppression through IL-10. Reconstitution of mast cell-deficient mice with IL-10-deficient mast cells led to enhanced autoimmunity to myeloperoxidase and greater disease severity compared with reconstitution with IL-10-intact mast cells. Taken together, these studies establish a role for mast cells in mediating peripheral tolerance to myeloperoxidase, protecting them from the development of focal necrotizing GN in ANCA-associated vasculitis. PMID:23138486

  20. Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance.

    Science.gov (United States)

    Zeng, Zhutian; Li, Lu; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2016-05-30

    Persistent exposure to liver pathogens leads to systemic antigen-specific tolerance, a major cause of chronicity during hepatotropic infection. The mechanism regarding how this systemic tolerance is maintained remains poorly elucidated. In a well established mouse model of hepatitis B virus (HBV) persistence-induced systemic tolerance, we observed that interferon-γ (IFN-γ) deficiency led to complete loss of tolerance, resulting in robust anti-HBV responses upon peripheral vaccination. The recovery of vaccine-induced anti-HBV responses was mainly caused by the retained antigen-specific CD4(+) T cells rather than decreased functional inhibitory cells in the periphery. Mechanistically, HBV persistence induced sustained hepatic CD4(+) T cell-derived IFN-γ production. IFN-γ was found to promote CXCL9 secretion from liver-resident macrophages. This T cell chemokine facilitated the retention of antiviral CD4(+) T cells in the liver in a CXCR3-dependent manner. Hepatic sequestrated antiviral CD4(+) T cells subsequently underwent local apoptotic elimination partially via cytotoxic T lymphocyte-associated protein 4 ligation. These findings reveal an unexpected tolerogenic role for IFN-γ during viral persistence in the liver, providing new mechanistic insights regarding the maintenance of systemic antigen-specific tolerance during HBV persistence. PMID:27139489

  1. Mechanism of T-cell tolerance induced by myeloid-derived suppressor cells1

    OpenAIRE

    Nagaraj, Srinivas; Schrum, Adam G.; Cho, Hyun-Il; Celis, Esteban; Gabrilovich, Dmitry I.

    2010-01-01

    Antigen-specific T-cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSC) in the induction of CD8+ T-cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of antigen-specific CD8+ T cells, with peptide-loaded MDSC, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR t...

  2. AKT Inhibition Promotes Nonautonomous Cancer Cell Survival.

    Science.gov (United States)

    Salony; Solé, Xavier; Alves, Cleidson P; Dey-Guha, Ipsita; Ritsma, Laila; Boukhali, Myriam; Lee, Ju H; Chowdhury, Joeeta; Ross, Kenneth N; Haas, Wilhelm; Vasudevan, Shobha; Ramaswamy, Sridhar

    2016-01-01

    Small molecule inhibitors of AKT (v-akt murine thymoma viral oncogene homolog) signaling are being evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with subtherapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multiscale, molecular snapshot of this "AKT(low)" cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously upregulate a host of other proteins and metabolites posttranscriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication. PMID:26637368

  3. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  4. Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice.

    Directory of Open Access Journals (Sweden)

    Gabriel Espinosa-Carrasco

    Full Text Available Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.

  5. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-07-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  6. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  7. Thymic CCL2 influences induction of T-cell tolerance

    DEFF Research Database (Denmark)

    Cédile, O; Løbner, M; Toft-Hansen, H;

    2014-01-01

    promoting experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. We here show that CCL2 is constitutively expressed by endothelial cells and TEC in the thymus. Transgenic mice overexpressing CCL2 in the thymus showed an increased number of thymic plasmacytoid DC and...

  8. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains.

    Directory of Open Access Journals (Sweden)

    Chun-Juan Wang

    Full Text Available Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21, termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels.

  9. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion.

    Science.gov (United States)

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S; Kumar, Shailendra; Ansari, Mohammad W; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  10. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion

    Science.gov (United States)

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S.; Kumar, Shailendra; Ansari, Mohammad W.; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  11. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    Science.gov (United States)

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151

  12. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance

    OpenAIRE

    Kendal, Adrian R.; Chen, Ye; Regateiro, Frederico S.; Ma, Jianbo; Adams, Elizabeth; Cobbold, Stephen P.; Hori, Shohei; Waldmann, Herman

    2011-01-01

    A paradigm shift in immunology has been the recent discovery of regulatory T cells (T reg cells), of which CD4+Foxp3+ cells are proven as essential to self-tolerance. Using transgenic B6.Foxp3hCD2 mice to isolate and ablate Foxp3+ T reg cells with an anti-hCD2 antibody, we show for the first time that CD4+Foxp3+ cells are crucial for infectious tolerance induced by nonablative anti–T cell antibodies. In tolerant animals, Foxp3+ T reg cells are constantly required to suppress effector T cells ...

  13. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    OpenAIRE

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S.

    1998-01-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subu...

  14. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  15. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.

    Science.gov (United States)

    Armendariz, Ana L; Talano, Melina A; Wevar Oller, Ana L; Medina, María I; Agostini, Elizabeth

    2015-07-01

    Bacterial ability to colonize the rhizosphere of plants in arsenic (As) contaminated soils is highly important for symbiotic and free-living plant growth-promoting rhizobacteria (PGPR) used as inoculants, since they can contribute to enhance plant As tolerance and limit metalloid uptake by plants. The aim of this work was to study the effect of As on growth, exopolysaccharide (EPS) production, biofilm formation and motility of two strains used as soybean inoculants, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39. The metabolism of arsenate (As(V)) and arsenite (As(III)) and their removal and/or possible accumulation were also evaluated. The behavior of both bacteria under As treatment was compared and discussed in relation to their potential for colonizing plant rhizosphere with high content of the metalloid. B. japonicum E109 growth was reduced with As(III) concentration from 10 μM while A. brasilense Az39 showed a reduction of growth with As(III) from 500 μM. EPS and biofilm production increased significantly under 25 μM As(III) for both strains. Moreover, this was more notorious for Azospirillum under 500 μM As(III), where motility was seriously affected. Both bacterial strains showed a similar ability to reduce As(V). However, Azospirillum was able to oxidize more As(III) (around 53%) than Bradyrhizobium (17%). In addition, both strains accumulated As in cell biomass. The behavior of Azospirillum under As treatments suggests that this strain would be able to colonize efficiently As contaminated soils. In this way, inoculation with A. brasilense Az39 would positively contribute to promoting growth of different plant species under As treatment. PMID:26141894

  16. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  17. VEGF-C Promotes Immune Tolerance in B16 Melanomas and Cross-Presentation of Tumor Antigen by Lymph Node Lymphatics

    Directory of Open Access Journals (Sweden)

    Amanda W. Lund

    2012-03-01

    Full Text Available Tumor expression of the lymphangiogenic factor VEGF-C is correlated with metastasis and poor prognosis, and although VEGF-C enhances transport to the draining lymph node (dLN and antigen exposure to the adaptive immune system, its role in tumor immunity remains unexplored. Here, we demonstrate that VEGF-C promotes immune tolerance in murine melanoma. In B16 F10 melanomas expressing a foreign antigen (OVA, VEGF-C protected tumors against preexisting antitumor immunity and promoted local deletion of OVA-specific CD8+ T cells. Naive OVA-specific CD8+ T cells, transferred into tumor-bearing mice, were dysfunctionally activated and apoptotic. Lymphatic endothelial cells (LECs in dLNs cross-presented OVA, and naive LECs scavenge and cross-present OVA in vitro. Cross-presenting LECs drove the proliferation and apoptosis of OVA-specific CD8+ T cells ex vivo. Our findings introduce a tumor-promoting role for lymphatics in the tumor and dLN and suggest that lymphatic endothelium in the local microenvironment may be a target for immunomodulation.

  18. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains

    OpenAIRE

    Chun-Juan Wang; Wei Yang; Chao Wang; Chun Gu; Dong-Dong Niu; Hong-Xia Liu; Yun-Peng Wang; Jian-Hua Guo

    2012-01-01

    Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the cont...

  19. In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp.

    OpenAIRE

    G. Praveen Kumar; Mir Hassan Ahmed, S. K.; Suseelendra Desai; Leo Daniel Amalraj, E.; Abdul Rasul

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desire...

  20. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy; Heath, John K; Wright, Jo Rae

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Ty...

  1. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  2. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and...... challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  3. How do yeast cells become tolerant to high ethanol concentrations?

    Science.gov (United States)

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  4. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    Science.gov (United States)

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-01

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes. PMID:27117416

  5. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  6. Antagonism of Airway Tolerance by Endotoxin/LPS Through Promoting OX40L and Suppressing Antigen-specific Foxp3+ Treg

    OpenAIRE

    Duan, Wei; So, Takanori; Croft, Michael

    2008-01-01

    Respiratory exposure to allergens can lead to airway tolerance. Factors that antagonize tolerance mechanisms in the lung might result in susceptibility to diseases such as asthma. We show that inhalation of endotoxin/LPS with antigen prevented airway tolerance and abolished protection from T cell-driven asthmatic lung inflammation. Under conditions leading to tolerance, adaptive antigen-specific CD4+Foxp3+ Treg were generated following exposure to intranasal antigen and outnumbered IL-4- and ...

  7. Salt tolerance at single cell level in giant-celled Characeae

    Directory of Open Access Journals (Sweden)

    Mary Jane eBeilby

    2015-04-01

    Full Text Available Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i very large cell size, (ii position on phylogenetic tree near the origin of land plants and (iii continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt-sensitive Chara australis succumbs to 50 - 100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells

  8. Osteo-Promoter Database (OPD – Promoter analysis in skeletal cells

    Directory of Open Access Journals (Sweden)

    Benayahu Dafna

    2005-03-01

    Full Text Available Abstract Background Increasing our knowledge about the complex expression of genes in skeletal tissue will provide a better understanding of the physiology of skeletal cells. The study summarizes transcriptional regulation factors interacting and cooperating at promoter regions that regulate gene expression. Specifically, we analyzed A/T rich elements along the promoter sequences. Description The Osteo-Promoter Database (OPD is a collection of genes and promoters expressed in skeletal cells. We have compiled a new viewer, OPD, as unique database developed and created as an accessible tool for skeletal promoter sequences. OPD can navigate to identify genes specific to skeletal cDNA databases and promoter analysis sites. OPD offers exclusive access to facilitate a dynamic extraction of promoters' gene-specific analyses in skeletal tissue. The data on promoters included in OPD contains cloned promoters or predicted promoters that were analyzed by bioinformatics tools. OPD offers MAR-analysis, which allocates A/T rich elements along these promoter sequences. Conclusion The analysis leads to a better insight of proteins that bind to DNA, regulate DNA, and function in chromatin remodeling. The OPD is a distinctive tool for understanding the complex function of chromatin remodeling and transcriptional regulation of specific gene expression in skeletal tissue.

  9. Neuropilin-1 expression is induced on tolerant self-reactive CD8+ T cells but is dispensable for the tolerant phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie R Jackson

    Full Text Available Establishing peripheral CD8(+ T cell tolerance is vital to avoid immune mediated destruction of healthy self-tissues. However, it also poses a major impediment to tumor immunity since tumors are derived from self-tissue and often induce T cell tolerance and dysfunction. Thus, understanding the mechanisms that regulate T cell tolerance versus immunity has important implications for human health. Signals received from the tissue environment largely dictate whether responding T cells become activated or tolerant. For example, induced expression and subsequent ligation of negative regulatory receptors on the surface of self-reactive CD8(+ T cells are integral in the induction of tolerance. We utilized a murine model of T cell tolerance to more completely define the molecules involved in this process. We discovered that, in addition to other known regulatory receptors, tolerant self-reactive CD8(+ T cells distinctly expressed the surface receptor neuropilin-1 (Nrp1. Nrp1 was highly induced in response to self-antigen, but only modestly when the same antigen was encountered under immune conditions, suggesting a possible mechanistic link to T cell tolerance. We also observed a similar Nrp1 expression profile on human tumor infiltrating CD4(+ and CD8(+ T cells. Despite high expression on tolerant CD8(+ T cells, our studies revealed that Nrp1 had no detectable role in the tolerant phenotype. Specifically, Nrp1-deficient T cells displayed the same functional defects as wild-type self-reactive T cells, lacking in vivo cytolytic potential, IFNγ production, and antitumor responses. While reporting mostly negative data, our findings have therapeutic implications, as Nrp1 is now being targeted for human cancer therapy in clinical trials, but the precise molecular pathways and immune cells being engaged during treatment remain incompletely defined.

  10. Studying mast cells in peripheral tolerance by using a skin transplantation model.

    Science.gov (United States)

    de Vries, Victor C; Le Mercier, Isabelle; Nowak, Elizabeth C; Noelle, Randolph J

    2015-01-01

    Mast cells (MCs) play an important role in both inflammatory and immunosuppressive responses [1]. The importance of MCs in maintaining peripheral tolerance was discovered in a FoxP3(+) regulatory T-cell (Treg)-mediated skin transplant model [2]. MCs can directly mediate tolerance by releasing anti-inflammatory mediators (reviewed in ref. 3) or by interacting with other immune cells in the graft. Here we will present protocols used to study the role of MCs in peripheral tolerance with the emphasis on how MCs can regulate T-cell functionality. First we will introduce the skin transplant model followed by reconstitution of mast cell-deficient mice (B6.Cg-Kit (W-sh) ). This includes the preparation of MCs from the bone marrow. Finally the methods used to study the influence of MCs on T-cell responses and Treg functionality will be presented by modulating the balance between tolerance and inflammation. PMID:25388268

  11. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty.

    Science.gov (United States)

    Chen, Yi-Shih; Lo, Shuen-Fang; Sun, Peng-Kai; Lu, Chung-An; Ho, Tuan-Hua D; Yu, Su-May

    2015-01-01

    Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty. PMID:25200982

  12. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  13. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  14. Batf3-Dependent Dendritic Cells in the Renal Lymph Node Induce Tolerance against Circulating Antigens

    OpenAIRE

    Gottschalk, Catherine; Damuzzo, Vera; Gotot, Janine; Kroczek, Richard A.; Yagita, Hideo; Murphy, Kenneth M.; Knolle, Percy A.; Ludwig-Portugall, Isis; Kurts, Christian

    2013-01-01

    Although the spleen is a major site where immune tolerance to circulating innocuous antigens occurs, the kidney also contributes. Circulating antigens smaller than albumin are constitutively filtered and concentrated in the kidney and reach the renal lymph node by lymphatic drainage, where resident dendritic cells (DCs) capture them and induce tolerance of specific cytotoxic T cells through unknown mechanisms. Here, we found that the coinhibitory cell surface receptor programmed death 1 (PD-1...

  15. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  16. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance.

    Science.gov (United States)

    Zeng, Hanyu; Zhang, Rong; Jin, Boquan; Chen, Lihua

    2015-09-01

    The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells. PMID:26051475

  17. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.

    Science.gov (United States)

    Feng, Yongqiang; van der Veeken, Joris; Shugay, Mikhail; Putintseva, Ekaterina V; Osmanbeyoglu, Hatice U; Dikiy, Stanislav; Hoyos, Beatrice E; Moltedo, Bruno; Hemmers, Saskia; Treuting, Piper; Leslie, Christina S; Chudakov, Dmitriy M; Rudensky, Alexander Y

    2015-12-01

    T-cell receptor (TCR) signalling has a key role in determining T-cell fate. Precursor cells expressing TCRs within a certain low-affinity range for complexes of self-peptide and major histocompatibility complex (MHC) undergo positive selection and differentiate into naive T cells expressing a highly diverse self-MHC-restricted TCR repertoire. In contrast, precursors displaying TCRs with a high affinity for 'self' are either eliminated through TCR-agonist-induced apoptosis (negative selection) or restrained by regulatory T (Treg) cells, whose differentiation and function are controlled by the X-chromosome-encoded transcription factor Foxp3 (reviewed in ref. 2). Foxp3 is expressed in a fraction of self-reactive T cells that escape negative selection in response to agonist-driven TCR signals combined with interleukin 2 (IL-2) receptor signalling. In addition to Treg cells, TCR-agonist-driven selection results in the generation of several other specialized T-cell lineages such as natural killer T cells and innate mucosal-associated invariant T cells. Although the latter exhibit a restricted TCR repertoire, Treg cells display a highly diverse collection of TCRs. Here we explore in mice whether a specialized mechanism enables agonist-driven selection of Treg cells with a diverse TCR repertoire, and the importance this holds for self-tolerance. We show that the intronic Foxp3 enhancer conserved noncoding sequence 3 (CNS3) acts as an epigenetic switch that confers a poised state to the Foxp3 promoter in precursor cells to make Treg cell lineage commitment responsive to a broad range of TCR stimuli, particularly to suboptimal ones. CNS3-dependent expansion of the TCR repertoire enables Treg cells to control self-reactive T cells effectively, especially when thymic negative selection is genetically impaired. Our findings highlight the complementary roles of these two main mechanisms of self-tolerance. PMID:26605529

  18. Nitrogen Tolerant HDS Catalysts Based on Rh and Ru Promoted Mo/Al2O3

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Kaluža, Luděk; Gulková, Daniela

    2010, P8. ISBN N. [Nordic Symposium on Catalysis /14./. Marienlyst (DK), 29.08.2010-31.08.2010] R&D Projects: GA ČR GA104/09/0751 Institutional research plan: CEZ:AV0Z40720504 Keywords : n tolerance * hydrodesulfurization * catalyst Subject RIV: CF - Physical ; Theoretical Chemistry www.nsc2010.dk/AbstractBook.pdf

  19. Promoting Communication: Teaching Tolerance of Homosexual Persons While Addressing Religious Fears.

    Science.gov (United States)

    Levesque, PJ

    This paper addresses how to teach tolerance of homosexual persons in a manner that is not threatening to those with religious scruples about homosexuals. It contains an example of a presentation for college students that is designed to teach them to respect their peers and future coworkers regardless of their sexual orientation. The presentation…

  20. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms.

    Science.gov (United States)

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-10-01

    A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed. PMID:27209521

  1. Thymic epithelial cells use macroautophagy to turn their inside out for CD4 T cell tolerance

    OpenAIRE

    Wu, Chunyan; Aichinger, Martin; Nedjic, Jelena; Klein, Ludger

    2013-01-01

    During development in the thymus, each T lymphocyte is equipped with one, essentially unique, T cell receptor (TCR)-specificity. Due to its random nature, this process inevitably also leads to the emergence of potentially dangerous T lymphocytes that may recognize ‘self.’ Nevertheless, autoimmune tissue destruction, the cause of diseases such as multiple sclerosis and diabetes, is the exception rather than the rule. This state of immunological self-tolerance is to a large degree based upon a ...

  2. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    Science.gov (United States)

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  3. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  4. Fibronectin-Mononuclear Cell Interactions Regulate Type 1 Helper T Cell Cytokine Network in Tolerant Transplant Recipients

    OpenAIRE

    Coito, Ana J.; Onodera, Kazuhiko; Kato, Hirohisa; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W.

    2000-01-01

    Fibronectin (FN), expressed primarily by macrophages, endothelial cells, and smooth muscle cells, represents an integral feature of the rejection response in transplant recipients. Here we demonstrate a unique pattern of cellular FN expression in rat recipients of cardiac allografts rendered tolerant in an infectious manner with either nondepleting CD4 mAb or regulatory spleen cells. Unlike in rejecting controls, cellular FN in tolerant hosts was restricted to the graft vessels and no vascula...

  5. Low temperature tolerance of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Boon Chin Heng, Kumar Jayaseelan Vinoth, Hua Liu, Manoor Prakash Hande, Tong Cao

    2006-01-01

    Full Text Available This study investigated the effects of exposing human embryonic stem cells (hESC to 4oC and 25oC for extended durations of 24h and 48h respectively. Cell survivability after low temperature exposure was assessed through the MTT assay. The results showed that hESC survivability after exposure to 25oC and 4oC for 24h was 77.3 ± 4.8 % and 64.4 ± 4.4 % respectively (significantly different, P < 0.05. The corresponding survival rates after 48h exposure to 25oC and 4oC was 71.0 ± 0.5 % and 69.0 ± 2.3 % respectively (not significantly different, P > 0.05. Spontaneous differentiation of hESC after low temperature exposure was assessed by morphological observations under bright-field and phase-contrast microscopy, and by immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. hESC colonies were assigned into 3 grades according to their degree of spontaneous differentiation: (1 Grade A which was completely or mostly undifferentiated, (2 Grade B which was partially differentiated, and (3 Grade C which was mostly differentiated. In all low temperature exposed groups, about 95% of colonies remain undifferentiated (Grade A, which was not significantly different (P > 0.05 from the unexposed control group maintained at 37oC. Additionally, normal karyotype was maintained in all low temperature-exposed groups, as assessed by fluorescence in situ hybridization (FISH of metaphase spreads with telomere and centromere-specific PNA probes. Further analysis with m-FISH showed that chromosomal translocations were absent in all experimental groups. Hence, hESC possess relatively high-tolerance to extended durations of low temperature exposure, which could have useful implications for the salvage of hESC culture during infrequent occurrences of incubator break-down and power failure.

  6. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  7. Analysis of APC types involved in CD4 tolerance and regulatory T cell generation using reaggregated thymic organ cultures.

    Science.gov (United States)

    Guerri, Lucia; Peguillet, Isabelle; Geraldo, Yvette; Nabti, Sabrina; Premel, Virginie; Lantz, Olivier

    2013-03-01

    Tolerance to self-Ags is generated in the thymus. Both epithelial and hematopoietic thymic stromal cells play an active and essential role in this process. However, the role of each of the various stromal cell types remains unresolved. To our knowledge, we describe the first comparative analysis of several types of thymic hematopoietic stromal cells (THSCs) for their ability to induce CD4 tolerance to self, in parallel with the thymic epithelium. The THSCs--two types of conventional dendritic cells (cDCs), plasmacytoid dendritic cells, macrophages (MΦs), B lymphocytes, and eosinophils--were first characterized and quantified in adult mouse thymus. They were then examined in reaggregated thymic organ cultures containing mixtures of monoclonal and polyclonal thymocytes. This thymocyte mixture allows for the analysis of Ag-specific events while avoiding the extreme skewing frequently seen in purely monoclonal systems. Our data indicate that thymic epithelium alone is capable of promoting self-tolerance by eliminating autoreactive CD4 single-positive thymocytes and by supporting regulatory T cell (Treg) development. We also show that both non-Treg CD4 single-positive thymocytes and Tregs are efficiently deleted by the two populations of cDCs present in the thymus, as well as to a lesser extent by MΦs. Plasmacytoid dendritic cells, B lymphocytes, and eosinophils were not able to do so. Finally, cDCs were also the most efficient THSCs at supporting Treg development in the thymus, suggesting that although they may share some characteristics required for negative selection with MΦs, they do not share those required for the support of Treg development, making cDCs a unique cell subset in the thymus. PMID:23365074

  8. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms.

    Science.gov (United States)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-05-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and "ropy" products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed. PMID:27020288

  9. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    Science.gov (United States)

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  10. DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants.

    Directory of Open Access Journals (Sweden)

    Fiona R Savory

    Full Text Available In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ(9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ(9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546 mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546 mutants is predominantly due to the Δ(9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress.

  11. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils. PMID:24737020

  12. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Haiwei Zhang; Kaiming Zhang; Xinyu Wang; Shipu Li; Yixia Yin

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more signiifcantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not signiifcantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.

  13. Altered tumor cell glycosylation promotes metastasis

    OpenAIRE

    LuborBorsig

    2014-01-01

    Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompasses aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor cell invasiveness, ab...

  14. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  15. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  16. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships

    International Nuclear Information System (INIS)

    Although several laboratories have shown that the appearance of naturally occurring suppressor cells in the spleens of neonatal or irradiated mice is temporarily related to the ease of induction of tolerance, the characteristics of these cells and their regulatory functions have been poorly understood until recently. The experimental data reviewed herein suggests that these cells are related to NK cells with regard to surface phenotype but differ with regard to function. The natural suppressor (NS) cells appear only briefly during the early maturation of the lymphoid tissues but can be induced in adults by manipulation of the lymphoid tissues with certain treatment regimens such as total lymphoid irradiation (TLI). In addition, the NS cells can be propagated and cloned in long-term tissue culture, thereby allowing a more detailed investigation of their properties. The cells have the unique feature of inhibiting the antigen-specific cytolytic arm of alloreactive immune responses but leaving intact the antigen-specific suppressive arm. In this way, alloreactions in the regulatory milieu of NS cells generate large numbers of antigen-specific suppressor cells that can maintain tolerance in vivo. Thus the NS cells may play an important role in the development of host-vs-graft and graft-vs-host tolerance in allogeneic bone marrow chimeras during the ''window'' of tolerance in which neonate and TLI-treated mice accept the infused allogeneic cells. 70 references

  17. Tissue expression of PD-L1 mediates peripheral T cell tolerance

    OpenAIRE

    Keir, Mary E.; Liang, Spencer C.; Guleria, Indira; Latchman, Yvette E.; Qipo, Andi; Albacker, Lee A.; Koulmanda, Maria; Freeman, Gordon J; Sayegh, Mohamed H.; Sharpe, Arlene H.

    2006-01-01

    Programmed death 1 (PD-1), an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. PD-1 has two ligands: PD-1 ligand 1 (PD-L1), which is expressed broadly on hematopoietic and parenchymal cells, including pancreatic islet cells; and PD-L2, which is restricted to macrophages and dendritic cells. To investigate whether PD-L1 and PD-L2 have synergistic or unique roles in regulating T cell activation and tolerance, we generated mice lacking PD-L1 and PD-L2...

  18. IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells.

    Science.gov (United States)

    Azar, Walid J; Azar, Sheena H X; Higgins, Sandra; Hu, Ji-Fan; Hoffman, Andrew R; Newgreen, Donald F; Werther, George A; Russo, Vincenzo C

    2011-09-01

    IGF binding protein (IGFBP)-2 is one of the most significant genes in the signature of major aggressive cancers. Previously, we have shown that IGFBP-2 enhances proliferation and invasion of neuroblastoma cells, suggesting that IGFBP-2 activates a protumorigenic gene expression program in these cells. Gene expression profiling in human neuroblastoma SK-N-SHEP (SHEP)-BP-2 cells indicated that IGFBP-2 overexpression activated a gene expression program consistent with enhancement of tumorigenesis. Regulation was significant for genes involved in proliferation/survival, migration/adhesion, and angiogenesis, including the up-regulation of vascular endothelial growth factor (VEGF) mRNA (>2-fold). Specific transcriptional activation of the VEGF gene by IGFBP-2 overexpression was demonstrated via cotransfection of a VEGF promoter Luciferase construct in SHEP-BP-2. Cotransfection of VEGF promoter Luciferase construct with IGFBP-2 protein in wild-type SHEP cells indicated that transactivation of VEGF promoter only occurs in the presence of intracellular IGFBP-2. Cell fractionation and immunofluorescence in SHEP-BP-2 cells demonstrated nuclear localization of IGFBP-2. These findings suggest that transcriptional activation of VEGF promoter is likely to be mediated by nuclear IGFBP-2. The levels of secreted VEGF (up to 400 pg/10(6) cells) suggested that VEGF might elicit angiogenic activity. Hence, SHEP-BP-2 cells and control clones cultured in collagen sponge were xenografted onto chick embryo chorioallantoic membrane. Neomicrovascularization was observed by 72 h, solely in the SHEP-BP-2 cell xenografts. In conclusion, our data indicate that IGFBP-2 is an activator of aggressive behavior in cancer cells, involving nuclear entry and activation of a protumorigenic gene expression program, including transcriptional regulation of the VEGF gene and consequent proangiogenic activity of NB cell xenografts in vivo. PMID:21750048

  19. A Central Role for Induced Regulatory T Cells in Tolerance Induction in Experimental Colitis1

    OpenAIRE

    Haribhai, Dipica; Lin, Wen; Edwards, Brandon; Ziegelbauer, Jennifer; Salzman, Nita H.; Carlson, Marc R.; Li, Shun-Hwa; Simpson, Pippa M.; Chatila, Talal A; Williams, Calvin B.

    2009-01-01

    In addition to thymus-derived or natural T regulatory (nTreg) cells, a second subset of induced T regulatory (iTreg) cells arises de novo from conventional CD4+ T cells in the periphery. The function of iTreg cells in tolerance was examined in a CD45RBhighCD4+ T cell transfer model of colitis. In situ-generated iTreg cells were similar to nTreg cells in their capacity to suppress T cell proliferation in vitro and their absence in vivo accelerated bowel disease. Treatment with nTreg cells reso...

  20. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Goltermann, Lise; Good, Liam; Bentin, Thomas

    2013-01-01

    survival, whereas inhibition of chaperonin expression sensitized bacteria. Overexpression of the DnaK/DnaJ/GrpE chaperone system similarly facilitated survival but did not promote growth of aminoglycoside-treated bacteria. Inhibition of chaperonin expression sensitized bacteria to aminoglycosides as...

