WorldWideScience

Sample records for cells mscs increase

  1. Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs

    Science.gov (United States)

    Ahmadnejad, Moharram; Amirizadeh, Naser; Mehrasa, Roya; Karkhah, Ahmad; Nikougoftar, Mahin

    2017-01-01

    Background Mesenchymal stem cells (MSCs) play an important role in hematopoietic stem cell (HSC) maintenance, proliferation, and apoptosis. DNA methyltransferase 1 (DNMT1) is considered an essential factor in the maintenance of HSCs in mammalian cells. Therefore, this study was conducted to evaluate the mRNA expression level of DNMT1 during cord blood (CB)-HSC ex vivo expansion with MSCs. Methods Ex vivo cultures of CB-HSCs were performed in three culture conditions for 7 days: cytokines, cytokines with MSCs, and only MSCs. Total and viable cell numbers were counted after 5 and 7 days using trypan blue stain, and the stem cell percentage was then evaluated by flow cytometry. Moreover, in vitro colony-forming unit assay was carried out to detect clonogenic potential of HSCs at days 0 and 7 using MethoCult H4434. Finally, DNMT1 mRNA expression level was evaluated by real-time polymerase chain reaction. Results Maximum CB-CD34+ cell expansion was observed on day 7 in all the three cultures. After 7 days, ex vivo expansion of CB-CD34+ cells indicated a significant decrease in DNMT1 expression in the cytokine cultures, whereas in the two co-culture conditions DNMT1 expression was increased. A significant difference between the number of CD34+ and CD34− cells in the cytokine co-culture system was observed. Conclusion These data indicated that an elevated expression of DNMT1 is associated with increased expansion and proliferation of HSCs co-cultured with human MSCs. Hence, DNMT1 may be a potential factor in the maintenance of expanded HSCs co-cultured with human MSCs.

  2. Mesenchymal stem cells (MSCs) as skeletal therapeutics-an update

    DEFF Research Database (Denmark)

    Saeed, H.; Ahsan, M.; Saleem, Z.

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair....../regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range...

  3. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    Science.gov (United States)

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  4. Long-Term Quantitative Biodistribution and Side Effects of Human Mesenchymal Stem Cells (hMSCs Engraftment in NOD/SCID Mice following Irradiation

    Directory of Open Access Journals (Sweden)

    Sabine François

    2014-01-01

    Full Text Available There is little information on the fate of infused mesenchymal stem cells (MSCs and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID mice submitted to total body irradiation (TBI or local irradiation (abdominal or leg irradiation. The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR. Following their infusion into nonirradiated animals, hMSCs homed to various tissues. Engraftment depended on the dose of irradiation and the area exposed. Total body irradiation induced an increased hMSC engraftment level compared to nonirradiated mice, while local irradiations increased hMSC engraftment locally in the area of irradiation. Long-term engraftment of systemically administered hMSCs in NOD/SCID mice increased significantly in response to tissue injuries produced by local or total body irradiation until 2 weeks then slowly decreased depending on organs and the configuration of irradiation. In all cases, no tissue abnormality or abnormal hMSCs proliferation was observed at 120 days after irradiation. This work supports the safe and efficient use of MSCs by injection as an alternative approach in the short- and long-term treatment of severe complications after radiotherapy for patients refractory to conventional treatments.

  5. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  6. In vitro reprogramming of rat bmMSCs into pancreatic endocrine-like cells.

    Science.gov (United States)

    Li, Hong-Tu; Jiang, Fang-Xu; Shi, Ping; Zhang, Tao; Liu, Xiao-Yu; Lin, Xue-Wen; San, Zhong-Yan; Pang, Xi-Ning

    2017-02-01

    Islet transplantation provides curative treatments to patients with type 1 diabetes, but donor shortage restricts the broad use of this therapy. Thus, generation of alternative transplantable cell sources is intensively investigated worldwide. We previously showed that bone marrow-derived mesenchymal stem cells (bmMSCs) can be reprogrammed to pancreatic-like cells through simultaneously forced suppression of Rest/Nrsf (repressor element-1 silencing transcription factor/neuronal restrictive silencing factor) and Shh (sonic hedgehog) and activation of Pdx1 (pancreas and duodenal transcription factor 1). We here aimed to reprogram bmMSCs further along the developmental pathway towards the islet lineages by improving our previous strategy and by overexpression of Ngn3 (neurogenin 3) and NeuroD1 (neurogenic differentiation 1), critical regulators of the development of endocrine pancreas. We showed that compared to the previous protocol, the overexpression of only Pdx1 and Ngn3 reprogrammed bmMSCs into cells with more characteristics of islet endocrine lineages verified with bioinformatic analyses of our RNA-Seq datasets. These analyses indicated 2325 differentially expressed genes including those involved in the pancreas and islet development. We validated with qRT-PCR analysis selective genes identified from the RNA-Seq datasets. Thus, we reprogrammed bmMSCs into islet endocrine-like cells and advanced the endeavor to generate surrogate functional insulin-secreting cells.

  7. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs).

    Science.gov (United States)

    Pacini, Simone

    2014-01-01

    Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.

  8. Deterministic and Stochastic Approaches in the Clinical Application of Mesenchymal Stromal Cells (MSCs

    Directory of Open Access Journals (Sweden)

    Simone ePacini

    2014-09-01

    Full Text Available Mesenchymal stromal cells (MSCs have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions.Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.

  9. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway.

    Science.gov (United States)

    Kim, Ji-Yon; Park, Minhwa; Kim, Yu-Hee; Ryu, Kyung-Ha; Lee, Kyung Ho; Cho, Kyung-Ah; Woo, So-Youn

    2017-01-20

    Our knowledge of the immunomodulatory role of mesenchymal stem cells (MSCs) in both the innate and adaptive immune systems has dramatically expanded, providing great promise for treating various autoimmune diseases. However, the contribution of MSCs to Th17 dominant immune disease, such as psoriasis and its underlying mechanism remains elusive. In this study, we demonstrated that human palatine tonsil-derived MSCs (T-MSCs) constitutively express both the membrane-bound and soluble forms of programmed death-ligand 1 (PD-L1), which enables T-MSCs to be distinguished from MSCs originating from other organs (i.e., bone marrow or adipose tissue). We also found that T-MSC-derived PD-L1 effectively represses Th17 differentiation via both cell-to-cell contact and a paracrine effect. Further, T-MSCs increase PD-1 expression on T cells by secreting IFN-β, which may enhance engagement with PD-L1. Finally, transplantation of T-MSCs into imiquimod induced psoriatic skin inflammation in mice significantly abrogated disease symptoms, mainly by blunting the Th17 response in a PD-L1 dependent manner. This study suggests that T-MSCs might be a promising cell source to treat autoimmune diseases such as psoriasis, via its unique immunoregulatory features.

  10. Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants

    Directory of Open Access Journals (Sweden)

    Jan H. Spaas

    2015-09-01

    Full Text Available Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106. In total, 180 explants of six horses (30 per horse were divided into five groups: no lesion (i, lesion alone (ii, lesion with naïve MSCs (iii, lesion with chondrogenically-induced MSCs (iv and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v. Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14. Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488. PEMF stimulation (1mT for 10 minutes further augmented COL II expression over induced values (p = 0.0405. On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9% and lesion filling (3.7% in all the different conditions (p Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage.

  11. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  12. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    Science.gov (United States)

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  13. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs).

    Science.gov (United States)

    Kim, Hyojung; Nam, Kihoon; Nam, Joung-Pyo; Kim, Hyun Soo; Kim, Yong Man; Joo, Wan Seok; Kim, Sung Wan

    2015-12-28

    The therapeutic potential of mesenchymal stem cells (MSCs) has garnered great attention in the expansive diversity of biomedical research. Despite this broad interest in stem cells, limited incorporation and poor viability are major disadvantages for accomplishing therapeutic success in the field of hMSC-based cell therapy, and an optimal approach for hMSC-based cell therapy using non-viral vectors has not been established. Hence, we examined the possibility of performing gene therapy using the biodegradable polymeric non-viral vector Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amidoamine) (PAMAM) dendrimer (PAM-ABP) in hMSCs. PAM-ABP formed compact nanosized polyplexes and showed low cytotoxicity compared to bPEI 25k and Lipofectamine® 2000 in hMSCs. Although the cellular uptake was similar, the transfection efficiency and VEGF expression of PAM-ABP using gWiz-Luc and pβ-VEGF were higher than those of the control groups. Although hMSCs were transfected, their stem cell characteristics were retained. Our results suggest that PAM-ABP has the ability to deliver a therapeutic gene in hMSCs.

  14. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1 Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs Transplanted into Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-10-01

    Full Text Available Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1 has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs and on rat myocardial infarction (MI models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  15. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms.

    Science.gov (United States)

    Otsuru, Satoru; Gordon, Patricia L; Shimono, Kengo; Jethva, Reena; Marino, Roberta; Phillips, Charlotte L; Hofmann, Ted J; Veronesi, Elena; Dominici, Massimo; Iwamoto, Masahiro; Horwitz, Edwin M

    2012-08-30

    Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.

  16. Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Xiaofang Wang

    2014-07-01

    Full Text Available Current therapies for multiple sclerosis (MS are largely palliative, not curative. Mesenchymal stem cells (MSCs harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs. Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE.

  17. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Soo-Kyung [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Biotechnology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Lee, Yong-Soon [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Kyung-Sun, E-mail: kangpub@snu.ac.kr [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of)

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  18. Proliferation and Differentiation of Rat Osteoporosis Mesenchymal Stem Cells (MSCs) after Telomerase Reverse Transcriptase (TERT) Transfection

    OpenAIRE

    Li, Chao; Wei, Guojun; Gu, Qun; Wang, Qiang; Tao, Shuqin; Liang XU

    2015-01-01

    Background The aim of this study was to determine whether MSC are excellent materials for MSCs transplantation in the treatment of osteoporosis. Material/Methods We studied normal, osteoporosis, and TERT-transfected MSC from normal and osteoporosis rats to compare the proliferation and osteogenic differentiation using RT-PCR and Western blot by constructing an ovariectomized rat model of osteoporosis (OVX). The primary MSC from model rats were extracted and cultured to evaluate the proliferat...

  19. Cocultivation of umbilical cord blood CD34+ cells with retro-transduced hMSCs leads to effective amplification of long-term culture-initiating cells

    Institute of Scientific and Technical Information of China (English)

    Chun-Gang Xie; Jin-Fu Wang; Ying Xiang; Li-Yan Qiu; Bing-Bing Jia; Li-Juan Wang; Guo-Zhong Wang; Guo-Ping Huang

    2006-01-01

    AIM: To establish a novel coculture system for ex vivo expansion of umbilical cord blood(UCB) hematopoietic progenitors using thrombopoietin (TPO)/Flt-3 ligand(FL)-transduced human marrow-derived mesenchymal stem cells (tfhMSCs) as feeder.METHODS: UCB CD34+ cells were isolated and cultured using four culture systems in serum-containing or serumfree medium. Suitable aliquots of cultured cells were used to monitor cell production, clonogenic activity,and long-term culture-initiating culture (LTC-IC) output.Finally, the severe-combined immunodeficient (SCID)mouse-repopulating cell (SRC) assay was performed to confirm ability of the cultured cells to reconstitute longterm hematopoiesis.RESULTS: There were no significant differences in the number of total nucleated cells among different culture systems in serum-containing medium during 21-d culture. However, on d 14, the outputs of CD34+ cells,CFU-C and CFU-GEMM in tfhMSCs coculture system were significantly enhanced. LTC-IC assay demonstrated that the tfhMSCs coculture system had the most powerful activity. The severe-combined immunodeficient (SCID)mouse repopulating cell (SRC) assay confirmed extensive ability of the expanded cells to reconstitute long-term hematopoiesis. Furthermore, PCR analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of NOD/SCID mice.CONCLUSION: The TPO/FL-transduced hMSCs, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro and the tfhMSCs coculture system may be a suitable system for ex vivo manipulation of primitive progenitor cells under contact culture conditions.

  20. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases.

    Science.gov (United States)

    Karussis, Dimitrios; Kassis, Ibrahim; Kurkalli, Basan Gowda S; Slavin, Shimon

    2008-02-15

    Bone marrow (BM) derived mesenchymal stem cells (MSCs) (non-hematopoietic, stromal cells) can differentiate under certain circumstances into cells from various neuronal and glial type lineages; they also exert immunomodulatory effects. For potential clinical applications, BM-MSCs offer significant practical advantages over other types of stem cells, since they can be obtained from the adult BM (the patient himself being the donor) and can be easily cultured and expanded posing in parallel a very low risk for development of malignancies. We have shown that BM-MSCs cultured with a cocktail of growth factors (containing FGF and BDNF) differentiate into neuronal/glial lineage cells with a predominance of cells expressing astrocytes' markers. BM-MSCs were effective in suppression of chronic EAE in mice and induced neuroprotection, preserving most of the axons in the CNS of successfully-treated animals. Histopathological studies revealed that MSCs could efficiently migrate into the CNS inflamed tissue (both when administered intravenously and intraventricularly) and differentiated into cells expressing neural-glial lineage markers. Our preclinical results indicate that bone marrow can provide a source of stem cells with a potential for migration into inflamed CNS tissue and differentiation into cells expressing neuronal and glial cell markers. Such an approach may provide a feasible and practical way for in situ immunomodulation, neuroprotection and possibly remyelination/regeneration in diseases like multiple sclerosis. We therefore developed a explorative protocol for the evaluation of this therapeutic approach in a small group of patients with MS and other neurodegenerative diseases.

  1. Effects of iPSC-MSCs on mitochondria of PC12 cells injured by CoCl2%iPSC-MSCs 对 CoCl2诱导的 PC12细胞损伤时线粒体功能的影响

    Institute of Scientific and Technical Information of China (English)

    杨焰; 李慧; 孙占朋; 胡春林; 荆小莉; 魏红艳; 廖晓星; 李欣

    2015-01-01

    目的:观察诱导性多能干细胞来源的间充质干细胞(iPSC-MSCs)对氯化钴(CoCl2)诱导的PC12细胞损伤的影响,并探讨其可能机制。方法:用CoCl2处理PC12细胞建立化学损伤模型,加入iPSC-MSCs共培养。用细胞计数试剂盒-8(CCK-8)比色法检测细胞存活率,Annexin V/PI双染流式细胞术检测细胞凋亡比率,JC-1染色流式细胞术检测细胞线粒体膜电位,免疫荧光观察iPSC-MSCs向PC12细胞转移线粒体的情况。结果:用CoCl2(400μmol/L)处理PC12细胞24 h可使其凋亡明显增多,线粒体膜电位明显下降。与iPSC-MSCs共培养能减轻PC12细胞的凋亡,使其膜电位恢复。 iPSC-MSCs可以与PC12细胞间形成隧道纳米管并向PC12细胞转移线粒体。结论:iPSC-MSCs可以减轻CoCl2诱导的PC12细胞损伤,机制可能与其向PC12细胞转移线粒体有关。%[ ABSTRACT] AIM:To investigate the effects of induced pluripotent stem cells-derived mesenchymal stem cells ( iPSC-MSCs) on cobalt chloride ( CoCl2 )-induced injuries of PC12 cells and its possible mechanism.METHODS:PC12 cells were exposed to CoCl2 to set up a chemical-induced cellular injury model and were cocultured with iPSC-MSCs.The cell viability was tested by CCK-8 assay.The apoptosis was measured by flow cytometry using Annexin V/PI staining.The mitochondrial membrane potential (MMP) was analyzed by flow cytometry using JC-1 staining.Immunofluorescence was employed to observe mitochondrial transfer from iPSC-MSCs to PC12 cells.RESULTS: Apoptosis of PC12 cells was in-creased and MMP of PC12 cells was decreased after exposed to CoCl2 at concentration of 400μmol/L for 24 h.Coculture of PC12 cells with iPSC-MSCs reduced the apoptosis and recovered the MMP of the PC12 cells.Tunneling nanotubes were formed between iPSC-MSCs and PC12 cells, through which the iPSC-MSCs transferred the mitochondria to the PC12 cells. CONCLUSION:iPSC-MSCs protect PC12

  2. Sustained co-cultivation with human placenta-derived MSCs enhances ALK5/Smad3 signaling in human breast epithelial cells, leading to EMT and differentiation.

    Science.gov (United States)

    Yoo, Young A; Kang, Myoung Hee; Kim, Byung Soo; Kim, Jun Suk; Seo, Jae Hong

    2009-06-01

    The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system. We show that after co-culture with hPMSCs, human mammary epithelial cell lines (MCF-10F and HEMC) underwent significant morphologic alterations and a dramatic increase in ductal-alveolar branching, which was accompanied by a decrease or loss of the epithelial marker E-cadherin and a gain of the mesenchymal markers, alpha-SMA and vimentin. MCF-10F and HEMC proliferation was also inhibited in the presence of hPMSCs, and this retardation in growth was due to cell cycle arrest. Furthermore, in MCF-10F and HMEC cells, hPMSCs induced the production of lipid droplets, milk fat globule protein, and milk protein lactoferrin, which are markers of functional mammary differentiation. We also noticed an elevation in ALK5 and phosphorylated Smad3 protein levels upon hPMSC co-culture. Strikingly, the changes in morphology, proliferation, and differentiation were reversed by treatment with ALK5 or Smad3 knockdown in MCF-10F/hPMSC co-cultures. Collectively, our findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT) and differentiation of human breast epithelial cells through the ALK5/Smad3 signaling pathway.

  3. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available BACKGROUND: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs contributing to regeneration of the ischemic heart. METHODS AND RESULTS: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1αMSCs.Controls included native MSCs ((NatMSCs and MSCs transduced with an empty vector ((NullMSCs. PKG1α activity was increased approximately 20, 5 and 16 fold respectively in (PKG1αMSCs. (PKG1αMSCs showed improved survival under oxygen and glucose deprivation (OGD which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in (PKG1αMSCs compared to (NatMSCs and (NullMSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in (PKG1αMSCs before and after OGD. In a female rat model of acute myocardial infarction, (PKG1αMSCs group showed higher survival compared with (NullMSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of (PKG1αMSCs. At 4 weeks after transplantation, compared to DMEM group and (NullMSCs group, (PKG1αMSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05 and attenuated infarct size (27.2±2.5%, p<0.01. Heart function indices including ejection fraction (52.1±2.2%, p<0.01 and fractional shortening (24.8%±1.3%, p<0.01 were improved significantly in (PKG1αMSCs group. CONCLUSION: Overexpression of PKG1α transgene could be a powerful approach to improve MSCs

  4. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs engraft in vivo and support hematopoiesis without suppressing immune function: implications for off-the shelf ES-MSC therapies.

    Directory of Open Access Journals (Sweden)

    Ou Li

    Full Text Available Mesenchymal stroma cells (MSCs have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs, however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells to normal human bone marrow-derived MSCs (BM-MSCs. hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells. Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function.

  5. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy.

    Science.gov (United States)

    Lee, Dylan E; Ayoub, Nagi; Agrawal, Devendra K

    2016-03-09

    Mesenchymal stem cells (MSCs) (also known as multipotent mesenchymal stromal cells) possess the capacity for self-renewal and multi-lineage differentiation, and their ability to enhance cutaneous wound healing has been well characterized. Acting via paracrine interactions, MSCs accelerate wound closure, increase angiogenesis, promote resolution of wound inflammation, favorably regulate extracellular matrix remodeling, and encourage regeneration of skin with normal architecture and function. A number of studies have employed novel methods to amplify the delivery and efficacy of MSCs. Non-traditional sources of MSCs, including Wharton's jelly and medical waste material, have shown efficacy comparable to that of traditional sources, such as bone marrow and adipose tissue. The potential of alternative methods to both introduce MSCs into wounds and increase migration of MSCs into wound areas has also been demonstrated. Taking advantage of the associations between MSCs with M2 macrophages and microRNA, methods to enhance the immunomodulatory capacity of MSCs have shown success. New measures to enhance angiogenic capabilities have also exhibited effectiveness, often demonstrated by increased levels of proangiogenic vascular endothelial growth factor. Finally, hypoxia has been shown to have strong wound-healing potential in terms of increasing MSC efficacy. We have critically reviewed the results of the novel studies that show promise for the continued development of MSC-based wound-healing therapies and provide direction for continued research in this field.

  6. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  7. SIRT1 Inhibition Affects Angiogenic Properties of Human MSCs

    Directory of Open Access Journals (Sweden)

    Botti Chiara

    2014-01-01

    Full Text Available Human mesenchymal stem cells (hMSCs are attractive for clinical and experimental purposes due to their capability of self-renewal and of differentiating into several cell types. Autologous hMSCs transplantation has been proven to induce therapeutic angiogenesis in ischemic disorders. However, the molecular mechanisms underlying these effects remain unclear. A recent report has connected MSCs multipotency to sirtuin families, showing that SIRT1 can regulate MSCs function. Furthermore, SIRT1 is a critical modulator of endothelial angiogenic functions. Here, we described the generation of an immortalized human mesenchymal bone marrow-derived cell line and we investigated the angiogenic phenotype of our cellular model by inhibiting SIRT1 by both the genetic and pharmacological level. We first assessed the expression of SIRT1 in hMSCs under basal and hypoxic conditions at both RNA and protein level. Inhibition of SIRT1 by sirtinol, a cell-permeable inhibitor, or by specific sh-RNA resulted in an increase of premature-senescence phenotype, a reduction of proliferation rate with increased apoptosis. Furthermore, we observed a consistent reduction of tubule-like formation and migration and we found that SIRT1 inhibition reduced the hypoxia induced accumulation of HIF-1α protein and its transcriptional activity in hMSCs. Our findings identify SIRT1 as regulator of hypoxia-induced response in hMSCs and may contribute to the development of new therapeutic strategies to improve regenerative properties of mesenchymal stem cells in ischemic disorders through SIRT1 modulation.

  8. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Directory of Open Access Journals (Sweden)

    Piotr Koprowski

    Full Text Available Bacterial mechano-sensitive (MS channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  9. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Science.gov (United States)

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  10. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs.

    Directory of Open Access Journals (Sweden)

    Youn Hee Joung

    Full Text Available Methylsulfonylmethane (MSM is a naturally occurring sulfur compound with well-known anti-oxidant properties and anti-inflammatory activities. But, its effects on bone are unknown. Growth hormone (GH is regulator of bone growth and bone metabolism. GH activates several signaling pathways such as the Janus kinase (Jak/signal transducers and activators of transcription (STAT pathway, thereby regulating expression of genes including insulin-like growth factor (IGF-1. GH exerts effects both directly and via IGF-1, which signals by activating the IGF-1 receptor (IGF-1R. In this study, we investigated the effects of MSM on the GH signaling via the Jak/STAT pathway in osteoblasts and the differentiation of primary bone marrow mesenchymal stem cells (MSCs. MSM was not toxic to osteoblastic cells and MSCs. MSM increased the expression of GH-related proteins including IGF-1R, p-IGF-1R, STAT5b, p-STAT5b, and Jak2 in osteoblastic cells and MSCs. MSM increased IGF-1R and GHR mRNA expression in osteoblastic cells. The expression of MSM-induced IGF-1R and GHR was inhibited by AG490, a Jak2 kinase inhibitor. MSM induced binding of STAT5 to the IGF-1R and increased IGF-1 and IGF-1R promoter activities. Analysis of cell extracts by immunoprecipitation and Western blot showed that MSM enhanced GH-induced activation of Jak2/STAT5b. We found that MSM and GH, separately or in combination, activated GH signaling via the Jak2/STAT5b pathway in UMR-106 cells. Using siRNA analysis, we found that STAT5b plays an essential role in GH signaling activation in C3H10T1/2 cells. Osteogenic marker genes (ALP, ON, OCN, BSP, OSX, and Runx2 were activated by MSM, and siRNA-mediated STAT5b knockdown inhibited MSM-induced expression of osteogenic markers. Furthermore, MSM increased ALP activity and the mineralization of MSCs. Taken together, these results indicated that MSM can promote osteogenic differentiation of MSCs through activation of STAT5b.

  11. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system.

    Science.gov (United States)

    Rojewski, Markus T; Fekete, Natalie; Baila, Stefano; Nguyen, Kim; Fürst, Daniel; Antwiler, Delbert; Dausend, Julia; Kreja, Ludwika; Ignatius, Anita; Sensebé, Luc; Schrezenmeier, Hubert

    2013-01-01

    The estimated frequency of MSCs in BM is about 0.001-0.01% of total nucleated cells. Most commonly, one applied therapeutic cell dose is about 1-5 million MSCs/kg body weight, necessitating a reliable, fast, and safe expansion system. The limited availability of MSCs demands for an extensive ex vivo amplification step to accumulate sufficient cell numbers. Human platelet lysate (PL) has proven to be a safe and feasible alternative to animal-derived serum as supplement for MSC cultivation. We have investigated the functionally closed automated cell culture hollow fiber bioreactor Quantum cell expansion system as an alternative novel tool to conventional tissue flasks for efficient clinical-scale MSC isolation and expansion from bone marrow using PL. Cells expanded in the Quantum system fulfilled MSC criteria as shown by flow cytometry and adipogenic, chondrogenic, and osteogenic differentiation capacity. Cell surface expression of a variety of chemokine receptors, adhesion molecules, and additional MSC markers was monitored for several passages by flow cytometry. The levels of critical media components like glucose and lactate were analyzed. PDGF-AA, PDGF-AB/BB, bFGF, TGF-β1, sICAM-1, sVCAM-1, RANTES, GRO, VEGF, sCD40L, and IL-6 were assessed using a LUMINEX platform. Originally optimized for the use of fetal calf serum (FCS) as supplement and fibronectin as coating reagent, we succeeded to obtain an average of more than 100×10(6) of MSCs from as little as 18.8-28.6 ml of BM aspirate using PL. We obtained similar yields of MSCs/µl BM in the FCS-containing and the xenogen-free expansion system. The Quantum system reliably produces a cellular therapeutic dose in a functionally closed system that requires minimal manipulation. Both isolation and expansion are possible using FCS or PL as supplement. Coating of the hollow fibers of the bioreactor is mandatory when loading MSCs. Fibronectin, PL, and human plasma may serve as coating reagents.

  12. Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture

    DEFF Research Database (Denmark)

    Follin, Bjarke; Juhl, Morten; Cohen, Smadar

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention...... for tissue engineering applications. Studies on MSC spheroids demonstrated that such cultivation increased the paracrine immunomodulatory potential of the MSCs, accompanied by phenotypic alterations. In this review, we gather results from recent experimental studies on the immunomodulatory abilities of MSCs...

  13. Interleukin-25 Mediates Transcriptional Control of PD-L1 via STAT3 in Multipotent Human Mesenchymal Stromal Cells (hMSCs to Suppress Th17 Responses

    Directory of Open Access Journals (Sweden)

    Wei-Bei Wang

    2015-09-01

    Full Text Available Multipotent human mesenchymal stromal cells (hMSCs harbor immunomodulatory properties that are therapeutically relevant. One of the most clinically important populations of leukocytes is the interleukin-17A (IL-17A-secreting T (Th17 lymphocytes. However, mechanisms of hMSC and Th17 cell interactions are incompletely resolved. We found that, along with Th1 responses, hMSCs strongly suppressed Th17 responses and this required both IL-25—also known as IL-17E—as well as programmed death ligand-1 (PD-L1, a potent cell surface ligand for tolerance induction. Knockdown of IL-25 expression in hMSCs abrogated Th17 suppression in vitro and in vivo. However, IL-25 alone was insufficient to significantly suppress Th17 responses, which also required surface PD-L1 expression. Critically, IL-25 upregulated PD-L1 surface expression through the signaling pathways of JNK and STAT3, with STAT3 found to constitutively occupy the proximal region of the PD-L1 promoter. Our findings demonstrate the complexities of hMSC-mediated Th17 suppression, and highlight the IL-25/STAT3/PD-L1 axis as a candidate therapeutic target.

  14. The Effects of High Glucose on Adipogenic and Osteogenic Differentiation of Gestational Tissue-Derived MSCs

    Directory of Open Access Journals (Sweden)

    Weerawan Hankamolsiri

    2016-01-01

    Full Text Available Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs. However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.

  15. Experimental study on the inhibitory effect of MSCs on radiation-induced thymoma in mice

    Institute of Scientific and Technical Information of China (English)

    Wen-Long Zhang

    2016-01-01

    Objective:To study the inhibitory effect of MSCs on radiation-induced thymoma in mice. Methods:C57BL/6 mice were selected as the research objects, model group and MSCs group induced thymoma by radiation, and MSCs group received intravenous injection of mesenchymal stem cell for therapy. Six months after treatment, macroscopic morphology of thymus tissue, contents of T lymphocyte subsets as well as expression of tumor suppressor gene PTEN and proliferation marker molecule Ki-67 were detected.Results:(1) macroscopic morphology: thymus tissue weight of model group was significantly greater than that of control group and thymus tissue weight of MSCs group was lower than that of control group; (2) cells and molecules: compared with control group, contents of CD4-CD8-, CD4+CD8- and CD4-CD8+ T cells as well as expression of PTEN in thymus tissue of model group significantly decreased, and CD4+CD8+ T cell content as well as Ki-67 expression significantly increased; compared with model group, contents of CD4-CD8-, CD4+CD8- and CD4-CD8+ T cells as well as expression of PTEN in thymus tissue of MSCs group significantly increased, and CD4+CD8+ T cell content as well as Ki-67 expression significantly decreased.Conclusions:MSCs have inhibitory effect on radiation-induced thymoma in mice, manifested as promoting CD4+CD8- and CD4-CD8+ T cell maturation as well as inhibiting cell proliferation.

  16. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI.

    Science.gov (United States)

    Guo, Jun; Zheng, Dong; Li, Wen-feng; Li, Hai-rui; Zhang, Ai-dong; Li, Zi-cheng

    2014-12-01

    It has been reported that insulin-like growth factor 1 (IGF-1) promoted migration of endothelial cells and cardiac resident progenitor cells. In the previous study, we found the time-dependent and dose-dependent effects of IGF-1 treatment on the CXCR4 expression in MSCs in vitro, but it is still not clear whether IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation role in myocardial infarction. In this study, we demonstrated that IGF-1-treated MSCs' transplantation attenuate cardiac dysfunction, increase the survival of engrafted cells in the ischemic heart, decrease myocardium cells apoptosis, and inhibit protein production and gene expression of inflammation cytokines tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6. IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation roles in post-myocardial infarction.

  17. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  18. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  19. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  20. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension.

    Science.gov (United States)

    Zhou, Ying; Chen, Haiyan; Li, Hong; Wu, Yaojiong

    2017-03-09

    Three-dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up-regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin-based cell-matrix adhesion but increased cadherin-based cell-cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple-directed F-actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D-cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels.

  1. Biopsy needle advancement during bone marrow aspiration increases mesenchymal stem cell concentration

    Directory of Open Access Journals (Sweden)

    Anne E Peters

    2016-03-01

    Full Text Available Point-of-care kits to concentrate bone marrow (BM derived mesenchymal stem cells (MSCs are used clinically in horses. A maximal number of MSCs per ml of marrow aspirated might be desired prior to use of a point-of-care system to concentrate MSCs. Our objective was to test a method to increase the number of MSCs per ml of marrow collected. We collected 2 BM aspirates using 2 different collection techniques from 12 horses. The first collection technique was to aspirate BM from a single site without advancement of the biopsy needle. The second collection technique was to aspirate marrow from multiple sites within the same sternal puncture by advancing the needle 5 mm 3 times for BM aspiration from 4 sites. Numbers of MSCs in collected BM were assessed by total nucleated cell count (TNCC of BM after aspiration, total Colony-Forming-Unit-fibroblast (CFU-F assay, and total MSC number at each culture passage. The BM aspiration technique of 4 needle advancements during BM aspiration resulted in higher initial nucleated cell counts, more CFU-Fs, and more MSCs at the first passage. There were no differences in the number of MSCs at later passages. Multiple advancements of the BM needle during BM aspiration resulted in increased MSC concentration at the time of BM collection. If a point-of-care kit is used to concentrate MSCs, multiple advancements may result in higher MSC numbers in the BM concentrate after preparation by the point-of-care kit. For culture expanded MSCs beyond the first cell passage, the difference is of questionable clinical relevance.

  2. In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures

    NARCIS (Netherlands)

    J. Ma; F. Yang; S.K. Both; H.J. Prins; M.N. Helder; J. Pan; F.Z. Cui; J.A. Jansen; J.J.J.P. van den Beucken

    2014-01-01

    The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points

  3. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow

    Science.gov (United States)

    Bissoyi, Akalabya; Bit, Arindam; Singh, Bikesh Kumar; Singh, Abhishek Kumar; Patra, Pradeep Kumar

    2016-01-01

    Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue. The prime objective of this investigation is to evaluate the effects of shear-stress and cell-substrate interaction in successful recovery of adherent human mesenchymal-stem-cells (hMSCs). A customized microfluidic bioreactor has been used for the purpose. We have measured the changes in focal-point-adhesion (FPAs) by changing induced shear stress inside the bioreactor. The findings indicate that with increase in shear stress, FPAs increases between substrate and MSCs. Further, experimental results show that increased FPAs (4e-3 μbar) enhances the cellular survivability of adherent MSCs. Probably, for the first time involvement of focal point interaction in the outcome of cryopreservation of MSCs has been clarified, and it proved a potentially new approach for modification of cryopreservation protocol by up-regulating focal point of cells to improve its clinical application. PMID:27748463

  4. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  5. Adjunctive MSCs enhance myelin formation by xenogenic oligodendrocyte precursors transplanted in the retina

    Institute of Scientific and Technical Information of China (English)

    Aileen Arriola; Mary E Kie; Yufang Shi; Randall D McKinnon

    2010-01-01

    Dear Editor, We examined myelin formation by oligodendrocytes co-transplanted with immunosuppressive mesenchymal stem cells (MSCs). Oligodendrocyte precursor cells (OPCs) were grafted into the mouse retina, and graft survival and maturation was determined with or without adjunctive MSCs.

  6. Experimental Study of the Differentiation of Mesenchymal stem Cells (MSCs) after Indirect Co-culture with Ligament Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Xiong WANG; Huai-Qing CHEN

    2005-01-01

    @@ 1 Introduction Today tissue engineering is known to be a new technique which, based on biological and physical manipulations on cells, aims at the regeneration and reconstruction of tissues or organs in vitro. To construct active ligament tissue by this technique, the following three key points should be considered: choice of cells, scaffold, and the mechanical conditions in vitro. But the studies on ligament cell biology are still in an early stage[1].

  7. Experimental Study of the Differentiation of Mesenchymal stem Cells ( MSCs) after Indirect Co-culture with Ligament Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionToday tissue engineering is known to be a new technique which, based on biological and physical manipulations on cells, aims at the regeneration and reconstruction of tissues or organs in vitro. To construct active ligament tissue by this technique, the following three key points should be considered: choice of cells, scaffold, and the mechanical conditions in vitro. But the studies on ligament cell biology are still in an early stage~([1]).In this basic research, we aimed mainly at using the ...

  8. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer's disease: neurogenesis induced by MSCs via activin A.

    Science.gov (United States)

    Park, Sang Eon; Lee, Jeongmin; Chang, Eun Hyuk; Kim, Jong Hwa; Sung, Ji-Hee; Na, Duk L; Chang, Jong Wook

    2016-08-01

    Alzheimer's disease (AD) is characterized by progressive loss of memory in addition to cortical atrophy. Cortical atrophy in AD brains begins in the parietal and temporal lobes, which are near the subventricular zone (SVZ). The aim of this study was to activate the neurogenesis in the SVZ of AD brains by human mesenchymal stem cells (hMSCs). Neural stem cells (NSCs) were isolated from SVZ of 4-month-old 5XFAD mice. Co-culture of hMSCs with SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. To examine the inducing factor of neurogenesis, human cytokine array was performed with co-cultured media, and revealed elevated release of activin A from hMSCs. Also, we confirmed that the mRNA levels of activin A and activin receptor in the SVZ of 5XFAD mice were significantly lower than normal mice. Treatment of human recombinant activin A in SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. These data suggest that use of hMSCs and activin A to recover neurogenesis in future studies of cortical regeneration to treat AD.

  9. AD-MSCs alleviate hyperglycemia through promoting hepatic glycolysis in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Min XIE

    2016-08-01

    Full Text Available Objective  To evaluate the temporary hypoglycemic effect of adipose mesenchymal stem cells (AD-MSCs on type 2 diabetic rats, and further discuss the mechanisms of AD-MSCs regulating blood glucose through hepatic glycometabolism. Methods  The type 2 diabetic rat model was established by intraperitoneal injection of a single small dose of streptozotocin (STZ, 25mg/kg after a high-fat diet for 8 weeks. The content of blood glucose was determined by tail vein bleeding at indicated time points (0h, 3h, 6h, 12h, 24h after infusion of AD-MSCs, concurrently the rats were executed and the liver tissues were collected (diabetes group, n=5, normal group, n=3 for detecting the mRNA and protein expressions of glucokinase (GK, pyruvate kinase (PK and phosphofructokinase (PFK (the key enzyme of glycolysis by real-time qPCR and Western blotting. Results  The infusion of AD-MSCs significantly decreased blood glucose in a short period [30.55±1.49mmol/L(0h, 18.90±0.85mmol/ L(3h, 23.70±1.13mmol/L(6h, 21.90±1.00mmol/L(12h, respectively]. PCR results showed that the expressions of GK and PFK increased in the liver tissue of type 2 diabetic rats 3h after AD-MSCs infusion, and the expression of PK increased significantly 6h after AD-MSCs infusion (P<0.05. Conclusion  AD-MSCs can ameliorate hyperglycemia rapidly through enhancing liver glycolysis in type 2 diabetic rats. DOI: 10.11855/j.issn.0577-7402.2016.07.04

  10. TNF-α promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts.

    Science.gov (United States)

    Bai, Xiao; Xi, Jie; Bi, Yanwen; Zhao, Xin; Bing, Weidong; Meng, Xiangbin; Liu, Yimin; Zhu, Zhonglai; Song, Guangmin

    2017-03-07

    The oxidative stress caused by endothelial injury is involved in intimal hyperplasia (IH) in vein grafts. Mesenchymal stem cells (MSCs) can home to injured intima and promote endothelial repair. However, MSC apoptosis is increased accompanied by decreased functional activity under oxidative stress. Thus, we investigate whether tumour necrosis factor-α (TNF-α) can promote the survival and activity of MSCs under oxidative stress to reduce IH more effectively, and establish what role the NF-κB pathway plays in this. In this study, we preconditioned MSCs with TNF-α ((TNF)(-α-PC) MSCs) for 24 hrs and measured the activation of the IKK/NF-κB pathway. EdU and transwell assays were performed to assess proliferation and migration of (TNF)(-α-PC) MSCs. Apoptosis and migration of (TNF)(-α-)(PC) MSCs were evaluated in conditions of oxidative stress by analysis of the expression of Bcl-2 and CXCR4 proteins. (TNF)(-α-)(PC) MSCs were transplanted into a vein graft model, so that cell homing could be tracked, and endothelial apoptosis and IH of vein grafts were measured. The results demonstrated that TNF-α promotes proliferation and migration of MSCs. Furthermore, survival and migration of (TNF)(-α-)(PC) MSCs under oxidative stress were both enhanced. A greater number of MSCs migrated to the intima of vein grafts after preconditioning with TNF-α, and the formation of neointima was significantly reduced. These effects could be partially abolished by IKK XII (NF-κB inhibitor). All these results indicate that preconditioning with TNF-α can promote survival and migration of MSCs under oxidative stress via the NF-κB pathway and thus attenuate IH of vein grafts.

  11. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  12. Topographical cues regulate the crosstalk between MSCs and macrophages

    Science.gov (United States)

    Vallés, Gema; Bensiamar, Fátima; Crespo, Lara; Arruebo, Manuel; Vilaboa, Nuria; Saldaña, Laura

    2015-01-01

    Implantation of scaffolds may elicit a host foreign body response triggered by monocyte/macrophage lineage cells. Growing evidence suggests that topographical cues of scaffolds play an important role in MSC functionality. In this work, we examined whether surface topographical features can regulate paracrine interactions that MSCs establish with macrophages. Three-dimensional (3D) topography sensing drives MSCs into a spatial arrangement that stimulates the production of the anti-inflammatory proteins PGE2 and TSG-6. Compared to two-dimensional (2D) settings, 3D arrangement of MSCs co-cultured with macrophages leads to an important decrease in the secretion of soluble factors related with inflammation and chemotaxis including IL-6 and MCP-1. Attenuation of MCP-1 secretion in 3D co-cultures correlates with a decrease in the accumulation of its mRNA levels in MSCs and macrophages. Using neutralizing antibodies, we identified that the interplay between PGE2, IL-6, TSG-6 and MCP-1 in the co-cultures is strongly influenced by the micro-architecture that supports MSCs. Local inflammatory milieu provided by 3D-arranged MSCs in co-cultures induces a decrease in monocyte migration as compared to monolayer cells. This effect is partially mediated by reduced levels of IL-6 and MCP-1, proteins that up-regulate each other's secretion. Our findings highlight the importance of topographical cues in the soluble factor-guided communication between MSCs and macrophages. PMID:25453943

  13. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation.

    Science.gov (United States)

    Shim, Sehwan; Lee, Seung Bum; Lee, Jong-geol; Jang, Won-Suk; Lee, Sun-Joo; Park, Sunhoo; Lee, Seung-Sook

    2013-04-01

    This study evaluated the clinical and pathologic effects of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in the recovery from total body irradiation by comparing it with the effects of granulocyte-colony stimulating factor (G-CSF), an efficacious drug in the treatment of acute bone marrow radiation syndrome. BALB/c mice were treated with G-CSF or hUCB-MSCs after they were irradiated with 7 Gy cobalt-60 γ-rays. Circulating blood counts, histopathologic changes in the bone marrow, and plasma level of Flt-3L and transforming growth factor (TGF-β1) were monitored in the postirradiation period. Hematologic analysis revealed that the peripheral leukocyte counts were markedly increased in the hUCB-MSCs-treated group, whereas G-CSF-treated mice did not recover significantly. Moreover, differential counts showed that hUCB-MSC treatment has regenerative effects on white blood cells, lymphocytes, and monocytes compared with the irradiated group. Treatment with hUCB-MSCs or G-CSF significantly increased immunoreactivity of Ki-67 until 3 weeks after total body irradiation. However, at 3 weeks, the number of Ki-67 immunoreactive cells significantly increased in the hUCB-MSCs-treated group compared with the G-CSF-treated group. Furthermore, hUCB-MSC treatment significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGF-β1, whereas G-CSF treatment failed to decrease the plasma Flt-3L levels at 2 weeks after irradiation. Based on the differences in circulating blood cell reconstitution and cell density of bone marrow, the authors suggest that MSC treatment is superior to G-CSF treatment for hematopoietic reconstitution following sublethal dose radiation exposure.

  14. In vitro differentiation of MSCs into retina-like cells by the supernatant fluid of light-injured neurosensory retina%光损伤鼠视网膜片培养上清液诱导 MSCs 分化为视网膜样细胞的研究

    Institute of Scientific and Technical Information of China (English)

    白月; 徐国兴

    2014-01-01

    AIM: To explore the possibility of inducing rat mesenchymal stem cells ( MSCs) into retina-like cells by the supernatant fluid of light-injured neurosensory retina in vitro. METHODS: MSCs were isolated and attached to the wall of culture dishes by their specific adherent ability. Then the cells were characterized by flow cytometry.The neurosensory retina was isolated from retina of SD rat and it was tested by hematoxylin-eosin ( HE ) staining.The pathological changes of light-injured neurosensory retina was observed under transmission electron microscope. Three kinds of supernatant fluid of light -injured neurosensory retina of SD rats were prepared.The third passage of MSCs were cultured with these mixed medium for 7-8d, we used RT-PCR to see whether they could express rhodopsin, neuron-specific enolase (NSE), and glial fibrillary acidic protein ( GFAP ) , and positive cells were counted and analyzed. RESULTS: HE staining showed the retinal sheets included full-thickness neural retina.Neurosensory retina developed ultrastructural destructions by light injury.RT-PCR showed that the medium of mixed I expressed higher positive rate of rhodopsin (0.3915±0.00644), NSE (0.2019± 0.00682), GFAP (0.1972 ±0.00211) than the medium of mixed Ⅱ rhodopsin (0.0983 ±0.00319), NSE (0.1048 ± 0.00323), GFAP (0.1040±0.00254) and medium of mixedⅢrhodopsin(0.0044±0.00126), NSE (0.0498±0.00149), GFAP (0.0467±0.00333).The difference of intergroup has statistical significance. CONCLUTION:The supernatant fluid of light-injured neurosensory retina of SD rats can induce MSCs to differentiate into retina-like cells and provide new insights of stem cell therapy for retinopathy.%目的:应用大鼠视网膜片光损伤后的培养上清液,在体外诱导大鼠骨髓间充质干细胞( mesenchymal stem cells , MSCs)成为视网膜样细胞的可能性。  方法:贴壁筛选法分离、培养大鼠MSCs ,流式细胞仪对其细胞纯度鉴定。取材大鼠视网

  15. Osteogenic capacity of human BM-MSCs, AT-MSCs and their co-cultures using HUVECs in FBS and PL supplemented media

    NARCIS (Netherlands)

    Ma, J.; van den Beucken, J.J.J.P.; Both, S.K.; Prins, H.J.; Helder, M.N.; Yang, F.; Jansen, J.A.

    2015-01-01

    Human bone marrow-derived mesenchymal stem cells (BM-MSCs) and human adipose tissue-derived mesenchymal stem cells (AT-MSCs) are the most frequently used stem cells in tissue engineering. Due to major clinical demands, it is necessary to find an optimally safe and efficient way for large-scale expan

  16. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models.