  1. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    Science.gov (United States)

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636434

  2. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Bender, Mikkel; Ekelund, Flemming;

    2014-01-01

    We investigated microbiota in surface and subsurface soil from a site, above steam-treated deep sub-soil originally contaminated with chlorinated solvents. During the steam treatment, the surface soil reached temperatures c. 30°C higher than the temperature in untreated soil; whereas the subsurface...... soil, at a depth of about 40 cm, reached a temperature c. 45°C higher than untreated soil. The soil was examined prior to, during, and 6, 12, 14, 20 and 31 months after treatment. Numbers of bacteria cultivable at 42°C increased significantly in subsurface soil. Similarly, substrate utilization in...... ECOLOG plates, incubated at 42°C, increased from less than 10% of available carbon sources in the untreated soil to more than 60% of the available carbon sources in the steam-treated soil. Aspergillus fumigatus was quantified as an example of heat-tolerant fungi normally found in compost. These organisms...

  3. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance.

    Science.gov (United States)

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Naveed, Muhammad; Imran, Muhammad; Zahir, Zahir Ahmad; Crowley, David E

    2016-05-01

    Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for three PGPR strains (Pseudomonas fluorescens, Bacillus megaterium and Variovorax paradoxus) at two salinity levels [2 and 5 % NaCl (w/v)]. Among the three strains, growth of B. megaterium was the least affected by high salinity. However, P. fluorescens was the best strain for maintaining ACC-deaminase activity, siderophore and IAA production under stressed conditions. V. paradoxus was the least tolerant to salts and had minimal growth and low PGPR trait expression under salt stress. Results of experiment examining the impact of bacterial inoculation on cucumber growth at three salinity levels [1 (normal), 7 and 10 dS m(-1)] revealed that P. fluorescens also had good rhizosphere competence and was the most effective for alleviating the negative impacts of salinity on cucumber growth. The results suggest that in addition to screening the PGPR regarding their effect on growth under salinity, PGPR trait expression is also an important aspect that may be useful for selecting the most promising PGPR bacterial strains for improving plant tolerance to salinity stress. PMID:26860842

  4. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells.

    Science.gov (United States)

    Bourges, Dorothée; Ross, Ellen M; Allen, Stacey; Read, Simon; Houghton, Fiona J; Bedoui, Sammy; Boon, Louis; Gleeson, Paul A; van Driel, Ian R

    2014-06-01

    It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H(+)/K(+) ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H(+)/K(+) ATPase-specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H(+)/K(+) ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance. PMID:24760154

  5. Germany's Solar Cell Promotion: An Unfolding Disaster

    International Nuclear Information System (INIS)

    This article is a German-French translation of a paper originally published in July 2012 in 'Ruhr Economic Papers' no. 353. The original article revisits an analysis by Frondel, Ritter and Schmidt (2008) of Germany's Renewable Energy Act, which legislates a system of feed-in tariff s to promote the use of renewable energies. As in the original article, we argue that Germany's support scheme subsidizes renewable energy technologies not based on their long-term market potential, but rather on their relative lack of competitiveness, with the photovoltaic (PV) technology enjoying high feed-in tariffs, currently over double those of onshore wind. The result is explosive costs with little to show for either environmental or employment benefits. Indeed, we document that the immense costs foreseen by Frondel and colleagues have materialized: Our updated estimate of the subsidies for PV, at 100 Bn euros, exceeds their expectations by about 60%. Moreover, with installed PV capacities growing at a rapid rate, these costs will continue to accumulate, diverting resources from more cost-effective climate protection instruments

  6. Induced regulatory T cells in allograft tolerance via transient mixed chimerism

    Science.gov (United States)

    Hotta, Kiyohiko; Aoyama, Akihiro; Oura, Tetsu; Yamada, Yohei; Tonsho, Makoto; Huh, Kyu Ha; Kawai, Kento; Schoenfeld, David; Allan, James S.; Madsen, Joren C.; Benichou, Gilles; Smith, Rex-Neal; Colvin, Robert B.; Sachs, David H.; Cosimi, A. Benedict; Kawai, Tatsuo

    2016-01-01

    Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism. PMID:27446989

  7. Immune tolerance induced by adoptive transfer of dendritic cells in an insulin-dependent diabetes mellitus routine model

    Institute of Scientific and Technical Information of China (English)

    Cheng-liang ZHANG; Xiao-lei ZOU; Jia-bei PENG; Ming XIANG

    2007-01-01

    Aim: To investigate the effect and underlying mechanisms of inunune-tolerance induced by the adoptive transfer of bone marrow (BM)-derived dendritic cells (DC) in insulin-dependent diabetes mellitus (IDDM) mice. Methods: The IDDM model was established by a low dose of streptozotocin (STZ) in Balb/c mice. Two DC subpopulations were generated from the BM cells with granulocyte-macroph-age colony-stimulating factor with or without interleukin-4. The purity and the T cell stimulatory capability of DC were identified. These cells were used to modu-late autoimmune response in pre-diabetic mice. Blood glucose was examined weekly; pancreas tissues were taken for histopathological analysis, and CD4+ T cells were isolated to detect lymphocyte proliferation by MTT assay and the ratio of CD4+CD25+ T cells by fluorescence-activated cell sorting (FACS). The cytokine secretion was determined by ELISA analysis. Results: Two DC subsets were generated from BM, which have phenotypes of mature DC (mDC) and immature DC (iDC), respectively. The level of blood glucose decreased significantly by transferring iDC (P<0.01) rather than mDC. Less lymphocyte infiltration was ob-served in the islets, and pancreatic structure was intact. In vitro, proliferation of lymphocytes decreased and the proportion of CD4+CD25+ T cells increased remarkably, compared with the mDC-treated groups (P<0.05), which were associ-ated with increased level of the Th2 cytokine and reduced level of the Th1 cytokine after iDC transfer. Conclusion: Our data showed that iDC transfer was able to confer protection to mice from STZ-induced IDDM. The immune-tolerance to IDDM may be associated with promoting the production of CD4+CD25+ T cells and inducing regulatory Th2 responses in vivo.

  8. MiR-24 promotes the survival of hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tan Nguyen

    Full Text Available The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.

  9. Cell therapy to induce allograft tolerance: Time to switch to plan B?

    Directory of Open Access Journals (Sweden)

    Antoine eSicard

    2015-04-01

    Full Text Available Organ transplantation is widely acknowledged as the best option for end stage failure of vital organs. Long-term graft survival is however limited by graft rejection, a destructive process resulting from the response of recipient’s immune system against donor-specific alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive drugs that lack antigen specificity and therefore increase the risk for infections and cancers. Induction of donor-specific tolerance would provide indefinite graft survival without morbidity and therefore represents the Grail of transplant immunologists.Progresses in the comprehension of immunoregulatory mechanisms over the last decades have paved the way for cell therapies to induce allograft tolerance. The first part of the present article reviews the promising results obtained in experimental models with adoptive transfer of ex vivo-expanded regulatory CD4+ T cells (CD4+ Tregs and discuss which source and specificity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+ T cells. The second part of the present article reviews the evidences demonstrating the crucial role of regulatory B cells in transplantation tolerance. We propose the possibility to harness B cell regulatory functions to improve cell-based therapies aiming at inducing allograft tolerance.

  10. Various tolerances to arsenic trioxide between human cortical neurons and leukemic cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; MENG Ran; SUI Xinhua; LI Wenbin; YANG Baofeng

    2006-01-01

    Arsenic trioxide (As2O3) is very effective for treatment of acute promyelocytic leukaemia (APL) but little can pass through the blood-brain-barrier (BBB),which limits its use in the prevention and treatment of central nervous system leukaemia (CNSL). Before creating a non-invasive method to help As2O3 's access, the safe and effective therapeutic concentration of As2O3 in the CNS ought to be known. The changes of apoptosis biomarkers, [Ca2+]i and PKC activity of both leukaemia cells and human cortical neurons, were monitored before and after being treated with As2O3 in vitro with laser confocal microscopy and Western blot. NSE concentration, the neuron invasive biomarker, was monitored by enzyme immunoassay (NSE-EIA). This study revealed that cortical neuron was more tolerable to As2O3 compared to NB4. 1.0 μmol / L As2O3 showed little influence on cortical neuron but effectively promoted apoptosis and induced differentiation of NB4.

  11. Gliadin fragments promote migration of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Chládková, Barbara; Kamanová, Jana; Palová-Jelínková, Lenka; Cinová, Jana; Šebo, Peter; Tučková, Ludmila

    2011-01-01

    Roč. 15, č. 4 (2011), 938-948. ISSN 1582-1838 R&D Projects: GA ČR GA310/07/0414; GA ČR GD310/08/H077; GA ČR GA310/08/0447; GA AV ČR IAA500200801; GA AV ČR IAA500200914 Institutional research plan: CEZ:AV0Z50200510 Keywords : celiac disease * gliadin * dendritic cell Subject RIV: EC - Immunology Impact factor: 4.125, year: 2011

  12. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression.

    Science.gov (United States)

    Thu, Yee Mon; Van Riper, Susan Kaye; Higgins, LeeAnn; Zhang, Tianji; Becker, Jordan Robert; Markowski, Todd William; Nguyen, Hai Dang; Griffin, Timothy Jon; Bielinsky, Anja Katrin

    2016-05-10

    Loss of minichromosome maintenance protein 10 (Mcm10) causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC), Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC) activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable. PMID:27134171

  13. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression

    Directory of Open Access Journals (Sweden)

    Yee Mon Thu

    2016-05-01

    Full Text Available Loss of minichromosome maintenance protein 10 (Mcm10 causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC, Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable.

  14. Telomerase reverse transcriptase expression protects transformed human cells against DNA-damaging agents, and increases tolerance to chromosomal instability.

    Science.gov (United States)

    Fleisig, H B; Hukezalie, K R; Thompson, C A H; Au-Yeung, T T T; Ludlow, A T; Zhao, C R; Wong, J M Y

    2016-01-14

    Reactivation of telomerase reverse transcriptase (TERT) expression is found in more than 85% of human cancers. The remaining cancers rely on the alternative lengthening of telomeres (ALT), a recombination-based mechanism for telomere-length maintenance. Prevalence of TERT reactivation over the ALT mechanism was linked to secondary TERT function unrelated to telomere length maintenance. To characterize this non-canonical function, we created a panel of ALT cells with recombinant expression of TERT and TERT variants: TERT-positive ALT cells showed higher tolerance to genotoxic insults compared with their TERT-negative counterparts. We identified telomere synthesis-defective TERT variants that bestowed similar genotoxic stress tolerance, indicating that telomere synthesis activity is dispensable for this survival phenotype. TERT expression improved the kinetics of double-strand chromosome break repair and reduced DNA damage-related nuclear division abnormalities, a phenotype associated with ALT tumors. Despite this reduction in cytological abnormalities, surviving TERT-positive ALT cells were found to have gross chromosomal instabilities. We sorted TERT-positive cells with cytogenetic changes and followed their growth. We found that the chromosome-number changes persisted, and TERT-positive ALT cells surviving genotoxic events propagated through subsequent generations with new chromosome numbers. Our data confirm that telomerase expression protects against double-strand DNA (dsDNA)-damaging events, and show that this protective function is uncoupled from its role in telomere synthesis. TERT expression promotes oncogene-transformed cell growth by reducing the inhibitory effects of cell-intrinsic (telomere attrition) and cell-extrinsic (chemical- or metabolism-induced genotoxic stress) challenges. These data provide the impetus to develop new therapeutic interventions for telomerase-positive cancers through simultaneous targeting of multiple telomerase activities. PMID

  15. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    International Nuclear Information System (INIS)

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation

  16. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  17. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    International Nuclear Information System (INIS)

    Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment

  18. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2013-10-01

    Full Text Available Primary biliary cirrhosis (PBC is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.

  19. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Hu, Mintao [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Zhang, Peng [Nanjing Medical University, Nanjing, Jiangsu (China); Cao, Hong [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Wang, Yongzhen [The Second Hospital of Nanjing, Nanjing, Jiangsu (China); Wang, Zheng; Su, Tingting [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China)

    2013-05-10

    Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.

  20. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2013-05-01

    Full Text Available Primary biliary cirrhosis (PBC is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.

  1. Mast Cells Contribute to Peripheral Tolerance and Attenuate Autoimmune Vasculitis

    OpenAIRE

    Gan, Poh-Yi; Summers, Shaun A.; Ooi, Joshua D.; O’Sullivan, Kim M.; Tan, Diana S.Y.; Muljadi, Ruth C.M.; Odobasic, Dragana; Kitching, A. Richard; Holdsworth, Stephen R.

    2012-01-01

    Mast cells contribute to the modulation of the immune response, but their role in autoimmune renal disease is not well understood. Here, we induced autoimmunity resulting in focal necrotizing GN by immunizing wild-type or mast cell-deficient (KitW-sh/W-sh) mice with myeloperoxidase. Mast cell-deficient mice exhibited more antimyeloperoxidase CD4+ T cells, enhanced dermal delayed-type hypersensitivity responses to myeloperoxidase, and more severe focal necrotizing GN. Furthermore, the lymph no...

  2. STAT4-associated natural killer cell tolerance following liver transplantation

    OpenAIRE

    Jamil, K M; Hydes, T.J.; Cheent, K.S.; Cassidy, S A; Traherne, J. A.; Jayaraman, J.; Trowsdale, J.; Alexander, G J; Little, A M; McFarlane, H.; Heneghan, M. A.; Purbhoo, M.A.; Khakoo, S I

    2016-01-01

    Objective: Natural killer (NK) cells are important mediators of liver inflammation in chronic liver disease. The aim of this study was to investigate why liver transplants (LTs) are not rejected by NK cells in the absence of human leukocyte antigen (HLA) matching, and to identify a tolerogenic NK cell phenotype. Design: Phenotypic and functional analyses on NK cells from 54 LT recipients were performed, and comparisons made with healthy controls. Further investigation was performed using ...

  3. TSCOT+ thymic epithelial cell-mediated sensitive CD4 tolerance by direct presentation.

    Directory of Open Access Journals (Sweden)

    Sejin Ahn

    2008-08-01

    Full Text Available Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT-expressing thymic stromal cells (TDLacZ. The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII. When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR transgenic reactive against LacZ (BgII, there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.

  4. Prenatal Allospecific NK Cell Tolerance Hinges on Instructive Allorecognition through the Activating Receptor during Development.

    Science.gov (United States)

    Alhajjat, Amir M; Strong, Beverly S; Lee, Amanda E; Turner, Lucas E; Wadhwani, Ram K; Ortaldo, John R; Heusel, Jonathan W; Shaaban, Aimen F

    2015-08-15

    Little is known about how the prenatal interaction between NK cells and alloantigens shapes the developing NK cell repertoire toward tolerance or immunity. Specifically, the effect on NK cell education arising from developmental corecognition of alloantigens by activating and inhibitory receptors with shared specificity is uncharacterized. Using a murine prenatal transplantation model, we examined the manner in which this seemingly conflicting input affects NK cell licensing and repertoire formation in mixed hematopoietic chimeras. We found that prenatal NK cell tolerance arose from the elimination of phenotypically hostile NK cells that express an allospecific activating receptor without coexpressing any allospecific inhibitory receptors. Importantly, the checkpoint for the system appeared to occur centrally within the bone marrow during the final stage of NK cell maturation and hinged on the instructive recognition of allogeneic ligand by the activating receptor rather than through the inhibitory receptor as classically proposed. Residual nondeleted hostile NK cells expressing only the activating receptor exhibited an immature, anergic phenotype, but retained the capacity to upregulate inhibitory receptor expression in peripheral sites. However, the potential for this adaptive change to occur was lost in developmentally mature chimeras. Collectively, these findings illuminate the intrinsic process in which developmental allorecognition through the activating receptor regulates the emergence of durable NK cell tolerance and establishes a new paradigm to fundamentally guide future investigations of prenatal NK cell-allospecific education. PMID:26136432

  5. A common polymorphism in the promoter of the IGF-I gene associates with increased fasting serum triglyceride levels in glucose-tolerant subjects

    DEFF Research Database (Denmark)

    Nielsen, Eva-Maria D; Hansen, Lars; Lajer, Maria;

    2004-01-01

    The aim of the present study was to examine if absence of a common allele in a microsatellite polymorphism in the insulin-like growth factor I (IGF-I) promoter was associated with type 2 diabetes and alterations in quantitative traits in glucose-tolerant subjects....

  6. Absence of Amphotericin B-Tolerant Persister Cells in Biofilms of Some Candida Species▿

    OpenAIRE

    Al-Dhaheri, Rawya S.; Douglas, L. Julia

    2008-01-01

    Biofilms and planktonic cells of five Candida species were surveyed for the presence of persister (drug-tolerant) cell populations after exposure to amphotericin B. None of the planktonic cultures (exponential or stationary phase) contained persister cells. However, persisters were found in biofilms of one of two strains of Candida albicans tested and in biofilms of Candida krusei and Candida parapsilosis, but not in biofilms of Candida glabrata or Candida tropicalis. These results suggest th...

  7. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  8. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a d...

  9. Antigen dynamics govern the induction of CD4(+) T cell tolerance during autoimmunity.

    Science.gov (United States)

    Challa, Dilip K; Mi, Wentao; Lo, Su-Tang; Ober, Raimund J; Ward, E Sally

    2016-08-01

    Antigen-specific T cell tolerance holds great promise for the treatment of autoimmune diseases. However, strategies to induce durable tolerance using high doses of soluble antigen have to date been unsuccessful, due to lack of efficacy and the risk of hypersensitivity. In the current study we have overcome these limitations by developing a platform for tolerance induction based on engineering the immunoglobulin Fc region to modulate the dynamic properties of low doses (1 μg/mouse; ∼50 μg/kg) of Fc-antigen fusions. Using this approach, we demonstrate that antigen persistence is a dominant factor governing the elicitation of tolerance in the model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), induced by immunizing B10.PL mice with the N-terminal epitope of myelin basic protein. Unexpectedly, our analyses reveal a stringent threshold of antigen persistence for both prophylactic and therapeutic treatments, although distinct mechanisms lead to tolerance in these two settings. Importantly, the delivery of tolerogenic Fc-antigen fusions during ongoing disease results in the downregulation of T-bet and CD40L combined with amplification of Foxp3(+) T cell numbers. The generation of effective, low dose tolerogens using Fc engineering has potential for the regulation of autoreactive T cells. PMID:27236506

  10. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  11. Oral tolerance to cancer can be abrogated by T regulatory cell inhibition.

    Science.gov (United States)

    Whelan, Maria C; Casey, Garrett; Larkin, John O; Guinn, Barbara-ann; O'Sullivan, Gerald C; Tangney, Mark

    2014-01-01

    Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue--JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups--this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the

  12. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance.

    Science.gov (United States)

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26Δsfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their Sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type. Challenges with P. polymyxa genetic manipulation are discussed. PMID:26052312

  13. Helios defines T cells being driven to tolerance in the periphery and thymus.

    Science.gov (United States)

    Ross, Ellen M; Bourges, Dorothée; Hogan, Thea V; Gleeson, Paul A; van Driel, Ian R

    2014-07-01

    The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach. In the thymus, Helios was expressed by H(+) /K(+) ATPase-specific thymocytes that were undergoing negative selection. In the periphery, Helios was expressed in H(+) /K(+) ATPase-specific CD4(+) T cells following H(+) /K(+) ATPase presentation and was more highly expressed when T-cell activation occurred in the absence of inflammation. Analysis of purified H(+) /K(+) ATPase-specific CD4(+) Foxp3(-) Helios(+) T cells demonstrated that they were functionally anergic. These results demonstrate that Helios is expressed by thymic and peripheral T cells that are being driven to tolerance in response to a genuine autoantigen. PMID:24740292

  14. Immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Emilie Franck

    Full Text Available Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4(+ T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8(+ T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8(+ tolerance in SM-Ova mice. We show herein that Ova-specific CD8(+ T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8(+ T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8(+ T cells.

  15. Characteristic promoter hypermethylation signatures in male germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bosl George J

    2002-11-01

    Full Text Available Abstract Background Human male germ cell tumors (GCTs arise from undifferentiated primordial germ cells (PGCs, a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC transformation, differentiation, and exquisite treatment response is poorly understood. Results To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT and nonseminomatous (NSGCT GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occured upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines. Conclusions Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.

  16. Liver type I regulatory T cells suppress germinal center formation in HBV-tolerant mice.

    Science.gov (United States)

    Xu, Long; Yin, Wenwei; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2013-10-15

    The liver plays a critical role in inducing systemic immune tolerance, for example, during limiting hypersensitivity to food allergy and in rendering acceptance of allotransplant or even hepatotropic pathogens. We investigated the unknown mechanisms of liver tolerance by using an established hepatitis B virus (HBV)-carrier mouse model, and found that these mice exhibited an antigen-specific tolerance toward peripheral HBsAg vaccination, showing unenlarged draining lymph node (DLN), lower number of germinal centers (GC), and inactivation of GC B cells and follicular T helper (Tfh) cells. Both in vivo and in vitro immune responses toward HBsAg were suppressed by mononuclear cells from HBV-carrier mice, which were CD4(+) Foxp3(-) type 1 regulatory T (Tr1)-like cells producing IL-10. Using recipient Rag1(-/-) mice, hepatic Tr1-like cells from day 7 of HBV-persistent mice acquired the ability to inhibit anti-HBV immunity 3 d earlier than splenic Tr1-like cells, implying that hepatic Tr1-like cells were generated before those in spleen. Kupffer cell depletion or IL-10 deficiency led to impairment of Tr1-like cell generation, along with breaking HBV persistence. The purified EGFP(+)CD4(+) T cells (containing Tr1-like cells) from HBV-carrier mice trafficked in higher numbers to DLN in recipient mice after HBsAg vaccination, and subsequently inactivated both Tfh cells and GC B cells via secreting IL-10, resulting in impaired GC formation and anti-HB antibody production. Thus, our results indicate Tr1-like cells migrate from the liver to the DLN and inhibit peripheral anti-HBV immunity by negatively regulating GC B cells and Tfh cells. PMID:24089450

  17. TIM-4, expressed by medullary macrophages, regulates respiratory tolerance by mediating phagocytosis of antigen-specific T cells

    OpenAIRE

    Albacker, Lee A; Yu, Sanhong; Bedoret, Denis; Lee, Wan-Ling; Umetsu, Sarah E.; Monahan, Sheena; Freeman, Gordon J.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2012-01-01

    Respiratory exposure to antigen induces T cell tolerance via several overlapping mechanisms that limit the immune response. While the mechanisms involved in the development of Treg cells have received much attention, those that result in T cell deletion are largely unknown. Herein, we show that F4/80+ lymph node medullary macrophages expressing TIM-4, a phosphatidylserine receptor, remove antigen-specific T cells during respiratory tolerance, thereby reducing secondary T cell responses. Block...

  18. The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation

    OpenAIRE

    Nurieva, Roza I.; Zheng, Shuling; Jin, Wei; Chung, Yeonseok; Zhang, Yongliang; Martinez, Gustavo J.; Reynolds, Joseph M.; Wang, Sung-Ling; Lin, Xin; Sun, Shao-Cong; Lozano, Guillermina; Dong, Chen

    2010-01-01

    T cell activation is tightly regulated to avoid autoimmunity. Gene related to anergy in lymphocytes (GRAIL, encoded by Rnf128) is an E3 ubiquitin ligase associated with T cell tolerance. Here we generated and analyzed GRAIL-deficient mice and found they were resistant to immune tolerance induction and exhibited greater susceptibility to autoimmune diseases than wild-type mice. GRAIL-deficient naïve T cells, after activation, exhibited increased proliferation and cytokine expression than contr...

  19. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. PMID:26676266

  20. A Requisite Role for Induced Regulatory T cells in Tolerance Based on Expanding Antigen Receptor Diversity

    OpenAIRE

    Haribhai, Dipica; Williams, Jason B; Jia, Shuang; Nickerson, Derek; Schmitt, Erica G.; Edwards, Brandon; Ziegelbauer, Jennifer; Yassai, Maryam; Li, Shun-Hwa; Relland, Lance M.; Wise, Petra M; Chen, Andrew; Zheng, Yu-Qian; Simpson, Pippa M.; Gorski, Jack

    2011-01-01

    Although both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but did not suppress chronic inflammation and autoimmunity. Provision of Foxp3-sufficient conventional T cells with nTreg cells reconstituted t...

  1. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Ganna Bilousova

    2005-12-01

    Full Text Available Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism.

  2. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs. Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4 and myeloid differentiation primary response 88 (MyD88 signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.

  3. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells

    Institute of Scientific and Technical Information of China (English)

    Kangni Chen; Jing Zhang; (O)mür Yilmaz Tastan; Zillah Anne Deussen; Mayte Yu-Yin Siswick; Ji-Long Liu

    2011-01-01

    CTP synthase is compartmentalized within a subcellular structure,termed the cytoophidium,in a range of organisms including bacteria,yeast,fruit fly and rat.Here we show that CTP synthase is also compartmentalized into cytoophidia in human cells.Surprisingly,the occurrence of cyloophidia in human cells increases upon treatment with a glutamine analog 6-diazo-5-oxo-L-norleucine (DON),an inhibitor of glutaminedependent enzymes including CTP synthase.Experiments in flies confirmned that DON globally promotes cytoophidium assembly.Clonal analysis via CTP synthase RNA interference in somatic cells indicates that CTP synthase expression level is critical for the formation of cytoophidia.Moreover,DON facilitates cytoophidium assembly even when CTP synthase level is low.A second glutamine analog azaserine also promotes cytoophidum formation.Our data demonstrate that glutamine analogs serve as useful tools in the study of cytoophidia.

  4. Methylation of Gene CHFR Promoter in Acute Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LIU Wengli; ZHOU Jianfeng; XU Huizhen

    2005-01-01

    Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.

  5. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Lee, Ji-Young; Song, Ji Hong; Lee, Hye Suk; Cho, Yong-Yeon, E-mail: yongyeon@catholic.ac.kr

    2013-10-11

    Highlights: •We demonstrated a novel function of RSK2 in stress tolerance. •RSK2 deficiency enhanced apoptosis by calcium stress. •RSK2-mediated GSK3β phosphorylation at serine 9 increased calcium-induced stress tolerance. •Calcium stress-induced apoptosis inhibited by adding back of RSK2 into RSK2{sup −/−} MEFs. -- Abstract: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2{sup −/−} MEFs compared with RSK2{sup +/+} MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2{sup +/+} MEFs. In contrast, GSK3β{sup −/−} MEFs induced the cell proliferation compared with GSK3β{sup +/+} MEFs. Importantly, RSK2{sup −/−} MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2{sup +/+} MEFs. The sub-G1 induction in RSK2{sup −/−} MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2{sup +/+} MEFs. Notably, return back of RSK2 into RSK2{sup −/−} MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2{sup −/−}/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.

  6. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity

    International Nuclear Information System (INIS)

    Highlights: •We demonstrated a novel function of RSK2 in stress tolerance. •RSK2 deficiency enhanced apoptosis by calcium stress. •RSK2-mediated GSK3β phosphorylation at serine 9 increased calcium-induced stress tolerance. •Calcium stress-induced apoptosis inhibited by adding back of RSK2 into RSK2−/− MEFs. -- Abstract: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2−/− MEFs compared with RSK2+/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2+/+ MEFs. In contrast, GSK3β−/− MEFs induced the cell proliferation compared with GSK3β+/+ MEFs. Importantly, RSK2−/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2+/+ MEFs. The sub-G1 induction in RSK2−/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2+/+ MEFs. Notably, return back of RSK2 into RSK2−/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2−/−/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development

  7. Modulation of experimental T cell autoimmunity in the nervous system with emphasis on nasal tolerance

    OpenAIRE

    Bai, Xue-Feng

    1998-01-01

    MODULATION OF EXPERIMENTAL T CELL AUTOIMMUNITY IN THE NERVOUSSYSTEM WITH EMPHASIS ON NASAL TOLERANCE Xue-Feng Bai Doctoral thesis from Division of Neurology, Department of ClinicalNeuroscience and Family Medicine, Karolinska Institute, Huddinge University Hospital,Stockholm, Sweden Experimental autoimmune neuritis (EAN) and encephalomyelitis (EAE) are animalmodels of Guillian-Barre syndrome (GBS) and multiple sclerosis (MS), representinghuman demyelinating diseases ...

  8. Characteristics of cadmium tolerance in 'Hermes' flax seedlings: contribution of cell walls.

    Science.gov (United States)

    Douchiche, Olfa; Soret-Morvan, Odile; Chaïbi, Wided; Morvan, Claudine; Paynel, Florence

    2010-12-01

    Most flax (Linum usitatissimum) varieties are described as tolerant to high concentrations of Cd. The aim of the present paper was to better characterize this tolerance, by studying the responses of flax plantlets, cv Hermes, to 18d growth on 0.5mM Cd. In Cd-treated seedlings, the majority of Cd was compartmentalized in the roots. Analysis of other elements showed that only Fe concentration was reduced, while Mn increased. Growth parameters of Cd treated flax were only moderately altered, with similar mass tolerance-indices for roots and shoots. Tissue anatomy was unaffected by treatment. The effect on lipid peroxidation, protein carbonylation and antioxidative activities appeared low but slightly higher in roots. The most important impacts of Cd were, in all organs, cell expansion, cell-wall thickening, pectin cross-linking and increase of cell-wall enzymatic activities (pectin methylesterase and peroxidase). Thus, the role of the cell wall in Cd tolerance might be important at two levels: (i) in the reinforcement of the tissue cohesion and (ii) in the sequestration of Cd. PMID:20884040

  9. Tolerization of an established αb-crystallin-reactive T-cell response by intravenous antigen

    NARCIS (Netherlands)

    Verbeek, R.; Mark, K. van der; Wawrousek, E.F.; Plomp, A.C.; Noort, J.M. van

    2007-01-01

    Tolerance induction to prevent activation of a naïve T-cell repertoire has been well documented in rodents and can be readily achieved by intravenous, oral or intranasal administration of antigen in the absence of adjuvants. In autoimmune diseases such as multiple sclerosis (MS) the presence of an e

  10. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  11. Progress on Stress Tolerance Promoters in Plants%植物逆境胁迫耐受性启动子的研究进展

    Institute of Scientific and Technical Information of China (English)

    张晶红; 那杰

    2014-01-01

    Abiotic and biotic stresses, including drought, extreme temperature, damage and many diseases, seri-ously affected plants growth and yield. Stress-tolerance promoter could accept signals induced by stress condi-tions, and activate the expression of stress responsive gene in plants, enabling plants to perceive and adapt to adversity. In this article, current research on cloning and function of stress-tolerance promoters were reviewed, including drought-resistant, salt-tolerance, high-temperature-resistant, damage-tolerance, cold-resistant, dis-ease-resistant and insect-resistant promoters.%逆境胁迫如干旱、极端温度、损伤等非生物胁迫和病虫害等生物胁迫严重影响植物的生长发育及产量。逆境胁迫耐受性启动子能够接受逆境条件下的诱导信号,激活植物体内胁迫应答基因的表达,使植物感知并适应逆境。本文对逆境胁迫耐受性启动子的克隆及功能研究情况进行综合分析,主要包括抗旱、耐盐、耐高温、抗冻、耐损伤、抗病和抗虫基因启动子。

  12. Neuropilin-1 in Transplantation Tolerance

    Directory of Open Access Journals (Sweden)

    Mauricio eCampos-Mora

    2013-11-01

    Full Text Available In the immune system, Neuropilin-1 (Nrp1 is a molecule that plays an important role in establishing the immunological synapse between dendritic cells (DCs and T cells. Recently, Nrp1 has been identified as a marker that seems to distinguish natural T regulatory (nTreg cells, generated in the thymus, from inducible T regulatory (iTreg cells raised in the periphery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance of immune tolerance, the ability to phenotypically identify each of these cell populations in vivo is needed to elucidate their biological properties. In turn, these properties have the potential to be developed for therapeutic use to promote immune tolerance. Here we describe the nature and functions of Nrp1, including its potential use as a therapeutic target in transplantation tolerance.

  13. Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice.

    Science.gov (United States)

    Leandro, João G B; Espindola-Netto, Jair M; Vianna, Maria Carolina F; Gomez, Lilian S; DeMaria, Thaina M; Marinho-Carvalho, Monica M; Zancan, Patricia; Paula Neto, Heitor A; Sola-Penna, Mauro

    2016-03-01

    Overweight and obesity have become epidemic worldwide and are linked to sedentary lifestyle and the consumption of processed foods and drinks. Citrate is a metabolite that plays central roles in carbohydrate and lipid metabolism. In addition, citrate is the additive most commonly used by the food industry, and therefore is highly consumed. Extracellular citrate can freely enter the cells via the constitutively expressed plasma membrane citrate transporter. Within the cytosol, citrate is readily metabolised by ATP-citrate lyase into acetyl-CoA - the metabolic precursor of endogenously produced lipids and cholesterol. We therefore hypothesised that the citrate ingested from processed foods and drinks could contribute to increased postprandial fat production and weight gain. To test our hypothesis, we administered citrate to mice through their drinking water with or without sucrose and monitored their weight gain and other metabolic parameters. Our results showed that mice receiving citrate or citrate+sucrose did not show increased weight gain or an increase in the weight of the liver, skeletal muscles or adipose tissues (AT). Moreover, the plasma lipid profiles (TAG, total cholesterol, LDL and HDL) were similar across all groups. However, the group receiving citrate+sucrose showed augmented fasting glycaemia, glucose intolerance and the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-10) in their AT. Therefore, our results suggest that citrate consumption contributes to increased AT inflammation and altered glucose metabolism, which is indicative of initial insulin resistance. Thus, citrate consumption could be a previously unknown causative agent for the complications associated with obesity. PMID:26863933

  14. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells

    OpenAIRE

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-01-01

    Highlight bam1 mutant plants impaired in stomatal starch degradation showed an improved drought tolerance associated with a down-regulation of guard cell-specific gene expression involved in water uptake and cell expansion.

  15. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.

    Science.gov (United States)

    Zheng, Peiguo; Fu, Hanxiao; Wei, Gaohui; Wei, Zhongwei; Zhang, Junhua; Ma, Xuehan; Rui, Dong; Meng, Xianchun; Ming, Liang

    2016-08-01

    Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance. PMID:27327113

  16. Flooding tolerance and cell wall alterations in maize mesocotyl during hypoxia

    Directory of Open Access Journals (Sweden)

    Vitorino Patrícia Goulart

    2001-01-01

    Full Text Available This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR. The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.

  17. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  18. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  19. Regulatory B cells and tolerance in transplantation: from animal models to human.

    Directory of Open Access Journals (Sweden)

    Melanie eChesneau

    2013-12-01

    Full Text Available Until recently, the role of B cells in transplantation was thought to be restricted to producing antibodies that have been clearly shown to be deleterious in the long term, but, in fact, B cells are also able to produce cytokine and to present antigen. Their role as regulatory cells in various pathological situations has also been highlighted, and their role in transplantation is beginning to emerge in animal, and also in human, models. This review summarizes the different studies in animals and humans that suggest a B-cell regulatory role in the transplant tolerance mechanisms.

  20. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  1. The impact of TH17 cells on transplant rejection and the induction of tolerance

    Science.gov (United States)

    Heidt, Sebastiaan; Segundo, David San; Wood, Kathryn J.

    2011-01-01

    Purpose of review This review aims to provide an overview of the latest evidence for the involvement of Th17 cells in the rejection of solid organ allografts. It will also consider the implications of the relationship between the differentiation pathways of Th17 and regulatory T cells (Tregs), as well as their plasticity in the context of transplantation tolerance. Recent findings In the absence of the Th1 lineage in vivo, Th17 cells are capable of rejecting cardiac allografts, showing the capacity of Th17 cells to cause allograft rejection, at least in experimental models. Th17 cells are relatively unsusceptible to suppression by Tregs, although this may be context dependent. Furthermore, addition of inflammatory signals to a Treg inducing environment leads to Th17 development and established Tregs can be converted to Th17 cells under inflammatory conditions. Summary The capacity of Th17 cells to cause allograft rejection is becoming increasingly clear. However, the role and contribution of Th17 cells in allograft rejection in the presence of the full orchestra of T helper cells remains elusive. The apparent resistance of Th17 to be suppressed by Tregs may pose a hurdle for effective immunosuppression and tolerance inducing protocols. Furthermore, the close developmental pathways of Th17 and Tregs and the ability of Tregs to convert into Th17 cells in the presence of inflammatory signals may impede the establishment of specific unresponsiveness to donor alloantigens in vivo. PMID:20616728

  2. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation. PMID:27147029

  3. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    Science.gov (United States)

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. PMID:27364359

  4. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  5. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  6. Tolerance to the Intestinal Microbiota Mediated by ROR(γt)(+) Cells.

    Science.gov (United States)

    Ohnmacht, Caspar

    2016-07-01

    Harmless microbes colonizing the gut require the establishment of a well-equilibrated symbiosis between this microbiota and its host. However, the immune system is primed to recognize both conserved microbial patterns and foreign antigens, and therefore developed strong tolerance mechanisms to prevent potential fatal immune reactivity to symbiotic microbes. The transcription factor RAR-related orphan-like γt [ROR(γt); encoded by Rorc] plays a key role in the gut for lymphoid tissue organogenesis, development of innate lymphoid cells type 3 (ILC3s) and proinflammatory type 17 T helper (Th17) cells. Surprisingly, recent research has revealed a contribution of ROR(γt)-expressing cells in a variety of tolerance mechanisms in both the innate and adaptive immune system. PMID:27255270

  7. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  8. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  9. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  10. Trichostatin A Promotes the Generation and Suppressive Functions of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Cristian Doñas

    2013-01-01

    Full Text Available Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+ T cells. The forkhead box P3 transcription factor (Foxp3 is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4+ T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4+ T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+ Treg cells.

  11. Promoter Methylation Primarily Occurs in Tumor Cells of Patients with Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    De Jong, Wouter K.; Verpooten, Gonda F.; Kramer, Henk; Louwagie, Joost; Groen, Harry J. M.

    2009-01-01

    Background: The distribution of promoter methylation throughout the lungs of patients with non-small cell lung cancer (NSCLC) is unknown. In this explorative study, we assessed the methylation status of the promoter region of 11 genes in brush samples of 3 well-defined endobronchial locations in pat

  12. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    Science.gov (United States)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  13. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  14. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  15. Isolation and Characterization of Salt Tolerant Endophytic and Rhizospheric Plant Growth-Promoting Bacteria (PGPB) Associated with the Halophyte Plant (Sesuvium Verrucosum) Grown in KSA

    OpenAIRE

    Mohamed A.M. El-Awady; Hassan, Mohamed M.; Yassin M. Al-Sodany

    2015-01-01

    This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplifi...

  16. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    OpenAIRE

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response.

  17. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    Science.gov (United States)

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  18. Tracking antigen-specific T-cells during clinical tolerance induction in humans.

    Directory of Open Access Journals (Sweden)

    Aamir Aslam

    Full Text Available Allergen immunotherapy presents an opportunity to define mechanisms of induction of clinical tolerance in humans. Significant progress has been made in our understanding of changes in T cell responses during immunotherapy, but existing work has largely been based on functional T cell assays. HLA-peptide-tetrameric complexes allow the tracking of antigen-specific T-cell populations based on the presence of specific T-cell receptors and when combined with functional assays allow a closer assessment of the potential roles of T-cell anergy and clonotype evolution. We sought to develop tools to facilitate tracking of antigen-specific T-cell populations during wasp-venom immunotherapy in people with wasp-venom allergy. We first defined dominant immunogenic regions within Ves v 5, a constituent of wasp venom that is known to represent a target antigen for T-cells. We next identified HLA-DRB1*1501 restricted epitopes and used HLA class II tetrameric complexes alongside cytokine responses to Ves v 5 to track T-cell responses during immunotherapy. In contrast to previous reports, we show that there was a significant initial induction of IL-4 producing antigen-specific T-cells within the first 3-5 weeks of immunotherapy which was followed by reduction of circulating effector antigen-specific T-cells despite escalation of wasp-venom dosage. However, there was sustained induction of IL-10-producing and FOXP3 positive antigen-specific T cells. We observed that these IL-10 producing cells could share a common precursor with IL-4-producing T cells specific for the same epitope. Clinical tolerance induction in humans is associated with dynamic changes in frequencies of antigen-specific T-cells, with a marked loss of IL-4-producing T-cells and the acquisition of IL-10-producing and FOXP3-positive antigen-specific CD4+ T-cells that can derive from a common shared precursor to pre-treatment effector T-cells. The development of new approaches to track antigen

  19. Promotion

    OpenAIRE

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed.

  20. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  1. Efficacy and Tolerability of Anthracycline-Based Therapy in Elderly Patients With Diffuse Large B-Cell Lymphoma

    OpenAIRE

    Davis, Christine C.; Cohen, Jonathon B.; Shah, Katherine S.; Hutcherson, Don A.; Surati, Minal J.; Valla, Kelly; Panjic, Elyse H.; Handler, Caitlin E.; Switchenko, Jeffrey M.; Flowers, Christopher R.

    2014-01-01

    We examined treatment with or without anthracyclines in 72 eldery diffuse large B-cell lymphoma patients (age ≥ 65 years) in a retrospective cohort analysis. Factors leading to treatment without an anthracycline included age and ejection fraction, whereas markers of tolerability were similar between groups. This study highlights the details of anthracycline tolerability in elderly lymphoma patients.

  2. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    Science.gov (United States)

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  3. Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance.

    Science.gov (United States)

    Mikhed, Yuliya; Fahrer, Jörg; Oelze, Matthias; Kröller-Schön, Swenja; Steven, Sebastian; Welschof, Philipp; Zinßius, Elena; Stamm, Paul; Kashani, Fatemeh; Roohani, Siyer; Kress, Joana Melanie; Ullmann, Elisabeth; Tran, Lan P; Schulz, Eberhard; Epe, Bernd; Kaina, Bernd; Münzel, Thomas; Daiber, Andreas

    2016-07-01

    Nitroglycerin (GTN) and other organic nitrates are widely used vasodilators. Their side effects are development of nitrate tolerance and endothelial dysfunction. Given the potential of GTN to induce nitro-oxidative stress, we investigated the interaction between nitro-oxidative DNA damage and vascular dysfunction in experimental nitrate tolerance. Cultured endothelial hybridoma cells (EA.hy 926) and Wistar rats were treated with GTN (ex vivo: 10-1000 µM; in vivo: 10, 20 and 50 mg/kg/day for 3 days, s.c.). The level of DNA strand breaks, 8-oxoguanine and O (6)-methylguanine DNA adducts was determined by Comet assay, dot blot and immunohistochemistry. Vascular function was determined by isometric tension recording. DNA adducts and strand breaks were induced by GTN in cells in vitro in a concentration-dependent manner. GTN in vivo administration leads to endothelial dysfunction, nitrate tolerance, aortic and cardiac oxidative stress, formation of DNA adducts, stabilization of p53 and apoptotic death of vascular cells in a dose-dependent fashion. Mice lacking O (6)-methylguanine-DNA methyltransferase displayed more vascular O (6)-methylguanine adducts and oxidative stress under GTN therapy than wild-type mice. Although we were not able to prove a causal role of DNA damage in the etiology of nitrate tolerance, the finding of GTN-induced DNA damage such as the mutagenic and toxic adduct O (6)-methylguanine, and cell death supports the notion that GTN based therapy may provoke adverse side effects, including endothelial function. Further studies are warranted to clarify whether GTN pro-apoptotic effects are related to an impaired recovery of patients upon myocardial infarction. PMID:27357950

  4. Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata.

    OpenAIRE

    Vreeland, R H; Anderson, R; Murray, R G

    1984-01-01

    The salt-tolerant bacterium Halomonas elongata makes a variety of physiological adaptations in response to increases in the salt concentration of its growth medium. The cell walls become more compact and internally coherent. The overall lipid pattern shows an increased amount of negatively charged lipids. In addition, the peptidoglycan composition of H. elongata, although not changing in response to increased NaCl, contains the hydrophobic amino acid leucine which is unique among bacterial sp...

  5. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread

    OpenAIRE

    Czuczman, Mark A.; Fattouh, Ramzi; van Rijn, Jorik; Canadien, Veronica; Osborne, Suzanne; Aleixo M Muise; Kuchroo, Vijay K.; Higgins, Darren E.; Brumell, John H.

    2014-01-01

    Efferocytosis, the process by which dying/dead cells are removed by phagocytosis, plays an important role in development, tissue homeostasis and innate immunity 1 . Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes (Lm), can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can esca...

  6. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread

    OpenAIRE

    Czuczman, Mark A.; Fattouh, Ramzi; van Rijn, Jorik; Canadien, Veronica; Osborne, Suzanne; Aleixo M Muise; Kuchroo, Vijay K.; Higgins, Darren E.; Brumell, John H.

    2014-01-01

    Efferocytosis, the process by which dying/dead cells are removed by phagocytosis, plays an important role in development, tissue homeostasis and innate immunity1. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes (Lm), can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape...

  7. Activated Notch Causes Deafness by Promoting a Supporting Cell Phenotype in Developing Auditory Hair Cells

    OpenAIRE

    Grace Savoy-Burke; Felicia A Gilels; Wei Pan; Diana Pratt; Jianwen Que; Lin Gan; White, Patricia M.; Kiernan, Amy E.

    2014-01-01

    Purpose To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear. Methods An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product...

  8. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization.

    Science.gov (United States)

    Huebinger, Jan; Han, Hong-Mei; Hofnagel, Oliver; Vetter, Ingrid R; Bastiaens, Philippe I H; Grabenbauer, Markus

    2016-02-23

    Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth. PMID:26541066

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  11. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yasukawa

    Full Text Available Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  12. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Science.gov (United States)

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  13. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  14. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  15. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  16. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  17. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  18. Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM.

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2010-08-01

    Aggregation-promoting factors (Apf) are secreted proteins that have been associated with a diverse number of functional roles in lactobacilli, including self-aggregation, the bridging of conjugal pairs, coaggregation with other commensal or pathogenic bacteria, and maintenance of cell shape. In silico genome analysis of Lactobacillus acidophilus NCFM identified LBA0493 as a 696-bp apf gene that encodes a putative 21-kDa Apf protein. Transcriptional studies of NCFM during growth in milk showed apf to be one of the most highly upregulated genes in the genome. In the present study, reverse transcriptase-quantitative PCR (RT-QPCR) analysis revealed that the apf gene was highly induced during the stationary phase compared to that during the logarithmic phase. To investigate the functional role of Apf in NCFM, an Delta apf deletion mutant was constructed. The resulting Delta apf mutant, NCK2033, did not show a significant difference in cell morphology or growth compared to that of the NCFMDelta upp reference strain, NCK1909. The autoaggregation phenotype of NCK2033 in planktonic culture was unaffected. Additional phenotypic assays revealed that NCK2033 was more susceptible to treatments with oxgall bile and sodium dodecyl sulfate (SDS). Survival rates of NCK2033 decreased when stationary-phase cells were exposed to simulated small-intestinal and gastric juices. Furthermore, NCK2033 in the stationary phase showed a reduction of in vitro adherence to Caco-2 intestinal epithelial cells, mucin glycoproteins, and fibronectin. The data suggest that the Apf-like proteins may contribute to the survival of L. acidophilus during transit through the digestive tract and, potentially, participate in the interactions with the host intestinal mucosa. PMID:20562289

  19. Screening of promoters from rhizosphere metagenomic DNA using a promoter-trap vector and flow cytometric cell sorting.

    Science.gov (United States)

    Lee, Se Hee; Kim, Jeong Myeong; Lee, Hyo Jung; Jeon, Che Ok

    2011-02-01

    We constructed a facilitative and efficient promoter-trap vector, pCM-EGFP, for capturing and analyzing functional promoters from environmental DNA. The pCM-EGFP vector showed good chloramphenicol sensitivity and no enhanced green fluorescent protein (EGFP) gene expression. Promoter libraries were constructed for screening promoters responding to naringenin, a key molecule released from plant roots. After electroporation, E. coli transformants were incubated in LB broth containing chloramphenicol (10 μg/ml) to select against transformants with no cloned promoter. E. coli cells were sorted using flow cytometry without naringenin, and then sorted again with high fluorescence after incubation in LB broth with naringenin (1 mM) at 28 °C for 12 h. The inducible properties of approximately 400 sorted cells were evaluated, with most cells showing only strong EGFP gene expression without inducible properties. Two clones (5-4E and 15-3D) displayed naringenin inducibility, and both contained a promoter bounded by a TetR-family regulator. The regulator knock-out mutant of the 5-4E clone lost its ability to be induced by naringenin. In conclusion, the pCM-EGFP vector may be used as an efficient promoter-trap vector and a combination of the vector with flow cytometric cell sorting was demonstrated to be an useful method for screening promoters responding to specific conditions or inducers. PMID:21259288

  20. Current perspectives on natural killer cell education and tolerance: emerging roles for inhibitory receptors

    Directory of Open Access Journals (Sweden)

    Thomas LM

    2015-03-01

    Full Text Available L Michael Thomas Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA Abstract: Natural killer (NK cells are regulated through the coordinated functions of activating and inhibitory receptors. These receptors can act during the initial engagement of an NK cell with a target cell, or in subsequent NK cell engagements to maintain tolerance. Notably, each individual possesses a sizable minority-population of NK cells that are devoid of inhibitory receptors that recognize the surrounding MHC class I (ie, self-MHC. Since these NK cells cannot perform conventional inhibition, they are rendered less responsive through the process of NK cell education (also known as licensing in order to reduce the likelihood of auto-reactivity. This review will delineate current views on NK cell education, clarify various misconceptions about NK cell education, and, lastly, discuss the relevance of NK cell education in anti-cancer therapies. Keywords: natural killer cell education, natural killer cell inhibitory receptors, immunotherapy, cancer

  1. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance.

    Science.gov (United States)

    Rocha, B; Grandien, A; Freitas, A A

    1995-03-01

    We studied the interactions of male-specific T cell receptor (TCR)-alpha/beta-transgenic (TG) cells with different concentrations of male antigen in vivo. We constructed mouse chimeras expressing different amounts of male antigen by injecting thymectomized, lethally irradiated mice with various ratios of male (immunoglobulin [Ig] Ha) and female (IgHb) bone marrow. These chimeras were injected with male-specific TCR-alpha/beta-trangenic cells. These experiments allowed us to monitor antigen persistence and characterize antigen-specific T cells in terms of their frequency, reactivity, and effector functions (as tested by elimination of male B cells in vivo). In the absence of antigen, virgin TG cells persisted but did not expand. Transient exposure to antigen resulted in cell expansion, followed by the persistence of increased numbers of antigen-reactive T cells. In contrast, antigen persistence was followed by two independent mechanisms of tolerance induction: anergy (at high antigen concentrations), where T cells did not differentiate into effector functions but persisted in vivo as unresponsive T cells, and exhaustion (at lower antigen concentrations), where differentiation into effector functions (B cell elimination) occurred but was followed by the disappearance of antigen-specific T cells. PMID:7869056

  2. Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen.

    Science.gov (United States)

    Tsuda, Masato; Hosono, Akira; Yanagibashi, Tsutomu; Kihara-Fujioka, Miran; Hachimura, Satoshi; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi

    2010-08-16

    Colonization of the gut by commensal bacteria modulates the induction of oral tolerance and allergy. However, how these intestinal bacteria modulate antigen-specific T cell responses induced by oral antigens remains unclear. In order to investigate this, we used germ-free (GF) ovalbumin (OVA)-specific T cell receptor transgenic (OVA23-3) mice. Conventional (CV) or GF mice were administered an OVA-containing diet. Cytokine production by CD4(+) cells from spleen (SP), mesenteric lymph nodes (MLN) and Peyer's patches (PP) was evaluated by ELISA, as was the peripheral antibody titer. T cell phenotype was assessed by flow cytometry. CD4(+) cells from the SP and MLN of CV and GF mice fed an OVA diet for 3 weeks produced significantly less IL-2 than the corresponding cells from mice receiving a control diet, suggesting that oral tolerance could be induced at the T cell level in the systemic and intestinal immune systems of both bacterial condition of mice. However, we also observed that the T cell hyporesponsiveness induced by dietary antigen was delayed in the systemic immune tissues and was weaker in the intestinal immune tissues of the GF mice. Intestinal MLN and PP CD4(+) T cells from these animals also produced lower levels of IL-10, had less activated/memory type CD45RB(low) cells, and expressed lower levels of CTLA-4 but not Foxp3 compared to their CV counterparts. Furthermore, GF mice produced higher serum levels of OVA-specific antibodies than CV animals. CD40L expression by SP CD4(+) cells from GF mice fed OVA was higher than that of CV mice. These results suggest that intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate serum antibody responses induced by dietary antigens through modulation of the intestinal and systemic T cell phenotype. PMID:20621647

  3. Interaction of hyperthermia and radiation in tolerant and nontolerant HeLa S3 cells: role of DNA polymerase inactivation

    International Nuclear Information System (INIS)

    The activities of DNA polymerase α and β were measured in tolerant and nontolerant HeLa S3 suspension cells. The heat-inactivation of the enzymes and their recovery when cells were incubated at 370C after the heat challenge was compared to the synergistic action of heat and x-radiation and its disappearance at the level of cell survival. Thermotolerant cells were radiosensitized by heat similarly to nontolerant cells, but the sensitization decreased more rapidly in the tolerant cells when time at 370C was allowed between the two treatments. For polymerase activities the extent of inactivation, as well as the kinetics of recovery, were similar in tolerant and nontolerant cells. (author)

  4. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423 as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05 in high adipogenic cells, while transforming growth factor (TGF-β was higher (156.1±48.7%, P<0.05 in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05 in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular

  5. PPARα Agonist Fenofibrate Reduced the Secreting Load of β-Cells in Hypertriglyceridemia Patients with Normal Glucose Tolerance

    OpenAIRE

    Jia Liu; Rui Lu; Ying Wang; Yanjin Hu; Yumei Jia; Ning Yang; Jing Fu; Guang Wang

    2016-01-01

    Hypertriglyceridemia is an important risk factor associated with insulin resistance and β-cell dysfunction. This study investigated the effects of hypertriglyceridemia and fenofibrate treatment on insulin sensitivity and β-cell function in subjects with normal glucose tolerance. A total of 1974 subjects with normal glucose tolerance were divided into the normal TG group (NTG group, n = 1302) and hypertriglyceridemia group (HTG group, n = 672). Next, 92 patients selected randomly from 672 pati...

  6. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Lou Rose Malamug

    2014-01-01

    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  7. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Patrick Kaiser

    2014-02-01

    Full Text Available In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN, the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.

  8. Initiation of immune tolerance-controlled HIV gp41 neutralizing B cell lineages.

    Science.gov (United States)

    Zhang, Ruijun; Verkoczy, Laurent; Wiehe, Kevin; Munir Alam, S; Nicely, Nathan I; Santra, Sampa; Bradley, Todd; Pemble, Charles W; Zhang, Jinsong; Gao, Feng; Montefiori, David C; Bouton-Verville, Hilary; Kelsoe, Garnett; Larimore, Kevin; Greenberg, Phillip D; Parks, Robert; Foulger, Andrew; Peel, Jessica N; Luo, Kan; Lu, Xiaozhi; Trama, Ashley M; Vandergrift, Nathan; Tomaras, Georgia D; Kepler, Thomas B; Moody, M Anthony; Liao, Hua-Xin; Haynes, Barton F

    2016-04-27

    Development of an HIV vaccine is a global priority. A major roadblock to a vaccine is an inability to induce protective broadly neutralizing antibodies (bnAbs). HIV gp41 bnAbs have characteristics that predispose them to be controlled by tolerance. We used gp41 2F5 bnAb germline knock-in mice and macaques vaccinated with immunogens reactive with germline precursors to activate neutralizing antibodies. In germline knock-in mice, bnAb precursors were deleted, with remaining anergic B cells capable of being activated by germline-binding immunogens to make gp41-reactive immunoglobulin M (IgM). Immunized macaques made B cell clonal lineages targeted to the 2F5 bnAb epitope, but 2F5-like antibodies were either deleted or did not attain sufficient affinity for gp41-lipid complexes to achieve the neutralization potency of 2F5. Structural analysis of members of a vaccine-induced antibody lineage revealed that heavy chain complementarity-determining region 3 (HCDR3) hydrophobicity was important for neutralization. Thus, gp41 bnAbs are controlled by immune tolerance, requiring vaccination strategies to transiently circumvent tolerance controls. PMID:27122615

  9. Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian;

    2014-01-01

    Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index...... (DIOGTT) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity...... (SI OGTT) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel SI OGTT in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were...

  10. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells.

    Science.gov (United States)

    He, Yun; Cui, Jiejie; He, Tongchuan; Bi, Yang

    2015-08-01

    5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium. PMID

  11. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression. PMID:26734018

  12. Natural killer cells promote early CD8 T cell responses against cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Scott H Robbins

    2007-08-01

    Full Text Available Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs for cytokine production, preserves the conventional dendritic cell (cDC compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate

  13. PNMA1 promotes cell growth in human pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Jiang, Shu-Heng; He, Ping; Ma, Ming-Ze; Wang, Yang; Li, Rong-Kun; Fang, Fang; Fu, Ying; Tian, Guang-Ang; Qin, Wen-Xin; Zhang, Zhi-Gang

    2014-01-01

    Paraneoplastic Ma1 (PNMA1) is a member of an expanding family of 'brain/testis' proteins involved in an autoimmune disorder defined as paraneoplastic neurological syndrome (PNS). Although it is widely studied in PNS, little is known about the underlying clinical significance and biological function of PNMA1 in tumors. Here, we find that elevated PNMA1 expression is more commonly observed in pancreatic ductal adenocarcinoma (PDAC) cell lines, compared with normal pancreatic cell and tissues from pancreatic ductal adenocarcinoma patient. Besides, higher PNMA1 expression is closely correlated with large tumor size. Suppression of endogenous PNMA1 expression decreases cell viability and promotes cell apoptosis. Subsequent studies reveal that the PI3K/AKT, MAPK/ERK pathway and members of the anti-apoptotic Bcl-2 family may be involved in the pro-survival and anti-apoptotic effect of PNMA1 on PDAC. Taken together, this study provides evidence that PNMA1 is involved in tumor growth of pancreatic carcinoma and PNMA1-related pathways might represent a new treatment strategy. PMID:25120759

  14. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line.