    Science.gov (United States)

    Shin, Jin Young; Park, Hyun Jung; Kim, Ha Na; Oh, Se Hee; Bae, Jae-Sung; Ha, Hee-Jin; Lee, Phil Hyu

    2014-01-01

    Current evidence suggests a central role for autophagy in Alzheimer disease (AD), and dysfunction in the autophagic system may lead to amyloid-β (Aβ) accumulation. Using in vitro and in vivo AD models, the present study investigated whether mesenchymal stem cells (MSCs) could enhance autophagy and thus exert a neuroprotective effect through modulation of Aβ clearance In Aβ-treated neuronal cells, MSCs increased cellular viability and enhanced LC3-II expression compared with cells treated with Aβ only. Immunofluorescence revealed that MSC coculture in Aβ-treated neuronal cells increased the number of LC3-II-positive autophagosomes that were colocalized with a lysosomal marker. Ultrastructural analysis revealed that most autophagic vacuoles (AVs) in Aβ-treated cells were not fused with lysosomes, whereas a large portion of autophagosomes were conjoined with lysosomes in MSCs cocultured with Aβ-treated neuronal cells. Furthermore, MSC coculture markedly increased Aβ immunoreactivity colocalized within lysosomes and decreased intracellular Aβ levels compared with Aβ-treated cells. In Aβ-treated animals, MSC administration significantly increased autophagosome induction, final maturation of late AVs, and fusion with lysosomes. Moreover, MSC administration significantly reduced the level of Aβ in the hippocampus, which was elevated in Aβ-treated mice, concomitant with increased survival of hippocampal neurons. Finally, MSC coculture upregulated BECN1/Beclin 1 expression in AD models. These results suggest that MSCs significantly enhance autolysosome formation and clearance of Aβ in AD models, which may lead to increased neuronal survival against Aβ toxicity. Modulation of the autophagy pathway to repair the damaged AD brain using MSCs would have a significant impact on future strategies for AD treatment.

  17. Effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia

    Institute of Scientific and Technical Information of China (English)

    Zu-Bin Wang; Yi-Lin Zhu

    2016-01-01

    Objective:To study the effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia. Methods: A total of 58 cases of children with immune thrombocytopenia were enrolled for study and randomly divided into hUC-MSCs group and conventional group, hUC-MSCs group received glucocorticoid + gamma globulin + hUC-MSCs treatment and conventional group received glucocorticoid + gamma globulin treatment. Then platelet content, immune function, tryptophan metabolism as well as expression of T-bet and GATA-3 of two groups were compared.Results: Platelet content of hUC-MSCs group was higher than that of conventional group; serum IFN-γ and IL-2 contents of hUC-MSCs group were lower than those of conventional group, and serum IL-4 and IL-10 contents as well as peripheral blood Treg cell ratio was higher than those of conventional group; serum Trp concentration and Trp/Kyn ratio of hUC-MSCs group were lower than those of conventional group, Kyn concentration was higher than that of conventional group, IDO expression in peripheral blood mononuclear cells was higher than that of conventional group, and TTS expression was lower than that of conventional group; mRNA content of T-bet in peripheral blood mononuclear cells of hUC-MSCs group was lower than that of conventional group, and mRNA content of GATA-3 was higher than that of conventional group.Conclusion: hUC-MSCs therapy can increase platelet content and regulate Th1/Th2 balance and tryptophan metabolism; it's an ideal method for the treatment of immune thrombocytopenia.

  18. Expression of antisense of microRNA-26a-5p in mesenchymal stem cells increases their therapeutic effects against cirrhosis

    Science.gov (United States)

    Chen, Li; Zeng, Wenhuan; Yang, Bo; Cui, Xiang; Feng, Cong; Wang, Lili; Wang, Hao; Zhou, Xuan; Li, Peng; Lv, Faqin; Li, Tanshi

    2017-01-01

    Hepatocyte growth factor (HGF) is a potent mitogen for mature hepatocytes, and has been shown to prevent cirrhosis during liver regeneration. Transplantation of mesenchymal stem cells (MSCs) reduces the development of cirrhosis after liver injury. However, the production and secretion of transplanted MSCs in liver were not studied yet. Here we found that the MSCs expressed low levels of HGF protein, but surprisingly high levels of HGF mRNA. Further investigation using bioinformatics analyses and luciferase reporter assay showed that MSCs expressed high levels of microRNA-26a-5p (miR-26a-5p), which targeted 3’-UTR of HGF mRNA to inhibit its protein translation. In vivo, miR-26a-5p-depleted MSCs were transplanted into mice with carbon tetrachloride (CCl4)-induced cirrhosis. We found that suppression of miR-26a-5p in MSCs further ameliorated the severity of liver fibrosis, reduced the portal hypertension and sodium retention, compared to transplantation of control MSCs. Hence, our study suggests that suppression of miR-26a-5p in MSCs may improve their therapeutic effects against cirrhosis through increasing HGF production.

  19. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1

    OpenAIRE

    2016-01-01

    Although accumulated evidence supports the notion that mesenchymal stem cells (MSCs) act in a paracrine manner, the mechanisms are still not fully understood. Recently, MSC-derived exosomes (MSC-Exos), a type of microvesicle released from MSCs, were thought to carry functional proteins and RNAs to recipient cells and play therapeutic roles. In the present study, we intravitreally injected MSCs derived from either mouse adipose tissue or human umbilical cord, and their exosomes to observe and ...

  20. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  1. Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status

    Science.gov (United States)

    Avril, Pierre; Le Nail, Louis-Romée; Brennan, Meadhbh Á.; Rosset, Philippe; De Pinieux, Gonzague; Layrolle, Pierre; Heymann, Dominique; Perrot, Pierre; Trichet, Valérie

    2015-01-01

    Conventional therapy of primary bone tumors includes surgical excision with wide resection, which leads to physical and aesthetic defects. For reconstruction of bone and joints, allografts can be supplemented with mesenchymal stem cells (MSCs). Similarly, adipose tissue transfer (ATT) is supplemented with adipose-derived stem cells (ADSCs) to improve the efficient grafting in the correction of soft tissue defects. MSC-like cells may also be used in tumor-targeted cell therapy. However, MSC may have adverse effects on sarcoma development. In the present study, human ADSCs, MSCs and pre-osteoclasts were co-injected with human MNNG-HOS osteosarcoma cells in immunodeficient mice. ADSCs and MSCs, but not the osteoclast precursors, accelerated the local proliferation of MNNG-HOS osteosarcoma cells. However, the osteolysis and the metastasis process were not exacerbated by ADSCs, MSCs, or pre-osteoclasts. In vitro proliferation of MNNG-HOS and Saos-2 osteosarcoma cells was increased up to 2-fold in the presence of ADSC-conditioned medium. In contrast, ADSC-conditioned medium did not change the dormant, quiescent state of osteosarcoma cells cultured in oncospheres. Due to the enhancing effect of ADSCs/MSCs on in vivo/in vitro proliferation of osteosarcoma cells, MSCs may not be good candidates for osteosarcoma-targeted cell therapy. Although conditioned medium of ADSCs accelerated the cell cycle of proliferating osteosarcoma cells, it did not change the quiescent state of dormant osteosarcoma cells, indicating that ADSC-secreted factors may not be involved in the risk of local recurrence. PMID:26998421

  2. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.

    Science.gov (United States)

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena

    2016-05-01

    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process.

  3. Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells.

    Science.gov (United States)

    Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Kim, Hyemin; Na, Kun; Park, Keun-Hong

    2010-10-01

    The micro-environment is an important factor in the differentiation of cultured stem cells for the purpose of site specific transplantation. In an attempt to optimize differentiation conditions, co-culture systems composed of both stem cells and primary cells or cell lines were used in hydrogel with in vitro and in vivo systems. Stem cells encapsulated in hydrogel, under certain conditions, can undergo increased differentiation both in vitro and in vivo; therefore, reconstruction of transplanted stem cells in a hydrogel co-culture system is important for tissue regeneration. In order to construct such a co-culture system, we attempted to create a hydrogel scaffold which could induce neo-tissue growth from the recipient bed into the material. This material would enable encapsulation of stem cells in vitro after which they could be transferred to an in vivo system utilizing nude mice. In this case, the hydrogel was implanted in the subfascial space of nude mice and excised 4 weeks later. Cross-sections of the excised samples were stained with von Kossa or safranin-O and tubular formations into the gel were observed with and tested by doppler imaging. The data showed that the hydrogel markedly induced growth of osteogenic, chondrogenic, and vascular-rich tissue into the hydrogel by 4 weeks, which surpassed that after transplantation in a co-culture system. Further, a co-culture system with differentiated cells and stem cells potentially enhanced chondrogenesis, osteogenesis, and vascularization. These findings suggest that a co-culture system with hydrogel as scaffold material for neo-tissue formation is a useful tools for multi-lineage stem cell differentiation.

  4. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    Science.gov (United States)

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  5. Mouse bone marrow mesenchymal stem cells(MSCs) transfected with GFP gene by Lentiviral vector%慢病毒介导的GFP转染对小鼠骨髓间充质干细胞表型、增殖和分化能力的影响

    Institute of Scientific and Technical Information of China (English)

    李燕; 陆伟; 竺丽梅; 邵燕; 陈诚; 刘巧; 韩晓冬

    2014-01-01

    The obj ect of this study is to construct the green fluorescent protein(GFP)transfection system by lentiviral vector in mouse bone marrow mesenchymal stem cells(MSCs)invitro.We detected the biological characteristics of mesenchymal stem cells (MSCs ),inclouding cell phenotype,proliferation ability and differentiation ability of mesenchymal stem cells after lentiviral-GFP transfection.Then we observed the myoblasts differentiation ability of mesenchymal stem cells(MSCs)after we confirmed the expression of green fluorescent protein.Bone marrow cell suspensions from mice bone were adherent cultured after erythrocyte broken.We detect the cell surface marker (CD44,CD90,CD105,CD34,CD45 and CD188)of MSCs to identify the purity of mesenchymal stem cells by flow cy-tometry analysis.We transfected mesenchymal stem cells (MSCs)with Lentivirus-GFP for 48 hours,with the multiplicity of infection (MOI)of 1,10,50 and 100,respectively.The transfection efficiency and fluorescence expression were detected by both flow cytometry and immunofluorescence.We evaluated the cell viability by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)test after lentiviral-GFP transfection.MSCs-GFP were induced into myoblasts after the transfection were completed,and the expression of myoblast specific protein desmin andα-SMA were detected by western blot(WB)method.The results of flow cytometry analysis are shown:In accordance with the characteristics of stem cells surface markers,our cultured mesenchymal stem cells (MSCs)expressed CD44,CD90 and CD105,but did not express CD34,CD45 and CD188.The transfection efficiency were 23.45%,93.51%,95.44% and 95.55%,while the transfect MOI were 1,10,50 and 100,respectively.At transfect MOI 10,the transfection efficiency of mesenchymal stem cells (MSCs)was the best,and there was no obvious effect on cell activity observed.After myoblast differentiation invitro,the MSCs-GFP could express desmin andα-SMA.In this study,we constructed the green

  6. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury.

    Science.gov (United States)

    Yang, Yongxiang; Ye, Yuqin; Su, Xinhong; He, Jun; Bai, Wei; He, Xiaosheng

    2017-01-01

    Exosomes are endosomal origin membrane-enclosed small vesicles (30-100 nm) that contain various molecular constituents including proteins, lipids, mRNAs and microRNAs. Accumulating studies demonstrated that exosomes initiated and regulated neuroinflammation, modified neurogenic niches and neurogenesis, and were even of potential significance in treating some neurological diseases. These tiny extracellular vesicles (EVs) can derive from some kinds of multipotent cells such as mesenchymal stem cells (MSCs) that have been confirmed to be a potentially promising therapy for traumatic brain injury (TBI) in experimental models and in preclinical studies. Nevertheless, subsequent studies demonstrated that the predominant mechanisms of MSCs's contributions to brain tissue repairment and functional recovery after TBI were not the cell replacement effects but likely the secretion-based paracrine effects produced by EVs such as MSCs-derived exosomes. These nanosized exosomes derived from MSCs cannot proliferate, are easier to preserve and transfer and have lower immunogenicity, compared with transplanted exogenous MSCs. These reports revealed that MSCs-derived exosomes might promise to be a new and valuable therapeutic strategy for TBI than MSCs themselves. However, the concrete mechanisms involved in the positive effects induced by MSCs-derived exosomes in TBI are still ambiguous. In this review, we intend to explore the potential effects of MSCs-derived exosomes on neuroinflammation and neurogenesis in TBI and, especially, on therapy.

  7. Mesenchymal stem cells increase skin graft survival time and up-regulate PD-L1 expression in splenocytes of mice.

    Science.gov (United States)

    Moravej, Ali; Geramizadeh, Bita; Azarpira, Negar; Zarnani, Amir-Hassan; Yaghobi, Ramin; Kalani, Mehdi; Khosravi, Maryam; Kouhpayeh, Amin; Karimi, Mohammad-Hossein

    2017-02-01

    Recently, mesenchymal stem cells (MSCs) have gained considerable interests as hopeful therapeutic cells in transplantation due to their immunoregulatory functions. But exact mechanisms underlying MSCs immunoregulatory function is not fully understood. Herein, in addition to investigate the ability of MSCs to prolong graft survival time, the effects of them on the expression of PD-L1 and IDO immunomodulatory molecules in splenocytes of skin graft recipient mice was clarified. To achieve this goal, full-thickness skins were transplanted from C57BL/6 to BALB/c mice. MSCs were isolated from bone marrow of BALB/c mice and injected to the recipient mice. Skin graft survival was monitored daily to determine graft rejection time. On days 2, 5 and 10 post skin transplantation, serum cytokine levels and expression of PD-L1 and IDO mRNA and protein in the splenocytes of recipient mice were evaluated. The results showed that administration of MSCs prolonged skin graft survival time from 11 to 14 days. On days 2 and 5 post transplantation, splenocytes PD-L1 expression and IL-10 serum level in MSCs treated mice were higher than those in the controls, while IL-2 and IFN-γ levels were lower. Rejection in MSCs treated mice was accompanied by an increase in IL-2 and IFN-γ, and decrease in PD-L1 expression and IL-10 level. No difference in the expression of IDO between MSCs treated mice and controls was observed. In conclusion, we found that one of the mechanisms underlying MSCs immunomodulatory function could be up-regulating PD-L1 expression.

  8. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia

    Science.gov (United States)

    Argibay, Bárbara; Trekker, Jesse; Himmelreich, Uwe; Beiras, Andrés; Topete, Antonio; Taboada, Pablo; Pérez-Mato, María; Vieites-Prado, Alba; Iglesias-Rey, Ramón; Rivas, José; Planas, Anna M.; Sobrino, Tomás; Castillo, José; Campos, Francisco

    2017-01-01

    Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.

  9. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury

    Science.gov (United States)

    Yang, Yongxiang; Ye, Yuqin; Su, Xinhong; He, Jun; Bai, Wei; He, Xiaosheng

    2017-01-01

    Exosomes are endosomal origin membrane-enclosed small vesicles (30–100 nm) that contain various molecular constituents including proteins, lipids, mRNAs and microRNAs. Accumulating studies demonstrated that exosomes initiated and regulated neuroinflammation, modified neurogenic niches and neurogenesis, and were even of potential significance in treating some neurological diseases. These tiny extracellular vesicles (EVs) can derive from some kinds of multipotent cells such as mesenchymal stem cells (MSCs) that have been confirmed to be a potentially promising therapy for traumatic brain injury (TBI) in experimental models and in preclinical studies. Nevertheless, subsequent studies demonstrated that the predominant mechanisms of MSCs’s contributions to brain tissue repairment and functional recovery after TBI were not the cell replacement effects but likely the secretion-based paracrine effects produced by EVs such as MSCs-derived exosomes. These nanosized exosomes derived from MSCs cannot proliferate, are easier to preserve and transfer and have lower immunogenicity, compared with transplanted exogenous MSCs. These reports revealed that MSCs-derived exosomes might promise to be a new and valuable therapeutic strategy for TBI than MSCs themselves. However, the concrete mechanisms involved in the positive effects induced by MSCs-derived exosomes in TBI are still ambiguous. In this review, we intend to explore the potential effects of MSCs-derived exosomes on neuroinflammation and neurogenesis in TBI and, especially, on therapy. PMID:28293177

  10. The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine.

    Science.gov (United States)

    Hindle, Paul; Khan, Nusrat; Biant, Leela; Péault, Bruno

    2017-01-01

    Perivascular stem cells (PSCs) are the natural ancestors of mesenchymal stem cells (MSCs) and are the stem cells responsible for homeostasis and repair in vivo. Prospectively identified and isolated PSCs have demonstrated increased plasticity and osteogenic potential. Cells from the infrapatellar fat pad (IFP) have demonstrated increased chondrogenic potential compared with those from subcutaneous fat. This research assessed the chondrogenic potential of IFP PSCs compared with MSCs from the IFP and bone marrow. Immunohistochemistry demonstrated the location of perivascular markers (CD146, CD34, neural/glial antigen 2 [NG2], platelet-derived growth factor receptor-β [PDGFRβ], and α-smooth muscle actin [α-SMA]) in relation to endothelial markers (CD31, CD144, von Willebrand factor [vWF]). Pericytes and adventitial cells were isolated from the stromal vascular fraction (3.8% and 21.2%, respectively) using flow cytometry with a viability of 88%. The mean numbers of pericytes and adventitial cells isolated were 4.6 ± 2.2 × 10(4) and 16.2 ± 3.2 × 10(4) , respectively, equating to 7.9 ± 4.4 × 10(3) and 20.8 ± 4.3 × 10(3) cells per gram of harvested tissue. Fluorescence-activated cell sorting demonstrated that cultured PSCs were CD44+CD90+CD105+; polymerase chain reaction and immunocytochemistry demonstrated that pericytes retained their CD146+ phenotype and expressed the pericyte markers PDGFRβ and NG2. Differentiation was confirmed using histochemical stains and genetic expression. Using a pellet model, the IFP PSCs and the MSCs generated significantly more extracellular matrix than bone marrow MSCs (p stem cells compared with bone marrow. PSCs generated significantly more extracellular matrix than culture-derived MSCs. Stem Cells Translational Medicine 2017;6:77-87.

  11. CDH1 and IL1-beta expression dictates FAK and MAPKK-dependent cross-talk between cancer cells and human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Vishnubalaji, Radhakrishnan; Hamam, Rimi;

    2015-01-01

    INTRODUCTION: Tumor microenvironment conferred by stromal (mesenchymal) stem cells (MSCs) plays a key role in tumor development, progression, and response to therapy. Defining the role of MSCs in tumorigenesis is crucial for their safe utilization in regenerative medicine. Herein, we conducted...... was dependent on direct cell-cell contact. Our data also revealed transfer of cellular components between cancer cells and hMSCs as one possible mechanism for intercellular communication. Global gene expression analysis of sorted hMSCs following co-culturing with MCF7 and BT-20 cells revealed enrichment...... in signaling pathways related to bone formation, FAK and MAPKK signaling. Co-culturing hMSCs with MCF7 cells increased their growth evidenced by increase in Ki67 and PCNA staining in tumor cells in direct contact with hMSCs niche. On the other hand, co-culturing hMSCs with FaDu, HT-29 or MDA-MB-231 cells led...

  12. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system.

    Science.gov (United States)

    Dai, Tian; Yang, Enyun; Sun, Yongjun; Zhang, Linan; Zhang, Li; Shen, Ning; Li, Shuo; Liu, Lei; Xie, Yinghua; Wu, Shaomei; Gao, Zibin

    2013-11-01

    Targeting delivery of anticancer agents is a promising field in anticancer therapy. Inherent tumor-tropic and migratory properties of mesenchymal stem cells (MSCs) make them potential vehicles for targeting drug delivery systems for tumors. Although, MSCs have been successfully studied and discussed as a vehicle for cancer gene therapy, they have not yet been studied adequately as a potential vehicle for traditional chemical anticancer drugs. In this study, we have engineered MSCs as a potential targeting delivery vehicle for paclitaxel (TAX)-loaded nanoparticles (NPs). The size, surface charge, starving time of MSCs, incubating time and concentration of NPs could influence the efficiency of NPs uptake. In vitro release of TAX from CTS (chitosan)-TAX-NP-MSCs and the expression of P-glycoprotein demonstrated that release of TAX from MSCs might involve both passive diffusion and active transport. In vitro migration assays indicated that MSCs at passage number 3 have the highest migrating ability. Although, the migration ability of CTS-TAX-NP-MSCs could be inhibited by uptake of CTS-TAX-NPs, this ability could recover 6 days after the internalization.

  13. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Jae [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Hah, Young-Sool [Biomedical Research Institute, Gyeongsang National University Hospital, Jinju (Korea, Republic of); Ock, Sun-A. [Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon 441-706, Gyeonggi (Korea, Republic of); Lee, Jae-Hoon; Jeon, Ryong-Hoon; Park, Ji-Sung [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Lee, Sang-Il [Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju (Korea, Republic of); Rho, Na-Young [Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 4S7 (Canada); Rho, Gyu-Jin [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Lee, Sung-Lim, E-mail: sllee@gnu.ac.kr [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of)

    2015-05-01

    The in vitro differentiation and immunosuppressive capacity of mesenchymal stem cells (MSCs) derived from synovial fluid (SF-MSCs) and bone marrow extract (BM-MSCs) in an isogenic background of minipigs were comparatively analyzed in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA). The proliferation capacity and expression of pluripotent transcription factors (Oct3/4 and Sox2) were significantly (P<0.05) higher in SF-MSCs than in BM-MSCs. The differentiation capacity of SF-MSCs into adipocytes, osteocytes and neurocytes was significantly (P<0.05) lower than that of BM-MSCs, and the differentiation capacity of SF-MSCs into chondrocytes was significantly (P<0.05) higher than that of BM-MSCs. Systemic injection of BM- and SF-MSCs significantly (P<0.05) ameliorated the clinical symptoms of CIA mice, with SF-MSCs having significantly (P<0.05) higher clinical and histopathological recovery scores than BM-MSCs. Furthermore, the immunosuppressive properties of SF-MSCs in CIA mice were associated with increased levels of the anti-inflammatory cytokine interleukin (IL)-10, and decreased levels of the pro-inflammatory cytokine IL-1β and osteoclast-related sRANKL. In conclusion, SF-MSCs exhibited eminent pluripotency and differentiation capacity into chondrocytes, addition to substantial in vivo immunosuppressive capacity by elevating IL-10 and reducing IL-1β levels in CIA mice. - Highlights: • Immunosuppressive capacity of BM-, SM-, and SF-MSCs was evaluated in an RA model. • Proliferation, pluripotency and chondrogenic differentiation capacity were higher in SF-MSCs. • SF-MSCs exhibited improved therapeutic effects than BM-MSCs. • SF-MSCs may have applications as immunosuppressive therapy in autoimmune diseases.