    Science.gov (United States)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-08-01

    Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure. PMID:27045622

  15. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  16. Tolerance induction to a thymus-dependent antigen in vitro: treatment of nonadherent cells with tolerogen biologically filtered in vitro

    International Nuclear Information System (INIS)

    Highly tolerogenic bovine gamma globulin (BGG), a thymus-dependent antigen, was prepared by biologic filtration in vitro. It readily induced tolerance in vivo in BALB/c mice and also rendered their nonadherent lymph node cells tolerant after in vitro incubation. Biologic filtration in vitro was carried out by incubating 2.5 x 107 lymph node cells with 10 mg of nontolerogenic BGG in 10 ml of Eagle's medium containing 2 percent normal mouse serum at 370C for 6 hr. The BGG-containing medium was clarified by centrifugation and was used without further dilution. For tolerance induction in vitro, lymph node cells were separated into adherent and nonadherent populations on Falcon plastic. These cells were incubated for 0 to 18 hr at 370C with biologically filtered BGG (bBGG). After incubation, the cells were washed three times and (2 to 2.5) x 107 nonadherent or 4 x 106 adherent cells were injected iv with their untreated counterpart into lethally irradiated mice which had received 106 bone marrow cells. The recipients were then challenged with 300 μg of aggregated BGG, and tolerance was assayed by the elimination of labeled BGG, rosette formation, and passive hemagglutination. Spleen cells were similarly treated for comparison. Our findings show that tolerance was not induced in vitro in adherent lymph node cells. However, in the nonadherent populations, those from the lymph node but not the spleen were rendered tolerant. The acquisition of tolerance in vitro was gradual. It was dependent upon the length of exposure to bBGG and required at least 6 hr

  17. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium.

    Science.gov (United States)

    Ferain, Aline; Bonnineau, Chloé; Neefs, Ineke; Rees, Jean François; Larondelle, Yvan; Schamphelaere, Karel A C De; Debier, Cathy

    2016-08-01

    The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly protected the RTL-W1 cells against both methylmercury and cadmium; (iv) DHA enrichment significantly protected the cells against cadmium but not methylmercury; (v) AA and LA enrichment had no impact on the cell tolerance to both methylmercury and cadmium; (vi) the abundance of 20:3n-6, a metabolite of the n-6 biotransformation pathway, in

  18. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures

    International Nuclear Information System (INIS)

    Studies were conducted to determine the herbicidal site of clomazone action in tolerant-soybean (Glycine max [L.] Merr. cv Corsoy) (SB-M) and susceptible-cotton (Gossypium hirsutum [L.] cv Stoneville 825) (COT-M) photomixotrophic cell suspension cultures. Although a 10 micromolar clomazone treatment did not significantly reduce the terpene or mixed terpenoid content (microgram per gram fresh weight) of the SB-M cell line, there was over a 70% reduction in the chlorophyll (Chl), carotenoid (CAR), and plastoquinone (PQ) content of the COT-M cell line. The tocopherol (TOC) content was reduced only 35.6%. Reductions in the levels of Chl, CAR, TOC, and PQ indicate that the site of clomazone action in COT-M cells is prior to geranylgeranyl pyrophosphate (GGPP). The clomazone treatment did not significantly reduce the flow of [14C]mevalonate ([14C]MEV) (nanocuries per gram fresh weight) into CAR and the three mixed terpenoid compounds of SB-M cells. Conversely, [14C]MEV incorporation into CAR and the terpene moieties of Chl, PQ, and TOC in COT-M cells was reduced at least 73%, indicating that the site of clomazone action must be after MEV. Sequestration of clomazone away from the chloroplast cannot account for soybean tolerance to clomazone since chloroplasts isolated from both cell lines incubated with [14C]clomazone contained a similar amount of radioactivity (disintegrations per minute per microgram of Chl). The possible site(s) of clomazone inhibition include mevalonate kinase, phosphomevalonate kinase, pyrophosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, and/or a prenyl transferase

  19. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  20. MeCP2 enforces Foxp3 expression to promote regulatory T cells' resilience to inflammation.

    Science.gov (United States)

    Li, Chaoran; Jiang, Shan; Liu, Si-Qi; Lykken, Erik; Zhao, Lin-tao; Sevilla, Jose; Zhu, Bo; Li, Qi-Jing

    2014-07-01

    Forkhead box P3(+) (Foxp3(+)) regulatory T cells (Tregs) are crucial for peripheral tolerance. During inflammation, steady Foxp3 expression in Tregs is essential for maintaining their lineage identity and suppressive function. However, the molecular machinery governing Tregs' resilience to inflammation-induced Foxp3 destabilization remains elusive. Here, we demonstrate that methyl-CpG binding protein 2 (MeCP2), an eminent epigenetic regulator known primarily as the etiological factor of Rett syndrome, is critical to sustain Foxp3 expression in Tregs during inflammation. In response to inflammatory stimuli, MeCP2 is specifically recruited to the Conserved Non-Coding sequence 2 region of the foxp3 locus, where it collaborates with cAMP responsive element binding protein 1 to promote local histone H3 acetylation, thereby counteracting inflammation-induced epigenetic silencing of foxp3. Consequently, Treg-specific deletion of MeCP2 causes spontaneous immune activation in mice and failure in protection against autoimmunity. Furthermore, we demonstrate that Foxp3 expression in MeCP2-deficient Tregs diminishes with time, resulting in their failure to suppress effector T-cell-mediated colitis. Thus, MeCP2 serves as a critical safeguard that confers Tregs with resilience against inflammation. PMID:24958888

  1. Chitosan nanoparticles affect acid tolerance response in adhered cells of strpetococcus mutans

    DEFF Research Database (Denmark)

    Neilands, Julia; Sutherland, Duncan S; Resin, Anton;

    2011-01-01

    In this study we evaluated the effect of chitosan nanoparticles on the acid tolerance response (ATR) of adhered Streptococcus mutans. An ATR was induced by exposing S. mutans to pH 5.5 for 2 h and confirmed by exposing the acid-adapted cells to pH 3.5 for 30 min, with the majority of cells...... appearing viable according to the LIVE/DEAD (R) technique. However, when chitosan nanoparticles were present during the exposure to pH 5.5, no ATR occurred as most cells appeared dead after the pH 3.5 shock. We conclude that the chitosan nanoparticles tested had the ability to hinder ATR induction in...

  2. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  3. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    International Nuclear Information System (INIS)

    Highlights: ► NO is produced from L-arginine in response to elevated temperature in yeast. ► Tah18 was first identified as the yeast protein involved in NO synthesis. ► Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe–S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  4. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread.

    Science.gov (United States)

    Czuczman, Mark A; Fattouh, Ramzi; van Rijn, Jorik M; Canadien, Veronica; Osborne, Suzanne; Muise, Aleixo M; Kuchroo, Vijay K; Higgins, Darren E; Brumell, John H

    2014-05-01

    Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection. PMID:24739967

  5. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  6. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  7. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation

    OpenAIRE

    Chang, Jinsam; Thangamani, Shankar; Kim, Myung H.; Ulrich, Benjamin; Morris, Sidney M.; Chang H Kim

    2013-01-01

    Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in dendritic cells re...

  8. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Our data suggest possible future intra-operative applications of TTP to reduce

  9. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  10. Effects of exogenous salicylic acid on cell wall polysaccharides and aluminum tolerance of trichosanthes kirilowii

    International Nuclear Information System (INIS)

    A hydroponic experiment was conducted to study the effects of exogenous salicylic acid (SA) on root length, relative aluminum content in the apical cell wall, acid phosphatase (APA) and pectin methyl esterase (PME) activity, root pectin, hemicellulose 1(HC1), and hemicellulose 2 (HC2) contents of Anguo Trichosanthes kirilowii (Al-tolerant genotype) and Pujiang T. kirilowii (Al-sensitive genotype) under 800 micro mol/L of aluminum stress. The results showed that the growth of Al-tolerant Anguo T. kirilowii and Al-sensitive Pujiang T. kirilowii was inhibited when exposed to 800 micro mol/L of aluminum solution. APA and PME activities were also enhanced for both genotypes. The contents of relative aluminum, pectin, HC1, and HC2, as well as Al accumulation in the root tips were increased under aluminum toxicity. Pujiang T. kirilowii showed higher enzyme activity and cell wall polysaccharide contents than Anguo T. kirilowii. In addition, the root cell wall pectin, HC1, and HC2 contents of Pujiang T. kirilowii were increased by a large margin, showing its greater sensitivity to aluminum toxicity. Root length is an important indicator of aluminum toxicity, and has an important relationship with cell wall polysaccharide content. Aluminum toxicity led to the accumulation of pectin and high PME activity, and also increased the number of free carboxyl groups, which have more aluminum binding sites. Membrane skim increased extensively with the increase in APA activity, damaging membrane structure and function. Different SA concentrations can decrease enzyme activity and cell wall polysaccharide content to some extent. With the addition of different SA concentrations, the root relative aluminum content, cell wall polysaccharide content, APA and PME activities decreased. Aluminum toxicity to both genotypes of T. kirilowii was relieved in different degrees as exogenous SA concentration increased. Inter-simple sequence repeat (ISSR) marker was used to examine the genetic distance

  11. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.

    Science.gov (United States)

    Charbonnier, Louis-Marie; Wang, Sen; Georgiev, Peter; Sefik, Esen; Chatila, Talal A

    2015-11-01

    Receptors of the Notch family direct the differentiation of helper T cell subsets, but their influence on regulatory T cell (T(reg) cell) responses is obscure. We found here that lineage-specific deletion of components of the Notch pathway enhanced T(reg) cell-mediated suppression of type 1 helper T cell (T(H)1 cell) responses and protected against their T(H)1 skewing and apoptosis. In contrast, expression in T(reg) cells of a gain-of-function transgene encoding the Notch1 intracellular domain resulted in lymphoproliferation, exacerbated T(H)1 responses and autoimmunity. Cell-intrinsic canonical Notch signaling impaired T(reg) cell fitness and promoted the acquisition by T(reg) cells of a T(H)1 cell-like phenotype, whereas non-canonical Notch signaling dependent on the adaptor Rictor activated the kinase AKT-transcription factor Foxo1 axis and impaired the epigenetic stability of Foxp3. Our findings establish a critical role for Notch signaling in controlling peripheral T(reg) cell function. PMID:26437242

  12. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform i...

  13. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    Science.gov (United States)

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). PMID:26049089

  14. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  15. Life extension techniques for aircraft structures-Extending durability and promoting damage tolerance through bonded crack retarders

    OpenAIRE

    Irving, Phil E.; Zhang, Xiang; Doucet, J; Figueroa-Gordon, Douglas J.; Boscolo, M.; Heinimann, M.; Shepherd, G.; Fitzpatrick, M. E.; D. Liljedahl

    2011-01-01

    This paper explores the viability of the bonded crack retarder concept as a device for life extension of damage tolerant aircraft structures. Fatigue crack growth behaviour in metallic substrates with bonded straps has been determined. SENT and M(T) test coupons and large scale skin-stringer panels were tested at constant and variable amplitude loads. The strap materials were glass fibre polymer composites, GLARE, AA7085 and Ti-6Al-4V. Comprehensive measurements were made of...

  16. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers

    Directory of Open Access Journals (Sweden)

    Doğan A

    2012-09-01

    Full Text Available Aysegül Doğan,1 Mehmet E Yalvaç,1,2 Fikrettin Şahin,1 Alexander V Kabanov,3–5 András Palotás,6 Albert A Rizvanov71Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey; 2Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA; 3Center for Drug Delivery and Nanomedicine, 4Department of Pharmaceutical Sciences, College of Pharmacy, Durham Research Center, University of Nebraska Medical Center, Omaha, NE, USA; 5Laboratory of Chemical Design of Bio-nano-materials, Department of Chemistry, Mikhail V Lomonosov Moscow State University, Moscow, Russia; 6Asklepios-Med, Szeged, Hungary; 7Institute of Fundamental Medicine and Biology, Kazan (Volga Region Federal University, Kazan, RussiaAbstract: Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical

  17. Biological features of intrahepatic CD4+CD25+ T cells in the naturally tolerance of rat liver transplantation

    Institute of Scientific and Technical Information of China (English)

    LU Ling; ZHANG Feng; PU Liyong; YAO Aihua; YU Yue; SUN Beicheng; LI Guoqiang

    2007-01-01

    The biological features of intrahepatic CD4+CD25+ T regulatory cells in the naturally tolerance of rat liver transplantation were explored.Orthotopic liver transplantation was performed in two allogeneic rat strain combinations,one with fatal immunosuppression despite a complete major histocompatibility complex mismatch.The subjects were divided into three groups according to different donors and recipients [Tolerance group:LEW-to-DA;Rejection group:DA-to-LEW;Syngegnic group(control group):DAto-DA].The proportion of intrahepatic CD4+CD25+ T cells from three groups was determined by flow cytometry(FCM)in different time.The intrahepaitc CD4+CD25+ T cells were isolated by magnetic activated cell sorting(MACS)method and identified by FCM.The Foxp3 mRNA was detected by reverse transcriptase polymerase chain reaction(RT-PCR).And their suppression on the proliferation of CD4+CD25- T effector cells was analyzed by cell proliferation assay in vitro.Beginning immediately after transplantation,the proportion of Treg cells increased over time in both allogeneic groups but was significantly greater in the Rejection group.The proportion of Treg cells declined after day 5,and such reduction was more dramatic in the Rejection group than in the Tolerance group.Animals in the Tolerance group showed a second increase in the proportion after day 14.Intrahepatic CD4+CD25+T cells isolated from spontaneous tolerance models inhibited the proliferation of mixed lymphocyte reaction.The purity of CD4+CD25+ T cells sorted by MACS was 86%-93%.The CD4+CD25+ T cells could specifically express the Foxp3 gene compared with CD4+CD25- T cells.In vitro,the spleen cells from LEW rats can irritate the proliferation of CD4+CD25+ T cells more obviously than the syngegnic spleen cells.CD4+CD25+ Tr cells could suppress the proliferation of CD4+CD25- T cells,but the inhibition was reversed by exogenous IL-2(200 U/mL).The CD4+CD25+ T regulatory cells specifically express the Foxp3 gene,which may play an

  18. Adiponectin Promotes Human Jaw Bone Marrow Stem Cell Osteogenesis.

    Science.gov (United States)

    Pu, Y; Wu, H; Lu, S; Hu, H; Li, D; Wu, Y; Tang, Z

    2016-07-01

    Human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) are multipotent progenitor cells with osteogenic differentiation potential. The relationship between adiponectin (APN) and the metabolism of h-JBMMSCs has not been fully elucidated, and the underlying mechanism remains unclear. The aim of the study was to investigate the effect and mechanism of APN on h-JBMMSC metabolism. h-JBMMSCs were obtained from the primary culture of human jaw bones and treated with or without APN (1 µg/mL). Osteogenesis-related gene expression was evaluated by real-time polymerase chain reaction (PCR), alkaline phosphatase (ALP) activity assay, and enzyme-linked immunosorbent assay (ELISA). To further investigate the signaling pathway, mechanistic studies were performed using Western blotting, immunofluorescence, lentiviral transduction, and SB202190 (a specific p38 inhibitor). Alizarin Red staining showed that APN promoted h-JBMMSC osteogenesis. Real-time PCR, ALP assay, and ELISA showed that ALP, osteocalcin (OCN), osteopontin, and integrin-binding sialoprotein were up-regulated in APN-treated cells compared to untreated controls. Immunofluorescence revealed that adaptor protein containing a pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL1) translocated from the nucleus to the cytoplasm with APN treatment. Additionally, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased over time with APN treatment. Moreover, knockdown of APPL1 or p38 MAPK inhibition blocked the expression of APN-induced calcification-related genes including ALP, Runt-related transcription factor 2 (RUNX2), and OCN. Furthermore, Alizarin Red staining of calcium nodes was not increased by the knockdown of APPL1 or p38 inhibition. Our data suggest that this regulation is mediated through the APPL1-p38 MAPK signaling pathway. These findings collectively provide evidence that APN induces the osteogenesis of h-JBMMSCs through APPL1-mediated p38 MAPK activation

  19. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  20. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  1. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    Science.gov (United States)

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  2. Induced Foxp3+ T Cells Colonizing Tolerated Allografts Exhibit the Hypomethylation Pattern Typical of Mature Regulatory T Cells

    Science.gov (United States)

    Hilbrands, Robert; Chen, Ye; Kendal, Adrian R.; Adams, Elizabeth; Cobbold, Stephen P.; Waldmann, Herman; Howie, Duncan

    2016-01-01

    Regulatory T cells expressing the transcription factor Foxp3 require acquisition of a specific hypomethylation pattern to ensure optimal functional commitment, limited lineage plasticity, and long-term maintenance of tolerance. A better understanding of the molecular mechanisms involved in the generation of these epigenetic changes in vivo will contribute to the clinical exploitation of Foxp3+ Treg. Here, we show that both in vitro and in vivo generated antigen-specific Foxp3+ Treg can acquire Treg-specific epigenetic characteristics and prevent skin graft rejection in an animal model. PMID:27148253

  3. Induced Foxp3(+) T Cells Colonizing Tolerated Allografts Exhibit the Hypomethylation Pattern Typical of Mature Regulatory T Cells.

    Science.gov (United States)

    Hilbrands, Robert; Chen, Ye; Kendal, Adrian R; Adams, Elizabeth; Cobbold, Stephen P; Waldmann, Herman; Howie, Duncan

    2016-01-01

    Regulatory T cells expressing the transcription factor Foxp3 require acquisition of a specific hypomethylation pattern to ensure optimal functional commitment, limited lineage plasticity, and long-term maintenance of tolerance. A better understanding of the molecular mechanisms involved in the generation of these epigenetic changes in vivo will contribute to the clinical exploitation of Foxp3(+) Treg. Here, we show that both in vitro and in vivo generated antigen-specific Foxp3(+) Treg can acquire Treg-specific epigenetic characteristics and prevent skin graft rejection in an animal model. PMID:27148253

  4. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol.

    OpenAIRE

    Gordon, A S; Collier, K; Diamond, I.

    1986-01-01

    The acute and chronic neurologic effects of ethanol appear to be due to its interaction with neural cell membranes. Chronic exposure to ethanol induces changes in the membrane that lead to tolerance to the effects of ethanol. However, the actual membrane changes that account for tolerance to ethanol are not understood. We have developed a model cell culture system, using NG108-15 neuroblastoma-glioma hybrid cells, to study cellular tolerance to ethanol. We have found that adenosine receptor-s...

  5. CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells.

    Science.gov (United States)

    Flores-Santibáñez, Felipe; Fernández, Dominique; Meza, Daniel; Tejón, Gabriela; Vargas, Leonardo; Varela-Nallar, Lorena; Arredondo, Sebastián; Guixé, Victoria; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2015-12-01

    The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells. PMID:26331349

  6. The application of the haploid cell culture system to obtain the variants with tolerance to biotic and abiotic stress in plants

    International Nuclear Information System (INIS)

    The different genotypes of rape haploid cells /tissue tolerated to the oxalic acid were correlated with the tolerance to Sclerotinia sclerotiorum in the plant level through the researches. And this phenomenon also occurred in the tolerance to NaCl between the different genotypes of rape haploid cells and the diploid cells, but the diploid cells were generally more tolerant to the haploid ones. In addition, there were similar situations in barely on NaCl tolerance, aluminum tolerance and resistance to scab. So the above results indicated that the haploid cells/tissue tolerant to the stresses could reflect the situations in the plant level in the certain degree. The technology of inducing and screening the variants of the tolerance to rape Sclerotinia sclerotiorum by in vitro culture of haploid tissue was established. This technical system includes the in vitro microspore culture, the regeneration from the haploid cells to plants and the expanding propagation of the haploids populations. A set of oxalic acid tolerance variants was screened through the treatments of pingyangmycin and oxalic acid in stem apexes culture of haploid plants. After the field identification, 3 individuals with the improved tolerance to Sclerotinia sclerotiorum was obtained. The technology of inducing and screening the variants with heat tolerance by in vitro culture of haploid tissue was established in broccoli. A set of variants with the improved heat tolerance was obtained through the treatment of pingyangmycin and the 45 deg C heat treatment and 9 variants with higher stability of cell membrane to heat stress than the original varieties was selected. In addition, the technical systems for inducing and screening barley variants tolerant to aluminum and scab stresses according to the above rules were established. And the relevant resistance variants were obtained. Then 1 aluminum tolerance material and 3 scab resistance materials under the field experiments in the plant level were selected

  7. Sulfur tolerance of Fe promoted BaO/Al2O3 systems as NOx storage materials

    OpenAIRE

    Parmak, Emrah

    2011-01-01

    Ternary mixed oxide systems in the form of BaO/FeOx/Al2O3 were studied with varying compositions as an alternative to the conventional NOx storage materials (i.e. BaO/Al2O3). NOx uptake properties of the freshly prepared samples, sulfur adsorption and NOx storage in the presence of sulfur were investigated in order to elucidate the sulfur tolerance of these advanced NOx storage systems in comparison to their conventional counterparts. The structural characterization of the p...

  8. Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Reint K Jellema

    Full Text Available Hypoxic-ischemic encephalopathy (HIE in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 10(6 MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI, in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.

  9. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  10. Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

    OpenAIRE

    Mohammad Miryounesi; Karim Nayernia; Mahdi Dianatpour; Fatemeh Mansouri; Mohammad Hossein Modarressi

    2013-01-01

      Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells.   Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence protein was produced to select differentiated mESCs. To analyze sertoli cells’ effect in differentiat...

  11. Functional clonal deletion versus suppressor cell-induced transplantation tolerance in chimeras prepared with a short course of total-lymphoid irradiation

    International Nuclear Information System (INIS)

    Allogeneic bone marrow (BM) chimeras induced by infusion of BM cells into recipients conditioned with total lymphoid irradiation (TLI) were shown to develop humoral and cell-mediated tolerance to host and donor-type alloantigens by a number of in vitro and in vivo assays. Spleen cells of tolerant chimeras exhibited suppressive activity of mixed lymphocyte reaction (MLR). MLR suppression was not abrogated by depletion of Lyt-2 cells, and neither could Lyt-2-positive cells sorted from the spleens of tolerant chimeras suppress MLR or attenuate graft-versus-host reactivity in vivo. Likewise, specifically unresponsive spleen cells obtained from chimeras could not be induced to respond in MLR against tolerizing host-type cells following depletion of Lyt-2 or passage through a nylon-wool column. Tolerance of chimera spleen cells to host alloantigens, best documented by permanent survival of donor-type skin allografts, could be adoptively transferred into syngeneic recipients treated by heavy irradiation but not into untreated or mildly irradiated recipients. Adoptive transfer of tolerance seemed to be associated with experimental conditions favoring engraftment of tolerant cells rather than suppression of host reactivity. We speculate that although host and/or donor-derived suppressor cells may be operating in reducing the pool of specific alloreactive clones by blocking cell proliferation in response to allogeneic challenge, the final outcome in tolerant chimeras is actual or functional deletion of alloreactive clones

  12. The Atlantic Salmon MHC class II alpha and beta promoters are active in mammalian cell lines.

    Science.gov (United States)

    Vestrheim, O; Lundin, M; Syed, M

    2007-01-01

    The major histocompatibility complex class II (MHCII) genes are only constitutively expressed in certain immune response cells such as B cells, macrophages, dendritic cells and other antigen presenting cells. This cell specific expression pattern and the presence of conserved regions such as the X-, X2-, Y-, and W-boxes make the MHCII promoters especially interesting as vector constructs. We tested whether the Atlantic salmon (Salmo salar L.) MHCII promoters can function in cell lines from other organisms. We found that the salmon MHCII alpha and MHCII beta promoters could drive expression of a LacZ reporter gene in adherent lymphoblast cell lines from dog (DH82) and rabbit (HybL-L). This paper shows that the promoters of Atlantic salmon MHCII alpha and beta genes can function in mammalian cell lines. PMID:17934904

  13. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool

    Directory of Open Access Journals (Sweden)

    Siegel Robert S

    2008-02-01

    Full Text Available Abstract Background A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report. Results A promoter, pGC1(At1g22690, drove strong and relatively specific reporter gene expression in guard cells including GUS (beta-glucuronidase and yellow cameleon YC3.60 (GFP-based calcium FRET reporter. Reporter gene expression was weaker in immature guard cells. The expression of YC3.60 was sufficiently strong to image intracellular Ca2+ dynamics in guard cells of intact plants and resolved spontaneous calcium transients in guard cells. The GC1 promoter also mediated strong reporter expression in clustered stomata in the stomatal development mutant too-many-mouths (tmm. Furthermore, the same promoter::reporter constructs also drove guard cell specific reporter expression in tobacco, illustrating the potential of this promoter as a method for high level expression in guard cells. A serial deletion of the promoter defined a guard cell expression promoter region. In addition, anti-sense repression using pGC1 was powerful for reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was not repressed, demonstrating strong cell-type preferential gene repression. Conclusion The pGC1 promoter described here drives strong reporter expression in guard cells of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell expression or

  14. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  15. Upregulation of KPNβ1 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis.

    Science.gov (United States)

    Zhu, Jia; Wang, Yingying; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Gu, Xiaoling; Xu, Pan; Zhang, Shusen; Li, Manhua; Ding, Haifang; Yang, Lei

    2016-01-01

    KPNβ1, also known as importin β, P97, is reported as one of soluble transport factors that mediates transportion of proteins and RNAs between the nucleus and cytoplasm in cellular process. Recent studies show that KPNβ1 is a tumor gene which is highly expressed in several malignant tumors such as ovarian cancer, cervical tumor, neck cancer, and lung cancer via promoting cell proliferation or inhibiting cell apoptotic pathways. However, the the role of KPNβ1 in gastric cancer remains unclear. In this study, Western blot and immunohistochemistrical analyses showed that KPNβ1 was significantly upregulated in clinical gastric cancer specimens compared with adjacent noncancerous tissues. KPNβ1 was positively correlated with tumor grade, Ki-67, and predicted poor prognosis of gastric cancer. More importantly, through starvation-refeeding model, CCK8 assay, flow cytometry, colony formation assays, the vitro studies demonstrated that KPNβ1 promoted proliferation of gastric cancer cells, while KPNβ1 knockdown led to decreased cell proliferation and arrested cell cycle at G1 phase. Furthermore, our results also indicated that KPNβ1 expression could result in docetaxel resistance. And, KPNβ1 could interact with Stat1, contributed to its nucleus import in gastric cancer cells. These findings provided a novel promising therapeutic targets for clinical treatment against human gastric cancer. PMID:26242264

  16. Role of the H-2 complex in the induction of T cell tolerance to self minor histocompatibility antigens

    OpenAIRE

    1983-01-01

    The present study has utilized cytotoxic T lymphocyte (CTL) responses specific for minor histocompatibility (minor H) antigens as an experimental approach to determining whether recognition of self MHC determinants is involved in the induction of T cell tolerance to self antigens. It was observed that C3H.SW splenic T cells from C3H.SW leads to B10 X B10.BR radiation bone marrow chimeras contained CTL precursors (pCTL) reactive against self C3H minor H antigens + H-2k but were tolerant to sel...

  17. MURINE MOBILIZED PERIPHERAL BLOOD STEM CELLS HAVE A LOWER CAPACITY THAN BONE MARROW TO INDUCE MIXED CHIMERISM AND TOLERANCE

    OpenAIRE

    Koporc, Zvonimir; Pilat, Nina; Nierlich, Patrick; Blaha, Peter; Bigenzahn, Sinda; Pree, Ines; Selzer, Edgar; Sykes, Megan; Muehlbacher, Ferdinand; Wekerle, Thomas

    2008-01-01

    Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T cell depletion. The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus ...

  18. Isolation and Characterization of Salt Tolerant Endophytic and Rhizospheric Plant Growth-Promoting Bacteria (PGPB Associated with the Halophyte Plant (Sesuvium Verrucosum Grown in KSA

    Directory of Open Access Journals (Sweden)

    Mohamed A.M. El-Awady

    2015-09-01

    Full Text Available This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3 from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.

  19. A peptide tetramer Tk-tPN induces tolerance of cardiac allografting by conversion of type 1 to type 2 immune responses via the Toll-like receptor 2 signal-promoted activation of the MCP1 gene.

    Science.gov (United States)

    Li, Zuoqing; Yang, Neng; Zhou, Ling; Gu, Peng; Wang, Hui; Zhou, Yun; Zhou, Peijun; Lu, Liming; Chou, Kuang-Yen

    2016-03-01

    The plant protein trichosanthin (Tk) and its derived peptide tetramer Tk-tPN have been shown to stimulate the type 2 immune responses for treating autoimmune disease. This work explores the possibility of using Tk-tPN as a non-toxic immunosuppressant to induce transplantation tolerance using the mechanisms by which T-cell-mediated immune responses are transferred from type 1 to type 2 through innate immunity-related pathways. Immunocytes and cytokine secretions involved in the mouse cardiac allografting model with Tk-tPN treatment were characterized. Identification of critical genes and analysis of their functions through Toll-like receptor (TLR) -initiated signalling and the possible epigenetic changes were performed. Mean survival times of the cardiac allografts were delayed from 7·7 ± 0·3 days (control) to 22·7 ± 3·9 days (P Gata3(+) ), together with a selective expansion of the IL-4/IL-10-producing CD8(+)  CD28(-) regulatory T-cell subset. A TLR2-initiated high expression of chemokine gene MCP1 was detectable simultaneously. Epigenetically Tk/Tk-tPN could also acetylate the histone H3K9 of MCP1 promoter to skew the immunity towards T helper type 2 responses. Tk/Tk-tPN is therefore capable of down-regulating the type 1 response-dominant rejection of cardiac allografts by evoking type 2 immunity through the activation of a TLR2-initiated signalling pathway and MCP1 gene to expand the IL-4/IL-10-secreting CD8(+)  CD28(-) regulatory T cells. Tk-tPN could be a promising novel immunosuppressant to induce tolerance in allotransplantation. PMID:26694804

  20. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    OpenAIRE

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinati...

  1. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in NOD mice.

    Science.gov (United States)

    Ferreira, Gabriela B; Gysemans, Conny A; Demengeot, Jocelyne; da Cunha, João Paulo M C M; Vanherwegen, An-Sofie; Overbergh, Lut; Van Belle, Tom L; Pauwels, Femke; Verstuyf, Annemieke; Korf, Hannelie; Mathieu, Chantal

    2014-05-01

    The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25(+)Foxp3(+) regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4(+) T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo. PMID:24663679

  2. RelB-dependent stromal cells promote T-cell leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Nuno R dos Santos

    Full Text Available BACKGROUND: The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE: The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells.

  3. The optimal mutagen dosage to induce point-mutations in Synechocystis sp. PCC6803 and its application to promote temperature tolerance.

    Directory of Open Access Journals (Sweden)

    Ulrich M Tillich

    Full Text Available Random mutagenesis is a useful tool to genetically modify organisms for various purposes, such as adaptation to cultivation conditions, the induction of tolerances, or increased yield of valuable substances. This is especially attractive for systems where it is not obvious which genes require modifications. Random mutagenesis has been extensively used to modify crop plants, but even with the renewed interest in microalgae and cyanobacteria for biofuel applications, there is relatively limited current research available on the application of random mutagenesis for these organisms, especially for cyanobacteria. In the presented work we characterized the lethality and rate of non-lethal point mutations for ultraviolet radiation and methyl methanesulphonate on the model cyanobacteria Synechocystis sp. PCC6803. Based on these results an optimal dosage of 10-50 J/m(2 for UV and either 0.1 or 1 v% for MMS was determined. A Synechocystis wildtype culture was then mutagenized and selected for increased temperature tolerance in vivo. During the second round of mutagenesis the viability of the culture was monitored on a cell by cell level from the treatment of the cells up to the growth at an increased temperature. After four distinct rounds of treatment (two with each mutagen the temperature tolerance of the strain was effectively raised by about 2°C. Coupled with an appropriate in vivo screening, the described methods should be applicable to induce a variety of desirable characteristics in various strains. Coupling random mutagenesis with high-throughput screening methods would additionally allow to select for important characteristics for biofuel production, which do not yield a higher fitness and can not be selected for in vivo, such as fatty acid concentration. In a combined approach with full genome sequencing random mutagenesis could be used to determine suitable target-genes for more focused methods.

  4. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs.

    Science.gov (United States)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV

  5. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  6. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    International Nuclear Information System (INIS)

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood

  7. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  8. A synthetic triacylated pseudo-dipeptide molecule promotes Th1/TReg immune responses and enhances tolerance induction via the sublingual route.

    Science.gov (United States)

    Mascarell, Laurent; Van Overtvelt, Laurence; Lombardi, Vincent; Razafindratsita, Alain; Moussu, Hélène; Horiot, Stéphane; Chabre, Henri; Limal, David; Moutel, Stéphane; Bauer, Jacques; Chiavaroli, Carlo; Moingeon, Philippe

    2007-12-21

    In this study, we tested two triacylated pseudo-dipeptidic molecules, OM-197-MP-AC and OM-294-BA-MP as candidate adjuvants for allergy vaccines. Both molecules induce human dendritic cell (h-DC) maturation and polarize naïve T cells toward the Th1 type with IFNgamma production. Only OM-294-BA-MP induces IL10 gene expression both in monocyte-derived DCs and CD4+ naïve T cells. Sublingual administration of OM-294-BA-MP plus the antigen enhances tolerance induction in BALB/c mice with established asthma to ovalbumin with an impact on both airways hyperresponsiveness and lung inflammation. Given its Th1/Treg polarizing properties, OM-294-BA-MP is a valid candidate for sublingual allergy vaccines. PMID:18063445

  9. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  10. Extravillous trophoblast cells-derived exosomes promote Vascular Smooth Muscle Cell Migration

    Directory of Open Access Journals (Sweden)

    Carlos eSalomon

    2014-08-01

    Full Text Available Background: Vascular smooth muscle cells (VSMCs migration is a critical process during human uterine spiral artery (SpA remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration.Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37 0C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected and exosomes (exo-JEG-3 and exo- HTR-8/SVneo isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™. Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software .Results: HTR-8/SVneo cells were significantly more (~30% invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 x 108 ± 2.5 x108 particles/106 cells compared to JEG-3 (2.86 x 108 ± 0.78 x108 particles/106 cells. VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (-exosomes (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, versus control 25.09 ± 0.58 h, p<0.05. Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes.Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls.

  11. Immunoregulatory functions for murine intraepithelial lymphocytes: gamma/delta T cell receptor-positive (TCR+) T cells abrogate oral tolerance, while alpha/beta TCR+ T cells provide B cell help

    OpenAIRE

    1992-01-01

    Past work has shown that a subset of effector T cells with unique characteristics could abrogate hapten- or antigen-induced tolerance, and the reconstitution of this immune response has been termed contrasuppression. We have studied contrasuppression in a model of oral tolerance (OT) in which adoptively transferred antigen-specific T contrasuppressor (Tcs) cells reverse OT and result in antibody responses to the eliciting antigen. In the present study, we show that murine intraepithelial lymp...

  12. Incorporation of [14C]-palmitate into lipids of Brassica cells during the induction of freezing tolerance

    International Nuclear Information System (INIS)

    Changes in plasma membrane lipid composition have been causally related to increased freezing tolerance. Studies of lipid metabolism during ABA induction of freezing tolerance in Brassica napus suspension cultures were undertaken. Cells were labeled with [14C]-palmitate four days after transfer to fresh medium (control) or medium containing ABA (which increases freezing tolerance). At times between one and 20 hrs after labeling, ABA-treated cells incorporated almost twice the amount of label as controls cells. Approximately 80% of the radioactivity was associated with neutral lipids in ABA-treated cells and controls. Incorporation of label into total cellular polar lipids was 4.9 x 105 dpm/mg protein for control cells and 1 x 106 dpm/mg protein for cells transferred to medium containing ABA. Analysis of lipids following alkaline hydrolysis indicated that incorporation of [14C]-palmitate into glucosylceramide of ABA-treated cells was less than 60% of control values when expressed relative to that of the total polar lipids. Incorporation into ceramides was also depressed in ABA-treated cells

  13. MGMT gene promoter methylation correlates with tolerance of temozolomide treatment in melanoma but not with clinical outcome

    OpenAIRE

    Hassel, J C; Sucker, A; Edler, L; Kurzen, H; Moll, I; Stresemann, C; Spieth, K; Mauch, C; Rass, K; Dummer, R.; Schadendorf, D

    2010-01-01

    Background: Despite limited clinical efficacy, treatment with dacarbazine or temozolomide (TMZ) remains the standard therapy for metastatic melanoma. In glioblastoma, promoter methylation of the counteracting DNA repair enzyme O 6-methylguanine-DNA-methyltransferase (MGMT) correlates with survival of patients exposed to TMZ in combination with radiotherapy. For melanoma, data are limited and controversial. Methods: Biopsy samples from 122 patients with metastatic melanoma being treated with T...

  14. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells.

    Science.gov (United States)

    Sun, Jun; Fegan, Pamela E; Desai, Anjali S; Madara, James L; Hobert, Michael E

    2007-03-01

    Salmonella typhimurium is a gram-negative enteric pathogen that invades the mucosal epithelium and is associated with diarrheal illness in humans. Flagellin from S. typhimurium and other gram-negative bacteria has been shown to be the predominant proinflammatory mediator through activation of the basolateral Toll-like receptor 5 (TLR5). Recent evidence has shown that prior exposure can render immune cells tolerant to subsequent challenges by TLR ligands. Accordingly, we examined whether prior exposure to purified flagellin would render human intestinal epithelial cells insensitive to future contact. We found that flagellin-induced tolerance is common to polarized epithelial cells and prevents further activation of proinflammatory signaling cascades by both purified flagellin and Salmonella bacteria but does not affect TNF-alpha stimulation of the same pathways. Flagellin tolerance is a rapid process that does not require protein synthesis, and that occurs within 1 to 2 h of flagellin exposure. Prolonged flagellin exposure blocks activation of the NF-kappaB, MAPK, and phosphoinositol 3-kinase signaling pathways and results in the internalization of a fraction of the basolateral TLR5 without affecting the polarity or total expression of TLR5. After removal of flagellin, cells require more than 24 h to fully recover their ability to mount a normal proinflammatory response. We have found that activation of phosphoinositol 3-kinase and Akt by flagellin has a small damping effect in the early stages of flagellin signaling but is not responsible for tolerance. Our study indicates that inhibition of TLR5-associated IL-1 receptor-associated kinase-4 activity occurs during the development of flagellin tolerance and is likely to be the cause of tolerance. PMID:17138965

  15. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    Science.gov (United States)

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  16. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    Science.gov (United States)

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  17. The nature of tolerance in adult recipient mice made tolerant of alloantigens with supralethal irradiation followed by syngeneic bone marrow cell transplantation plus injection of F1 spleen cells

    International Nuclear Information System (INIS)

    The length of time after syngeneic bone marrow reconstitution when tolerance to alloantigens can be induced in adult mice during T cell differentiation from bone marrow cells was studied by exposing those T cells to (recipient x donor)F1 spleen cells. Supralethally irradiated C3H/He Slc(C3H; H-2k) mice were reconstituted with 1 x 10(7) syngeneic T cell-depleted bone marrow cells and then injected intravenously with 5 x 10(7) (C3H x C57BL/6[B6])F1 (B6C3F1; H-2bxk) or (C3H x AKR/J[AKR])F1 (AKC3F1; H-2kxk) spleen cells at various intervals. In the fully allogeneic combination of B6C3F1----C3H, EL-4 tumor originating from B6 was accepted, and survival of grafted B6 skin was significantly prolonged in the tolerant C3H mice treated with irradiation on day -1 followed by injection of syngeneic bone marrow cells on day 0 plus B6C3F1 spleen cells on days 0, 5, or 10, in a tolerogen-specific manner. In the multiminor histocompatibility antigen-disparate combination of AKC3F1----C3H, AKR skin grafts were permanently accepted in the tolerant C3H mice treated with AKC3F1 spleen cells on days 0, 5, 10, or 15. Immunological parameters, including cytotoxic T lymphocyte activity and delayed foot-pad reaction (DFR), were almost completely suppressed in C3H mice made tolerant of B6 or AKR antigens. A chimeric assay using a direct immunofluorescence method revealed that the tolerant C3H mice given B6C3F1 spleen cells on day 0 were mixed-chimeric for at least 8 weeks after syngeneic bone marrow reconstitution, but not definitely chimeric thereafter. The C3H mice given AKC3F1 spleen cells on day 0 were chimeric even 43 weeks after syngeneic bone marrow reconstitution, but the C3H mice given AKC3F1 spleen cells on day 15 showed temporal chimerism that disappeared within 43 weeks. The untolerant mice were never detectably chimeric

  18. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke; Persson, Åsa Helen

    2016-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, possessing different anode and support microstructures were studied in respect to sulfur tolerance at an operating temperature of 650°C. The studied MS-SOFCs are based on ferretic stainl...

  19. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke; Persson, Åsa Helen

    2015-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, but different anode and support microstructures were studied in respect to sulfur tolerance at the aimed operating temperature of 650ºC. The studied MS-SOFCs are based on ferretic stainl...

  20. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to Type 2 diabetes

    Science.gov (United States)

    Using the hyperglycemic and euglycemic clamp, we demonstrated impaired Beta-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled Beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. Bet...

  1. Mesenchymal Stromal Cells Promote Tumor Growth through the Enhancement of Neovascularization

    OpenAIRE

    Suzuki, Kazuhiro; Sun, Ruowen; Origuchi, Makoto; Kanehira, Masahiko; Takahata, Takenori; ITOH, JUGOH; Umezawa, Akihiro; Kijima, Hiroshi; FUKUDA, SHINSAKU; SAIJO, YASUO

    2011-01-01

    Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow–derived mesenchymal stromal cell line from cells isolated...

  2. Lymphoid tissue inducer cells: pivotal cells in the evolution of CD4 immunity and tolerance?

    Directory of Open Access Journals (Sweden)

    Peter John Lane

    2012-02-01

    Full Text Available Phylogeny suggests that the evolution of placentation in mammals was accompanied by substantial changes in the mammalian immune system: in particular lymph nodes and CD4 high affinity memory antibody responses co-evolved during the same period. Lymphoid tissue inducer cells (LTi are members of an emerging family of innate lymphoid cells (ILCs that are crucial for lymph node development, but our studies have indicated that they also play a pivotal role in the long-term maintenance of memory CD4 T cells in adult mammals through their expression of the tumor necrosis family members, OX40- and CD30-ligands. Additionally, our studies have shown that these two molecules are also key operators in CD4 effector function, as their absence obviates the need for the FoxP3-dependent regulatory T cells (Tregs that prevent CD4 driven autoimmune responses. In this perspective article, we summarize findings from our group over the last 10 years, and focus specifically on the role of LTi in thymus. We suggest that like memory CD4 T cells, LTi also play a role in the selection and maintenance of the Tregs that under normal circumstances are absolutely required to regulate CD4 effector cells.

  3. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  4. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    Science.gov (United States)

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  5. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    International Nuclear Information System (INIS)

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation

  6. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  7. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  8. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  9. Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter.

    Science.gov (United States)

    Décima Oneto, Cecilia; Otegui, María Elena; Baroli, Irene; Beznec, Ailin; Faccio, Paula; Bossio, Ezequiel; Blumwald, Eduardo; Lewi, Dalia

    2016-02-20

    Senescence can be delayed in transgenic plants overexpressing the enzyme isopentenyltransferase (IPT) due to stress-induced increased levels of endogenous cytokinins. This trait leads to sustained photosynthetic activity and improved tolerance to abiotic stress. The aim of this study was to generate and characterize transgenic plants of maize (Zea mays L.) transformed with the IPT gene sequence under the regulation of SARK promoter (protein kinase receptor-associated senescence). Three independent transgenic events and their segregating null controls were evaluated in two watering regimes (WW: well watered; WD: water deficit) imposed for two weeks around anthesis. Our results show that the WD treatment induced IPT expression with the concomitant increase in cytokinin levels, which prolonged the persistence of total green leaf area, and maintained normal photosynthetic rate and stomatal conductance. These trends were accompanied by a minor decrease in number of grains per plant, individual grain weight and plant grain yield as compared to WW plants. Plants expressing the IPT gene under WD had PGR, anthesis and silking dates and biomass levels similar to WW plants. Our results demonstrate that expression of the IPT gene under the regulation of the SARK promoter helps improve productivity under WD conditions in C4 plants like maize. PMID:26784988

  10. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  11. Th17 Responses in Chronic Allergic Airway Inflammation Abrogate Regulatory T cell-mediated Tolerance and Contribute to Airway Remodeling

    OpenAIRE

    Zhao, Jingyue; Lloyd, Clare M.; Noble, Alistair

    2012-01-01

    The role of Th17 responses in airway remodeling in asthma is currently unknown. We demonstrate that both parenteral and mucosal allergen sensitization followed by allergen inhalation leads to Th17-biased lung immune responses. Unlike Th17 cells generated in vitro, lung Th17 cells did not produce TNF-α or IL-22. Eosinophilia predominated in acute inflammation while neutrophilia and IL-17 increased in chronic disease. Allergen-induced tolerance involved Foxp3, Helios and GARP expressing regulat...

  12. Targeting Nrf2 in healthy and malignant ovarian epithelial cells : Protection versus promotion

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Huisman, Christian; Mposhi, Archibold; Roelfes, Gerard; Rots, Marianne G.

    2015-01-01

    Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and

  13. Clonal deletion of self-reactive T cells in irradiation bone marrow chimeras and neonatally tolerant mice. Evidence for intercellular transfer of Mlsa

    International Nuclear Information System (INIS)

    Tolerance to Mlsa has been shown to be associated with clonal deletion of cells carrying TCR beta chain variable regions V beta 6 or V beta 8.1 in mice possessing I-E antigens. To evaluate the rules of tolerance induction to Mlsa we prepared irradiation bone marrow chimeras expressing Mlsa or Mlsb and I-E by different cell types. Deletion of V beta 6+, Mlsa-reactive T cells required the presence of Mlsa and I-E products either on bone marrow-derived cells or on irradiated recipient cells. Tolerance was induced when Mlsa and I-E were expressed by distinct cells of the chimera. Also neonatally tolerized mice exhibited depletion of V beta 6+ cells after injection of I-E- Mlsa spleen cells (DBA/1) into newborn I-E+ Mlsb mice (BALB/c x B10.G)F1. These results suggest that the product of the Mlsa locus is soluble and/or may be transferred from cell to cell and bound to I-E antigens. The chimera experiments also showed that tolerance to Mlsa is H-2 allele independent, i.e., is apparently unrestricted. Differentiation of chimeric (H-2d/Mlsa x H-2q/Mlsb)F1 stem cells in either an H-2d or an H-2q thymus revealed that tolerance assessed by absence of V beta 6+ T cells is not dependent on the thymically determined restriction specificity of T cells

  14. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  16. TP508 accelerates fracture repair by promoting cell growth over cell death

    International Nuclear Information System (INIS)

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD ClontechTM Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-κB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK

  17. Lipophilic Contaminants Influence Cold Tolerance of Invertebrates through Changes in Cell Membrane Fluidity

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Bouvrais, Hélène; Westh, Peter;

    2014-01-01

    Contaminants taken up by living organisms in the environment as a result of anthropogenic contamination can reduce the tolerance of natural stressors, e.g., low temperatures, but the physiological mechanisms behind these interactions of effects are poorly understood. The tolerance to low temperat...... present. Contaminants of varying chemical structures can alter the membrane fluidity in either direction and correspondingly modulate the cold tolerance of intact animals....

  18. Regulatory T cells and immune tolerance after allogeneic hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    M. Bruinsma (Marieke)

    2010-01-01

    textabstractThe story of allogeneic hematopoietic stem cell transplantation (allo-SCT) begins after the atomic bombings of Hiroshima and Nagasaki in 1945. It was observed that fallout radiation caused dose-dependent depression of hematopoiesis 1. Research first focused on how to protect the hematopo

  19. CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner

    OpenAIRE

    Andersson, John; Tran, Dat. Q.; Pesu, Marko; Davidson, Todd S.; Ramsey, Heather; O'Shea, John J.; Shevach, Ethan M.

    2008-01-01

    CD4+FoxP3+ regulatory T (T reg) cells comprise a separate lineage of T cells that are essential for maintaining immunological tolerance to self. The molecular mechanism(s) by which T reg cells mediate their suppressive effects remains poorly understood. One molecule that has been extensively studied in T reg cell suppression is transforming growth factor (TGF)-β, but its importance remains controversial. We found that TGF-β complexed to latency-associated peptide (LAP) is expressed on the cel...

  20. APECED: Is this a model for failure of T-cell and B-cell tolerance?

    Directory of Open Access Journals (Sweden)

    Nicolas eKluger

    2012-08-01

    Full Text Available APECED and IPEX syndromes show similarities in the clinical presentations and immunological alterations, mainly regarding regulatory T-cells function. T-cell defect may lead to tissue destruction chiefly in endocrine organs. Besides, APECED is characterized by high-titer antibodies against a wide variety of cytokines, that could partly be responsible for the clinical symptoms during APECED, mainly chronic mucocutaneous candidiasis, and linked to antibodies against Th17 cells effector molecules, IL-17 and IL-22. On the other hand, the same antibodies, together with antibodies against type I interferons may be prevent from other immunological diseases, such as psoriasis and systemic lupus erythematous. The same effector Th17 cells, present in the lymphocytic infiltrate of target organs of APECED, could be responsible for the tissue destruction. Here again, the antibodies against the corresponding effector molecules, anti-IL-17 and anti-IL-22 could be protective. The occurrence of several effector mechanisms (CD4+ Th17 cell and CD8+ CTL and the effector cytokines IL-17 and IL-22, and simultaneous existence of regulatory mechanisms (CD4+ and CD8+ Treg and antibodies neutralizing the effect of the effector cytokines may explain the polymorphism of APECED. Almost all the patients develop the characteristic manifestations of the complex, but temporal course and symptoms severity vary considerably, even among siblings. The autoantibody profile does not correlate with the clinical picture. One could speculate that a secondary homeostatic balance between the harmful effector mechanisms, and the favorable regulatory mechanisms, finally define both the extent and severity of the clinical condition in the AIRE defective individuals. The proposed hypothesis that in APECED, in addition to strong tissue destructive mechanisms, a controlling regulatory mechanism does exist, allow us to conclude that APECED could be treated, and even cured, with immunological

  1. A20 is critical for the induction of Pam3CSK4-tolerance in monocytic THP-1 cells.

    Directory of Open Access Journals (Sweden)

    Jinyue Hu

    Full Text Available A20 functions to terminate Toll-like receptor (TLR-induced immune response, and play important roles in the induction of lipopolysacchride (LPS-tolerance. However, the molecular mechanism for Pam3CSK4-tolerance is uncertain. Here we report that TLR1/2 ligand Pam3CSK4 induced tolerance in monocytic THP-1 cells. The pre-treatment of THP-1 cells with Pam3CSK4 down-regulated the induction of pro-inflammatory cytokines induced by Pam3CSK4 re-stimulation. Pam3CSK4 pre-treatment also down-regulated the signaling transduction of JNK, p38 and NF-κB induced by Pam3CSK4 re-stimulation. The activation of TLR1/2 induced a rapid and robust up-regulation of A20, suggesting that A20 may contribute to the induction of Pam3CSK4-tolerance. This hypothesis was proved by the observation that the over-expression of A20 by gene transfer down-regulated Pam3CSK4-induced inflammatory responses, and the down-regulation of A20 by RNA interference inhibited the induction of tolerance. Moreover, LPS induced a significant up-regulation of A20, which contributed to the induction of cross-tolerance between LPS and Pam3CSK4. A20 was also induced by the treatment of THP-1 cells with TNF-α and IL-1β. The pre-treatment with TNF-α and IL-1β partly down-regulated Pam3CSK4-induced activation of MAPKs. Furthermore, pharmacologic inhibition of GSK3 signaling down-regulated Pam3CSK4-induced A20 expression, up-regulated Pam3CSK4-induced inflammatory responses, and partly reversed Pam3CSK4 pre-treatment-induced tolerance, suggesting that GSK3 is involved in TLR1/2-induced tolerance by up-regulation of A20 expression. Taken together, these results indicated that A20 is a critical regulator for TLR1/2-induced pro-inflammatory responses.

  2. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance in Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL

    2013-01-01

    Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under startup/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 g/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

  3. Fibronectin promotes rat Schwann cell growth and motility

    OpenAIRE

    Baron-Van Evercooren, Anne; Kleinman, Hinda K.; Seppa, H. E.; Rentier, Bernard; Dubois-Dalcq, Monique

    1982-01-01

    Techniques are now available for culturing well characterized and purified Schwann cells. Therefore, we investigated the role of fibronectin in the adhesion, growth, and migration of cultured rat Schwann cells. Double-immunolabeling shows that, in primary cultures of rat sciatic nerve, Schwann cells (90%) rarely express fibronectin, whereas fibroblasts (10%) exhibit a granular cytoplasmic and fibrillar surface-associated fibronectin. Secondary cultures of purified Schwann cells do not express...

  4. Human Serum Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro and In Vivo

    OpenAIRE

    Alessandra Pisciotta; Massimo Riccio; Gianluca Carnevale; Francesca Beretti; Lara Gibellini; Tullia Maraldi; Gian Maria Cavallini; Adriano Ferrari; Giacomo Bruzzesi; Anto De Pol

    2012-01-01

    Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the self-renewal and differentiation potential of cells. So far, in vitro culture of mesenchymal stem cells is usually based on supplementing culture and differentiation media with foetal calf serum (FCS). FCS is known to contain a great quantity of growth factors, and thus to promote cell attachmen...

  5. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    Science.gov (United States)

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  6. Moving Beyond Tolerance.

    Science.gov (United States)

    Cirone, Bill

    2001-01-01

    Operating under the umbrella of the Santa Barbara County Education Office, the Beyond Tolerance Educational Center serves as a resource for educators. It provides county schools with information and programs that promote social awareness and tolerance while teaching kids the dangers of hatred and discrimination. (MLH)

  7. Thin films of Type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity

    Directory of Open Access Journals (Sweden)

    Tona Alex

    2006-03-01

    Full Text Available Abstract Background The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extracellular matrix protein tenascin-C using a tenascin-C promoter-based GFP reporter construct. Results We find that when considering the average response from the population of cells, cell area correlates with tenascin-C promoter activity as has been previously suggested; however cell-by-cell analysis suggests that cell area and promoter activity are not tightly correlated within individual cells. Conclusion This study demonstrates how quantitative cell-by-cell analysis, facilitated by the use of thin films of extracellular matrix proteins, can provide insight into the relationship between phenotypic parameters.

  8. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B;

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  9. Apaf1 inhibition promotes cell recovery from apoptosis.

    Science.gov (United States)

    Gortat, Anna; Sancho, Mónica; Mondragón, Laura; Messeguer, Àngel; Pérez-Payá, Enrique; Orzáez, Mar

    2015-11-01

    The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery. PMID:26361785

  10. IL-12 and IL-4 activate a CD39-dependent intrinsic peripheral tolerance mechanism in CD8(+) T cells.

    Science.gov (United States)

    Noble, Alistair; Mehta, Hema; Lovell, Andrew; Papaioannou, Eleftheria; Fairbanks, Lynette

    2016-06-01

    Immune responses to protein antigens involve CD4(+) and CD8(+) T cells, which follow distinct programs of differentiation. Naïve CD8 T cells rapidly develop cytotoxic T-cell (CTL) activity after T-cell receptor stimulation, and we have previously shown that this is accompanied by suppressive activity in the presence of specific cytokines, i.e. IL-12 and IL-4. Cytokine-induced CD8(+) regulatory T (Treg) cells are one of several Treg-cell phenotypes and are Foxp3(-) IL-10(+) with contact-dependent suppressive capacity. Here, we show they also express high level CD39, an ecto-nucleotidase that degrades extracellular ATP, and this contributes to their suppressive activity. CD39 expression was found to be upregulated on CD8(+) T cells during peripheral tolerance induction in vivo, accompanied by release of IL-12 and IL-10. CD39 was also upregulated during respiratory tolerance induction to inhaled allergen and on tumor-infiltrating CD8(+) T cells. Production of IL-10 and expression of CD39 by CD8(+) T cells was independently regulated, being respectively blocked by extracellular ATP and enhanced by an A2A adenosine receptor agonist. Our results suggest that any CTL can develop suppressive activity when exposed to specific cytokines in the absence of alarmins. Thus negative feedback controls CTL expansion under regulation from both nucleotide and cytokine environment within tissues. PMID:26990545

  11. CarD integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria

    Science.gov (United States)

    Garner, Ashley L.; Weiss, Leslie A.; Manzano, Ana Ruiz; Galburt, Eric A.; Stallings, Christina L.

    2014-01-01

    Summary Although the basic mechanisms of prokaryotic transcription are conserved, it has become evident that some bacteria require additional factors to allow for efficient gene transcription. CarD is an RNA polymerase (RNAP) binding protein conserved in numerous bacterial species and essential in mycobacteria. Despite the importance of CarD, its function at transcription complexes remains unclear. We have generated a panel of mutations that individually target three independent functional modules of CarD: the RNAP interaction domain, the DNA binding domain, and a conserved tryptophan residue. We have dissected the roles of each functional module in CarD activity and built a model where each module contributes to stabilizing RNAP-promoter complexes. Our work highlights the requirement of all three modules of CarD in the obligate pathogen Mycobacterium tuberculosis, but not in Mycobacterium smegmatis. We also report divergent use of the CarD functional modules in resisting oxidative stress and pigmentation. These studies provide new information regarding the functional domains involved in transcriptional regulation by CarD while also improving understanding of the physiology of M. tuberculosis. PMID:24962732

  12. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Science.gov (United States)

    Van Belle, Tom L; Vanherwegen, An-Sofie; Feyaerts, Dorien; De Clercq, Pierre; Verstuyf, Annemieke; Korf, Hannelie; Gysemans, Conny; Mathieu, Chantal

    2014-01-01

    The emergence of regulatory T cells (Tregs) as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH)2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH)2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes. PMID:25279717

  13. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Directory of Open Access Journals (Sweden)

    Tom L Van Belle

    Full Text Available The emergence of regulatory T cells (Tregs as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes.