  14. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    Directory of Open Access Journals (Sweden)

    Shuichiro Yamanaka

    Full Text Available We previously demonstrated that mesenchymal stem cells (MSCs differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months and from healthy controls (HC-MSCs to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α, we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.

  15. Bone Marrow-derived Mesenchymal Stem Cells (MSCs) as a Selective Delivery Vehicle for a PSA-Activated Protoxin for Advanced Prostate Cancer

    Science.gov (United States)

    2014-04-01

    Nunzio et al. 2011). Furthermore, damage to epithelial cells and glandular structure as a result of these factors can contribute to altered antigen...states, dynamic interactions initiated by paracrine mediators occur between the epithelium and cells normally restricted to the stroma, including smooth...2010, Brennen et al. 2012, Li et al. 2012). Human prostate-derived CAF co-implanted with initiated but non-tumorigenic human prostate epithelium into

  16. Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study.

    Science.gov (United States)

    Li, Lu; Wu, Shengzheng; Li, Peijing; Zhuo, Lisha; Gao, Yunhua; Xu, Yali

    2015-12-01

    Our objective is to investigate the promoting effect of hypoxic preconditioning combined with microbubble (MB)-mediated ultrasound (US) on the SDF-1/CXCR4 expression and the migration ability of mesenchymal stem cells (MSCs). Based on the uniform design, the parameters of MB-mediated US, such as the total treatment time (T), acoustic intensity (Q), and the dosage of MBs, were optimized firstly. The results were assessed by regression analysis. Using the optimum irradiation parameters, the concentration of SDF-1 in the supernatant, the expression levels of membrane CXCR4, and the cell viability of hypoxic MSCs or normoxic MSCs were compared. The in vitro transwell migration assay was performed as well. The best combination of parameters for more SDF-1 secretion and less MSCs death was T = 30 s, A = 0.6 W/cm(2), and MB = 10(6)/ml. After 24 h of hypoxic preconditioning, the expression of SDF-1 and surface CXCR4 was increased in the hypoxic MSC group as compared to the normoxic MSC group (P SDF-1/CXCR4 with the optimum parameters (P SDF-1/CXCR4 expression and improve the migration ability in MSCs.

  17. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  18. Human Umbilical Cord Mesenchymal Stem Cells Promote Breast Cancer Metastasis by Interleukin-8- and Interleukin-6-Dependent Induction of CD44(+)/CD24(-) Cells.

    Science.gov (United States)

    Ma, Fengxia; Chen, Dandan; Chen, Fang; Chi, Ying; Han, Zhibo; Feng, Xiaoming; Li, Xue; Han, Zhongchao

    2015-01-01

    Although emerging evidence links mesenchymal stem cells (MSCs) with cancer metastasis, the underlying mechanisms are poorly understood. In the present study, we found that human umbilical cord-derived MSCs (UC-MSCs) promoted MCF-7 cell migration in vitro and metastasis in vivo. To explore the mechanisms, the characteristics of MCF-7 cells cocultured with UC-MSCs were assessed. The expression and secretion of interleukin-8 (IL-8) and IL-6 were induced in MCF-7 cells cocultured with UC-MSCs. However, neutralization of IL-8 or IL-6 secreted by UC-MSCs could attenuate the enhanced expression of IL-8 and IL-6 in MCF-7 cells cocultured with UC-MSCs, which subsequently alleviated the enhanced migration. Similar to UC-MSCs, exogenous human recombinant IL-8 or IL-6 also promoted IL-8 and IL-6 expression and MCF-7 cell migration. In addition to enhanced IL-8 and IL-6 expression, MCF-7 cells cocultured with UC-MSCs displayed enhanced mammosphere-forming ability and increased percentage of CD44(+)/CD24(-) cells. However, epithelial-to-mesenchymal transition (EMT) was not observed in MCF-7 cells cocultured with UC-MSCs. Taken together, these results suggested that IL-8 and IL-6 secreted by UC-MSCs activated the autocrine IL-8 and IL-6 signaling in MCF-7 cells and induced CD44(+)/CD24(-) cells, which subsequently promoted MCF-7 cell migration in vitro and metastasis in vivo.

  19. Electric pulse current stimulation increases electrophysiological properties of If current reconstructed in mHCN4-transfected canine mesenchymal stem cells.

    Science.gov (United States)

    Feng, Yuanyuan; Luo, Shouming; Yang, Pan; Song, Zhiyuan

    2016-04-01

    The 'funny' current, also known as the If current, play a crucial role in the spontaneous diastolic depolarization of sinoatrial node cells. The If current is primarily induced by the protein encoded by the hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) gene. The functional If channel can be reconstructed in canine mesenchymal stem cells (cMSCs) transfected with mouse HCN4 (mHCN4). Biomimetic studies have shown that electric pulse current stimulation (EPCS) can promote cardiogenesis in cMSCs. However, whether EPCS is able to influence the properties of the If current reconstructed in mHCN4-transfected cMSCs remains unclear. The present study aimed to investigate the effects of EPCS on the If current reconstructed in mHCN4-transfected cMSCs. The cMSCs were transfected with the lentiviral vector pLentis-mHCN4-GFP. Following transfection, these cells were divided into two groups: mHCN4-transfected cMSCs (group A), and mHCN4-transfected cMSCs induced by EPCS (group B). Using a whole cell patch-clamp technique, the If current was recorded, and group A cMSCs showed significant time and voltage dependencies and sensitivity to extracellular Cs+. The half-maximal activation (V1/2) value was -101.2±4.6 mV and the time constant of activation was 324±41 msec under -160 mV. In the group B cells the If current increased obviously and activation curve moved to right. The absolute value of V1/2 increased significantly to -92.4±4.8 mV (P<0.05), and the time constant of activation diminished under the same command voltage (251±44 vs. 324±41, P<0.05). In addition, the mRNA and protein expression levels of HCN4, connexin 43 (Cx43) and Cx45 were upregulated in group B compared with group A, as determined by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Transmission electron micrographs also confirmed the increased gap junctions in group B. Collectively, these results indicated that reconstructed If channels may have a

  20. Generation of priming mesenchymal stem cells with enhanced potential to differentiate into specific cell lineages using extracellular matrix proteins.

    Science.gov (United States)

    Han, Na Rae; Yun, Jung Im; Park, Young Hyun; Ahn, Ji Yeon; Kim, Choonghyo; Choi, Jung Hoon; Lee, Eunsong; Lim, Jeong Mook; Lee, Seung Tae

    2013-07-01

    Poor understanding of the differentiation of mesenchymal stem cells (MSCs) has resulted in a low differentiation yield, and has hindered their application in medicine. As a solution, priming MSCs sensitive to signaling, thus stimulating differentiation into a specific cell lineage, may improve the differentiation yield. To demonstrate this, priming MSCs were produced by using a gelatin matrix for the isolation of primary MSCs from bone-marrow-derived primary cells. Subsequently, cellular characteristics and sensitivity to specific differentiation signals were analyzed at passage five. Compared to non-priming MSCs, priming MSCs showed no significant differences in cellular characteristics, but demonstrated a significant increase in sensitivity to neurogenic differentiation signals. These results demonstrate that generation of priming MSCs by specific extracellular signaling increases the rate of differentiation into a cell-specific lineage.

  1. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma

    Science.gov (United States)

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Lee, Kyoung Young; Ha, Eun Hee; Moon, Keun-Ai; Kim, Seong Who; Oh, Wonil; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2017-01-01

    Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses. PMID:28127050

  2. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  3. RhoA/ROCK signaling in chondrogenic differentiation of MSCs induced by TGF-β1

    Institute of Scientific and Technical Information of China (English)

    Liang Xu; Shuhua Yang; Hongtao Tian

    2006-01-01

    Objective: To investigate the role of RhoA/ROCK in the process of chondrogenic differentiation of MSCs in vitro induced by TGF-β1. Methods: MSCs were isolated from rat bone marrow, cultured and passaged. The cultured MSCs at the 3rd passage were induced to differentiate into chondrocytes in induction medium containing TGF-β1, the expressions of RhoA and ROCK1/2 in the induced MSCs cells were detected by Western-blot and RT-PCR. Results: In parallel to chondrogenic marker gene expressions of collagen Ⅱ and aggrecan, ROCK inhibition by Y27632 in these cells caused a significant decrease in mRNA level of collagen Ⅱ. Conclusion: The results suggest that RhoA/ROCK pathway may play an important and complex role in regulation of chondrogenic differentiation and gene expression.

  4. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, Rosa, E-mail: rosamaria.yanez@ciemat.es; Oviedo, Alberto, E-mail: alberto.oviedo@ciemat.es; Aldea, Montserrat, E-mail: montserrat.aldea@ciemat.es; Bueren, Juan A., E-mail: juan.bueren@ciemat.es; Lamana, Maria L., E-mail: maruja.lamana@ciemat.es

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  5. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  6. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available BACKGROUND: Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: Rat bone marrow-derived MSCs (5 × 10(6 were injected into Sprague-Dawley (SD rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.

  7. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  8. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+ Transplants

    Science.gov (United States)

    van der Garde, Mark; van Pel, Melissa; Millán Rivero, Jose Eduardo; de Graaf-Dijkstra, Alice; Slot, Manon C.; Kleinveld, Yoshiko; Watt, Suzanne M.; Roelofs, Helene

    2015-01-01

    Cotransplantation of CD34+ hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34+ cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45+ cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34+ cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34+ cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34+ cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34+ cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34+ cell engraftment. PMID:26414086

  9. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Directory of Open Access Journals (Sweden)

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  10. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Sotoca, Ana M., E-mail: a.sotoca@science.ru.nl [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Roelofs-Hendriks, Jose [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Boeren, Sjef [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Kraan, Peter M. van der [Department of Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Vervoort, Jacques [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Zoelen, Everardus J.J. van; Piek, Ester [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  11. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells.

    Science.gov (United States)

    Chen, Pei-Min; Yen, Men-Luh; Liu, Ko-Jiunn; Sytwu, Huey-Kang; Yen, B-Linju

    2011-07-18

    In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.

  12. Neurogenin 2 Converts Mesenchymal Stem Cells into a Neural Precursor Fate and Improves Functional Recovery after Experimental Stroke

    Directory of Open Access Journals (Sweden)

    Feng Cheng

    2014-03-01

    Full Text Available Background: Neurogenin2 (Ngn2 is a proneural gene that directs neuronal differentiation of progenitor cells during development. Here, we investigated whether Ngn2 can reprogram MSCs to adopt a neural precursor fate and enhance the therapeutic effects of MSCs after experimental stroke. Methods: In vitro, MSCs were transfected with lenti-GFP or lenti-Ngn2. Following neuronal induction, cells were identified by immunocytochemistry, Western blot and electrophysiological analyses. In a stroke model induced by transient right middle cerebral artery occlusion (MCAO, PBS, GFP-MSCs or Ngn2-MSCs were injected 1 day after MCAO. Behavioral tests, neurological and immunohistochemical assessments were performed. Results: In vitro, Ngn2-MSCs expressed neural stem cells markers (Pax6 and nestin and lost the potential to differentiate into mesodermal cell types. Following neural induction, Ngn2-MSCs expressed higher levels of neuron-specific proteins MAP2, Tuj1 and NeuN, and also expressed voltage-gated Na+ channel, which was absent in GFP-MSCs. In vivo, after transplantation, Ngn2-MSCs significantly reduced apoptotic cells, decreased infarct volume, and increased the expression of VEGF and BDNF. Finally, Ngn2-MSCs treated animals showed the highest functional recovery among the three groups. Conclusions: Ngn2 was sufficient to convert MSCs into a neural precursor fate and transplantation of Ngn2-MSCs was advantageous for the treatment of stroke rats.

  13. Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Lydia Usha

    Full Text Available The role of mesenchymal stem cells (MSCs on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.

  14. Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis.

    Directory of Open Access Journals (Sweden)

    Morgana T L Castelo-Branco

    Full Text Available BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs and bone marrow-derived mesenchymal stromal cells (BM-MSCs in rats with trinitrobenzene sulfonic acid (TNBS-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis.

  15. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.

    Science.gov (United States)

    Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He

    2016-02-01

    Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies.

  16. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  17. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion.

    Directory of Open Access Journals (Sweden)

    Kevin Anton

    Full Text Available Mesenchymal stem cells (MSCs exhibit tropism for sites of tissue injury and tumors. However, the influence of the microenvironment on MSC phenotype and localization remains incompletely characterized. In this study, we begin to define a macrophage-induced MSC phenotype. These MSCs secrete interleukin-6 (IL-6, CCL5, and interferon gamma-induced protein-10 (CXCL10 and exhibit increased mobility in response to multiple soluble factors produced by macrophages including IL-8, CCL2, and CCL5. The pro-migratory phenotype is dependent on activation of a c-Jun N-terminal kinase (JNK pathway. This work begins to identify the influence of macrophages on MSC biology. These interactions are likely to play an important role in the tissue inflammatory response and may provide insight into the migratory potential of MSCs in inflammation and tissue injury.

  18. Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Neuronal Differentiation by Enhancing the Wnt Signaling Pathway in an Alzheimer's Disease Model.

    Science.gov (United States)

    Oh, Se Hee; Kim, Ha Na; Park, Hyun-Jung; Shin, Jin Young; Lee, Phil Hyu

    2015-01-01

    Neurogenesis in the subgranular zone of the hippocampal dentate gyrus may act as an endogenous repair mechanism in Alzheimer's disease (AD), and the Wnt signaling pathway has been suggested to closely modulate neurogenesis in amyloid-β (Aβ)-related AD models. The present study investigated whether mesenchymal stem cells (MSCs) would modulate hippocampal neurogenesis via modulation of the Wnt signaling pathway in a model of AD. In Aβ-treated neuronal progenitor cells (NPCs), the coculture with MSCs increased significantly the expression of Ki-67, GFAP, SOX2, nestin, and HuD compared to Aβ treatment alone. In addition, MSC treatment in Aβ-treated NPCs enhanced the expression of β-catenin and Ngn1 compared to Aβ treatment alone. MSC treatment in Aβ-treated animals significantly increased the number of BrdU-ir cells in the hippocampus at 2 and 4 weeks compared to Aβ treatment alone. In addition, quantitative analysis showed that the number of BrdU and HuD double-positive cells in the dentate gyrus was significantly higher in the MSC-treated group than in controls or after Aβ treatment alone. These results demonstrate that MSC administration significantly augments hippocampal neurogenesis and enhances the differentiation of NPCs into mature neurons in AD models by augmenting the Wnt signaling pathway. The use of MSCs to modulate endogenous adult neurogenesis may have a significant impact on future strategies for AD treatment.

  19. Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures.

    Science.gov (United States)

    Hagmann, Sebastien; Rimmele, Claudia; Bucur, Florin; Dreher, Thomas; Zeifang, Felix; Moradi, Babak; Gotterbarm, Tobias

    2016-01-01

    Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.

  20. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  1. Immune Suppressive Effects of Tonsil-Derived Mesenchymal Stem Cells on Mouse Bone-Marrow-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Minhwa Park

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs on the differentiation, maturation, and function of dendritic cells (DCs. We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM- derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+ T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF, RANTES, interleukin-6 (IL-6, and monocyte chemoattractant protein-1 (MCP-1. Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.

  2. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2, and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.

  3. Peroxisome proliferator-activated receptor delta agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1.

    Science.gov (United States)

    Kim, Dong Hyun; Liu, Jiayong; Bhat, Samerna; Benedict, Gregory; Lecka-Czernik, Beata; Peterson, Stephen J; Ebraheim, Nabil A; Heck, Bruce E

    2013-01-01

    Smoking has long been associated with osteoporosis, decreased bone mineral density, increased risk of bone fracture, and increased health costs. Nicotine, the main component of cigarette smoke, has major negative effects on bone metabolism and skeletal remodeling in vivo. Although osteoblasts and osteoblast-like cells have been used extensively to study the impact of nicotine, few studies have been performed on human mesenchymal stem cells (hMSCs). In this context, we examined the impact of nicotine on (a) hMSCs proliferation, (b) osteoblastic differentiation, (c) alkaline phosphatase (ALP) activity, and (d) expression of canonical genes during differentiation of hMSCs. MSCs isolated from human bone marrow were treated with different concentrations (0, 0.1, 1 and 10 μM) of nicotine for 7 days. Nicotine caused a dose-dependent decrease in cell proliferation, decreased heme oxygenase-1 (HO-1) expression (p nicotine caused a dose-dependent decrease in alizarin red staining for calcium and staining for ALP. Induction of HO-1 by peroxisome proliferator-activated receptor delta agonist (GW0742) prevented the effect of nicotine. Nicotine caused a dose-dependent reduction in the expression of BMP-2, a well-known marker for bone formation; however, this was prevented by GW0742 treatment. Therefore, induction of HO-1 prevents the deleterious effects of nicotine on osteogenesis in hMSC. This offers insight into both how nicotine affects bone remodeling and a therapeutic approach to prevent fracture and osteoporosis in smokers.

  4. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction.

    Science.gov (United States)

    Chen, Gecai; Yue, Aihuan; Yu, Hong; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2016-03-01

    The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.

  5. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet.

    Directory of Open Access Journals (Sweden)

    Hong Li

    Full Text Available The clinical acute graft-versus-host disease (GvHD-therapy of mesenchymal stem cells (MSCs is not as satisfactory as expected. Secondary lymphoid organs (SLOs are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7. The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham's tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.

  6. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet.

    Science.gov (United States)

    Li, Hong; Jiang, Yan-Ming; Sun, Yan-Feng; Li, Ping; Dang, Rui-Jie; Ning, Hong-Mei; Li, Yu-Hang; Zhang, Ying-Jie; Jiang, Xiao-Xia; Guo, Xi-Min; Wen, Ning; Han, Yan; Mao, Ning; Chen, Hu; Zhang, Yi

    2014-01-01

    The clinical acute graft-versus-host disease (GvHD)-therapy of mesenchymal stem cells (MSCs) is not as satisfactory as expected. Secondary lymphoid organs (SLOs) are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7). The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham's tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.

  7. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  8. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Li, Xia; Wang, Xiupeng; Jiang, Xiangfen; Yamaguchi, Maho; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2016-02-01

    The interaction between boron nitride nanotubes (BNNTs) layer and mesenchymal stem cells (MSCs) is evaluated for the first time in this study. BNNTs layer supports the attachment and growth of MSCs and exhibits good biocompatibility with MSCs. BNNTs show high protein adsorption ability, promote the proliferation of MSCs and increase the secretion of total protein by MSCs. Especially, BNNTs enhance the alkaline phosphatase (ALP) activity as an early marker of osteoblasts, ALP/total protein and osteocalcin (OCN) as a late marker of osteogenic differentiation, which shows that BNNTs can enhance osteogenesis of MSCs. The release of trace boron and the stress on cells exerted by BNNTs with a fiber structure may account for the enhanced differentiation of MSCs into osteoblasts. Therefore BNNTs are potentially useful for bone regeneration in orthopedic applications.

  9. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse.

    Directory of Open Access Journals (Sweden)

    Hongqi Xin

    Full Text Available We demonstrate that tissue plasminogen activator (tPA and its inhibitors contribute to neurite outgrowth in the central nervous system (CNS after treatment of stroke with multipotent mesenchymal stromal cells (MSCs. In vivo, administration of MSCs to mice subjected to middle cerebral artery occlusion (MCAo significantly increased activation of tPA and downregulated PAI-1 levels in the ischemic boundary zone (IBZ compared with control PBS treated mice, concurrently with increases of myelinated axons and synaptophysin. In vitro, MSCs significantly increased tPA levels and concomitantly reduced plasminogen activator inhibitor 1 (PAI-1 expression in astrocytes under normal and oxygen and glucose deprivation (OGD conditions. ELISA analysis of conditioned medium revealed that MSCs stimulated astrocytes to secrete tPA. When primary cortical neurons were cultured in the conditioned medium from MSC co-cultured astrocytes, these neurons exhibited a significant increase in neurite outgrowth compared to conditioned medium from astrocytes alone. Blockage of tPA with a neutralizing antibody or knock-down of tPA with siRNA significantly attenuated the effect of the conditioned medium on neurite outgrowth. Addition of recombinant human tPA into cortical neuronal cultures also substantially enhanced neurite outgrowth. Collectively, these in vivo and in vitro data suggest that the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth after stroke.

  10. iPSC-MSCs with High Intrinsic MIRO1 and Sensitivity to TNF-α Yield Efficacious Mitochondrial Transfer to Rescue Anthracycline-Induced Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Yuelin Zhang

    2016-10-01

    Full Text Available Mesenchymal stem cells (MSCs can donate mitochondria and rescue anthracycline-induced cardiomyocyte (CM damage, although the underlying mechanisms remain elusive. We determined that the superior efficiency of mitochondrial transfer by human induced-pluripotent-stem-cell-derived MSCs (iPSC-MSCs compared with bone marrow-derived MSCs (BM-MSCs is due to high expression of intrinsic Rho GTPase 1 (MIRO1. Further, due to a higher level of TNFαIP2 expression, iPSC-MSCs are more responsive to tumor necrosis factor alpha (TNF-α-induced tunneling nanotube (TNT formation for mitochondrial transfer to CMs, which is regulated via the TNF-α/NF-κB/TNFαIP2 signaling pathway. Inhibition of TNFαIP2 or MIRO1 in iPSC-MSCs reduced the efficiency of mitochondrial transfer and decreased CMs protection. Compared with BM-MSCs, transplantation of iPSC-MSCs into a mouse model of anthracycline-induced cardiomyopathy resulted in more human mitochondrial retention and bioenergetic preservation in heart tissue. Efficacious transfer of mitochondria from iPSC-MSCs to CMs, due to higher MIRO1 expression and responsiveness to TNF-α-induced nanotube formation, effectively attenuates anthracycline-induced CM damage.

  11. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies

    Science.gov (United States)

    Zhang, Cheng; Yang, Shi-Jie; Wen, Qin; Zhong, Jiang F; Chen, Xue-Lian; Stucky, Andres; Press, Michael F; Zhang, Xi

    2017-01-01

    The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application. PMID:28123601

  12. In patients with chronic aplastic anemia, bone marrow–derived MSCs regulate the Treg/Th17 balance by influencing the Notch/RBP-J/FOXP3/RORγt pathway

    Science.gov (United States)

    Li, Hongbo; Wang, Lin; Pang, Yan; Jiang, Zujun; Liu, Zenghui; Xiao, Haowen; Chen, Haijia; Ge, Xiaohu; Lan, Hai; Xiao, Yang

    2017-01-01

    The standard treatment for aplastic anemia (AA) in young patients is a matched sibling hematopoietic stem cell transplant. Transfusion of a chronic AA patient with allogeneic bone marrow–derived mesenchymal stromal cells (BMMSCs) is currently being developed as a cell-based therapy, and the safety and efficacy of such transfusions are being continuously improved. Nevertheless, the mechanisms by which BMMSCs exert their therapeutic effects remain to be elucidated. In this study, mesenchymal stromal cells (MSCs) obtained from bone marrow donors were concentrated and intravenously injected into 15 chronic AA patients who had been refractory to prior immunosuppressive therapy. We showed that BMMSCs modulate the levels of Th1, Th2, Th17 and Treg cells, as well as their related cytokines in chronic AA patients. Furthermore, the percentages of Th1 and Th17 cells among the H-MSCs decreased significantly, while the percentage Treg cells increased. The Notch/RBP-J/FOXP3/RORγt pathway was involved in modulating the Treg/Th17 balance after MSCs were transfused in vitro. Additionally, the role played by transfused MSCs in regulating the Treg/Th17 balance via the Notch/RBP-J/FOXP3/RORγt pathway was further confirmed in an AA mouse model. In summary, in humans with chronic AA, BMMSCs regulate the Treg/Th17 balance by affecting the Notch/RBP-J/FOXP3/RORγt pathway. PMID:28195151

  13. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity.