  14. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  15. Tolerating Zero Tolerance?

    Science.gov (United States)

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  16. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  17. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro

    OpenAIRE

    Bussche, Leen; Harman, Rebecca M.; Syracuse, Bethany A; Plante, Eric L; Lu, Yen-Chun; Curtis, Theresa M; Ma, Minglin; Van de Walle, Gerlinde R

    2015-01-01

    Introduction The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii...

  18. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.

    Science.gov (United States)

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abdul; Leow, Adam Thean Chor

    2016-07-01

    The utilization of cold active lipases in organic solvents proves an excellent approach for chiral synthesis and modification of fats and oil due to the inherent flexibility of lipases under low water conditions. In order to verify whether this lipase can function as a valuable synthetic catalyst, the mechanism concerning activation of the lid and interacting solvent residues in the presence of organic solvent must be well understood. A new alkaline cold-adapted lipase, AMS8, from Pseudomonas fluorescens was studied for its structural adaptation and flexibility prior to its exposure to non-polar, polar aprotic and protic solvents. Solvents such as ethanol, toluene, DMSO and 2-propanol showed to have good interactions with active sites. Asparagine (Asn) and tyrosine (Tyr) were key residues attracted to solvents because they could form hydrogen bonds. Unlike in other solvents, Phe-18, Tyr-236 and Tyr-318 were predicted to have aromatic-aromatic side-chain interactions with toluene. Non-polar solvent also was found to possess highest energy binding compared to polar solvents. Due to this circumstance, the interaction of toluene and AMS8 lipase was primarily based on hydrophobicity and molecular recognition. The molecular dynamic simulation showed that lid 2 (residues 148-167) was very flexible in toluene and Ca(2+). As a result, lid 2 moves away from the catalytic areas, leaving an opening for better substrate accessibility which promotes protein activation. Only a single lid (lid 2) showed the movement following interactions with toluene, although AMS8 lipase displayed double lids. The secondary conformation of AMS8 lipase that was affected by toluene observed a reduction of helical strands and increased coil structure. Overall, this work shows that cold active lipase, AMS8 exhibits distinguish interfacial activation and stability in the presence of polar and non-polar solvents. PMID:27474867

  19. How inhibitory cues can both constrain and promote cell migration.

    Science.gov (United States)

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  20. Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra vulgaris

    Science.gov (United States)

    Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia

    2012-01-01

    Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process. PMID:22292012

  1. Industasis, a promotion of tumor formation by nontumorigenic stray cells

    Czech Academy of Sciences Publication Activity Database

    Pajer, Petr; Karafiát, Vít; Pečenka, Vladimír; Průková, Dana; Dudlová, J.; Plachý, Jiří; Kašparová, P.; Dvořák, Michal

    2009-01-01

    Roč. 69, č. 11 (2009), s. 4605-4612. ISSN 0008-5472 R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA AV ČR IAA500520608 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumor promotion * lung tumors * Fyn-related kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.543, year: 2009

  2. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    OpenAIRE

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was a...

  3. Antigen Processing by Autoreactive B Cells Promotes Determinant Spreading

    Institute of Scientific and Technical Information of China (English)

    Yang D.Dai; George Carayanniotis; Eli Sercarz

    2005-01-01

    Acute primary immune responses tend to focus on few immunodominant determinants using a very limited number of T cell clones for expansion, whereas chronic inflammatory responses generally recruit a large number of different T cell clones to attack a broader range of determinants of the invading pathogens or the inflamed tissues.In T cell-mediated organ-specific autoimmune disease, a transition from the acute to the chronic phase contributes to pathogenesis, and the broadening process is called determinant spreading. The cellular components catalyzing the spreading reaction are not identified. It has been suggested that autoreactive B cells may play a central role in diversifying autoreactive T cell responses, possibly through affecting antigen processing and presentation. The clonal identity and diversity of the B cells and antibodies seem critical in regulating T cell activity and subsequent tissue damage or repair. Here, we use two autoimmune animal models, experimental autoimmune thyroiditis (EAT)and type 1 diabetes (T1D), to discuss how autoreactive B cells or antibodies alter the processing and presentation of autoantigens to regulate specific T cell response.

  4. Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells

    International Nuclear Information System (INIS)

    Methanol crossover critically restricts the practical application of direct methanol fuel cells (DMFCs). To resolve this crucial difficulty from the standpoint of electrocatalysis, an electrode material having high activity for the oxygen reduction reaction and low activity for the methanol oxidation reaction compared to widely used Pt-based electrodes is needed for DMFC cathodes. In this research carbon-supported Pd-rich Pd–Pt bimetallic nanoparticle electrocatalysts with 60 wt.% metal content were prepared for this purpose by sodium borohydride reduction of metal chlorides. The physical features of the prepared nanoparticles were investigated by transmission electron microscopy, energy dispersive X-ray spectroscopy, atomic absorption spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption near edge spectroscopy. Methanol tolerance was tested by means of rotating disk electrode (RDE) voltammetry using oxygen-saturated methanol-containing electrolyte solutions as the anode fuel for DMFC unit cell performance tests. In the RDE measurements, Pd-rich electrocatalysts (carbon-supported Pd19Pt1 nanoparticles) showed excellent methanol tolerance compared with Pd-free Pt electrocatalyst. When Pd19Pt1 nanoparticles were used as a DMFC cathode catalyst, unit cell performance tests showed that the i-V curves of the Pd19Pt1 electrocatalyst decreased slightly with increasing methanol concentration, while that of the Pt electrocatalyst decreased rapidly. The results in a liquid-feed DMFC unit cell test were in good agreement with the methanol tolerant characteristics identified in the RDE measurements

  5. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    Institute of Scientific and Technical Information of China (English)

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  6. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Aricò, Antonino S.; Baglio, Vincenzo

    2016-07-01

    Highly active and durable non-platinum group metals (non-PGM) catalyst based on iron-nitrogen-carbon (Fe-N-C) for the oxygen reduction reaction (ORR) derived from pyrolyzed Fe-aminobenzimidazole (Fe-ABZIM) was synthesized by sacrificial support method (SSM), and characterized by several physical-chemical techniques: scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method and X-ray photoelectron spectroscopy. In half-cell electrochemical configuration, the Fe-ABZIM catalyst presented a significant improvement of ORR activity with respect to a recently reported non-PGM formulation based on Fe-aminoantipyrine, with an enhancement of half-wave potential of about 85 mV in O2-saturated sulfuric acid solution. To the moment, the gap with respect to a benchmark Pt/C catalyst was about 90 mV. The Fe-ABZIM catalyst showed a remarkably high tolerance to methanol, resulting in superior ORR performance compared to Pt/C at methanol concentrations higher than 0.02 M. In direct methanol fuel cell (DMFC) good performances were also obtained. A durability test (100 h) at 90 °C, feeding 5 M methanol, was carried out. A certain decrease of performance was recorded, amounting to -0.20 mW cm-2 h-1 at the very beginning of test and -0.05 mW cm-2 h-1 at the end. However, the Fe-ABZIM is more adequate than previously reported formulations in terms of both ORR activity and stability.

  7. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling

    OpenAIRE

    Song, Wei-tao; Zhang, Xue-yong; Xia, Xiao-Bo

    2013-01-01

    Introduction Retinal Müller cells exhibit the characteristics of retinal progenitor cells, and differentiate into ganglion cells under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to develop a novel protocol to promote the differentiation of retinal Müller cells into ganglion cells and explore the underlying signaling mechanisms. Methods Müller cells were isolated and purified from rat...

  8. Wear particles promote endotoxin tolerance in macrophages by inducing interleukin-1 receptor-associated kinase-M expression.

    Science.gov (United States)

    Zhang, Yangchun; Yu, Shiming; Xiao, Jianhong; Hou, Changhe; Li, Ziqing; Zhang, Ziji; Zhai, Qiyi; Lehto, Matti; Konttinen, Yrjö T; Sheng, Puyi

    2013-03-01

    Toll-like receptors (TLRs) recognizing pathogen-associated molecular patterns (PAMP) play a role in local immunity and participate in implant-associated loosening. TLRs-mediated signaling is regulated by interleukin-1 receptor-associated kinase-M (IRAK-M). Our previous studies have proved that IRAK-M is induced by wear particles in macrophages from periprosthetic tissues. In this study, the IRAK-M-related mechanisms were further explored by lipopolysaccharide (LPS) and/or titanium (Ti) particles stimulations and small interfering RNAs (siRNAs). The protein level of IRAK-M was studied using western blotting and tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels were measured using ELISA. Results showed that in RAW264.7 cells stimulated by LPS after Ti particle pre-exposure, IRAK-M was slightly changed, compared with LPS stimulation. And levels of TNF-α and IL-1β in cultures stimulated by LPS first after Ti particle pre-exposure were lower than in the other two groups which were stimulated by LPS with or without Ti particles (p 0.05). The cytokines were lowest in Ti particles alone stimulation. After siRNAs silenced, IRAK-M-deficient cells exhibited increased expression of the cytokines in LPS stimulation after Ti particle pre-exposure and when stimulated with Ti particles alone. Our findings suggest that debris-induced IRAK-M decreases foreign body reactions, but at the same time, the over-expression of IRAK-M may also be detrimental on local intrusion of PAMPs or bacteria, negatively regulates the LPS-induced and TLRs-mediated inflammation and results in immunosuppression in periprosthetic tissue, which may predispose to implant-associated infections. PMID:22941946

  9. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  10. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  11. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  12. Antigen-specific regulatory T-cell subsets in transplantation tolerance regulatory T-cell subset quality reduces the need for quantity.

    NARCIS (Netherlands)

    Koenen, H.J.P.M.; Joosten, I.

    2006-01-01

    Regulatory T cells (Treg) are critical controllers of the immune response. Disturbed Treg function results in autoimmunity, whereas in transplantation Treg are crucial in graft survival and transplant tolerance. Hence therapeutic modalities that influence Treg numbers or function hold great clinical

  13. PROMOTERS WITH CANCER CELL-SPECIFIC ACTIVITY FOR MELANOMA GENE THERAPY

    OpenAIRE

    Pleshkan, V.; Alekseenko, I.; Zinovyeva, M.; Vinogradova, T.; Sverdlov, E.

    2011-01-01

    Melanoma is one of the most aggressive tumors. It develops from pigment-forming cells (melanocytes) and results in a high number of lethal outcomes. The use of genetic constructs with the ability to specifically kill melanoma cells, but not normal cells, might increase the lifespan of patients, as well as improve their quality of life. One of the methods to achieve a selective impact for therapeutic genes on cancer cells is to utilize a transcriptional control mechanism using promoters that a...

  14. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    Full Text Available Pyruvate carboxylase (PC is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an activator element(s for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y, as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.

  15. BAX supports the mitochondrial network, promoting bioenergetics in nonapoptotic cells

    Science.gov (United States)

    Boohaker, Rebecca J.; Zhang, Ge; Carlson, Adina Loosley; Nemec, Kathleen N.

    2011-01-01

    The dual functionality of the tumor suppressor BAX is implied by the nonapoptotic functions of other members of the BCL-2 family. To explore this, mitochondrial metabolism was examined in BAX-deficient HCT-116 cells as well as primary hepatocytes from BAX-deficient mice. Although mitochondrial density and mitochondrial DNA content were the same in BAX-containing and BAX-deficient cells, MitoTracker staining patterns differed, suggesting the existence of BAX-dependent functional differences in mitochondrial physiology. Oxygen consumption and cellular ATP levels were reduced in BAX-deficient cells, while glycolysis was increased. These results suggested that cells lacking BAX have a deficiency in the ability to generate ATP through cellular respiration. This conclusion was supported by detection of reduced citrate synthase activity in BAX-deficient cells. In nonapoptotic cells, a portion of BAX associated with mitochondria and a sequestered, protease-resistant form was detected. Inhibition of BAX with small interfering RNAs reduced intracellular ATP content in BAX-containing cells. Expression of either full-length or COOH-terminal-truncated BAX in BAX-deficient cells rescued ATP synthesis and oxygen consumption and reduced glycolytic activity, suggesting that this metabolic function of BAX was not dependent upon its COOH-terminal helix. Expression of BCL-2 in BAX-containing cells resulted in a subsequent loss of ATP measured, implying that, even under nonapoptotic conditions, an antagonistic interaction exists between the two proteins. These findings infer that a basal amount of BAX is necessary to maintain energy production via aerobic respiration. PMID:21289292

  16. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Seiichiro [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Haga, Hisashi, E-mail: haga@sci.hokudai.ac.jp [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Yasuda, Motoaki [Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, N13-W7, Kita-ku, Sapporo 060-8586 (Japan); Mizutani, Takeomi; Kawabata, Kazushige [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Shirato, Hiroki [Department of Radiology, Hokkaido University Graduate School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638 (Japan); Nishioka, Takeshi [Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo 060-0812 (Japan)

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  17. Thin films of Type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity

    OpenAIRE

    Tona Alex; McDaniel Dennis; Elliott John T; Langenbach Kurt J; Plant Anne L

    2006-01-01

    Abstract Background The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extrac...

  18. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  19. Cell Type-Specific Activation of the Cytomegalovirus Promoter by Dimethylsulfoxide and 5-Aza-2′-deoxycytidine

    OpenAIRE

    Radhakrishnan, Prakash; Basma, Hesham; Klinkebiel, David; Christman, Judith; Cheng, Pi-Wan

    2008-01-01

    The cytomegalovirus promoter is a very potent promoter commonly used for driving the expression of transgenes, though it gradually becomes silenced in stably transfected cells. We examined the methylation status of the cytomegalovirus promoter in two different cell lines and characterized its mechanisms of activation by dimethylsulfoxide and 5-Aza-2′-deoxycytidine. The cytomegalovirus promoter stably transfected into Chinese hamster ovary cells is suppressed by DNA methylation-independent mec...

  20. Induction of immune tolerance to FIX by intramuscular AAV gene transfer is independent of the activation status of dendritic cells

    OpenAIRE

    Bharadwaj, Arpita S; Kelly, Meagan; Kim, Dongsoo; Chao, Hengjun

    2010-01-01

    The nature of viral vectors is suggested to be a significant contributor to undesirable immune responses subsequent to gene transfer. Such viral vectors, recognized as danger signals by the host immune system, activate dendritic cells (DCs), causing unwanted antivector and/or transgene product immunity. We recently reported efficient induction of immune tolerance to coagulation factor IX (FIX) by direct intramuscular injection of adeno-associated virus (AAV)–FIX. AAV vectors are nonpathogenic...

  1. Tolerance Induction in Liver

    OpenAIRE

    M.H Karimi; Geramizadeh, B; Malek-Hosseini, S. A.

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tol...

  2. Induction of Foxp3-expressing regulatory T-cells by donor blood transfusion is required for tolerance to rat liver allografts.

    Directory of Open Access Journals (Sweden)

    Yuta Abe

    Full Text Available BACKGROUND: Donor-specific blood transfusion (DST prior to solid organ transplantation has been shown to induce long-term allograft survival in the absence of immunosuppressive therapy. Although the mechanisms underlying DST-induced allograft tolerance are not well defined, there is evidence to suggest DST induces one or more populations of antigen-specific regulatory cells that suppress allograft rejection. However, neither the identity nor the regulatory properties of these tolerogenic lymphocytes have been reported. Therefore, the objective of this study was to define the kinetics, phenotype and suppressive function of the regulatory cells induced by DST alone or in combination with liver allograft transplantation (LTx. METHODOLOGY/PRINCIPAL FINDINGS: Tolerance to Dark Agouti (DA; RT1(a rat liver allografts was induced by injection (iv of 1 ml of heparinized DA blood to naïve Lewis (LEW; RT1(l rats once per week for 4 weeks prior to LTx. We found that preoperative DST alone generates CD4(+ T-cells that when transferred into naïve LEW recipients are capable of suppressing DA liver allograft rejection and promoting long-term survival of the graft and recipient. However, these DST-generated T-cells did not express the regulatory T-cell (Treg transcription factor Foxp3 nor did they suppress alloantigen (DA-induced activation of LEW T-cells in vitro suggesting that these lymphocytes are not fully functional regulatory Tregs. We did observe that DST+LTx (but not DST alone induced the time-dependent formation of CD4(+Foxp3(+ Tregs that potently suppressed alloantigen-induced activation of naïve LEW T-cells in vitro and liver allograft rejection in vivo. Finally, we present data demonstrating that virtually all of the Foxp3-expressing Tregs reside within the CD4(+CD45RC(- population whereas in which approximately 50% of these Tregs express CD25. CONCLUSIONS/SIGNIFICANCE: We conclude that preoperative DST, in the absence of liver allograft

  3. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    Science.gov (United States)

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  4. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    OpenAIRE

    Jung, Younghun; Kim, Jin Koo; SHIOZAWA, YUSUKE; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Paul H Krebsbach

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also kno...

  5. Adiponectin promotes endothelial progenitor cell number and function

    OpenAIRE

    Shibata, Rei; Skurk, Carsten; Ouchi, Noriyuki; Galasso, Gennaro; Kondo, Kazuhisa; Ohashi, Taiki; Shimano, Masayuki; Kihara, Shinji; Murohara, Toyoaki; Walsh, Kenneth

    2008-01-01

    Obesity-linked diseases are associated with suppressed endothelial progenitor cell (EPC) function. Adiponectin is an adipose-derived protein that is downregulated in obese and diabetic subjects. Here, we investigated the effects of adiponectin on EPCs. EPC levels did not increase in adiponectin deficient (APN-KO) in response to hindlimb ischemia. Adenovirus-mediated delivery of adiponectin increased EPC levels in both WT and APN-KO mice. Incubation of human peripheral blood mononuclear cells ...

  6. Efferocytosis promotes suppressive effects on dendritic cells through prostaglandin E2 production in the context of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Irma Pujol-Autonell

    Full Text Available INTRODUCTION: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes. OBJECTIVE: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus explaining the re-establishment of tolerance in a context of autoimmunity. METHODS: Bone marrow derived dendritic cells from non-obese diabetic mice, a model of autoimmune diabetes, were generated and pulsed with islet apoptotic cells. The ability of these cells to induce autologous T cell proliferation and to suppress mature dendritic cell function was assessed, together with cytokine production. Microarray experiments were performed using dendritic cells to identify differentially expressed genes after efferocytosis. RESULTS: Molecular and functional changes in dendritic cells after the capture of apoptotic cells were observed. 1 Impaired ability of dendritic cells to stimulate autologous T cell proliferation after the capture of apoptotic cells even after proinflammatory stimuli, with a cytokine profile typical for immature dendritic cells. 2 Suppressive ability of mature dendritic cell function. 3 Microarray-based gene expression profiling of dendritic cells showed differential expression of genes involved in antigen processing and presentation after efferocytosis. 4 Prostaglandin E2 increased production was responsible for immunosuppressive mechanism of dendritic cells after the capture of apoptotic cells. CONCLUSIONS: The tolerogenic behaviour of dendritic cells after islet cells efferocytosis points to a mechanism of silencing potential autoreactive T cells in the microenvironment of autoimmunity. Our results suggest that dendritic cells may be programmed to induce

  7. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Quaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Weijun; Remold-O' Donnell, Eileen; Kulkami, Rohit N.

    2016-01-12

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  8. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions. PMID:23299924

  9. Upregulation of CDK7 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis.

    Science.gov (United States)

    Wang, Qiuhong; Li, Manhua; Zhang, Xunlei; Huang, Hua; Huang, Jianfei; Ke, Jing; Ding, Haifang; Xiao, Jinzhang; Shan, Xiaohang; Liu, Qingqing; Bao, Bojun; Yang, Lei

    2016-06-01

    CDK7 has been known as a component of CDK activating kinase (CAK) complex, the complex was composed of CDK7, Cyclin H and RING finger protein Mat1 that contribute to cell cycle progression by phosphorylating other CDKs. In addition, the complex is also an essential component of general transcription factor TFIIH which controls transcription via activating RNA polymerase II by serines 5 and 7 phosphorylation of the carboxyl-terminal domain (CTD) of its largest subunit. However, the role of CDK7 in the pathogenesis of gastric cancer has not been identified. Our study showed that CDK7 was significantly upregulated and positively correlated with tumor grade, infiltration depth, lymph node, Ki-67, and predicted poor prognosis in 173 gastric cancer specimens by immunohistochemistrical analyses. Furthermore, in vitro results indicated that CDK7 promoted proliferation of gastric cancer cells by CCK8, clone formation analyses and flow cytometric analyses, while CDK7 knockdown led to decreased cell proliferation. Our study will provide a theoretical basis for the study of CDK7 in gastric cancer. PMID:27155449

  10. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells

    OpenAIRE

    Worbs, Tim; Bode, Ulrike; Yan, Sheng; Hoffmann, Matthias W.; Hintzen, Gabriele; Bernhardt, Günter; Förster, Reinhold; Pabst, Oliver

    2006-01-01

    Oral tolerance induction is a key feature of intestinal immunity, generating systemic nonresponsiveness to ingested antigens. In this study, we report that orally applied soluble antigens are exclusively recognized in the intestinal immune system, particularly in the mesenteric lymph nodes. Consequently, the initiation of oral tolerance is impeded by mesenteric lymphadenectomy. Small bowel transplantation reveals that mesenteric lymph nodes require afferent lymph to accomplish the recognition...

  11. The GARP/Latent TGF-β1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance.

    Science.gov (United States)

    Edwards, Justin P; Hand, Timothy W; Morais da Fonseca, Denise; Glass, Deborah D; Belkaid, Yasmine; Shevach, Ethan M

    2016-06-01

    Treg cells can secrete latent TGF-β1 (LTGF-β1), but can also utilize an alternative pathway for transport and expression of LTGF-β1 on the cell surface in which LTGF-β1 is coupled to a distinct LTGF-β binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF-β1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF-β1 in the induction of oral tolerance. When Foxp3(-) OT-II T cells were transferred to wild-type recipient mice followed by OVA feeding, the conversion of Foxp3(-) to Foxp3(+) OT-II cells was dependent on recipient Treg cells. Neutralization of IL-2 in the recipient mice also abrogated this conversion. The GARP/LTGF-β1 complex on recipient Treg cells, but not dendritic cell-derived TGF-β1, was required for efficient induction of Foxp3(+) T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvβ8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF-β1 complex. PMID:27062243

  12. Comparison of the growth promoting activities and toxicities of various auxin analogs on cells derived from wild type and a nonrooting mutant of tobacco

    Energy Technology Data Exchange (ETDEWEB)

    Caboche, M.; Muller, J.F. (Institut National de la Recherche Agronomique, Versailles (France)); Chanut, F. (Centre National de la Recherche Scientifique, Gif-sur-Yvette (France)); Aranda, G.; Cirakoglu, S. (Laboratoire de Synthese organique de l' Ecole Polytechnique, Palaiseau (France))

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics.

  13. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  14. Biodiesel from soybean promotes cell proliferation in vitro.

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses. PMID:27179667

  15. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  16. Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Gabriela Bomfim Ferreira

    2015-02-01

    Full Text Available Metabolic switches in various immune cell subsets enforce phenotype and function. In the present study, we demonstrate that the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH2D3, induces human monocyte-derived tolerogenic dendritic cells (DC by metabolic reprogramming. Microarray analysis demonstrated that 1,25(OH2D3 upregulated several genes directly related to glucose metabolism, tricarboxylic acid cycle (TCA, and oxidative phosphorylation (OXPHOS. Although OXPHOS was promoted by 1,25(OH2D3, hypoxia did not change the tolerogenic function of 1,25(OH2D3-treated DCs. Instead, glucose availability and glycolysis, controlled by the PI3K/Akt/mTOR pathway, dictate the induction and maintenance of the 1,25(OH2D3-conditioned tolerogenic DC phenotype and function. This metabolic reprogramming is unique for 1,25(OH2D3, because the tolerogenic DC phenotype induced by other immune modulators did not depend on similar metabolic changes. We put forward that these metabolic insights in tolerogenic DC biology can be used to advance DC-based immunotherapies, influencing DC longevity and their resistance to environmental metabolic stress.

  17. The dinoflagellate Prorocentrum cordatum at the edge of the salinity tolerance: The growth is slower but cells are larger

    Science.gov (United States)

    Olenina, Irina; Vaičiukynas, Evaldas; Šulčius, Sigitas; Paškauskas, Ričardas; Verikas, Antanas; Gelžinis, Adas; Bačauskienė, Marija; Bertašiūtė, Vilma; Olenin, Sergej

    2016-01-01

    In this study we examine how the projected climate change driven decrease in the Baltic Sea salinity can impact the growth, cell size and shape of the recently invaded dinoflagellate Prorocentrum cordatum. In laboratory treatments we mimicked salinity conditions at the edge of the mesohaline south-eastern Baltic and oligohaline-to-limnic Curonian Lagoon. We used an innovative computer-based method allowing detection of P. cordatum cells and quantitative characterization of cell contours in phytoplankton images. This method also made available robust indicators of the morphometric changes, which are not accessible for an expert studying cells under light microscope. We found that the salinity tolerance limit of P. cordatum ranges between 1.8 and 3.6, and that the mean cell size of its population is inversely proportional to both salinity and nutrient content. Under ambient south-eastern Baltic salinity (7.2) the nutrients were stimulating the growth of P. cordatum; while at the edge of its salinity tolerance the nutrient availability did not have such effect. We suggest that in the future Baltic the decline in salinity and increase in nutrient loads may result in larger cells of P. cordatum and extended duration of their presence in plankton, causing longer periods of algal blooms.

  18. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  19. CTLA-4 promotes Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria

    OpenAIRE

    Barnes, M. J.; Griseri, T; Johnson, A M F; Young, W; Powrie, F; Izcue, A

    2012-01-01

    Thymic induction of CD4+Foxp3+ regulatory T (Treg) cells relies on CD28 costimulation and high-affinity T-cell receptor (TCR) signals, whereas Foxp3 (forkhead box P3) induction on activated peripheral CD4+ T cells is inhibited by these signals. Accordingly, the inhibitory molecule CTLA-4 (cytotoxic T-lymphocyte antigen 4) promoted, but was not essential for CD4+ T-cell Foxp3 induction in vitro. We show that CTLA-4-deficient cells are equivalent to wild-type cells in the thymic induction of Fo...

  20. Use of viral promoters in mammalian cell-based bioassays: How reliable?

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjit

    2004-01-01

    Full Text Available Abstract Cell-based bioassays have been suggested for screening of hormones and drug bioactivities. They are a plausible alternative to animal based methods. The technique used is called receptor/reporter system. Receptor/reporter system was initially developed as a research technique to understand gene function. Often reporter constructs containing viral promoters were used because they could be expressed with very 'high' magnitude in a variety of cell types in the laboratory. On the other hand mammalian genes are expressed in a cell/tissue specific manner, which makes them (i.e. cells/tissues specialized for specific function in vivo. Therefore, if the receptor/reporter system is to be used as a cell-based screen for testing of hormones and drugs for human therapy then the choice of cell line as well as the promoter in the reporter module is of prime importance so as to get a realistic measure of the bioactivities of 'test' compounds. We evaluated two conventionally used viral promoters and a natural mammalian promoter, regulated by steroid hormone progesterone, in a cell-based receptor/reporter system. The promoters were spliced into vectors expressing enzyme CAT (chloramphenicol acetyl transferase, which served as a reporter of their magnitudes and consistencies in controlling gene expressions. They were introduced into breast cell lines T47D and MCF-7, which served as a cell-based source of progesterone receptors. The yardstick of their reliability was highest magnitude as well as consistency in CAT expression on induction by sequential doses of progesterone. All the promoters responded to induction by progesterone doses ranging from 10-12 to 10-6 molar by expressing CAT enzyme, albeit with varying magnitudes and consistencies. The natural mammalian promoter showed the most coherence in magnitude as well as dose dependent expression profile in both the cell lines. Our study casts doubts on use of viral promoters in a cell-based bioassay for

  1. Translocation and activation of protein kinase C by the plasma cell tumor-promoting alkane pristane.

    Science.gov (United States)

    Janz, S; Gawrisch, K; Lester, D S

    1995-02-01

    Pristane (2,6,10,14-tetramethylpentadecane) is a C19-isoalkane that promotes the development of plasmacytomas in genetically susceptible BALB/c mice. Similarities between the effects of pristane and protein kinase C (PKC)-activating phorbol esters suggested that the tumor promoting activity of pristane might involve the activation of PKC. Here we show that up to 5 mol% of pristane can be homogeneously incorporated into phosphatidylcholine/phosphatidylserine bilayers. Membrane-incorporated pristane partially activated PKC and increased phorbol ester binding to the bilayer by more than 50%. Pristane (50 microM) delivered as an inclusion complex with beta-cyclodextrin to promyelocytic HL-60 leukemia cells induced a partial long-term translocation of PKC to the cell membrane. This was accompanied by differentiation of HL-60 cells into macrophage-like cells. It is concluded that activation of PKC may comprise an important aspect of the tumor promoting potential of pristane. PMID:7834620

  2. The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalitis

    OpenAIRE

    Korn, Thomas; Anderson, Ana C.; Bettelli, Estelle; Oukka, Mohamed

    2007-01-01

    The Th1/Th2 paradigm of T helper cell subsets had to be revised when IL-17 producing T cells (Th17) were identified as a distinct T helper cell lineage. Th17 cells are very efficient inducers of tissue inflammation and crucial initiators of organ specific autoimmunity. Whereas Th17 cells promote autoimmune tissue inflammation, Foxp3+ regulatory T cells (T-reg) are necessary and sufficient to prevent autoimmunity throughout the life span of an individual. Here, we review recent findings of how...

  3. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Nasopharyngeal carcinoma (NPC) is a head and neck malignancy with high occurrence in South-East Asia and Southern China. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumourigenesis of NPC. BRD7 is a NPC-associated bromodomain gene that exhibits a much higher-level of mRNA expression in normal than in NPC biopsies and cell lines. In this study, we explored the role of DNA methylation in regulation of BRD7 transcription. The presence of CpG islands within BRD7 promoter was predicted by EMBOSS CpGplot and Softberry CpGFinder, respectively. Nested methylation-specific PCR and RT-PCR were employed to detect the methylation status of BRD7 promoter and the mRNA expression of BRD7 gene in tumor cell lines as well as clinical samples. Electrophoretic mobility shift assays (EMSA) and luciferase assay were used to detect the effects of cytosine methylation on the nuclear protein binding to BRD7 promoter. We found that DNA methylation suppresses BRD7 expression in NPC cells. In vitro DNA methylation in NPC cells silenced BRD7 promoter activity and inhibited the binding of the nuclear protein (possibly Sp1) to Sp1 binding sites in the BRD7 promoter. In contrast, inhibition of DNA methylation augments induction of endogenous BRD7 mRNA in NPC cells. We also found that methylation frequency of BRD7 promoter is much higher in the tumor and matched blood samples from NPC patients than in the blood samples from normal individuals. BRD7 promoter demethylation is a prerequisite for high level induction of BRD7 gene expression. DNA methylation of BRD7 promoter might serve as a diagnostic marker in NPC

  4. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  5. CXCR4 engagement promotes dendritic cell survival and maturation

    International Nuclear Information System (INIS)

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response

  6. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma. PMID:26308584

  7. Promoting metastasis: neutrophils and T cells join forces.

    Science.gov (United States)

    Fridlender, Zvi G; Albelda, Steven M; Granot, Zvi

    2015-07-01

    The role neutrophils play in cancer is a matter of debate as both pro- and anti-tumor functions have been documented. In a recent publication in Nature, Coffelt et al. identify a new mechanism where neutrophils and T cells cooperate to generate metastasis-supporting immune suppression. PMID:26138787

  8. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication.

    Science.gov (United States)

    Dhawan, Sangeeta; Dirice, Ercument; Kulkarni, Rohit N; Bhushan, Anil

    2016-05-01

    Diabetes is associated with loss of functional pancreatic β-cells, and restoration of β-cells is a major goal for regenerative therapies. Endogenous regeneration of β-cells via β-cell replication has the potential to restore cellular mass; however, pharmacological agents that promote regeneration or expansion of endogenous β-cells have been elusive. The regenerative capacity of β-cells declines rapidly with age, due to accumulation of p16(INK4a), resulting in limited capacity for adult endocrine pancreas regeneration. Here, we show that transforming growth factor-β (TGF-β) signaling via Smad3 integrates with the trithorax complex to activate and maintain Ink4a expression to prevent β-cell replication. Importantly, inhibition of TGF-β signaling can result in repression of the Ink4a/Arf locus, resulting in increased β-cell replication in adult mice. Furthermore, small molecule inhibitors of the TGF-β pathway promote β-cell replication in human islets transplanted into NOD-scid IL-2Rg(null) mice. These data reveal a novel role for TGF-β signaling in the regulation of the Ink4a/Arf locus and highlight the potential of using small molecule inhibitors of TGF-β signaling to promote human β-cell replication. PMID:26936960

  9. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation.

    Science.gov (United States)

    Huang, Y; Thoms, J A I; Tursky, M L; Knezevic, K; Beck, D; Chandrakanthan, V; Suryani, S; Olivier, J; Boulton, A; Glaros, E N; Thomas, S R; Lock, R B; MacKenzie, K L; Bushweller, J H; Wong, J W H; Pimanda, J E

    2016-07-01

    Aberrant ERG (v-ets avian erythroblastosis virus E26 oncogene homolog) expression drives leukemic transformation in mice and high expression is associated with poor patient outcomes in acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL). Protein phosphorylation regulates the activity of many ETS factors but little is known about ERG in leukemic cells. To characterize ERG phosphorylation in leukemic cells, we applied liquid chromatography coupled tandem mass spectrometry and identified five phosphorylated serines on endogenous ERG in T-ALL and AML cells. S283 was distinct as it was abundantly phosphorylated in leukemic cells but not in healthy hematopoietic stem and progenitor cells (HSPCs). Overexpression of a phosphoactive mutant (S283D) increased expansion and clonogenicity of primary HSPCs over and above wild-type ERG. Using a custom antibody, we screened a panel of primary leukemic xenografts and showed that ERG S283 phosphorylation was mediated by mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling and in turn regulated expression of components of this pathway. S283 phosphorylation facilitates ERG enrichment and transactivation at the ERG +85 HSPC enhancer that is active in AML and T-ALL with poor prognosis. Taken together, we have identified a specific post-translational modification in leukemic cells that promotes progenitor proliferation and is a potential target to modulate ERG-driven transcriptional programs in leukemia. PMID:27055868

  10. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  11. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    Directory of Open Access Journals (Sweden)

    Barbara Arbeithuber

    2015-01-01

    Full Text Available Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5, a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type.

  12. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    Science.gov (United States)

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  13. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    Directory of Open Access Journals (Sweden)

    Sae Tanaka

    Full Text Available Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble and SAHS (Secretory Abundant Heat Soluble proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble, as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  14. Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer

    Science.gov (United States)

    Wang, Zhiquan; Wang, Zhenbin; Yang, Wenqiang; Peng, Ranran; Lu, Yalin

    2014-06-01

    In this work, adding a NiTiO3 (NTO) reforming layer is firstly adopted as a low cost method to improve the carbon tolerance in solid oxide fuel cells. XRD patterns suggest that NTO has a good chemical compatibility with the YSZ electrolyte, and NTO can be totally reduced to Ni and TiO2 when exposing to the H2 atmosphere. Maximum power densities for the cells with the NTO layers at 700 °C are 270 mWcm-2 with wet H2 fuel, and 236 mWcm-2 with wet methane fuel, respectively. Improved discharging stability for the cells with NTO layers has also been observed. The current density remains unchanged for the cells with NTO layers during a 26 h test, while it drops to zero within 1 h for the cells without NTO. Above electro-performance and long term stability tests suggest that fabricating a NTO reforming layer on the anode surface is an efficient and inexpensive method to realize highly carbon tolerant SOFCs.

  15. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance

    DEFF Research Database (Denmark)

    Muscelli, Elza; Mari, Andrea; Natali, Andrea;

    2006-01-01

    The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C-peptide deconvolu......The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C......-like peptide 1 and glucose-dependent insulinotropic polypeptide responses, total insulin secretion, and enhancement of beta-cell glucose sensitivity (OGTT/IV ratio = 1.73 +/- 0.24, P = NS vs. NGT). However, the time courses of incretin-mediated insulin secretion and potentiation were altered......, with a predominance of glucose-induced vs. incretin-mediated stimulation. We conclude that, under physiological circumstances, incretin-mediated stimulation of insulin secretion results from an enhancement of all dynamic aspects of beta-cell function, particularly beta-cell glucose sensitivity. In IGT, beta...

  16. EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells.

    Science.gov (United States)

    Castanieto, Angela; Johnston, Michael J; Nystul, Todd G

    2014-01-01

    Epithelial stem cells divide asymmetrically, such that one daughter replenishes the stem cell pool and the other differentiates. We found that, in the epithelial follicle stem cell (FSC) lineage of the Drosophila ovary, epidermal growth factor receptor (EGFR) signaling functions specifically in the FSCs to promote the unique partially polarized state of the FSC, establish apical-basal polarity throughout the lineage, and promote FSC maintenance in the niche. In addition, we identified a novel connection between EGFR signaling and the cell-polarity regulator liver kinase B1 (LKB1), which indicates that EGFR signals through both the Ras-Raf-MEK-Erk pathway and through the LKB1-AMPK pathway to suppress apical identity. The development of apical-basal polarity is the earliest visible difference between FSCs and their daughters, and our findings demonstrate that the EGFR-mediated regulation of apical-basal polarity is essential for the segregation of stem cell and daughter cell fates. PMID:25437306

  17. Pyrvinium targets autophagy addiction to promote cancer cell death

    OpenAIRE

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that...

  18. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms

    OpenAIRE

    Carroll, Steven L.

    2011-01-01

    Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [ne...

  19. Ghrelin promotes differentiation of human embryonic stem cells into cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Jin YANG; Guo-qiang LIU; Rui WEI; Wen-fang HOU; Mei-juan GAO; Ming-xia ZHU; Hai-ning WANG; Gui-an CHEN; Tian-pei HONG

    2011-01-01

    Aim:Ghrelin is involved in regulating the differentiation of mesoderm-derived precursor cells.The aim of this study was to investigate whether ghrelin modulated the differentiation of human embryonic stem (hES) cells into cardiomyocytes and,if so,whether the effect was mediated by growth hormone secretagogue receptor 1α (GHS-R1α).Methods:Cardiomyocyte differentiation from hES cells was performed according to an embryoid body (EB)-based protocol.The cumulative percentage of beating EBs was calculated.The expression of cardiac-specific markers including cardiac troponin Ⅰ (cTnl) and α-myosin heavy chain (α-MHC) was detected using RT-PCR,real-time PCR and Western blot.The dispersed beating EBs were examined using immunofluorescent staining.Results:The percentage of beating EBs and the expression of cTnl were significantly increased after ghrelin (0.1 and 1 nmol/L) added into the differentiation medium.From 6 to 18 d of differentiation,the increased expression of cTnl and α-MHC by ghrelin (1 nmol/L)was time-dependent,and in line with the alteration of the percentages of beating EBs.Furthermore,the dispersed beating EBs were double-positively immunostained with antibodies against cTnl and α-actinin.However,blockage of GHS-R1α with its specific antagonist D-[lys3]-GHRP-6 (1 μmol/L) did not alter the effects of ghrelin on cardiomyocyte differentiation.Conclusion:Our data show that ghrelin enhances the generation of cardiomyocytes from hES cells,which is not mediated via GHS-R1α.

  20. Well-functioning cell mitochondria promote good health

    OpenAIRE

    Chowanadisai, Winyoo; Shenoy, Sonia F; Sharman, Edward; Carl L. Keen; Liu, Jiankang; Rucker, Robert B

    2011-01-01

    Mitochondriol function can be directly linked to protection from certain chronic diseases and conditions, such as heart disease, diabetes, metabolic syndrome and chronic inflammation, as well as the aging processes. Mitochondria are central to normal glucose, amino acid and fatty acid metabolism, in addition to antioxidant modulation and virtually all aspects of cell turnover and maintenance. Nutrition plays an essential role in optimizing such functions. We describe strategies for the regula...

  1. Androgen Deprivation-Induced Senescence Promotes Outgrowth of Androgen-Refractory Prostate Cancer Cells

    OpenAIRE

    Burton, Dominick G. A.; Giribaldi, Maria G.; Anisleidys Munoz; Katherine Halvorsen; Asmita Patel; Merce Jorda; Carlos Perez-Stable; Priyamvada Rai

    2013-01-01

    Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refra...

  2. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    OpenAIRE

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M.; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M.; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the ...

  3. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity

    OpenAIRE

    1985-01-01

    A tetrapeptide sequence, Arg-Gly-Asp-Ser, is the minimal structure recognized by cells in the large, adhesive glycoprotein fibronectin. We now have defined the structural requirements for this cell recognition site by testing several synthetic variants of the active tetrapeptide sequence. The conservative substitutions of lysine for arginine, alanine for glycine, or glutamic acid for aspartic acid each resulted in abrogation of the cell attachment-promoting activity characteristic of the natu...

  4. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    OpenAIRE

    Damián Hernández; Rodney Millard; Priyadharshini Sivakumaran; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Helena Liang; Hung, Sandy S. C.; Alice Pébay; Shepherd, Robert K.; Gregory J Dusting; Lim, Shiang Y

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell...

  5. Virulent Treponema pallidum promotes adhesion of leukocytes to human vascular endothelial cells.

    OpenAIRE

    Riley, B S; Oppenheimer-Marks, N; Radolf, J D; Norgard, M V

    1994-01-01

    Perivasculitis and endothelial cell abnormalities are characteristic histopathologic features of syphilis, a sexually transmitted disease caused by Treponema pallidum. To extend earlier studies demonstrating that T. pallidum activates endothelial cells, we now show that virulent T. pallidum, but not heat-killed T. pallidum or nonpathogenic Treponema phagedenis, promotes increased adherence of lymphocytes and monocytes to human umbilical vein endothelial cells. Lymphocytes and monocytes are th...

  6. Ionizing Radiation Promotes the Migratory and Invasive Potential of Lung Cancer Cells by Different Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Jin Nyoung; Kang, Ga Young; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-05-15

    Although radiation therapy is a major therapeutic modality for cancer treatment, previous reports have suggested that ionizing radiation (IR) can promote the invasive and metastatic potential of cancer cells. It was consistently reported that IR can induce certain types of matrix metalloproteinases, which are critical to the degradation of extracellular matrix. Given that the motility of cancer cells is an additional requirement for their metastasis, this study investigated whether IR can also influence the migratory potential of cancer cells.

  7. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  8. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  9. Transplantation tolerance mediated by suppressor T cells and suppressive antibody in a recipient of a renal transplant.

    Science.gov (United States)

    Suzuki, S; Mizuochi, I; Sada, M; Amemiya, H

    1985-10-01

    This is a report of a patient who underwent cadaveric renal transplantation in spite of the presence of three HLA-A, B and two DR antigen mismatches between the recipient and donor. The recipient received more than 20 units of blood before transplantation. The crossmatch between the recipient's serum and the T and B cells of the donor was negative. The patient exhibited hepatic dysfunction from the early posttransplant period, which eventually led to discontinuation of azathioprine or Bredinin at one year posttransplantation. Thereafter, only betamethasone was administered once every 3 days. The patients has maintained good renal function for more than one year following withdrawal of the immunosuppressants. It appeared that transplantation tolerance was established in this patient. Therefore, we examined the mechanisms sustaining the tolerance. Both nylon-wool-adherent, alloantigen-specific suppressor T cells and nonadherent, nonspecific suppressor T cells were observed in the lymphocytes of the patient after transplantation. It was also shown that suppressive antibody was present in the serum directed toward the clone of autologous lymphocytes that reacted with the mixed lymphocyte reaction (MLR) antigen of the donor. In the inhibition test against various types of MLR antigens using this suppressive antibody, it was found that the reaction against the donor cells was suppressed when the responding cells shared the same class I antigen with the recipient. When the stimulating cells had the class II antigen of the donor, the reaction of the specific responding cells was also inhibited. These inhibiting effects were only seen when the responding cells were pretreated with the antibody, but not when stimulating cells were pretreated. PMID:2413592

  10. Hydrogel Surfaces to Promote Attachment and Spreading of Endothelial Progenitor Cells

    OpenAIRE

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2012-01-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractiv...

  11. Association between MGMT Promoter Methylation and Non-Small Cell Lung Cancer: A Meta-Analysis

    OpenAIRE

    Changmei Gu; Jiachun Lu; Tianpen Cui; Cheng Lu; Hao Shi; Wenmao Xu; Xueli Yuan; Xiaobo Yang; Yangxin Huang; Meixia Lu

    2013-01-01

    BACKGROUND: O(6)-methylguanine-DNA methyltransferase (MGMT) is one of most important DNA repair enzyme against common carcinogens such as alkylate and tobacco. Aberrant promoter methylation of the gene is frequently observed in non-small cell lung cancer (NSCLC). However, the importance of epigenetic inactivation of the gene in NSCLC published in the literature showed inconsistence. We quantified the association between MGMT promoter methylation and NSCLC using a meta-analysis method. METHODS...

  12. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells

    OpenAIRE

    Kirkland, S. C.

    2009-01-01

    Background: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer. Methods: This study investigates the role of type I collagen in specifying t...

  13. NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling.

    Science.gov (United States)

    Lin, Ting-Yu; Wu, Fang-Ju; Chang, Chia-Lin; Li, Zhongyou; Luo, Ching-Wei

    2016-03-01

    Neuromedin U (NMU) was originally named based on its strong uterine contractile activity, but little is known regarding its signaling/functions in utero. We identified that NMU and one of its receptors, NMUR2, are not only present in normal uterine endometrium but also co-expressed in endometrial cancer tissues, where the NMU level is correlated with the malignant grades and survival of patients. Cell-based assays further confirmed that NMU signaling can promote cell motility and proliferation of endometrial cancer cells derived from grade II tumors. Activation of NMU pathway in these endometrial cancer cells is required in order to sustain expression of various adhesion molecules, such as CD44 and integrin alpha1, as well as production of their corresponding extracellular matrix ligands, hyaluronan and collagen IV; it also increased the activity of SRC and its downstream proteins RHOA and RAC1. Thus, it is concluded that NMU pathway positively controls the adhesion signaling-SRC-Rho GTPase axis in the tested endometrial cancer cells and that changes in cell motility and proliferation can occur when there is manipulation of NMU signaling in these cells either in vitro or in vivo. Intriguingly, this novel mechanism also explains how NMU signaling promotes the EGFR-driven and TGFβ receptor-driven mesenchymal transitions. Through the above axis, NMU signaling not only can promote malignancy of the tested endometrial cancer cells directly, but also helps these cells to become more sensitive to niche growth factors in their microenvironment. PMID:26849234

  14. Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting ß-cell regeneration

    Directory of Open Access Journals (Sweden)

    C.E.B. Couri

    2006-10-01

    Full Text Available Type 1 diabetes mellitus results from a cell-mediated autoimmune attack against pancreatic ß-cells. Traditional treatments involve numerous daily insulin dosages/injections and rigorous glucose control. Many efforts toward the identification of ß-cell precursors have been made not only with the aim of understanding the physiology of islet regeneration, but also as an alternative way to produce ß-cells to be used in protocols of islet transplantation. In this review, we summarize the most recent studies related to precursor cells implicated in the regeneration process. These include embryonic stem cells, pancreas-derived multipotent precursors, pancreatic ductal cells, hematopoietic stem cells, mesenchymal stem cells, hepatic oval cells, and mature ß-cells. There is controversial evidence of the potential of these cell sources to regenerate ß-cell mass in diabetic patients. However, clinical trials using embryonic stem cells, umbilical cord blood or adult bone marrow stem cells are under way. The results of various immunosuppressive regimens aiming at blocking autoimmunity against pancreatic ß-cells and promoting ß-cell preservation are also analyzed. Most of these regimens provide transient and partial effect on insulin requirements, but new regimens are beginning to be tested. Our own clinical trial combines a high dose immunosuppression with mobilized peripheral blood hematopoietic stem cell transplantation in early-onset type 1 diabetes mellitus.

  15. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (zea mays) by three plant growth promoting rhizobacteria (pgpr) strains

    International Nuclear Information System (INIS)

    The role of plant growth promoting rhizobacteria (PGPR) in inducing the tolerance of crop plants to drought is vital in regulation of physiological reactions that eventually adapts to a stressed environment, however, how PGPR strain induces better drought resistance by accumulation of choline and glycinebetaine (GB) in maize under drought stress (DS) is still poorly understood. A pot experiment was carried out to evaluate the induced role in maize by the three PGPR strains i.e. Klebsiella variicola F2 (KJ465989), Raoultella planticola YL2 (KJ465991) and Pseudomonas fluorescens YX2 (KJ465990) in view of plant growth, water relations and accumulation of choline and GB in leaves. Seedlings of cultivar Zhengdan 958 were inoculated with strains F2, YL2 and YX2 under different DS degrees induced by different PEG-6000 concentrations of 0, 10%, 15% and 20%. The soil microbe strains F2, YL2 and YX2 substantially enhanced the accumulation of choline and GB, and in turn improved leaf relative water content (RWC) and dry mater weight (DMW) under varying DS regimes. The best responses induced by PGPR were obtained by strain YX2 regardless of DS degree and all three strains under moderate DS stimulated by 10-15% concentrations of PEG-6000. The PGPR strains were involved in the regulation of osmotic adjustment via accumulations of choline and subsequent GB, resulting in improvement of water relations and plant growth in maize plants under DS. The effects of PGPR strains on improvement of plant drought resistance might be dependent on microbial species and degree of DS. (author)

  16. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars.

    Science.gov (United States)

    Chakraborty, Koushik; Bhaduri, Debarati; Meena, Har Narayan; Kalariya, Kuldeepsingh

    2016-06-01

    Achieving salt-tolerance is highly desirable in today's agricultural context. Apart from developing salt-tolerant cultivars, possibility lies with management options, which can improve crop yield and have significant impact on crop physiology as well. Thus present study was aimed to evaluate the ameliorative role of potassium (K(+)) in salinity tolerance of peanut. A field experiment was conducted using two differentially salt-responsive cultivars and three levels of salinity treatment (control, 2.0 dS m(-1), 4.0 dS m(-1)) along with two levels (with and without) of potassium fertilizer (0 and 30 kg K2O ha(-1)). Salinity treatment incurred significant changes in overall physiology in two peanut cultivars, though the responses varied between the tolerant and the susceptible one. External K(+) application resulted in improved salinity tolerance in terms of plant water status, biomass produced under stress, osmotic adjustment and better ionic balance. Tolerant cv. GG 2 showed better salt tolerance by excluding Na(+) from uptake and lesser accumulation in leaf tissue and relied more on organic osmolyte for osmotic adjustment. On the contrary, susceptible cv. TG 37A allowed more Na(+) to accumulate in the leaf tissue and relied more on inorganic solute for osmotic adjustment under saline condition, hence showed more susceptibility to salinity stress. Application of K(+) resulted in nullifying the negative effect of salinity stress with slightly better response in the susceptible cultivar (TG 37A). The present study identified Na(+)-exclusion as a key strategy for salt-tolerance in tolerant cv. GG 2 and also showed the ameliorating role of K(+) in salt-tolerance with varying degree of response amongst tolerant and susceptible cultivars. PMID:26994338

  17. Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice.

    Science.gov (United States)

    Drake, Li Yin; Iijima, Koji; Bartemes, Kathleen; Kita, Hirohito

    2016-08-15

    Innate lymphoid cells (ILCs) are a new family of immune cells that play important roles in innate immunity in mucosal tissues, and in the maintenance of tissue and metabolic homeostasis. Recently, group 2 ILCs (ILC2s) were found to promote the development and effector functions of Th2-type CD4(+) T cells by interacting directly with T cells or by activating dendritic cells, suggesting a role for ILC2s in regulating adaptive immunity. However, our current knowledge on the role of ILCs in humoral immunity is limited. In this study, we found that ILC2s isolated from the lungs of naive BALB/c mice enhanced the proliferation of B1- as well as B2-type B cells and promoted the production of IgM, IgG1, IgA, and IgE by these cells in vitro. Soluble factors secreted by ILC2s were sufficient to enhance B cell Ig production. By using blocking Abs and ILC2s isolated from IL-5-deficient mice, we found that ILC2-derived IL-5 is critically involved in the enhanced production of IgM. Furthermore, when adoptively transferred to Il7r(-/-) mice, which lack ILC2s and mature T cells, lung ILC2s promoted the production of IgM Abs to a polysaccharide Ag, 4-hydroxy-3-nitrophenylacetyl Ficoll, within 7 d of airway exposure in vivo. These findings add to the growing body of literature regarding the regulatory functions of ILCs in adaptive immunity, and suggest that lung ILC2s promote B cell production of early Abs to a respiratory Ag even in the absence of T cells. PMID:27421480

  18. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yun Huang; Mingnan Lu; Weitao Guo; Rong Zeng; Bin Wang; Huaibo Wang

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  19. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    International Nuclear Information System (INIS)

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  20. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    Science.gov (United States)

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  1. Snai1 represses Nanog to promote embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    F. Galvagni

    2015-06-01

    Full Text Available Embryonic stem cell (ESC self-renewal and pluripotency is maintained by an external signaling pathways and intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4, Sox2 and Nanog proteins, the Polycomb repressive complex 2 (PRC2 and DNA methylation [1–8]. Among these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, the molecular events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown. Snai1 is one the most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC expressing Snail-ER at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO datasets under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

  2. Promoter hyper-methylation of P16 during neoplastic transformation of rat respiratory tract epithelial cells

    International Nuclear Information System (INIS)

    To investigate whether p16 hyper-methylation is involved in the silencing of p16 expression and the development of rat lung tumors, p16 status and neoplastic transformation of several respiratory tract epithelial cell lines were examined. Analysis utilizing methylation specific PCR (MSP) method revealed that virus-immortalized SV40T2 cells had un-methylated status and that benzo [a ] pyrene-induced BP cells displayed heterogeneous methylation status of the p6 promoter region. On the other hand, BP130, BP270 and BP(P)Tu cells derive d from BP cells, and gamma ray-transformed RTiv3 cells displayed complete methylation of the gene. The MSP and PCR of genomic DNA in the p16 region did not amplify product in PuD2 cells established from the plutonium-induced lung tumor. Expression analysis of p16 mRNA by RT-PCR demonstrated that SV40T2 and BP cells expressed the p16 transcript. De-methylating agent, 5AzaC de-methylated partially the p16 promoter region of BP(P)Tu and BP cells and increased expression of the p16 transcript. Tumorigenicity assay utilizing inoculation of the cells into nude mouse revealed that SV40T2 and RTiv3 cells had no tumorigenicity. Treatment of BP(P)Tu and BP cells with 5AzaC decreased the cell growth in nude mouse. These results indicate that the hyper-methylation of p16 promoter region occurs at the early stage of neoplastic transformation processes and the gene silencing following the methylation is partially concerned with the tumorigenicity of rat respiratory tract cells. Homozygous deletion and lack of expression of the p16 may also account for the mechanisms of tumorigenicity. (author)

  3. Hematopoietic stem cell transplantation induces immunologic tolerance in renal transplant patients via modulation of inflammatory and repair processes

    Directory of Open Access Journals (Sweden)

    Wu Duojiao

    2012-08-01

    Full Text Available Abstract Background Inducing donor-specific tolerance in renal transplant patients could potentially prevent allograft rejection and calcineurin inhibitor nephrotoxicity. Combined kidney and hematopoietic stem cell transplant from an HLA-matched donor is an exploratory and promising therapy to induce immune tolerance. Investigtion of molecular mechanisms involved in the disease is needed to understand the potential process of cell therapy and develop strategies to prevent this immunologic rejection. Methods We enrolled nine patients in a clinical study in which cryopreserved donor hematopoietic stem cells were infused on days 2, 4, and 6 after kidney transplantation. One month post-transplant, 4 plasma samples were collected from combined transplants (C + Tx, and 8 plasma samples from patients with kidney transplantation alone (Tx. High abundance proteins in plasma were depleted and the two-dimensional liquid chromatography-tandem mass spectrometry coupled with iTRAQ labeling was utilized to identify the protein profiling between the two groups. Clusters of up- and down-regulated protein profiles were submitted to MetaCore for the construction of transcriptional factors and regulation networks. Results and Discussion Among the 179 identified proteins, 65 proteins were found in C + Tx with at least a 2-fold change as compared with Tx. A subset of proteins related to the complement and coagulation cascade, including complement C3a,complement C5a, precrusors to fibrinogen alpha and beta chains,was significantly downregulated in C + Tx. Meanwhile, Apolipoprotein-A1(ApoA1, ApoC1, ApoA2, ApoE, and ApoB were significantly lower in Tx compared to C + Tx. Gene ontology analysis showed that the dominant processes of differentially expressed proteins were associated with the inflammatory response and positive regulation of plasma lipoprotein particle remodeling. Conclusions Thus, our study provides new insight into the molecular events in

  4. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  5. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    Science.gov (United States)

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-09-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants. PMID:26139825

  6. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    International Nuclear Information System (INIS)

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons

  7. YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation.

    Directory of Open Access Journals (Sweden)

    Qinghe Song

    Full Text Available The Yes-associated protein (YAP, a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND. Here, we show that YAP knockdown sensitized MCF7 breast cancer cells to nutrient deprivation-induced apoptosis. Furthermore, in response to ND, YAP increased the autolysosome degradation, thereby enhancing the cellular autophagic flux in breast cancer cells. Of note, autophagy is crucial for YAP to protect MCF7 cells from apoptosis under ND conditions. In addition, the TEA domain (TEAD family of growth-promoting transcription factors was indispensable for YAP-mediated regulation of autophagy. Collectively, our data reveal a role for YAP in promoting breast cancer cell survival upon ND stress and uncover an unappreciated function of YAP/TEAD in the regulation of autophagy.