    Science.gov (United States)

    Liu, Xin; Wang, Yuan; Cao, Zhen; Dou, Ce; Bai, Yun; Liu, Chuan; Dong, Shiwu; Fei, Jun

    2017-02-16

    This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.

  14. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  15. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs

    Directory of Open Access Journals (Sweden)

    Bernd Robert Stab II

    2016-12-01

    Full Text Available Mitochondria are highly dynamic organelles that in response to the cell’s bio-energetic state continuously undergo structural remodeling fission and fusion processes. This mitochondrial dynamic activity has been implicated in cell cycle, autophagy and age-related diseases. Adult tissue-derived mesenchymal stromal/stem cells present a therapeutic potential. However, to obtain an adequate mesenchymal stromal/stem cell number for clinical use, extensive in vitro expansion is required. Unfortunately, these cells undergo replicative senescence rapidly by mechanisms that are not well understood. Senescence has been associated with metabolic changes in the oxidative state of the cell, a process that has been also linked to mitochondrial fission and fusion events, suggesting an association between mitochondrial dynamic and senescence. In the present work, we studied the mitochondrial structural remodeling process of mesenchymal stromal/stem cells isolated from adipose tissue in vitro to determine if mitochondrial phenotypic changes are associated with mesenchymal stromal/stem cell senescence. For this purpose, mitochondrial dynamics and oxidative state of stromal/stem cell were compared between young and old cells. With increased cell passage, we observed a significant change in cell morphology that is associated with an increase in β-galactosidase activity. In addition, old cells (population doubling seven also showed increased mitochondrial mass, augmented superoxide production, and decreased mitochondrial membrane potential. These changes in morphology were related to slightly levels increases in mitochondrial fusion proteins, Mitofusion 1 (MFN1 and Dynamin-realted GTPase (OPA1. Collectively, our results showed that adipose tissue-derived MSCs at population doubling seven develop a senescent phenotype that is characterized by metabolic cell changes that can lead to mitochondrial fusion.

  16. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.

    Science.gov (United States)

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2015-08-14

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  17. Endometrial adult/progenitor stem cells: pathogenetic theory and new antiangiogenic approach for endometriosis therapy.

    Science.gov (United States)

    Pittatore, G; Moggio, A; Benedetto, C; Bussolati, B; Revelli, A

    2014-03-01

    The cyclical arrival of endometrial cells into the abdominal cavity through retrograde flux at menstruation represents the etiopathogenetic basis of endometriosis. The endometrium has peculiar regenerative properties linked to the presence of adult stem cells similar to mesenchymal stem cells (MSCs). Once in the abdominal cavity, these MSCs could proliferate, invade, and differentiate into endometrial cells, finally generating ectopic implants. As only differentiated endometrial cells, and not endometrial MSCs, possess steroid hormone receptors, MSCs could be responsible for the high rate of persistence/recurrence of the disease after hypoestrogenism-inducing therapies. Even angiogenesis promoted by MSCs could play an important role, as survival and proliferation of endometriotic tissue depend on the formation of new blood vessels. Inhibition of angiogenesis represents, in fact, a new, promising therapeutic approach for the disease. Further, medications directly targeting endometriosis MSCs could be effective, alone or in association with hormonal treatments, in increasing the success of medical treatment.

  18. Effects of mesenchymal stem cell-derived cytokines on the functional properties of endothelial progenitor cells.

    Science.gov (United States)

    Kamprom, Witchayaporn; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Supokawej, Aungkura; Wattanapanitch, Methichit; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-01-01

    Human mesenchymal stem cell (hMSC) is a potential source for cell therapy due to its property to promote tissue repair. Although, it has been known that hMSCs promote tissue repair via angiogenic cytokines, the interaction between hMSC-derived cytokines and the endothelial progenitor cells (EPCs), which play an important role in tissue neovascularization, is poorly characterized. We investigate the effect of cytokine released from different sources of hMSCs including bone marrow and gestational tissues on the EPC functions in vitro. The migration, extracellular matrix invasion and vessel formation of EPCs were studied in the presence or absence of cytokines released from various sources of hMSCs using transwell culture system. The migration of EPCs was highest when co-culture with secretory factors from placenta-derived hMSCs (PL-hMSCs) compared to those co-culture with other sources of hMSCs. For invasion and vessel formation, secretory factors from bone marrow-derived hMSCs (BM-hMSCs) could produce the maximal enhancement compared to other sources. We further identified the secreted cytokines and found that the migratory-enhancing cytokine from PL-hMSCs was PDGF-BB while the enhancing cytokine from BM-hMSCs on invasion was IGF-1. For vessel formation, the cytokines released from BM-hMSCs were IGF1 and SDF-1. In conclusion, hMSCs can release angiogenic cytokines which increase the migration, invasion and vessel forming capacity of EPCs. We can then use hMSCs as a source of angiogenic cytokines to induce neovascularization in injured/ischemic tissues.

  19. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  20. Monocyte chemotactic protein 1 increases homing of mesenchymal stem cell to injured myocardium and neovascularization following myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by permanent left anterior descending branch ligation. Mesenchymal stem cells from donor rats were cultured in IMDM and labeled with BrdU. The Rats were divided into two groups. Monocyte chemotactic protein 1(MCP-1) expression were measured by in situ hybridization and immunohistochemistry in the sham operated or infarcted hearts at 1,2, 4,7,14 and 28 days post operation in MCP-1 detection group. The rats were injected with MCP-1, anti-MCP-1 antibody or saline 4 days after myocardial infarction in intervention group. Then, a total of 5 × 106 cells in 2.5 ml of PBS were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function and blood vessel density were assessed 28 days post injection. Results:Self-generating MCP-1 expression was increased at the first day, peaked at the 7th day and decreased thereafter post MI and remained unchanged in sham operated hearts. The MSCs enrichment in the host hearts were more abundant in the MI groups than that in the non-Mi group(P = 0.000), the MSCs enrichment in the host hearts were more abundant in the MCP-1 injected group than that in the anti-MCP-1 antibody and saline injected groups (P = 0.000). Cardiac function was improved more in MCP-1 injected group than anti-MCP-1 antibody and saline injected groups(P= 0.000). Neovascularization in MCP-1 injected group significantly increased compared with that of other groups(P = 0.000). Conclusion: Myocardial MCP-1 expression was increased only in the early phase post MI. MCP-1 may enhance MSCs homing to the injured heart and improve cardiac function by promoting neovascularization.

  1. Chemokine stromal cell-derived factor 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yu; CHEN Xin; XU Ming; ZHANG Lei-yang; XIANG Fei

    2009-01-01

    Background Heart failure due to ischemic heart disease is still a major health problem. Myocardium regeneration emerges as a novel therapeutic method for treating myocardial infarction (MI). However, it is affected by many factors. The present study was aimed to investigate the effect of chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12 on mesenchymal stem cells (MSCs) homing to injured myocardium in a rat myocardial infarction model. Methods A rat myocardial infarction model was established by permanent left anterior descending branch ligation. Mesenchymal stem cells from donor rats were cultured in IMDM and labeled with bromodeoxyuridine. The rats were divided into two groups. SDF-1 expression was measured by in situ hybridization and immunohistochemistry in the sham operated or infarcted hearts at 1, 2, 4, 7, 14 and 28 days post operation in the SDF-1 detection group. The rats in the intervention groups were injected with SDF-1, anti-SDF-1 antibody or saline 4 days after myocardial infarction. Then, a total of 5x106 cells in 2.5 ml of phosphate-buffered saline were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted on the 3rd clay post injection. Cardiac function and blood vessel density were assessed on the 28th day post injection. Results Self-generating SDF-1 expression was increased at the first day post MI, peaked at the 7th day and decreased thereafter while it remained unchanged in sham operated hearts. The MSCs enrichment in the host hearts were more abundant in the MI groups than in the non-MI group (P=0.000); the MSCs enrichment in the host hearts were more abundant in the SDF-1 injected group than in the anti-SDF-1 antibody and saline injected groups (P = 0.000). Cardiac function was improved more in the SDF-1 injected group than in the anti-SDF-1 antibody and saline injected groups (P = 0.000). Neovascularization in the SDF-1 injected group increased significantly compared to the other groups (P

  2. Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Sang-Sang Qiu; Yan Shao; Hong-Huan Song; Gu-Li Li; Wei Lu; Li-Mei Zhu

    2016-01-01

    Background:Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair.The treatment with MSCs will be likely to aggravate the degree of fibrosis.The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes,such as fibrosis.Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6).DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway.Methods:Stable MSCs were randomly divided into four groups:MSCs control,MSCs + transforming growth factor-β (TGF-β),MSCs + DKK1,and MSCs + TGF-β + DKK1.Flow cytometry was used to identify MSCs.Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test.Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways.Western blotting analysis was employed to test expression of fibroblast surface markers and,finally,real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins.Results:Cultivated MSCs were found to conform to the characteristics of standard MSCs:expression of cluster of differentiation (CD) 73,90,and 105,not expression of 34,45,and 79.We found that DKK1 could maintain the normal cell morphology of MSCs.Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β.However,the expression was lower in the MSCs + TGF-β + DKK1.Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group.Finally,mRNA expression offibroblast markers vimentin,α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin,T-cell factor,and glycogen synthase kinase-3β was

  3. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.

    Science.gov (United States)

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei

    2016-04-01

    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  4. Identification of cytokines involved in hepatic differentiation of mBM-MSCs under liver-injury conditions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using ...

  5. Hypoxia Promotes Osteogenesis of Human Placental-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Gu, Qiaoli; Gu, Yanzheng; Shi, Qin; Yang, Huilin

    2016-01-01

    Placental-derived mesenchymal stem cells (pMSCs) are promising candidates for regenerative medicine because they possess high proliferative capacity and multi-differentiation potential. Human pMSCs are residing in an environment with low oxygen tension in the body. Heme oxygenase-1 (HO-1) is known to participate in the regulation of MSC differentiation. The present study aimed to investigate the impact of hypoxia on the osteogenic differentiation of human pMSCs, and to elucidate the role of HO-1 in the osteogenic differentiation of hypoxic pMSCs. Human pMSCs were cultured under normoxia (21% O2) or hypoxia (5% O2) for 3 days. We found that hypoxia maintained the morphology and immunophenotype of human pMSCs. The expression of stemness markers Oct4, Nanog, and Sox2 was increased under hypoxia. After a 5-day hypoxic culture, the proliferation ability of pMSCs was increased, which might be correlated with the increased expression of stem cell factor. During osteogenic induction, hypoxia increased the expression of osteogenic genes including osteopontin, osteocalcin, and alkaline phosphatase (ALP). Moreover, hypoxia increased the mineralization and ALP levels of human pMSCs as evidenced by Alizarin Red staining and ALP staining. Upregulation of HO-1 by cobalt-protoporphyrin treatment increased the osteogenic differentiation of pMSCs under hypoxia, while inhibition of HO-1 by Zn-protoporphyrin reduced the osteogenic differentiation of hypoxic pMSCs. Taken together, our data suggest that hypoxia can promote the osteogenic differentiation of human pMSCs. Upregulation of HO-1 can further increase the osteogenesis of human pMSCs under hypoxia. Our findings will highlight the therapeutic potential of MSCs in the tissue engineering of bones.

  6. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1

    Science.gov (United States)

    Yu, Bo; Shao, Hui; Su, Chang; Jiang, Yuanfeng; Chen, Xiteng; Bai, Lingling; Zhang, Yan; Li, Qiutang; Zhang, Xiaomin; Li, Xiaorong

    2016-01-01

    Although accumulated evidence supports the notion that mesenchymal stem cells (MSCs) act in a paracrine manner, the mechanisms are still not fully understood. Recently, MSC-derived exosomes (MSC-Exos), a type of microvesicle released from MSCs, were thought to carry functional proteins and RNAs to recipient cells and play therapeutic roles. In the present study, we intravitreally injected MSCs derived from either mouse adipose tissue or human umbilical cord, and their exosomes to observe and compare their functions in a mouse model of laser-induced retinal injury. We found that both MSCs and their exosomes reduced damage, inhibited apoptosis, and suppressed inflammatory responses to obtain better visual function to nearly the same extent in vivo. Obvious down-regulation of monocyte chemotactic protein (MCP)-1 in the retina was found after MSC-Exos injection. In vitro, MSC-Exos also down-regulated MCP-1 mRNA expression in primarily cultured retinal cells after thermal injury. It was further demonstrated that intravitreal injection of an MCP-1-neutralizing antibody promoted the recovery of retinal laser injury, whereas the therapeutic effect of exosomes was abolished when MSC-Exos and MCP-1 were administrated simultaneously. Collectively, these results suggest that MSC-Exos ameliorate laser-induced retinal injury partially through down-regulation of MCP-1. PMID:27686625

  7. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders

    Directory of Open Access Journals (Sweden)

    GABRIELA D. COLPO

    2015-08-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.

  8. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders.

    Science.gov (United States)

    Colpo, Gabriela D; Ascoli, Bruna M; Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Silva, Emily G; Cirne-Lima, Elizabeth O; Quevedo, João; Kapczinski, Flávio; Rosa, Adriane R

    2015-08-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.

  9. The Fate and Distribution of Autologous Bone Marrow Mesenchymal Stem Cells with Intra-Arterial Infusion in Osteonecrosis of the Femoral Head in Dogs

    Directory of Open Access Journals (Sweden)

    Hongting Jin

    2016-01-01

    Full Text Available This study aimed to investigate if autologous bone marrow mesenchymal stem cells (MSCs could treat osteonecrosis of the femoral head (ONFH and what the fate and distribution of the cells are in dogs. Twelve Beagle dogs were randomly divided into two groups: MSCs group and SHAM operated group. After three weeks, dogs in MSCs group and SHAM operated group were intra-arterially injected with autologous MSCs and 0.9% normal saline, respectively. Eight weeks after treatment, the necrotic volume of the femoral heads was significantly reduced in MSCs group. Moreover, the trabecular bone volume was increased and the empty lacunae rate was decreased in MSCs group. In addition, the BrdU-positive MSCs were unevenly distributed in femoral heads and various vital organs. But no obvious abnormalities were observed. Furthermore, most of BrdU-positive MSCs in necrotic region expressed osteocalcin in MSCs group and a few expressed peroxisome proliferator-activated receptor-γ (PPAR-γ. Taken together, these data indicated that intra-arterially infused MSCs could migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. It suggests that intra-arterial infusion of autologous MSCs might be a feasible and relatively safe method for the treatment of femoral head necrosis.

  10. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    Science.gov (United States)

    Suzuki, Keita; Sawada, Shunsuke; Takizawa, Naoki; Yaegashi, Takashi; Ishisaki, Akira

    2017-01-01

    Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue. PMID:28167967

  11. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    Directory of Open Access Journals (Sweden)

    Keita Suzuki

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM- MSCs. The expression of monocyte chemotactic protein- (MCP-1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.

  12. CD13 Promotes Mesenchymal Stem Cell-mediated regeneration of ischemic muscle

    Directory of Open Access Journals (Sweden)

    M. Mamunur eRahman

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1, showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal

  13. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    Science.gov (United States)

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.

  14. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels

    Science.gov (United States)

    Ho, Steve S.; Murphy, Kaitlin C.; Binder, Bernard Y.K.; Vissers, Caroline B.

    2016-01-01

    Mesenchymal stem cell (MSC)-based therapies are under broad investigation for applications in tissue repair but suffer from poor cell persistence and engraftment upon transplantation. MSC spheroids exhibit improved survival, anti-inflammatory, and angiogenic potential in vitro, while also promoting vascularization when implanted in vivo. However, these benefits are lost once cells engage the tissue extracellular matrix and migrate from the aggregate. The efficacy of cell therapy is consistently improved when using engineered materials, motivating the need to investigate the role of biomaterials to instruct spheroid function. In order to assess the contribution of adhesivity on spheroid activity in engineered materials and promote the bone-forming potential of MSCs, we compared the function of MSC spheroids when entrapped in Arg-Gly-Asp (RGD)-modified alginate hydrogels to nonfouling unmodified alginate. Regardless of material, MSC spheroids exhibited reduced caspase activity and greater vascular endothelial growth factor (VEGF) secretion compared with equal numbers of dissociated cells. MSC spheroids in RGD-modified hydrogels demonstrated significantly greater cell survival than spheroids in unmodified alginate. After 5 days in culture, spheroids in RGD-modified gels had similar levels of apoptosis, but more than a twofold increase in VEGF secretion compared with spheroids in unmodified gels. All gels contained mineralized tissue 8 weeks after subcutaneous implantation, and cells entrapped in RGD-modified alginate exhibited greater mineralization versus cells in unmodified gels. Immunohistochemistry confirmed more diffuse osteocalcin staining in gels containing spheroids compared with dissociated controls. This study demonstrates the promise of cell-instructive biomaterials to direct survival and function of MSC spheroids for bone tissue engineering applications. Significance Mesenchymal stem cell (MSC) spheroids exhibit improved therapeutic potential in vitro

  15. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid–Gelatin Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Christian G. Pfeifer

    2016-05-01

    Full Text Available Mesenchymal stem cells (MSCs seeded on specific carrier materials are a promising source for the repair of traumatic cartilage injuries. The best supportive carrier material has not yet been determined. As natural components of cartilage’s extracellular matrix, hyaluronic acid and collagen are the focus of biomaterial research. In order to optimize chondrogenic support, we investigated three different scaffold compositions of a hyaluronic acid (HA-gelatin based biomaterial. Methods: Human MSCs (hMSCs were seeded under vacuum on composite scaffolds of three different HA-gelatin ratios and cultured in chondrogenic medium for 21 days. Cell-scaffold constructs were assessed at different time points for cell viability, gene expression patterns, production of cartilage-specific extracellular matrix (ECM and for (immuno-histological appearance. The intrinsic transforming growth factor beta (TGF-beta uptake of empty scaffolds was evaluated by determination of the TGF-beta concentrations in the medium over time. Results: No significant differences were found for cell seeding densities and cell viability. hMSCs seeded on scaffolds with higher ratios of HA showed better cartilage-like differentiation in all evaluated parameters. TGF-beta uptake did not differ between empty scaffolds. Conclusion: Higher ratios of HA support the chondrogenic differentiation of hMSCs seeded on a HA-gelatin composite scaffold.

  16. In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Song [Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin (China); Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); De Becker, Ann [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); De Raeve, Hendrik [Department of Anatomopathology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Van Camp, Ben; Vanderkerken, Karin [Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); Van Riet, Ivan, E-mail: ivan.vanriet@uzbrussel.be [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Murine MSCs can undergo spontaneously malignant transformation and form sarcoma. Black-Right-Pointing-Pointer Acquisition of CD34 is a transformation type for MSCs into sarcoma. Black-Right-Pointing-Pointer Notch/Hh/Wnt pathways are related to the malignant phenotype of transformed MSCs. -- Abstract: Mesenchymal stem cells (MSCs) have currently generated numerous interests in pre-clinical and clinical applications due to their multiple lineages differentiation potential and immunomodulary effects. However, accumulating evidence indicates that MSCs, especially murine MSCs (mMSCs), can undergo spontaneous transformation after long-term in vitro culturing, which might reduce the therapeutic application possibilities of these stem cells. In the present study, we observed that in vitro expanded bone marrow (BM) derived mMSCs from the C57Bl/KaLwRij mouse strain can lose their specific stem cells markers (CD90 and CD105) and acquire CD34 expression, accompanied with an altered morphology and an impaired tri-lineages differentiation capacity. Compared to normal mMSCs, these transformed mMSCs exhibited an increased proliferation rate, an enhanced colony formation and migration ability as well as a higher sensitivity to anti-tumor drugs. Transformed mMSCs were highly tumorigenic in vivo, resulting in aggressive sarcoma formation when transplanted in non-immunocompromised mice. Furthermore, we found that Notch signaling downstream genes (hey1, hey2 and heyL) were significantly upregulated in transformed mMSCs, while Hedgehog signaling downstream genes Gli1 and Ptch1 and the Wnt signaling downstream gene beta-catenin were all decreased. Taken together, we observed that murine in vitro expanded BM-MSCs can transform into CD34 expressing cells that induce sarcoma formation in vivo. We assume that dysregulation of the Notch(+)/Hh(-)/Wnt(-) signaling pathway is associated with the malignant phenotype of the transformed mMSCs.

  17. NF-Kβ Activation in U266 Cells on Mesenchymal Stem Cells

    Science.gov (United States)

    Zahedi, Sara; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin

    2016-01-01

    Purpose: Mesenchymal Stem Cells (MSCs) are one of the essential members of Bone Marrow (BM) microenvironment and the cells affect normal and malignant cells in BM milieu. One of the most important hematological malignancies is Multiple Myeloma (MM). Numerous studies reported various effects of MSCs on myeloma cells. MSCs initiate various signaling pathways in myeloma cells, particularly NF-kβ. NF-kβ signaling pathway plays pivotal role in the survival, proliferation and resistance of myeloma cells to the anticancer drugs, therefore this pathway can be said to be a vital target for cancer therapy. This study examined the relationship between U266 cells and MSCs. Methods: U266 cells were cultured with Umbilical Cord Blood derived-MSCs (UCB-MSCs) and Conditioned Medium (C.M). Effect of UCB-MSCs and C.M on proliferation rate and CD54 expression of U266 cells were examined with MTT assay and Flowcytometry respectively. Furthermore, expression of CXCL1, PECAM-1, JUNB, CCL2, CD44, CCL4, IL-6, and IL-8 were analyzed by Real Time-PCR (RT-PCR). Moreover, status of p65 protein in NF-kβ pathway assessed by western blotting. Results: Our findings confirm that UCB-MSCs support U266 cells proliferation and they increase CD54 expression. In addition, we demonstrate that UCB-MSCs alter the expression of CCL4, IL-6, IL-8, CXCL1 and the levels of phosphorylated p65 in U266 cells. Conclusion: Our study provides a novel sight to the role of MSCs in the activation of NF-kβ signaling pathway. So, NF-kβ signaling pathway will be targeted in future therapies against MM.

  18. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  19. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels.