  8. Interleukin 23 Promotes Lung Adenocarcinoma A549 Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Sen ZHANG

    2012-05-01

    Full Text Available Background and objective Interleukin 23 (IL-23 is a pro-inflammatory cytokine that plays an important role in inflammatory disease and tumor microenvironment. The IL-23 receptor is expressed in colon, lung, and oral carcinomas. We performed this study to investigate whether IL-23 promotes directly carcinoma cell migration and invasion as well as further explore its mechanism. Methods The migration and invasion of human lung adenocarcinoma A549 cells induced by IL-23 were detected by a scratch test and Transwell experiment. MMP-9 expression of the mRNA and protein levels of A549 cells cultured with and without IL-23 was respectively detected by Real-time PCR and ELISA. The effect of IL-23 on A549 cells was further verified using anti-IL-23p19 neutralization antibody (Ab IL-23p19 to eliminate IL-23. Results IL-23 remarkably promoted A549 cell migration and invasion. MMP-9 expression in A549 cells was upregulated by IL-23 stimulation. In addition, the effect of IL-23 on the migration and invasion of A549, as well as the MMP-9 expression in A549 cells induced by IL-23, was eliminated by Ab IL-23p19. Conclusion IL-23 promotes the migration and invasion of A549 cells by inducing MMP-9 expression.

  9. Promoter and enhancer elements in the rearranged alpha chain gene of the human T cell receptor.

    Science.gov (United States)

    Luria, S; Gross, G; Horowitz, M; Givol, D

    1987-11-01

    We cloned and compared the sequence of a rearranged human T cell receptor (TCR) V alpha J alpha gene and its germline counterparts. The only difference in the coding region sequence was confined to the joining region where three nucleotides, TTG, unaccountable by either V alpha or J alpha sequence, were present. By nuclease S1 mapping we identified the mRNA start of the alpha chain 70 nucleotides upstream from the initiator ATG. A 600 bp fragment containing the sequences upstream to the ATG drives the expression of the bacterial chloramphenicol acetyltransferase (CAT) gene. This promoter activity is T cell specific since it can be demonstrated in human T cells but not in B cells or HeLa cells. A 1.1 kb BamHI- HindIII fragment located 5' to the first exon of the C alpha gene was found to enhance transcription from either the heterologous SV40 promoter or the homologous TCR alpha chain promoter. This enhancement activity was independent of the location of the fragment with respect to CAT and was specific to lymphoid cells (either T or B cells) but cannot be demonstrated in HeLa cells. PMID:3501368

  10. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo

    OpenAIRE

    Talbott, Jason F.; Cao, Qilin; Bertram, James; Nkansah, Michael; Richard L. Benton; Lavik, Erin; Whittemore, Scott R.

    2006-01-01

    Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that although ...

  11. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars; Borup, Rehannah; Wewer, Ulla M; Christiansen, Jan; Nielsen, Finn C

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and...... invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  12. Promoter Hypomethylation of Maspin Inhibits Migration and Invasion of Extravillous Trophoblast Cells during Placentation.

    Directory of Open Access Journals (Sweden)

    Xinwei Shi

    Full Text Available Extravillous trophoblast (EVT cells invade the endometrium and the maternal spiral arterioles during the first trimester. Mammary Serine Protease Inhibitor (Maspin, SERPINB5 plays a putative role in regulating the invasive activity of cytotrophoblasts. The maspin gene is silenced in various cancers by an epigenetic mechanism that involves aberrant cytosine methylation. We investigated the effect of the methylation status of the maspin promoter on the maspin expression and the aggressiveness of EVT cells.Western blotting was used to detect the maspin protein expression in EVT cells upon hypoxia. The proliferative ability, the apoptosis rate and the migration and invasiveness were measured with Cell Counting Kit-8 assay, Flow Cytometry technology and Transwell methods. Subsequently, we treated cells with recombinant maspin protein. The methylation degree of maspin promoter region upon hypoxia/ decitabine was detected by bisulfite sequencing PCR and methylation-specific PCR. Finally, we explored the effects of decitabine on maspin protein expression and the aggressiveness of EVT cells.Hypoxia effectively increased maspin protein expression in EVT cells and significantly inhibited their aggressiveness. The addition of recombinant maspin protein inhibited this aggressiveness. Decitabine reduced the methylation in the maspin promoter region and effectively increased the maspin protein expression, which significantly weakened the migration and invasiveness of EVT cells.The methylation status of the maspin promoter is an important factor that affects the migration and invasion of EVT cells during early pregnancy. A decrease in the methylation status can inhibit the migration and invasion of EVT cells to affect placentation and can result in the ischemia and hypoxia of placenta.

  13. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L;

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-m......Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor...

  14. Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection.

    Science.gov (United States)

    Dubey, Lalit Kumar; Lebon, Luc; Mosconi, Ilaria; Yang, Chen-Ying; Scandella, Elke; Ludewig, Burkhard; Luther, Sanjiv A; Harris, Nicola L

    2016-05-17

    Secondary lymphoid tissues provide specialized niches for the initiation of adaptive immune responses and undergo a remarkable expansion in response to inflammatory stimuli. Although the formation of B cell follicles was previously thought to be restricted to the postnatal period, we observed that the draining mesenteric lymph nodes (mLN) of helminth-infected mice form an extensive number of new, centrally located, B cell follicles in response to IL-4Rα-dependent inflammation. IL-4Rα signaling promoted LTα1β2 (lymphotoxin) expression by B cells, which then interacted with CCL19 positive stromal cells to promote lymphoid enlargement and the formation of germinal center containing B cell follicles. Importantly, de novo follicle formation functioned to promote both total and parasite-specific antibody production. These data reveal a role for type 2 inflammation in promoting stromal cell remodeling and de novo follicle formation by promoting B cell-stromal cell crosstalk. PMID:27160906

  15. Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells

    International Nuclear Information System (INIS)

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-κB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293CTT), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-κB nuclear levels and NF-κB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-κB promoter activation was mediated by PKCα because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293CTT cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-κB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCα-mediated NF-κB signalling and cell survival

  16. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    Full Text Available BACKGROUND: The role of CTGF varies in different types of cancer. The purpose of this study is to investigate the involvement of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC. EXPERIMENTAL DESIGN: CTGF expression levels were examined in NPC tissues and cells, nasopharynx (NP tissues, and NP69 cells. The effects and molecular mechanisms of CTGF expression on cell proliferation, migration, invasion, and cell cycle were also explored. RESULTS: NPC cells exhibited decreased mRNA expression of CTGF compared to immortalized human nasopharyngeal epithelial cell line NP69. Similarly, CTGF was observed to be downregulated in NPC compared to normal tissues at mRNA and protein levels. Furthermore, reduced CTGF was negatively associated with the progression of NPC. Knocking down CTGF expression enhanced the colony formation, cell migration, invasion, and G1/S cell cycle transition. Mechanistic analysis revealed that CTGF suppression activated FAK/PI3K/AKT and its downstream signals regulating the cell cycle, epithelial-mesenchymal transition (EMT and MMPs. Finally, DNA methylation microarray revealed a lack of hypermethylation at the CTGF promoter, suggesting other mechanisms are associated with suppression of CTGF in NPC. CONCLUSION: Our study demonstrates that reduced expression of CTGF promoted cell proliferation, migration, invasion and cell cycle progression through FAK/PI3K/AKT, EMT and MMP pathways in NPC.

  17. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  18. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance

    Czech Academy of Sciences Publication Activity Database

    Zimmermannová, Olga; Salazar, A.; Sychrová, Hana; Ramos, J.

    2015-01-01

    Roč. 15, č. 4 (2015), fov029. ISSN 1567-1356 R&D Projects: GA ČR(CZ) GAP503/10/0307 Institutional support: RVO:67985823 Keywords : Zygosaccharomyces rouxii * potassium transport * lithium tolerance * membrane potential * intracellular pH * pHluorin integration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.818, year: 2014

  19. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU+ insulin- PDX-1+ cells, Ngn3+ cells and insulin+ glucagon+ cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34+ cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  20. Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment

    International Nuclear Information System (INIS)

    We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We conclude that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance

  1. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    Science.gov (United States)

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  2. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  3. Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia

    Science.gov (United States)

    2016-04-26

    B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma,; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma

  4. Cell-to-cell diversity in protein levels of a gene driven by a tetracycline inducible promoter

    Directory of Open Access Journals (Sweden)

    Yli-Harja Olli

    2011-05-01

    Full Text Available Abstract Background Gene expression in Escherichia coli is regulated by several mechanisms. We measured in single cells the expression level of a single copy gene coding for green fluorescent protein (GFP, integrated into the genome and driven by a tetracycline inducible promoter, for varying induction strengths. Also, we measured the transcriptional activity of a tetracycline inducible promoter controlling the transcription of a RNA with 96 binding sites for MS2-GFP. Results The distribution of GFP levels in single cells is found to change significantly as induction reaches high levels, causing the Fano factor of the cells' protein levels to increase with mean level, beyond what would be expected from a Poisson-like process of RNA transcription. In agreement, the Fano factor of the cells' number of RNA molecules target for MS2-GFP follows a similar trend. The results provide evidence that the dynamics of the promoter complex formation, namely, the variability in its duration from one transcription event to the next, explains the change in the distribution of expression levels in the cell population with induction strength. Conclusions The results suggest that the open complex formation of the tetracycline inducible promoter, in the regime of strong induction, affects significantly the dynamics of RNA production due to the variability of its duration from one event to the next.

  5. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Lisa Mutschelknaus

    Full Text Available Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better

  6. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  7. PDGFBB promotes PDGFRα-positive cell migration into artificial bone in vivo

    International Nuclear Information System (INIS)

    Highlights: ► We examined effects of PDGFBB in PDGFRα positive cell migration in artificial bones. ► PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. ► PDGFBB promoted PDGFRα positive cell migration into artificial bones but not osteoblast proliferation. ► PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFβ) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  8. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development.

    Science.gov (United States)

    O'Connell, Ryan M; Kahn, Daniel; Gibson, William S J; Round, June L; Scholz, Rebecca L; Chaudhuri, Aadel A; Kahn, Melissa E; Rao, Dinesh S; Baltimore, David

    2010-10-29

    Mammalian noncoding microRNAs (miRNAs) are a class of gene regulators that have been linked to immune system function. Here, we have investigated the role of miR-155 during an autoimmune inflammatory disease. Consistent with a positive role for miR-155 in mediating inflammatory responses, Mir155(-/-) mice were highly resistant to experimental autoimmune encephalomyelitis (EAE). miR-155 functions in the hematopoietic compartment to promote the development of inflammatory T cells including the T helper 17 (Th17) cell and Th1 cell subsets. Furthermore, the major contribution of miR-155 to EAE was CD4(+) T cell intrinsic, whereas miR-155 was also required for optimum dendritic cell production of cytokines that promoted Th17 cell formation. Our study shows that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR-155 might be a promising therapeutic target for the treatment of autoimmune disorders. PMID:20888269

  9. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  10. miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are short, non-coding RNAs (∼22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271 in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention. - Highlights: • Overexpression of miR-1271 promoted proliferation and invasion of NSCLC cells. • miR-1271 inhibitor inhibited the proliferation and invasion of NSCLC cells. • miR-1271 targets 3′ UTR of HOXA5 in NSCLC cells. • miR-1271 negatively regulates HOXA5 in NSCLC cells

  11. Retuning of Mouse NK Cells after Interference with MHC Class I Sensing Adjusts Self-Tolerance but Preserves Anticancer Response.

    Science.gov (United States)

    Wagner, Arnika Kathleen; Wickström, Stina Linnea; Tallerico, Rossana; Salam, Sadia; Lakshmikanth, Tadepally; Brauner, Hanna; Höglund, Petter; Carbone, Ennio; Johansson, Maria Helena; Kärre, Klas

    2016-02-01

    Natural killer (NK) cells are most efficient if their targets do not express self MHC class I, because NK cells carry inhibitory receptors that interfere with activating their cytotoxic pathway. Clinicians have taken advantage of this by adoptively transferring haploidentical NK cells into patients to mediate an effective graft-versus-leukemia response. With a similar rationale, antibody blockade of MHC class I-specific inhibitory NK cell receptors is currently being tested in clinical trials. Both approaches are challenged by the emerging concept that NK cells may constantly adapt or "tune" their responsiveness according to the amount of self MHC class I that they sense on surrounding cells. Hence, these therapeutic attempts would initially result in increased killing of tumor cells, but a parallel adaptation process might ultimately lead to impaired antitumor efficacy. We have investigated this question in two mouse models: inhibitory receptor blockade in vivo and adoptive transfer to MHC class I-disparate hosts. We show that changed self-perception via inhibitory receptors in mature NK cells reprograms the reactivity such that tolerance to healthy cells is always preserved. However, reactivity against cancer cells lacking critical MHC class I molecules (missing self-reactivity) still remains or may even be increased. This dissociation between activity against healthy cells and tumor cells may provide an answer as to why NK cells mediate graft-versus-leukemia effects without causing graft-versus-host disease and may also be utilized to improve immunotherapy. Cancer Immunol Res; 4(2); 113-23. ©2015 AACR. PMID:26589766

  12. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  13. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  14. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    Science.gov (United States)

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. PMID:27017433

  15. Intercellular Adhesion Molecule 1 Promotes HIV-1 Attachment but Not Fusion to Target Cells

    OpenAIRE

    Naoyuki Kondo; Melikyan, Gregory B.

    2012-01-01

    Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachme...

  16. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets

    Institute of Scientific and Technical Information of China (English)

    Naoaki; Sakata; Nathaniel; K; Chan; John; Chrisler; Andre; Obenaus; Eba; Hathout

    2010-01-01

    AIM:To clarify the mechanism by which bone marrow cells promote angiogenesis around transplanted islets.METHODS: Streptozotocin induced diabetic BALB/ c mice were transplanted syngeneically under the kidney capsule with the following: (1) 200 islets (islet group: n=12), (2) 1-5×106 bone marrow cells (bone marrow group: n=11), (3) 200 islets and 1-5×106 bone marrow cells (islet + bone marrow group: n= 13), or (4) no cells (sham group:n=5). All mice were evaluated for blood glucose, serum insulin, serum nerve...

  17. Zinc up-regulated the expression of the rice metallonthionein gene family and enhanced the zinc tolerance of yeast cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Northern blot and functional complementation assay were employed to analyze the effects of zinc on expression of ten rice metallothionein genes (OsMT-Is) in rice seedlings and the growth of yeast cells transformed with OsMT-Is. Northern blot revealed that in shoots of the rice seedlings treated with different Zn2+ concentrations, expression of most members of OsMT-I family was increased, except the type 4 OsMT-Is (OsMT-I-4a, 4b and 4c). In roots, Zn2+ significantly increased the transcription of OsMT-I-1b and OsMT-I-2c, but reduced the trascription of OsMT-I-1a and OsMT-I-3a. When these ten cDNAs were heterologously expressed in zinc sensitive yeast mutant, all transgenic yeasts showed increased tolerance to Zn2+, and zinc accumulation in these yeast cells also increased.These indicated that OsMT-I family members might respond to extra Zn2+, and they could enhance Zn2+ tolerance of cells by direct binding Zn2+.

  18. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  19. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  20. SRPK2 promotes the growth and migration of the colon cancer cells.

    Science.gov (United States)

    Wang, Jian; Wu, Hai-Feng; Shen, Wei; Xu, Dong-Yan; Ruan, Ting-Yan; Tao, Guo-Qing; Lu, Pei-Hua

    2016-07-15

    Colon cancer is one of the major causes of cancer-related death in the world. Understanding the molecular mechanism underlying this malignancy will facilitate the diagnosis and treatment. Serine-arginine protein kinase 2 (SRPK2) has been reported to be upregulated in several cancer types. However, its expression and functions in colon cancer remains unknown. In this study, it was found that the expression of SRPK2 was up-regulated in the clinical colon cancer samples. Overexpression of SRPK2 promoted the growth and migration of colon cancer cells, while knocking down the expression of SRPK2 inhibited the growth, migration and tumorigenecity of colon cancer cells. Molecular mechanism studies revealed that SRPK2 activated ERK signaling in colon cancer cells. Taken together, our study demonstrated the tumor promoting roles of SRPK2 in colon cancer cells and SRPK2 might be a promising therapeutic target for colon cancer. PMID:27041240

  1. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation.

    Science.gov (United States)

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  2. 4-1BB signaling breaks the tolerance of maternal CD8+ T cells that are reactive with alloantigens.

    Directory of Open Access Journals (Sweden)

    Kwang H Kim

    Full Text Available 4-1BB (CD137, TNFRSF9, a member of the activation-induced tumor necrosis factor receptor family, is a powerful T-cell costimulatory molecule. It generally enhances CD8(+ T responses and even breaks the tolerance of CD8(+ T cells in an antigen-specific manner. In the present study we found that it was expressed in the placentas of pregnant mice and that its expression coincided with that of the immunesuppressive enzyme indoleamine 2,3-dioxygenase (IDO. Therefore, we investigated whether 4-1BB signaling is involved in fetal rejection using agonistic anti-4-1BB mAb and 4-1BB-deficient mice. Treatment with agonistic anti-4-1BB mAb markedly increased the rate of rejection of allogeneic but not syngeneic fetuses, and this was primarily dependent on CD8(+ T cells. Complement component 3 (C3 seemed to be the effector molecule because 4-1BB triggering resulting in accumulation of C3 in the placenta, and this accumulation was also reversed by anti-CD8 mAb treatment. These findings demonstrate that 4-1BB triggering breaks the tolerance of CD8(+ T cells to alloantigens in the placenta. Moreover, triggering 4-1BB protected the pregnant mice from Listeria monocytogenes (LM infection, but led to rejection of semi-allogeneic fetuses. Therefore, given the cross-recognition of alloantigen by pathogen-reactive CD8(+ T cells, the true function of 4-1BB may be to reverse the hypo-responsiveness of pathogen-reactive CD8(+ T cells in the placenta in cases of infection, even if that risks losing the fetus.

  3. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  4. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  5. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells.

    Science.gov (United States)

    Perdicchio, Maurizio; Ilarregui, Juan M; Verstege, Marleen I; Cornelissen, Lenneke A M; Schetters, Sjoerd T T; Engels, Steef; Ambrosini, Martino; Kalay, Hakan; Veninga, Henrike; den Haan, Joke M M; van Berkel, Lisette A; Samsom, Janneke N; Crocker, Paul R; Sparwasser, Tim; Berod, Luciana; Garcia-Vallejo, Juan J; van Kooyk, Yvette; Unger, Wendy W J

    2016-03-22

    Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors. We now demonstrate that modification of antigens with sialic acids (Sia-antigens) regulates the generation of antigen-specific regulatory T (Treg) cells via dendritic cells (DCs). Additionally, DCs that take up Sia-antigen prevent formation of effector CD4(+) and CD8(+)T cells. Importantly, the regulatory properties endowed on DCs upon Sia-antigen uptake are antigen-specific: only T cells responsive to the sialylated antigen become tolerized. In vivo, injection of Sia-antigen-loaded DCs increased de novo Treg-cell numbers and dampened effector T-cell expansion and IFN-γ production. The dual tolerogenic features that Sia-antigen imposed on DCs are Siglec-E-mediated and maintained under inflammatory conditions. Moreover, loading DCs with Sia-antigens not only inhibited the function of in vitro-established Th1 and Th17 effector T cells but also significantly dampened ex vivo myelin-reactive T cells, present in the circulation of mice with experimental autoimmune encephalomyelitis. These data indicate that sialic acid-modified antigens instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg cells and reducing the generation and propagation of inflammatory T cells. Our data suggest that sialylation of antigens provides an attractive way to induce antigen-specific immune tolerance. PMID:26941238

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  7. Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors

    OpenAIRE

    Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.

    2014-01-01

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neithe...

  8. Use of viral promoters in mammalian cell-based bioassays: How reliable?

    OpenAIRE

    Gill-Sharma Manjit; Choudhuri Jyoti; Betrabet Shrikant S

    2004-01-01

    Abstract Cell-based bioassays have been suggested for screening of hormones and drug bioactivities. They are a plausible alternative to animal based methods. The technique used is called receptor/reporter system. Receptor/reporter system was initially developed as a research technique to understand gene function. Often reporter constructs containing viral promoters were used because they could be expressed with very 'high' magnitude in a variety of cell types in the laboratory. On the other h...

  9. Injury-stimulated Hedgehog signaling promotes regenerative proliferation of Drosophila intestinal stem cells

    OpenAIRE

    Tian, Aiguo; Shi, Qing; Jiang, Alice; Li, Shuangxi; Wang, Bing; JIANG, JIN

    2015-01-01

    Many adult tissues are maintained by resident stem cells that elevate their proliferation in response to injury. The regulatory mechanisms underlying regenerative proliferation are still poorly understood. Here we show that injury induces Hedgehog (Hh) signaling in enteroblasts (EBs) to promote intestinal stem cell (ISC) proliferation in Drosophila melanogaster adult midgut. Elevated Hh signaling by patched (ptc) mutations drove ISC proliferation noncell autonomously. Inhibition of Hh signali...

  10. The Giardia cell cycle progresses independently of the anaphase-promoting complex

    OpenAIRE

    Gourguechon, Stéphane; Holt, Liam J.; Cande, W. Zacheus

    2013-01-01

    Most cell cycle regulation research has been conducted in model organisms representing a very small part of the eukaryotic domain. The highly divergent human pathogen Giardia intestinalis is ideal for studying the conservation of eukaryotic pathways. Although Giardia has many cell cycle regulatory components, its genome lacks all anaphase-promoting complex (APC) components. In the present study, we show that a single mitotic cyclin in Giardia is essential for progression into mitosis. Strikin...

  11. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Inho [Convergence Technology Exam. Div. II, Korean Intellectual Patent Office, Daejeon (Korea, Republic of); Vagaska, Barbora [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Seo, Hyok Jin [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Jae Kyeong [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kwon, Byeong-Ju [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Mi Hee [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Park, Jong-Chul, E-mail: parkjc@yuhs.ac [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2012-03-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  12. Myeloid-derived suppressor cells attenuate Th1 development through IL-6 production to promote tumor progression

    OpenAIRE

    Hirotake Tsukamoto

    2013-01-01

    Collaborative action between tumor cells and host-derived suppressor cells leads to peripheral tolerance of T cells to tumor antigens. Currently, IL-6 and a soluble form of IL-6 receptor are increasingly attracting attention as the therapeutic targets because their levels rise in various cancer patients. Here, we demonstrated that in tumor-bearing mice, generation of tumor antigen-specific effector Th1 cells was significantly attenuated, and impaired Th1 differentiation was restored by the te...

  13. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen;

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  14. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Wistuba; Carsten Gnewuch; Gerhard Liebisch; Gerd Schmitz; Thomas Langmann

    2007-01-01

    AIM: To study the effect of the toxic secondary bile acid lithocholic acid (LCA) on the expression of fibroblast growth factor 19 (FGF19) in intestinal cells and to characterize the pregnane-X-receptor (PXR) response of the FGF19 promoter region.METHODS: The intestinal cell line LS174T was stimulated with various concentrations of chenodeoxycholic acid and lithocholic acid for several time points.FGF19 mRNA levels were determined with quantitative realtime RT-PCR. FGF19 deletion promoter constructs were generated and the LCA response was analzyed in reporter assays. Co-transfections with PXR and RXR were carried out to study FGF19 regulation by these factors.RESULTS: LCA and CDCA strongly up-regulate FGF19 mRNA expression in LS174T cells in a time and dose dependent manner. Using reporter gene assays with several deletion constructs we found that the LCA responsive element in the human FGF19 promoter maps to the proximal regulatory region containing two potential binding sites for PXR. Overexpression of PXR and its dimerization partner retinoid X receptor (RXR) and stimulation with LCA or the potent PXR ligand rifampicin leads to a significant induction of FGF19 promoter activity in intestinal cells.CONCLUSION: LCA induced feedback inhibition of bile acid synthesis in the liver is likely to be regulated by PXR inducing intestinal FGF19 expression.

  15. USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells.

    Science.gov (United States)

    Ning, Zhen; Wang, Aman; Liang, Jinxiao; Xie, Yunpeng; Liu, Jiwei; Yan, Qiu; Wang, Zhongyu

    2014-10-01

    Epithelial-mesenchymal transition (EMT) contributes to the occurrence and development of tumors, particularly to the promotion of tumor invasion and metastasis. As a newly discovered ubiquitin hydrolase family member, USP22 plays a key role in the malignant transformation of tumors and the regulation of the cell cycle. However, recent studies on USP22 have primarily focused on its role in cell cycle regulation, and the potential mechanism underlying the promotion of tumor invasion and metastasis by abnormal USP22 expression has not been reported. Our studies revealed that the overexpression of USP22 in PANC-1 cells promoted Ezrin redistribution and phosphorylation and cytoskeletal remodeling, upregulated expression of the transcription factors Snail and ZEB1 to promote EMT, and increased cellular invasion and migration. In contrast, blockade of USP22 expression resulted in the opposite effects. In addition, the focal adhesion kinase (FAK) signaling pathway was shown to play a key role in the process of EMT induction in PANC-1 cells by USP22. Thus, the present study suggests that USP22 acts as a regulatory protein for EMT in pancreatic cancer, which may provide a new approach for the targeted therapy of pancreatic cancer. PMID:25070659

  16. GFAP promoter directs lacZ expression specifically in a rat hepatic stellate cell line

    Institute of Scientific and Technical Information of China (English)

    Gunter Maubach; Michelle Chin Chia Lim; Chun-Yan Zhang; Lang Zhuo

    2006-01-01

    AIM: The GFAP was traditionally considered to be a biomarker for neural glia (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project,possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated.METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression.RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a dose- and time-dependent manner, similar to the endogenous GFAP.CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.

  17. CTLA-4 promotes Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria.

    Science.gov (United States)

    Barnes, M J; Griseri, T; Johnson, A M F; Young, W; Powrie, F; Izcue, A

    2013-03-01

    Thymic induction of CD4(+)Foxp3(+) regulatory T (Treg) cells relies on CD28 costimulation and high-affinity T-cell receptor (TCR) signals, whereas Foxp3 (forkhead box P3) induction on activated peripheral CD4(+) T cells is inhibited by these signals. Accordingly, the inhibitory molecule CTLA-4 (cytotoxic T-lymphocyte antigen 4) promoted, but was not essential for CD4(+) T-cell Foxp3 induction in vitro. We show that CTLA-4-deficient cells are equivalent to wild-type cells in the thymic induction of Foxp3 and maintenance of Foxp3 populations in the spleen and mesenteric lymph nodes, but their accumulation in the colon, where Treg cells specific for commensal bacteria accumulate, is impaired. In a T cell-transfer model of colitis, the two known CTLA-4 ligands, B7-1 and B7-2, had largely redundant roles in inducing inflammation and promoting Treg cell function. However, B7-2 proved more efficient than B7-1 in inducing Foxp3 in vitro and in vivo. Our data reveal an unappreciated role for CTLA-4 in establishing the Foxp3(+) compartment in the intestine. PMID:22910217

  18. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  19. Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion.

    Science.gov (United States)

    Abu-Thuraia, Afnan; Gauthier, Rosemarie; Chidiac, Rony; Fukui, Yoshinori; Screaton, Robert A; Gratton, Jean-Philippe; Côté, Jean-François

    2015-01-01

    The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases. PMID:25332238

  20. Downregulation of SOK1 promotes the migration of MCF-7 cells

    International Nuclear Information System (INIS)

    Highlights: → SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. → Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. → But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  1. CRKL promotes lung cancer cell invasion through ERK-MMP9 pathway.

    Science.gov (United States)

    Lin, Fu; Chengyao, Xie; Qingchang, Li; Qianze, Dong; Enhua, Wang; Yan, Wang

    2015-06-01

    CRKL is recently defined as a new oncogene, which plays a role in the lung cancer progression. However, the potential mechanism of CRKL in human non-small cell lung cancer cell invasion is obscure. We investigated the potential mechanism of CRKL in lung cancer cell invasion using immunohistochemistry, plasmid transfection, Western blotting, real-time PCR, matrigel invasion assay, chromatin immunoprecipitation assay, and luciferase reporter assay. CRKL expression is higher in lymph node metastatic tumor compared with primary tumor. CRKL overexpression enhanced cell invasion and MMP9 expression in both HBE and H1299 cell lines. There was a significant correlation between CRKL overexpression and high MMP9 expression in primary tumors. MMP-9 antibody treatment significantly blocked cell<