    Science.gov (United States)

    Mehta, Manav; Madl, Christopher M; Lee, Shimwoo; Duda, Georg N; Mooney, David J

    2015-11-01

    Interactions between cells and the extracellular matrix (ECM) are known to play critical roles in regulating cell phenotype. The identity of ECM ligands presented to mesenchymal stem cells (MSCs) has previously been shown to direct the cell fate commitment of these cells. To enhance osteogenic differentiation of MSCs, alginate hydrogels were prepared that present the DGEA ligand derived from collagen I. When presented from hydrogel surfaces in 2D, the DGEA ligand did not facilitate cell adhesion, while hydrogels presenting the RGD ligand derived from fibronectin did encourage cell adhesion and spreading. However, the osteogenic differentiation of MSCs encapsulated within alginate hydrogels presenting the DGEA ligand was enhanced when compared with unmodified alginate hydrogels and hydrogels presenting the RGD ligand. MSCs cultured in DGEA-presenting gels exhibited increased levels of osteocalcin production and mineral deposition. These data suggest that the presentation of the collagen I-derived DGEA ligand is a feasible approach for selectively inducing an osteogenic phenotype in encapsulated MSCs.

  20. A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly.

    Science.gov (United States)

    Liu, Ge; Li, Li; Huo, Da; Li, Yanzhao; Wu, Yangxiao; Zeng, Lingqing; Cheng, Panke; Xing, Malcolm; Zeng, Wen; Zhu, Chuhong

    2017-05-01

    Myocardial infarction (MI) is a serious ischemic condition affecting many individuals around the world. Vascular endothelial growth factor (VEGF) is considered a promising factor for enhancing cardiac function by promoting angiogenesis. However, the lack of a suitable method of VEGF delivery to the MI area is a serious challenge. In this study, we screened a suitable delivery carrier with favorable biocompatibility that targeted the MI area using the strategy of an inherent structure derived from the body and that was based on characteristics of the MI. Mesenchymal stem cells (MSCs) are important infiltrating cells that are derived from blood and have an inherent tropism for the MI zone. We hypothesized that VEGF-encapsulated MSCs targeting MI tissue could improve cardiac function by angiogenesis based on the tropism of the MSCs to the MI area. We first developed VEGF-encapsulated MSCs using self-assembled gelatin and alginate polyelectrolytes to improve angiogenesis and cardiac function. In vitro, the results showed that VEGF-encapsulated MSCs had a sustained release of VEGF and tropism to SDF-1. In vivo, VEGF-encapsulated MSCs migrated to the MI area, enhanced cardiac function, perfused the infarcted area and promoted angiogenesis. These preclinical findings suggest that VEGF-loaded layer-by-layer self-assembled encapsulated MSCs may be a promising and minimally invasive therapy for treating MI. Furthermore, other drugs loaded to layer-by-layer self-assembled encapsulated MSCs may be promising therapies for treating other diseases.

  1. TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling.

    Science.gov (United States)

    Rashedi, Iran; Gómez-Aristizábal, Alejandro; Wang, Xing-Hua; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stromal cells (MSCs) are the subject of numerous clinical trials, largely due to their immunomodulatory and tissue regenerative properties. Toll-like receptors (TLRs), especially TLR3 and TLR4, are highly expressed on MSCs and their activation can significantly modulate the immunosuppressive and anti-inflammatory functions of MSCs. While MSCs can recruit and promote the generation of regulatory T cells (Tregs), the effect of TLR activation on MSC-mediated Treg induction is unknown. In this study, we investigated the effect of ligand-mediated activation of TLR3 and TLR4 on Treg induction by human MSCs. We found that generation of Tregs in human CD4(+) lymphocyte and MSC cocultures was enhanced by either TLR3 or TLR4 activation of MSCs and that the increase was abolished by TLR3 and TLR4 gene-silencing. Augmented Treg induction by TLR-activated MSCs was cell contact-dependent and associated with increased gene expression of the Notch ligand, Delta-like 1. Moreover, inhibition of Notch signaling abrogated the augmented Treg levels in the MSC cocultures. Our data show that TLR3 or TLR4 activation of MSCs increases Treg induction via the Notch pathway and suggest new means to enhance the potency of MSCs for treating disorders with an underlying immune dysfunction, including steroid resistant acute graft-versus-host disease. Stem Cells 2017;35:265-275.

  2. Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury

    NARCIS (Netherlands)

    Kim, Sally Yunsun; Burgess, Janette K.; Wang, Yiwei; Kable, Eleanor P. W.; Weiss, Daniel J.; Chan, Hak-Kim; Chrzanowski, Wojciech

    2016-01-01

    Background: Current treatment regimens for inhalation injury are mainly supportive and rely on self-regeneration processes for recovery. Cell therapy with mesenchymal stromal cells (MSCs) is increasingly being investigated for the treatment of inhalation injury. Human amniotic MSCs (hAMSCs) were use

  3. Atomized human amniotic mesenchymal stromal cells for direct delivery to the airway for treatment of lung injury

    NARCIS (Netherlands)

    Kim, Sally Yunsun; Burgess, Janette K.; Wang, Yiwei; Kable, Eleanor P. W.; Weiss, Daniel J.; Chan, Hak-Kim; Chrzanowski, Wojciech

    2016-01-01

    Background: Current treatment regimens for inhalation injury are mainly supportive and rely on self-regeneration processes for recovery. Cell therapy with mesenchymal stromal cells (MSCs) is increasingly being investigated for the treatment of inhalation injury. Human amniotic MSCs (hAMSCs) were use

  4. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus

    Science.gov (United States)

    Garcia, John; Wright, Karina; Roberts, Sally; Kuiper, Jan Herman; Mangham, Chas; Richardson, James; Mennan, Claire

    2016-01-01

    The infrapatellar fat pad (FP) and synovial fluid (SF) in the knee serve as reservoirs of mesenchymal stromal cells (MSCs) with potential therapeutic benefit. We determined the influence of the donor on the phenotype of donor matched FP and SF derived MSCs and examined their immunogenic and immunomodulatory properties before and after stimulation with the pro-inflammatory cytokine interferon-gamma (IFN-γ). Both cell populations were positive for MSC markers CD73, CD90 and CD105, and displayed multipotency. FP-MSCs had a significantly faster proliferation rate than SF-MSCs. CD14 positivity was seen in both FP-MSCs and SF-MSCs, and was positively correlated to donor age but only for SF-MSCs. Neither cell population was positive for the co-stimulatory markers CD40, CD80 and CD86, but both demonstrated increased levels of human leukocyte antigen-DR (HLA-DR) following IFN-γ stimulation. HLA-DR production was positively correlated with donor age for FP-MSCs but not SF-MSCs. The immunomodulatory molecule, HLA-G, was constitutively produced by both cell populations, unlike indoleamine 2, 3-dioxygenase which was only produced following IFN-γ stimulation. FP and SF are accessible cell sources which could be utilised in the treatment of cartilage injuries, either by transplantation following ex-vivo expansion or endogenous targeting and mobilisation of cells close to the site of injury. PMID:27073003

  5. Embryonic stem cells conditioned medium enhances Wharton's jelly-derived mesenchymal stem cells expansion under hypoxic condition.

    Science.gov (United States)

    Prasajak, Patcharee; Rattananinsruang, Piyaporn; Chotinantakul, Kamonnaree; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat

    2015-05-01

    Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco's modified Eagle's medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29(+), CD44(+), CD90(+), CD34(-), CD45(-)) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the

  6. Magnetic Nanoparticle Based Nonviral MicroRNA Delivery into Freshly Isolated CD105+ hMSCs

    Directory of Open Access Journals (Sweden)

    Anna Schade

    2014-01-01

    Full Text Available Genetic modifications of bone marrow derived human mesenchymal stem cells (hMSCs using microRNAs (miRs may be used to improve their therapeutic potential and enable innovative strategies in tissue regeneration. However, most of the studies use cultured hMSCs, although these can lose their stem cell characteristics during expansion. Therefore, we aimed to develop a nonviral miR carrier based on polyethylenimine (PEI bound to magnetic nanoparticles (MNPs for efficient miR delivery in freshly isolated hMSCs. MNP based transfection is preferable for genetic modifications in vivo due to improved selectivity, safety of delivery, and reduced side effects. Thus, in this study different miR/PEI and miR/PEI/MNP complex formulations were tested in vitro for uptake efficiency and cytotoxicity with respect to the influence of an external magnetic field. Afterwards, optimized magnetic complexes were selected and compared to commercially available magnetic vectors (Magnetofectamine, CombiMag. We found that all tested transfection reagents had high miR uptake rates (yielded over 60% and no significant cytotoxic effects. Our work may become crucial for virus-free introduction of therapeutic miRs as well as other nucleic acids in vivo. Moreover, in the field of targeted stem cell therapy nucleic acid delivery prior to transplantation may allowfor initial cell modulation in vitro.

  7. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders.

  8. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction

    Directory of Open Access Journals (Sweden)

    Xiaodong Xue

    2015-01-01

    Full Text Available Objectives. Low survival rate of mesenchymal stem cells (MSCs severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI. Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs or empty vector (vector-MSCs. MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF, insulin-like growth factor-1 (IGF-1, and plate-derived growth factor (PDGF increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

  9. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche

    Directory of Open Access Journals (Sweden)

    LM McNamara

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs within their native environment of the stem cell niche in bone receive biochemical stimuli from surrounding cells. These stimuli likely influence how MSCs differentiate to become bone precursors. The ability of MSCs to undergo osteogenic differentiation is well established in vitro;however, the role of the natural cues from bone’s regulatory cells, osteocytes and osteoblasts in regulating the osteogenic differentiation of MSCs in vivo are unclear. In this study we delineate the role of biochemical signalling from osteocytes and osteoblasts, using conditioned media and co-culture experiments, to understand how they direct osteogenic differentiation of MSCs. Furthermore, the synergistic relationship between osteocytes and osteoblasts is examined by transwell co-culturing of MSCs with both simultaneously. Osteogenic differentiation of MSCs was quantified by monitoring alkaline phosphatase (ALP activity, calcium deposition and cell number. Intracellular ALP was found to peak earlier and there was greater calcium deposition when MSCs were co-cultured with osteocytes rather than osteoblasts, suggesting that osteocytes are more influential than osteoblasts in stimulating osteogenesis in MSCs. Osteoblasts initially stimulated an increase in the number of MSCs, but ultimately regulated MSC differentiation down the same pathway. Our novel co-culture system confirmed a synergistic relationship between osteocytes and osteoblasts in producing biochemical signals to stimulate the osteogenic differentiation of MSCs. This study provides important insights into the mechanisms at work within the native stem cell niche to stimulate osteogenic differentiation and outlines a possible role for the use of co-culture or conditioned media methodologies for tissue engineering applications.

  10. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  11. Trimetazidine Protects Umbilical Cord Mesenchymal Stem Cells Against Hypoxia and Serum Deprivation Induced Apoptosis by Activation of Akt

    Directory of Open Access Journals (Sweden)

    Xuhe Gong

    2014-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC transplantation is a promising therapy for cardiac repair. However, the efficacy is limited by the poor viability of MSCs in the infarcted heart. Recent findings have implicated that trimetazidine (TMZ enhanced the survival of the stem cells under various conditions. However, as the stem cells in these studies were animal-derived, little information is available about the effects of TMZ on human MSCs. Herein, we propose that TMZ may protect human MSCs against apoptosis induced by Hypoxia/Serum deprivation (H/SD. Methods: Human umbilical cord MSCs (UC-MSCs from Wharton's jelly were pretreated with 10µM TMZ of H/SD with or without the Akt inhibitor LY294002. The morphological changes were assessed using Hoechst 33342. Apoptosis was evaluated via Annexin V/PI staining; and apoptosis-related proteins were detected using Western-blot. Protein chip technology was used to screen for differences between the cell supernatants. Results: TMZ had a significant protective effect against H/SD-induced apoptosis, accompanied by an increase in Bcl-2 and p-Akt. The TMZ-mediated anti-apoptotic effect on MSCs could be attenuated by treatment with LY294002. Moreover, protein chip assays showed that TMZ treatment increased the paracrine functions of MSCs. Conclusion: Trimetazidine protects human UC-MSCs from H/SD-induced apoptosis via the Akt pathway and may therefore be a potentially useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.

  12. Human Mesenchymal Stromal Cells Transplantation May Enhance or Inhibit 4T1 Murine Breast Adenocarcinoma through Different Approaches

    Directory of Open Access Journals (Sweden)

    T. Jazedje

    2015-01-01

    Full Text Available The use of Mesenchymal Stromal Cells (MSCs aiming to treat cancer has shown very contradictory results. In an attempt to clarify the contradictory results reported in the literature and the possible role of human fallopian tube Mesenchymal Stromal Cells (htMSCs against breast cancer, the aim of this study was to evaluate the clinical effect of htMSCs in murine mammary adenocarcinoma using two different approaches: (1 coinjections of htMSCs and 4T1 murine tumor cell lineage and (2 injections of htMSCs in mice at the initial stage of mammary adenocarcinoma development. Coinjected animals had a more severe course of the disease and a reduced survival, while tumor-bearing animals treated with 2 intraperitoneal injections of 106 htMSCs showed significantly reduced tumor growth and increased lifespan as compared with control animals. Coculture of htMSCs and 4T1 tumor cells revealed an increase in IL-8 and MCP-1 and decreased VEGF production. For the first time, we show that MSCs isolated from a single source and donor when injected in the same animal model and tumor can lead to opposite results depending on the experimental protocol. Also, our results demonstrated that htMSCs can have an inhibitory effect on the development of murine mammary adenocarcinoma.

  13. Effects of VEGF and MSCs on vascular regeneration in a trauma model in rats.

    Science.gov (United States)

    Niyaz, Mehmet; Gürpınar, Özer Aylin; Oktar, Gürsel Levent; Günaydın, Serdar; Onur, Mehmet Ali; Özsin, Kadir Kaan; Yener, Ali

    2015-01-01

    In the human body, vascular injuries that are caused by trauma, vessel lumen stenosis, and occlusions are often irreversible and can lead to sequelae formation as the vessels cannot reproduce fast enough. To solve this problem, the blood flow must be returned to the region as fast as possible. The adipose tissue contains progenitor cells with angiogenic potential and can be used to resolve the issue. In the present study, mesenchymal stem cells (MSCs) derived from rat adipose tissue, vascular endothelial growth factor (VEGF), and their mixture were applied on the dorsum of a rat, which was traumatized and its contribution to vascular regeneration was reviewed. No application was made to the control group. The results showed that the percentage of necrotic area was significantly lower in the MSC group than that of all the other groups. When the VEGF group was compared to the VEGF + MSCs, the percentage of necrotic area was observed to be similiar. However, VEGF showed effects only when a large quantites of VEGF was applied to the flap area. VEGF could not fully respond to the needs, whereas MSCs can produce VEGF according to the needs of tissue. This makes them superior to stem cells.

  14. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta.

    Science.gov (United States)

    Mareschi, Katia; Castiglia, Sara; Sanavio, Fiorella; Rustichelli, Deborah; Muraro, Michela; Defedele, Davide; Bergallo, Massimiliano; Fagioli, Franca

    2016-02-01

    Mesenchymal stromal cells (MSCs) are a promising tool in cell therapies because of their multipotent, bystander, and immunomodulatory properties. Although bone marrow represents the main source of MSCs, there remains a need to identify a stem cell source that is safe and easily accessible and yields large numbers of cells without provoking debates over ethics. In this study, MSCs isolated from amniotic fluid and placenta were compared with bone marrow MSCs. Their immunomodulatory properties were studied in total activated T cells (peripheral blood mononuclear cells) stimulated with phytohemagglutinin (PHA-PBMCs). In particular, an in vitro co-culture system was established to study: (i) the effect on T-lymphocyte proliferation; (ii) the presence of T regulatory lymphocytes (Treg); (iii) the immunophenotype of various T subsets (Th1 and Th2 naïve, memory, effector lymphocytes); (iv) cytokine release and master gene expression to verify Th1, Th2, and Th17 polarization; and (v) IDO production. Under all co-culture conditions with PHA-PBMCs and MSCs (independently of tissue origin), data revealed: (i) T proliferation inhibition; (ii) increase in naïve T and decrease in memory T cells; (iii) increase in T regulatory lymphocytes; (iv) strong Th2 polarization associated with increased interleukin-10 and interleukin-4 levels, Th1 inhibition (significant decreases in interleukin-2, tumor necrosis factor-α, interferon-γ, and interleukin-12) and Th17 induction (production of high concentrations of interleukins-6 and -17); (v) indoleamine-2,3-dioxygenase mRNA induction in MSCs co-cultured with PHA-PBMCs. AF-MSCs had a more potent immunomodulatory effect on T cells than BM-MSCs, only slightly higher than that of placenta MSCs. This study indicates that MSCs isolated from fetal tissues may be considered a good alternative to BM-MSCs for clinical applications.

  15. Comparison of angiogenic, cytoprotective, and immunosuppressive properties of human amnion- and chorion-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Kenichi Yamahara

    Full Text Available Although mesenchymal stem cells (MSCs can be obtained from the fetal membrane (FM, little information is available regarding biological differences in MSCs derived from different layers of the FM or their therapeutic potential. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of acute graft-versus-host disease. Our results highlight that human amnion- and chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

  16. Intraperitoneal Infusion of Mesenchymal Stem/Stromal Cells Prevents Experimental Autoimmune Uveitis in Mice

    Directory of Open Access Journals (Sweden)

    Joo Youn Oh

    2014-01-01

    Full Text Available Autoimmune uveitis is one of the leading causes of blindness. We here investigated whether intraperitoneal administration of human mesenchymal stem/stromal cells (hMSCs might prevent development of experimental autoimmune uveitis (EAU in mice. Time course study showed that the number of IFN-γ- or IL-17-expressing CD4+ T cells was increased in draining lymph nodes (DLNs on the postimmunization day 7 and decreased thereafter. The retinal structure was severely disrupted on day 21. An intraperitoneal injection of hMSCs at the time of immunization protected the retina from damage and suppressed the levels of proinflammatory cytokines in the eye. Analysis of DLNs on day 7 showed that hMSCs decreased the number of Th1 and Th17 cells. The hMSCs did not reduce the levels of IL-1β, IL-6, IL-12, and IL-23 which are the cytokines that drive Th1/Th17 differentiation. Also, hMSCs did not induce CD4+CD25+Foxp3+ cells. However, hMSCs increased the level of an immunoregulatory cytokine IL-10 and the population of IL-10-expressing B220+CD19+ cells. Together, data demonstrate that hMSCs attenuate EAU by suppressing Th1/Th17 cells and induce IL-10-expressing B220+CD19+ cells. Our results support suggestions that hMSCs may offer a therapy for autoimmune diseases mediated by Th1/Th17 responses.

  17. Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy.

    Science.gov (United States)

    Pliotas, Christos; Ward, Richard; Branigan, Emma; Rasmussen, Akiko; Hagelueken, Gregor; Huang, Hexian; Black, Susan S; Booth, Ian R; Schiemann, Olav; Naismith, James H

    2012-10-02

    The heptameric mechanosensitive channel of small conductance (MscS) provides a critical function in Escherichia coli where it opens in response to increased bilayer tension. Three approaches have defined different closed and open structures of the channel, resulting in mutually incompatible models of gating. We have attached spin labels to cysteine mutants on key secondary structural elements specifically chosen to discriminate between the competing models. The resulting pulsed electron-electron double resonance (PELDOR) spectra matched predicted distance distributions for the open crystal structure of MscS. The fit for the predictions by structural models of MscS derived by other techniques was not convincing. The assignment of MscS as open in detergent by PELDOR was unexpected but is supported by two crystal structures of spin-labeled MscS. PELDOR is therefore shown to be a powerful experimental tool to interrogate the conformation of transmembrane regions of integral membrane proteins.

  18. Effects of heme oxygenase-1 gene modulated mesenchymal stem cells on vasculogenesis in ischemic swine hearts

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi-bo; ZHANG Xiao-li; TANG Yao-liang; MA Gen-shan; SHEN Cheng-xing; WEI Qin; ZHU Qi; YAO Yu-yu; LIU Nai-feng

    2011-01-01

    Background Mesenchymal stem cells (MSCs) transplantation may partially restore heart function in the treatment of acute myocardial infarction (AMI). The aim of this study was to explore the beneficial effects of MSCs modified with heme xygenase-1 (HO-1) on post-infarct swine hearts to determine whether the induction of therapeutic angiogenesis is modified by the angiogenic cytokines released from the implanted cells.Methods In vitro, MSCs were divided into four groups: (1) non-transfected MSCs (MSCs group), (2) MSCs transfected with the pcDNA3.1-Lacz plasmid (Lacz-MSCs group), (3) MSCs transfected with pcDNA3.1-hHO-1 (HO-1-MSCs group),and (4) MSCs transfected with pcDNA3.1-hHO-1 and pretreatment with an HO inhibitor, tin protoporphyrin (SnPP)(HO-1-MSCs+SnPP group). Cells were cultured in an airtight incubation bottle for 24 hours, in which the oxygen concentration was maintained at <1%, followed by 12 hours of reoxygenation. After hypoxia/reoxygen treatment, ELISA was used to measure transforming growth factor (TGF-β) and fibroblast growth factor (FGF-2) in the supernatant. In vivo,28 Chinese mini-pigs were randomly allocated to the following treatment groups: (1) control group (saline), (2)Lacz-MSCs group, (3) HO-1-MSCs group, and (4) HO-1-MSCs + SnPP group. About 1×107 of autologous stem cells or an idertical volume of saline was injected intracoronary into porcine hearts 1 hour after MI. Magnetic resonance imaging (MRI) assay and postmortem analysis were assessed four weeks after stem cell transplantation.Results Post hypoxia/reoxygenation in vitro, TGF-β in the supernatant was significantly increased in the HO-1-MSCs ((874.88±68.23) pg/ml) compared with Lacz-MSCs ((687.81±57.64) pg/ml, P <0.001). FGF-2 was also significantly increased in the HO-1-MSCs ((1106.48±107.06) pg/ml) compared with the Lacz-MSCs ((853.85±74.44) pg/ml, P <0.001 ).In vivo, at four weeks after transplantation, HO-1 gene transfer increased the capillary density in the peri

  19. Mesenchymal stem cells: characteristics and clinical applications.

    Directory of Open Access Journals (Sweden)

    Sylwia Bobis

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI, which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.

  20. An Improved Harvest and in Vitro Expansion Protocol for Murine Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Song Xu

    2010-01-01

    Full Text Available Compared to bone marrow (BM derived mesenchymal stem cells (MSCs from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs are uniformly positive for stem cell antigen-1 (Sca-1, CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.

  1. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  2. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism

    NARCIS (Netherlands)

    Schop, D.; Janssen, F.W.; Borgart, E.; Bruijn, de J.D.; Dijkhuizen-Radersma, van R.

    2008-01-01

    For the continuous and fast expansion of mesenchymal stem cells (MSCs), microcarriers have gained increasing interest. The aim of this study was to evaluate the growth and metabolism profiles of MSCs, expanded in a microcarrier-based cultivation system. We investigated various cultivation conditions

  3. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy.

    Science.gov (United States)

    Leng, Liang; Wang, Yuebing; He, Ningning; Wang, Di; Zhao, Qianjie; Feng, Guowei; Su, Weijun; Xu, Yang; Han, Zhongchao; Kong, Deling; Cheng, Zhen; Xiang, Rong; Li, Zongjin

    2014-06-01

    The tumor tropism of mesenchymal stem cells (MSCs) makes them an excellent delivery vehicle used in anticancer therapy. However, the exact mechanisms of MSCs involved in tumor microenvironment are still not well defined. Molecular imaging technologies with the versatility in monitoring the therapeutic effects, as well as basic molecular and cellular processes in real time, offer tangible options to better guide MSCs mediated cancer therapy. In this study, an in situ breast cancer model was developed with MDA-MB-231 cells carrying a reporter system encoding a double fusion (DF) reporter gene consisting of firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP). In mice breast cancer model, we injected human umbilical cord-derived MSCs (hUC-MSCs) armed with a triple fusion (TF) gene containing the herpes simplex virus truncated thymidine kinase (HSV-ttk), renilla luciferase (Rluc) and red fluorescent protein (RFP) into tumor on day 13, 18, 23 after MDA-MB-231 cells injection. Bioluminescence imaging of Fluc and Rluc provided the real time monitor of tumor cells and hUC-MSCs simultaneously. We found that tumors were significantly inhibited by hUC-MSCs administration, and this effect was enhanced by ganciclovir (GCV) application. To further demonstrate the effect of hUC-MSCs on tumor cells in vivo, we employed the near infrared (NIR) imaging and the results showed that hUC-MSCs could inhibit tumor angiogenesis and increased apoptosis to a certain degree. In conclusion, hUC-MSCs can inhibit breast cancer progression by inducing tumor cell death and suppressing angiogenesis. Moreover, molecular imaging is an invaluable tool in tracking cell delivery and tumor response to hUC-MSCs therapies as well as cellular and molecular processes in tumor.

  4. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle.

    Science.gov (United States)

    Sato, Chisato; Iso, Yoshitaka; Mizukami, Takuya; Otabe, Koji; Sasai, Masahiro; Kurata, Masaaki; Sanbe, Takeyuki; Sekiya, Ichiro; Miyazaki, Akira; Suzuki, Hiroshi

    2016-02-12

    Although muscle wasting and/or degeneration are prevalent in patients with chronic kidney disease, it remains unknown whether FGF-23 influences muscle homeostasis and regeneration. Mesenchymal stem cells (MSCs) in skeletal muscle are distinct from satellite cells and have a known association with muscle degeneration. In this study we sought to investigate the effects of FGF-23 on MSCs isolated from human skeletal muscle in vitro. The MSCs expressed FGF receptors (1 through 4) and angiotensin-II type 1 receptor, but no traces of the Klotho gene were detected. MSCs and satellite cells were treated with FGF-23 and angiotensin-II for 48 h. Treatment with FGF-23 significantly decreased the number of MSCs compared to controls, while treatment with angiotensin-II did not. FGF-23 and angiotensin-II both left the cell counts of the satellite cells unchanged. The FGF-23-treated MSCs exhibited the senescent phenotype, as judged by senescence-associated β-galactosidase assay, cell morphology, and increased expression of p53 and p21 in western blot analysis. FGF-23 also significantly altered the gene expression of oxidative stress regulators in the cells. In conclusion, FGF-23 induced premature senescence in MSCs from skeletal muscle via the p53/p21/oxidative-stress pathway. The interaction between the MSCs and FGF-23 may play a key role in the impaired muscle reparative mechanisms of chronic kidney disease.

  5. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.

    Science.gov (United States)

    Zeng, Yu; Rong, Mingqiang; Liu, Yunsheng; Liu, Jingfang; Lu, Ming; Tao, Xiaoyu; Li, Zhenyan; Chen, Xin; Yang, Kui; Li, Chuntao; Liu, Zhixiong

    2013-12-01

    Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.

  6. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase

    Science.gov (United States)

    Cheung, Michael B.; Sampayo-Escobar, Viviana; Green, Ryan; Moore, Martin L.; Mohapatra, Subhra; Mohapatra, Shyam S.

    2016-01-01

    Respiratory syncytial virus (RSV) has been reported to infect human mesenchymal stem cells (MSCs) but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold) and indoleamine-2,3-dioxygenase (IDO) (~70-fold) than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD. PMID:27695127

  7. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into l

  8. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells.

    Science.gov (United States)

    Yang, Hyun Jin; Kim, Ki-Joo; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Seo, Bommie F; Oh, Deuk-Young; Ahn, Sang-Tae; Lee, Hee Young; Rhie, Jong Won

    2014-01-01

    Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) from various sites are applied in tissue engineering and cell therapy. The condition of AT-MSCs depends on the donor's age, body mass index (BMI), and gender. AT-MSCs from 66 human donors were analyzed, and the cells were sorted according to donor age (10-19 years: n = 1; 20-29 years: n = 5; 30-39 years: n = 12; 40-49 years: n = 22; 50-59 years: n = 12; 60-69 years: n = 9, and 70 years or older: n = 5), BMI (under 25, 25-30, and over 30), and gender (19 males and 48 females). Additionally, AT-MSCs were compared to bone marrow MSCs and chorionic tissue-derived MSCs. We measured the MSC yield, growth rate, colony-forming units, multipotency, and surface antigens. AT-MSC proliferation was greater in cells isolated from individuals aged less than 30 years compared to the proliferation of AT-MSCs from those over 50 years old. BMI was correlated with osteogenic differentiation potency; increased BMI enhanced osteogenesis. Adipogenic differentiation was more strongly induced in cells isolated from donors aged less than 30 years compared to those isolated from other age groups. Also, a BMI above 30 was associated with enhanced adipogenic differentiation compared to cells isolated from individuals with a BMI below 25. Bone marrow MSCs were strongly induced to differentiate along both osteogenic and adipogenic lineages, whereas AT-MSCs predominantly differentiated into the chondrogenic lineage. Therefore, the type of regeneration required and variations among potential donors must be carefully considered when selecting MSCs for use in applied tissue engineering or cell therapy.

  9. Mutations in a Conserved Domain of E. coli MscS to the Most Conserved Superfamily Residue Leads to Kinetic Changes.

    Directory of Open Access Journals (Sweden)

    Hannah R Malcolm

    Full Text Available In Escherichia coli (E. coli the mechanosensitive channel of small conductance, MscS, gates in response to membrane tension created from acute external hypoosmotic shock, thus rescuing the bacterium from cell lysis. E. coli MscS is the most well studied member of the MscS superfamily of channels, whose members are found throughout the bacterial and plant kingdoms. Homology to the pore lining helix and upper vestibule domain of E. coli MscS is required for inclusion into the superfamily. Although highly conserved, in the second half of the pore lining helix (TM3B, E. coli MscS has five residues significantly different from other members of the superfamily. In superfamilies such as this, it remains unclear why variations within such a homologous region occur: is it tolerance of alternate residues, or does it define functional variance within the superfamily? Point mutations (S114I/T, L118F, A120S, L123F, F127E/K/T and patch clamp electrophysiology were used to study the effect of changing these residues in E. coli MscS on sensitivity and gating. The data indicate that variation at these locations do not consistently lead to wildtype channel phenotypes, nor do they define large changes in mechanosensation, but often appear to effect changes in the E. coli MscS channel gating kinetics.

  10. Mutations in a Conserved Domain of E. coli MscS to the Most Conserved Superfamily Residue Leads to Kinetic Changes.

    Science.gov (United States)

    Malcolm, Hannah R; Blount, Paul

    2015-01-01

    In Escherichia coli (E. coli) the mechanosensitive channel of small conductance, MscS, gates in response to membrane tension created from acute external hypoosmotic shock, thus rescuing the bacterium from cell lysis. E. coli MscS is the most well studied member of the MscS superfamily of channels, whose members are found throughout the bacterial and plant kingdoms. Homology to the pore lining helix and upper vestibule domain of E. coli MscS is required for inclusion into the superfamily. Although highly conserved, in the second half of the pore lining helix (TM3B), E. coli MscS has five residues significantly different from other members of the superfamily. In superfamilies such as this, it remains unclear why variations within such a homologous region occur: is it tolerance of alternate residues, or does it define functional variance within the superfamily? Point mutations (S114I/T, L118F, A120S, L123F, F127E/K/T) and patch clamp electrophysiology were used to study the effect of changing these residues in E. coli MscS on sensitivity and gating. The data indicate that variation at these locations do not consistently lead to wildtype channel phenotypes, nor do they define large changes in mechanosensation, but often appear to effect changes in the E. coli MscS channel gating kinetics.

  11. Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation

    Science.gov (United States)

    Zhao, Sida; Zhao, Youshan; Guo, Juan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2017-01-01

    The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells. PMID:28262842

  12. Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury.

    Science.gov (United States)

    Halabian, Raheleh; Roudkenar, Mehryar Habibi; Jahanian-Najafabadi, Ali; Hosseini, Kamran Mousavi; Tehrani, Hossein Abdul

    2015-02-01

    Conditioned medium of mesenchymal stem cells (MSCs) is now being used for its cytoprotective effects, especially when the cells are equipped with cytoprotective factors to strengthen them against unfavorable microenvironments. Overexpression of Lcn2 in MSCs mimics in vivo kidney injury. Hence, unraveling how Lcn2-engineered MSCs affect kidney cells has been investigated. Cisplatin treated HK-2 or HEK293 kidney cells were co-cultivated with Lcn2 overexpressing MSCs in upper and lower chambers of transwell plates. Proliferation, apoptosis, and expression of growth factors and cytokines were assessed in the kidney cells. Co-cultivation with the MSCs-Lcn2 not only inhibited cisplatin-induced cytotoxicity in the HK-2 and HEK293 cells, but increased proliferation rate, prevented cisplatin-induced apoptosis, and increased expression of growth factors and the amount of antioxidants in the kidney cells. Thus Lcn2-engineered MSCs can ameliorate and repair injured kidney cells in vitro, which strongly suggests there are beneficial effects of the MSCs-Lcn2 in cell therapy of kidney injury.

  13. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rene Rodriguez; Ruth Rubio; Pablo Menendez

    2012-01-01

    Because of their unique properties,multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications.Overall,compelling evidence supports the long-term safety of ex vivo expanded human MSCs,which do not seem to transform spontaneously.However,experimental data reveal a link between MSCs and cancer,and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions.Interestingly,solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas.This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis,which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer,eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell.Unfortunately,still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs.Here,we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.

  14. Mesenchymal stem cells in the treatment of ischemic stroke: progress and possibilities

    Directory of Open Access Journals (Sweden)

    Thorsten R Doeppner

    2010-11-01

    Full Text Available Thorsten R Doeppner, Dirk M HermannDepartment of Neurology, University of Duisburg-Essen Medical School, Essen, North Rhine-Westphalia, GermanyAbstract: Stroke is a major cause of death and long-term disability in industrialized countries, and the only causal therapy for stroke comprises recombinant tissue plasminogen activator(rt-PA-mediated recanalization of the occluded vessel. New experimental strategies focus on neuroregenerative approaches, among which the application of mesenchymal stem cells (MSCs has gained increasing attention. MSCs, like other stem cells, have the capacity of unlimited self-renewal giving rise to differentiated cells from various cell lineages. Bone marrow (BM-derived MSCs are the most frequently used MSC type in experimental stroke studies. Application of BM-derived MSCs and, in some studies, transplantation of MSCs from other tissue sources resulted in an improved functional recovery in experimental animals, although stroke volumes were not always affected by MSC transplantation. The underlying precise mechanisms of this phenomenon remain elusive, although MSC transplantation is considered to affect many diverse events, eg, by modulating the inflammatory milieu, stimulating endogenous neurogenesis and angiogenesis, and reducing glial scar formation. On the contrary, neuronal differentiation and integration of transplanted MSCs do not seem to affect stroke outcome significantly. On the basis of these preclinical studies, first clinical trials confirmed improved functional recovery in patients who had received BM-derived MSCs systemically, although the number of patients enrolled in these studies was low and there were no adequate control groups. In this review, we describe some fundamental biological characteristics of MSCs and further review some preclinical experimental studies, with special emphasis on BM-derived MSCs. We also review clinical trials in which MSCs have been used and conclude with a short outlook on

  15. p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ines Höfig

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53−/− mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53−/− cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use.

  16. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    Directory of Open Access Journals (Sweden)

    Roberto Narcisi

    2015-03-01

    Full Text Available Mesenchymal stem cells (MSCs are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair.

  17. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus.

    Science.gov (United States)

    Ding, Lijun; Li, Xin'an; Sun, Haixiang; Su, Jing; Lin, Nacheng; Péault, Bruno; Song, Tianran; Yang, Jun; Dai, Jianwu; Hu, Yali

    2014-06-01

    Serious injuries of endometrium in women of reproductive age are often followed by uterine scar formation and a lack of functional endometrium predisposing to infertility or miscarriage. Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown great promise in clinical applications. In the present study, BM-MSCs loaded onto degradable collagen membranes were constructed. Collagen membranes provided 3-dimmensional architecture for the attachment, growth and migration of rat BM-MSCs and did not impair the expression of the stemness genes. We then investigated the effect of collagen/BM-MSCs constructs in the healing of severe uterine injury in rats (partial full thickness uterine excision). At four weeks after the transplantation of collagen/BM-MSCs constructs, BM-MSCs were mainly located to the basal membrane of regenerative endometrium. The wounded tissue adjacent to collagen/BM-MSCs constructs expressed higher level of bFGF, IGF-1, TGFβ1 and VEGF than the corresponding tissue in rats receiving collagen construct alone or in spontaneous regeneration group. Moreover, the collagen/BM-MSCs system increased proliferative abilities of uterine endometrial and muscular cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive the embryo and support its development to a viable stage. Our findings indicate that BM-MSCs may support uterine tissue regeneration.

  18. Fucoidan improves bioactivity and vasculogenic potential of mesenchymal stem cells in murine hind limb ischemia associated with chronic kidney disease.

    Science.gov (United States)

    Lee, Jun Hee; Ryu, Jung Min; Han, Yong-Seok; Zia, Mohammad Farid; Kwon, Hyog Young; Noh, Hyunjin; Han, Ho Jae; Lee, Sang Hun

    2016-08-01

    Chronic kidney disease (CKD) is a significant risk factor for cardiovascular and peripheral vascular disease. Although mesenchymal stem cell (MSC)-based therapy is a promising strategy for treatment of ischemic diseases associated with CKD, the associated pathophysiological conditions lead to low survival and proliferation of transplanted MSCs. To address these limitations, we investigated the effects of fucoidan, a sulfated polysaccharide, on the bioactivity of adipose tissue-derived MSCs and the potential of fucoidan-treated MSCs to improve neovascularization in ischemic tissues of CKD mice. Treatment of MSCs with fucoidan increased their proliferative potential and the expression of cell cycle-associated proteins, such as cyclin E, cyclin dependent kinase (CDK) 2, cyclin D1, and CDK4, via focal adhesion kinase and the phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt axis. Moreover, fucoidan enhanced the immunomodulatory activity of MSCs through the ERK-IDO-1 signal cascade. Fucoidan was found to augment the proliferation, incorporation, and endothelial differentiation of transplanted MSCs at ischemic sites in CKD mice hind limbs. In addition, transplantation of fucoidan-treated MSCs enhanced the ratio of blood flow and limb salvage in CKD mice with hind limb ischemia. To our knowledge, our findings are the first to reveal that fucoidan enhances the bioactivity of MSCs and improves their neovascularization in ischemic injured tissues of CKD. In conclusion, fucoidan-treated MSCs may provide an important pathway toward therapeutic neovascularization in patients with CKD.

  19. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-01-23

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  20. Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LU Zhuozhuang; WU Zuze(WU Chutse); ZHANG Qunwei; WANG Hua; JIA Xiangxu; DUAN Haifeng; WANG Lisheng

    2004-01-01

    Notch signaling is one of the most important pathways mediating cell determination and differentiation. In this study, the roles of Notch signal in the regulation of osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) were investigated. The expression of Notch1, Jagged1 and DTX1 detected by reverse transcription polymerase chain reaction (RT-PCR) suggested that Notch signal might exhibit a physiological regulatory role in the differentiation of MSCs. Constitutive expression of the intracellular domain of Notch1 (ICN), the active form of Notch1 protein, can activate Notch signal in cells without ligands' binding. hMSCs were isolated, expanded, and infected with retrovirus carrying green fluorescent protein (GFP) gene or ICN. Overexpression of ICN in hMSCs resulted in enhanced osteogenic differentiation induced by dexamethasone (Dex), which was characterized by an increase of cellular alkaline phosphatase (ALP) activity and calcium deposition. These results indicate that Notch stimulates differentiation of MSCs into osteoblasts.

  1. p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice.

    Science.gov (United States)

    Gu, Z; Jiang, J; Xia, Y; Yue, X; Yan, M; Tao, T; Cao, X; Da, Z; Liu, H; Liu, H; Miao, Y; Li, L; Wang, Z

    2013-11-01

    Recent studies have shown that autologous and allogeneic transplantation of the BM-MSCs had therapeutic effects on T1DM, whereas the BM-MSCs from the NOD mice itself did not have this therapeutic effect. We previously demonstrated that Bone Marrow (BM) -MSCs from the non-obese diabetic (NOD) mice had the abnormal migration and adhesion. So we hypothesized that the proliferation and apoptosis of the BM-MSCs from the NOD mice were dysregulated. Our team compared the proliferation and apoptosis between NOD mice and imprinting control region (ICR) mice. Then we assessed whether the NF-κB-p53/p21 pathway was involved in the process. The cell proliferation ability of the BM-MSCs from the NOD mice were significantly decreased, while the percent of apoptotic cells was increased compared to those from the ICR mice. The p21 expression was significantly increased in the NOD-MSCs. The p65 level was enhanced in the BM-MSCs from the NOD mice when compared to the ICR mice, coincided with the expression of p21. Expressions of p65 and p21 were significantly decreased in the -BM-MSCs treated with p65 inhibitor. The knockdown p21 expression reversed the abnormal proliferation, colony formation and apoptosis of the BM-MSCs from the NOD mice. These data provide important preclinical references supporting the basis for further development of autologous MSC-based therapies for type1 diabetes mellitus (T1DM).

  2. Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism

    Institute of Scientific and Technical Information of China (English)

    Qiao Shukai; Ren Hanyun; Shi Yongjin; Liu Wei

    2014-01-01

    Background Radiation-induced injury after accidental or therapeutic total body exposure to ionizing radiation has serious pathophysiological consequences,and currently no effective therapy exists.This study was designed to investigate whether transplantation of allogeneic murine compact bone derived-mesenchymal stem cells (CB-MSCs) could improve the survival of mice exposed to lethal dosage total body irradiation (TBI),and to explore the potential immunoprotective role of MSCs.Methods BALB/c mice were treated with 8 Gy TBI,and then some were administered CB-MSCs isolated from C57BL/6 mice.Survival rates and body weight were analyzed for 14 days post-irradiation.At three days post-irradiation,we evaluated IFN-Y and IL-4 concentrations; CD4+CD25+Foxp3+ regulatory T cell (Treg) percentage; CXCR3,CCR5,and CCR7 expressions on CD3+T cells; and splenocyte T-bet and GATA-3 mRNA levels.CB-MSC effects on bone marrow hemopoiesis were assessed via colony-forming unit granulocyte/macrophage (CFU-GM) assay.Results After lethal TBI,compared to non-transplanted mice,CB-MSC-transplanted mice exhibited significantly increased survival,body weight,and CFU-GM counts of bone marrow cells (P<0.05),as well as higher Treg percentages,reduced IFN-Y,CXCR3 and CCR5 down-regulation,and CCR7 up-regulation.CB-MSC transplantation suppressed Th1 immunity.Irradiated splenocytes directly suppressed CFU-GM formation from bone marrow cells,and CB-MSC co-culture reversed this inhibition.Conclusion Allogeneic CB-MSC transplantation attenuated radiation-induced hematopoietic toxicity,and provided immunoprotection by alleviating lymphocyte-mediated CFU-GM inhibition,expanding Tregs,regulating T cell chemokine receptor expressions,and skewing the Th1/Th2 balance toward anti-inflammatory Th2 polarization.

  3. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects.

    NARCIS (Netherlands)

    Kretlow, J.D.; Spicer, P.P.; Jansen, J.A.; Vacanti, C.A.; Kasper, F.K.; Mikos, A.G.

    2010-01-01

    For bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk a

  4. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes.

    Science.gov (United States)

    Hof-Nahor, Irit; Leshansky, Lucy; Shivtiel, Shoham; Eldor, Liron; Aberdam, Daniel; Itskovitz-Eldor, Joseph; Berrih-Aknin, Sonia

    2012-10-01

    The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.

  5. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  6. Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues.

    Science.gov (United States)

    Kwon, Ahlm; Kim, Yonggoo; Kim, Myungshin; Kim, Jiyeon; Choi, Hayoung; Jekarl, Dong Wook; Lee, Seungok; Kim, Jung Min; Shin, Jong-Chul; Park, In Yang

    2016-04-05

    Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.

  7. Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture.

    Science.gov (United States)

    Jeong, Jae Young; Park, So Hee; Shin, Ji Won; Kang, Yun Gyeong; Han, Ki-Ho; Shin, Jung-Woog

    2012-11-01

    Without using biochemical agents, in this study, we sought to investigate the potential of controlling the differentiation of mesenchymal stem cells (MSCs) into a specific cell type through the use of 3D co-culturing and mechanical stimuli. MSCs and primary cultured chondrocytes were separately encapsulated into alginate beads, and the two types of beads were separated by a membrane. For the investigation a computer-controllable bioreactor was designed and used to engage intermittent hydrostatic pressure (IHP). Five different magnitudes (0.20, 0.10, 0.05, 0.02 MPa and no stimulation) of IHP were applied. The stimulation pattern was the same for all groups: 2 h/day for 7 days starting at 24 h after seeding; 2 and 15 min cycles of stimulating and resting, respectively. Biochemical (DNA and GAG contents), histological (Alcian blue), and RT-PCR (Col II, SOX9, AGC) analyses were performed on days 1, 5, 10, and 20. The results from these analyses showed that stimulation with higher magnitudes of IHP (≥0.10 MPa) were more effective on the proliferation and differentiation of co-cultured MSCs. Together, these data demonstrate the potential of using mechanical stimulation and co-culturing for the proliferation and differentiation of MSCs, even without biochemical agents.

  8. Therapeutic effect of TSG-6 engineered iPSC-derived MSCs on experimental periodontitis in rats: a pilot study.

    Directory of Open Access Journals (Sweden)

    Heng Yang

    Full Text Available BACKGROUND: We derived mesenchymal stem cells (MSCs from rat induced pluripotent stem cells (iPSCs and transduced them with tumor necrosis factor alpha-stimulated gene-6 (TSG-6, to test whether TSG-6 overexpression would boost the therapeutic effects of iPSC-derived MSCs in experimental periodontitis. METHODS: A total of 30 female Sprague-Dawley (SD rats were randomly divided into four groups: healthy control group (Group-N, n = 5, untreated periodontitis group (Group-P, n = 5, iPS-MSCs-treated and iPSC-MSCs/TSG-6-treated periodontitis groups (Group-P1 and P2, n = 10 per group. Experimental periodontitis was established by ligature and infection with Porphyromonas gingivalis around the maxillae first molar bilaterally. MSC-like cells were generated from rat iPSCs, and transducted with TSG-6. iPSC-MSCs or iPSC-MSCs/TSG-6 were administrated to rats in Group-P1 or P2 intravenously and topically, once a week for three weeks. Blood samples were obtained one week post-injection for the analysis of serum pro-inflammatory cytokines. All animals were killed 3 months post-treatment; maxillae were then dissected for histological analysis, tartrate-resistant acid phosphatase (TRAP staining, and morphological analysis of alveolar bone loss. RESULTS: Administration of iPSC-MSC/TSG-6 significantly decreased serum levels of IL-1β and TNF-α in the Group-P2 rats (65.78 pg/ml and 0.56 pg/ml compared with those in Group-P (168.31 pg/ml and 1.15 pg/ml respectively (p<0.05. Both alveolar bone loss and the number of TRAP-positive osteoclasts showed a significant decrease in rats that received iPSC-MSC/TSG-6 treatment compared to untreated rats in Group-P (p<0.05. CONCLUSIONS: We demonstrated that overexpression of TSG-6 in rat iPSC-derived MSCs were capable of decreasing inflammation in experimental periodontitis and inhibiting alveolar bone resorption. This may potentially serve as an alternative stem-cell-based approach in the treatment and

  9. The role of hSCs in promoting neural differentiation of hUC-MSCs in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wu QL

    2013-11-01

    Full Text Available Qiuli Wu,1,* You Chen,1,* Guangzhi Ning,1 Shiqing Feng,1 Junling Han,2 Qiang Wu,1 Yulin LI,1 Hong Wu,1 Hongyu Shi1 1Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 2Tianjin Union Stem Cell and Gene Engineering Co., Ltd, Tianjin, People's Republic of China * These authors contributed equally to this paper Abstract: Cell therapy is a promising approach to treating spinal cord injury (SCI. Previous studies demonstrated that co-transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs and human Schwann cells (hSCs was an effective strategy by which to promote the regeneration of corticospinal fibers and locomotor recovery after SCI in rats. However, the neural differentiation potential of hUC-MSCs was not fully understood. In the present study, we examined the influence of hSCs on the survival and differentiation of hUC-MSCs in SCI rats. Four groups of rats were implanted with Dulbecco's Modified Eagle's Medium (DMEM, hSCs, hUC-MSCs, or a combination of hSCs and hUC-MSCs, respectively. Our results demonstrated that MAB1281 immunopositive cells appeared in the injured site of the transplanted cell groups, while myelin basic protein and high-molecular-weight neurofilament immunopositive cells were detected only in the co-transplantation group under the positive background of MAB1281. Furthermore, polymerase chain reaction (PCR and Western blot showed significantly higher expression of myelin basic protein and high-molecular-weight neurofilament and lower expression of glial fibrillary acidic protein in the co-transplantation group (P < 0.05, which correlated strongly with immunofluorescence findings. These results suggest that hSCs could induce hUC-MSC differentiation into neurons and oligodendrocytes and inhibit the formation of glial scarring after SCI. The neural differentiation of hUC-MSCs is likely induced by soluble factors provided by hSCs. Keywords: spinal cord injury

  10. Successful in vivo MRI tracking of MSCs labeled with Gadoteridol in a Spinal Cord Injury experimental model.

    Science.gov (United States)

    Filippi, Miriam; Boido, Marina; Pasquino, Chiara; Garello, Francesca; Boffa, Cinzia; Terreno, Enzo

    2016-08-01

    In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically approved MRI agent Gadoteridol through a procedure based on the hypo-osmotic shock were successfully tracked in vivo in a murine model of Spinal Cord Injury (SCI). With respect to iso-osmotic incubations, the hypo-osmotic labeling significantly increased the Gd(3+) cellular uptake, and enhanced both the longitudinal relaxivity (r1) of the intracellular Gadoteridol and the Signal to Noise Ratio (SNR) measured on cell pellets, without altering the biological and functional profile of cells. A substantial T1 Contrast Enhancement after local transplantation of 3.0×10(5) labeled cells in SCI mice enabled to follow their migratory dynamics in vivo for about 10days, and treated animals recovered from the motor impairment caused by the injury, indicating unaltered therapeutic efficacy. Finally, analytical and histological data corroborated the imaging results, highlighting the opportunity to perform a precise and reliable monitoring of the cell-based therapy.

  11. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  12. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  13. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  14. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  15. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  16. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    Science.gov (United States)

    Molaeipour, Zahra; Shamsasanjan, Karim; Movassaghpour, Ali Akbari; Akbarzadehlaleh, Parvin; Sabaghi, Fatemeh; Saleh, Mahshid

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line. Methods: U937 cells were cultured in both direct co-culture with MSCs and MSCs conditioned medium (C.M) driven. This study used 1,25-dihydroxyvitamin D3(VitD3) as inductor of monocytic differentiation and U937 cells treated with VitD3 morphology was examined by Wright Giemsa staining. CD14 monocytic differentiation marker was measured by flow cytometry and monocytic gene expression was assessed by real time polymerase chain reaction (RT PCR). Results: The results of flow cytometric analysis showed that CD14 expression of U937 increased. The higher effect of MSCs co-culture on CD14 expression in U937 cells was observed, compared to the conditioned medium. Among ten monocytic related genes which were screened that was observed increase in 5 genes in which CXCR4 and CSF2RA showed significant increase. Conclusion: The results obtained show that MSCs have supportive effect on the monocytic differentiation of U937 cells. However, a distinct mechanism of that remains unclear. PMID:27123414

  17. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    Directory of Open Access Journals (Sweden)

    Hiroaki Haga

    2015-01-01

    Full Text Available The contributions of mesenchymal stem cells (MSCs to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs. We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.

  18. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  19. HGF-transgenic MSCs can improve the effects of tissue self-repair in a rabbit model of traumatic osteonecrosis of the femoral head.

    Directory of Open Access Journals (Sweden)

    Qian Wen

    Full Text Available BACKGROUND: Osteonecrosis of the femoral head (ONFH is generally characterized as an irreversible disease and tends to cause permanent disability. Therefore, understanding the pathogenesis and molecular mechanisms of ONFH and developing effective therapeutic methods is critical for slowing the progress of the disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an experimental rabbit model of early stage traumatic ONFH was established, validated, and used for an evaluation of therapy. Computed tomography (CT and magnetic resonance (MR imaging confirmed that this model represents clinical Association Research Circulation Osseous (ARCO phase I or II ONFH, which was also confirmed by the presence of significant tissue damage in osseous tissue and vasculature. Pathological examination detected obvious self-repair of bone tissue up to 2 weeks after trauma, as indicated by revascularization (marked by CD105 and expression of collagen type I (Col I, osteocalcin, and proliferating cell nuclear antigen. Transplantation of hepatocyte growth factor (HGF-transgenic mesenchymal stem cells (MSCs 1 week after trauma promoted recovery from ONFH, as evidenced by a reversed pattern of Col I expression compared with animals receiving no therapeutic treatment, as well as increased expression of vascular endothelial growth factor. CONCLUSIONS/SIGNIFICANCE: These results indicate that the transplantation of HGF-transgenic MSCs is a promising method for the treatment for ONFH and suggest that appropriate interference therapy during the tissue self-repair stage contributes to the positive outcomes. This study also provides a model for the further study of the ONFH etiology and therapeutic interventions.

  20. Mesenchymal stem cells and cancer: friends or enemies?

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kang, Kyung-Sun

    2014-10-01

    There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.

  1. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  2. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  3. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  4. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    LI WenTing; SUN HuaLin; XU ZengLu; DING Fei; GU XiaoSong

    2009-01-01

    During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morpho-logical changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and in-duced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We ana-lyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  5. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  6. Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Yu, Jing-Wen; Li, Yan-Hua; Song, Guo-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Zhang, Hai-Fei; Yang, Wan-Fang; Wang, Qing; Yan, Ya-Ping; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-12-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.

  7. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  8. The biochemical effect of probiotic and /or mesenchymal stem cells on LPS-induced kidney disorder

    Directory of Open Access Journals (Sweden)

    Ayman Mohamed Badawi

    2016-07-01

    Full Text Available  The current study  aimed to evaluate the beneficial effect of kefir  probiotic  and /or Mesenchymal stem cells (MSCs on acute kidney injury (AKI induced by lipopolysaccharide (LPS challenge, and to investigate could kefir potentiate the therapeutic action of MSCs. Sixty female albino rats were used in this study and  divided into 6 groups (10 rats each: control group; LPS-challenged group; LPS+ MSCs group; LPS + kefir group; kefir +LPS +kefir (prophylactic group and kefir + LPS + MSCs + kefir (prophylactic-MSCs group. Samples were collected at two point's time. Renal function, serum IL-10, TNF-α, renal MDA, GSH contents, SOD and PON-I were assayed. The mRNA expression of NF-κB, iNOS and caspase-3 were monitored in kidney tissue. Our results revealed that LPS significantly increased renal function tests, TNF-α in association with dramatic decrease of creatinine clearance and serum IL-10 levels. Oxidative stress was proved in LPS group by increasing MDA level, reduction in GSH content, SOD and PON-1 activities in kidney. The mRNA expression of NF-κB, iNOS and caspase-3 were significantly up-regulated in AKI. Administration of kefir or MSCs alone significantly attenuated LPS-induced AKI. The pre and co-treatment of kefir with MSCs potentiate their therapeutic action. Conclusion: A combination of kefir probiotic and MSCs may be of interest for clinical use. 

  9. Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs

    Directory of Open Access Journals (Sweden)

    Huili Wang

    2014-10-01

    Full Text Available Mesenchymal stem cells (MSCs have been accepted as a promising cell source in tissue repair and regeneration. However, the inability to enrich MSCs in target areas limits their wide application. As a result, it has been a major goal to induce MSCs to be abundantly and specifically recruited to the injury site. In this study, a peptide with a specific affinity for MSCs (E7 peptide was immobilized to a collagen scaffold via a collagen-binding domain (CBD to construct a functional collagen scaffold. In addition, the hypothesis that this method could recruit MSCs specifically was evaluated in a porcine model. In vivo investigations indicated that due to the immunoreaction, the CBD-MSC-peptide collagen scaffold enhanced MSC adhesion and infiltration and promoted wound healing. At day 7 after surgery, we found more infiltrating cells and capillaries in the Collagen/CBD-E7 peptide group compared to the Scaffold group. At day 14, 21 and 28, a faster healing process was observed in the Collagen/CBD-E7 peptide group, with significant differences compared with the other groups (P < 0.05, P < 0.01. The results demonstrate the potential use of targeted therapy to rapidly heal skin wounds.

  10. Monitoring of transplanted human Mesenchymal Stem Cells from Wharton’s Jelly in xenogeneic systems in vivo

    Directory of Open Access Journals (Sweden)

    Kovalchuk M. V.

    2015-06-01

    Full Text Available Mesenchymal stem cells (MSCs are ideal candidates for cell-based therapy aimed at tissue repair and immunomodulation. Aim. to study the survival of transplanted human MSCs from umbilical cord Wharton’s Jelly (hWJ-MSCs in the animal model of experimental osteoarthritis (OA in rats after injecting cells into a knee joint and to explore the effect of collagen scaffold on the cell survival in vivo. Methods. MSC isolation and cultivation in vitro. Immunological phenotyping of propagated hWJ-MSCs was performed by flow cytometry. The retention of transplanted cells was studied by the PCR revealing of human specific sequences in genomic DNA extracted from animal tissues. Results. hWJ-MSCs, both individual and grown on scaffold, were used and it was shown by PCR that human alpha-satellite DNA was detected on the first day in the immunocompetent OA animals inside the injured knee joint. In the collagen matrix (in the model of subcutaneous implantation human alpha-satellite DNA was detected on the 5th day but was not detected on the 12th day. Conclusions. According to the PCR results, hWJ-MSCs survived in the OA animal model for a short period. Collagenic scaffold increased the residence time of donor cells in the recipients. hWJ-MSCs may be considered as a perspective cell source for the treatment of OA in human.

  11. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    Science.gov (United States)

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  12. Whole Genome Expression Profiling and Signal Pathway Screening of MSCs in Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Yuxi Li

    2014-01-01

    Full Text Available The pathogenesis of dysfunctional immunoregulation of mesenchymal stem cells (MSCs in ankylosing spondylitis (AS is thought to be a complex process that involves multiple genetic alterations. In this study, MSCs derived from both healthy donors and AS patients were cultured in normal media or media mimicking an inflammatory environment. Whole genome expression profiling analysis of 33,351 genes was performed and differentially expressed genes related to AS were analyzed by GO term analysis and KEGG pathway analysis. Our results showed that in normal media 676 genes were differentially expressed in AS, 354 upregulated and 322 downregulated, while in an inflammatory environment 1767 genes were differentially expressed in AS, 1230 upregulated and 537 downregulated. GO analysis showed that these genes were mainly related to cellular processes, physiological processes, biological regulation, regulation of biological processes, and binding. In addition, by KEGG pathway analysis, 14 key genes from the MAPK signaling and 8 key genes from the TLR signaling pathway were identified as differentially regulated. The results of qRT-PCR verified the expression variation of the 9 genes mentioned above. Our study found that in an inflammatory environment ankylosing spondylitis pathogenesis may be related to activation of the MAPK and TLR signaling pathways.

  13. In Vitro Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Wahl

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis. In vitro results demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCs in vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs.

  14. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  15. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons.

    Science.gov (United States)

    Mauri, Mario; Lentini, Daniela; Gravati, Marta; Foudah, Dana; Biella, Gerardo; Costa, Barbara; Toselli, Mauro; Parenti, Marco; Coco, Silvia

    2012-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.

  16. Carbon nanotube array inducing osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Xu, Baiyao; Ju, Yang; Cui, Yanbin; Song, Guanbin

    2015-06-01

    Carbon nanotubes (CNTs) are a kind of nanomaterials which have been shown a promising application for biomedicine. There are a lot of studies to use CNTs to induce the differentiation of mesenchymal stem cells (MSCs). However, the cellular behavior of MSCs on the top layer of CNT array was still not well understood. In this study, we evaluated the morphology, the gene expressions of the osteogenic differentiation related markers, and the gene expressions of collagen type II (Col II, a marker of chondrogenesis), PPARγ (a marker of adipogenesis) and scleraxis (SCX, a marker of tenogenesis) in human mesenchymal stem cells (hMSCs) cultured on multi-walled carbon nanotube (MWCNT) array. The effect of MWCNT array on the mineralization of hMSCs which were cultured in osteogenic differentiation medium (ODM) was further assayed. Our results showed that the hMSCs cultured on MWCNT array spread well, formed numerous spiral shaped cell colons and showed perinuclear morphology. Compared to hMSCs cultured on dish, the gene expression of osteocalcin (OCN) was increased while the gene expressions of collagen type II (Col II), PPARγ and scleraxis (SCX) were decreased in hMSCs which were cultured on MWCNT array without any differentiation factors. Furthermore, compared with hMSCs on dish, the gene expressions of collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and RUNX2, and the mineralization of hMSCs on MWCNT array were enhanced when they were cultured in osteogenic differentiation medium (ODM). Our results indicated that MWCNT array was able to promote the osteogenesis of hMSCs.

  17. A small molecule modulator of prion protein increases human mesenchymal stem cell lifespan, ex vivo expansion, and engraftment to bone marrow in NOD/SCID mice.

    Science.gov (United States)

    Mohanty, Sindhu T; Cairney, Claire J; Chantry, Andrew D; Madan, Sanjeev; Fernandes, James A; Howe, Steven J; Moore, Harry D; Thompson, Mark J; Chen, Beining; Thrasher, Adrian; Keith, W Nicol; Bellantuono, Ilaria

    2012-06-01

    Human mesenchymal stem cells (hMSCs) have been shown to have potential in regenerative approaches in bone and blood. Most protocols rely on their in vitro expansion prior to clinical use. However, several groups including our own have shown that hMSCs lose proliferation and differentiation ability with serial passage in culture, limiting their clinical applications. Cellular prion protein (PrP) has been shown to enhance proliferation and promote self-renewal of hematopoietic, mammary gland, and neural stem cells. Here we show, for the first time, that expression of PrP decreased in hMSC following ex vivo expansion. When PrP expression was knocked down, hMSC showed significant reduction in proliferation and differentiation. In contrast, hMSC expanded in the presence of small molecule 3/689, a modulator of PrP expression, showed retention of PrP expression with ex vivo expansion and extended lifespan up to 10 population doublings. Moreover, cultures produced a 300-fold increase in the number of cells generated. These cells showed a 10-fold increase in engraftment levels in bone marrow 5 weeks post-transplant. hMSC treated with 3/689 showed enhanced protection from DNA damage and enhanced cell cycle progression, in line with data obtained by gene expression profiling. Moreover, upregulation of superoxide dismutase-2 (SOD2) was also observed in hMSC expanded in the presence of 3/689. The increase in SOD2 was dependent on PrP expression and suggests increased scavenging of reactive oxygen species as mechanism of action. These data point to PrP as a good target for chemical intervention in stem cell regenerative medicine.

  18. Synergistic effect of angiotensin II on vascular endothelial growth factor-A-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells

    OpenAIRE

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J; Agrawal, Devendra K.

    2015-01-01

    Introduction Increased levels of angiotensin II (Ang II) and activity of Ang II receptor type 1 (AT1R) elicit detrimental effects in cardiovascular disease. However, the role of Ang II receptor type 2 (AT2R) remains poorly defined. Mesenchymal stem cells (MSCs) replenish and repair endothelial cells in the cardiovascular system. Herein, we investigated a novel role of angiotensin signaling in enhancing vascular endothelial growth factor (VEGF)-A-mediated differentiation of MSCs into endotheli...

  19. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model.

    Directory of Open Access Journals (Sweden)

    Konrad Urbanek

    Full Text Available The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce.To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model.GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro.Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties.Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue

  20. Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells

    Directory of Open Access Journals (Sweden)

    Jin Jiali

    2011-07-01

    Full Text Available Abstract Background Neural tissue has limited potential to self-renew after neurological damage. Cell therapy using BM-MSCs (bone marrow mesenchymal stromal cells seems like a promising approach for the treatment of neurological diseases. However, the neural differentiation of stem cells influenced by massive factors and interactions is not well studied at present. Results In this work, we isolated and identified MSCs from mouse bone marrow. Co-cultured with CART (0.4 nM for six days, BM-MSCs were differentiated into neuron-like cells by the observation of optical microscopy. Immunofluorescence demonstrated that the differentiated BM-MSCs expressed neural specific markers including MAP-2, Nestin, NeuN and GFAP. In addition, NeuN positive cells could co-localize with TH or ChAT by double-labled immunofluorescence and Nissl bodies were found in several differentiated cells by Nissl stain. Furthermore, BDNF and NGF were increased by CART using RT-PCR. Conclusion This study demonstrated that CART could promote the differentiation of BM-MSCs into neural cells through increasing neurofactors, including BNDF and NGF. Combined application of CART and BM-MSCs may be a promising cell-based therapy for neurological diseases.

  1. Modulation of mesenchymal stem cells with miR-375 to improve their therapeutic outcome during scar formation.

    Science.gov (United States)

    Sheng, Wei; Feng, Zihao; Song, Qi; Niu, Heyong; Miao, Guoying

    2016-01-01

    Understanding of the mechanism of cutaneous scar formation with the goal of developing potential therapies to promote scar-less wound healing appears to be extremely critical. Mesenchymal stem cells (MSCs) have a demonstrate role in promoting scar-less wound healing. However, recent studies have shown that the function of MSCs may be attenuated due to insufficient activation in vivo. Here, we aimed to increase the activity and functions of MSCs to improve their effects during scar formation. We found that overexpression of microRNA-375 (miR-375) in MSCs significantly decreased the levels of tissue inhibitor of metalloproteinases 1 (TIMP-1) protein, but not mRNA. Mechanistically, miR-375 inhibited TIMP-1 protein translation through binding to the 3'-UTR of the TIMP-1 mRNA in MSCs. Transplantation of miR-375-expressing MSCs significantly reduced the fibrosis in the scar region of the mice, possibly through reduction of reactive oxygen species (ROS), suppression of transition of myofibroblasts from fibroblasts, and increases in hepatic growth factor (HGF). Together, these data suggest that overexpression of miR-375 in MSCs may substantially improve the effects of MSCs on reduction of scar during wound healing. Our study sheds new light on a scar-less wound healing.

  2. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-01-01

    Full Text Available Mesenchymal stem cell (MSC therapy shows considerable promise for the treatment of myocardial infarction (MI. However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.

  3. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury.

    Science.gov (United States)

    Caron, Ilaria; Rossi, Filippo; Papa, Simonetta; Aloe, Rossella; Sculco, Marika; Mauri, Emanuele; Sacchetti, Alessandro; Erba, Eugenio; Panini, Nicolò; Parazzi, Valentina; Barilani, Mario; Forloni, Gianluigi; Perale, Giuseppe; Lazzari, Lorenza; Veglianese, Pietro

    2016-01-01

    Stem cell therapy with human mesenchymal stem cells (hMSCs) represents a promising strategy in spinal cord injury (SCI). However, both systemic and parenchymal hMSCs administrations show significant drawbacks as a limited number and viability of stem cells in situ. Biomaterials able to encapsulate and sustain hMSCs represent a viable approach to overcome these limitations potentially improving the stem cell therapy. In this study, we evaluate a new agarose/carbomer based hydrogel which combines different strategies to optimize hMSCs viability, density and delivery of paracrine factors. Specifically, we evaluate a new loading procedure on a lyophilized scaffold (soaked up effect) that reduces mechanical stress in encapsulating hMSCs into the hydrogel. In addition, we combine arginine-glycine-aspartic acid (RGD) tripeptide and 3D extracellular matrix deposition to increase the capacity to attach and maintain healthy hMSCs within the hydrogel over time. Furthermore, the fluidic diffusion from the hydrogel toward the injury site is improved by using a cling film that oriented efficaciously the delivery of paracrine factors in vivo. Finally, we demonstrate that an improved combination as here proposed of hMSCs and biomimetic hydrogel is able to immunomodulate significantly the pro-inflammatory environment in a SCI mouse model, increasing M2 macrophagic population and promoting a pro-regenerative environment in situ.

  4. Human Mesenchymal Stem Cells Provide Protection against Radiation-Induced Liver Injury by Antioxidative Process, Vasculature Protection, Hepatocyte Differentiation, and Trophic Effects

    Directory of Open Access Journals (Sweden)

    Sabine Francois

    2013-01-01

    Full Text Available To evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1α. A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed. hMSC injection induced a decrease in transaminases levels and oxidative stress, a disappearance of apoptotic cells, and an increase in Nrf2, SOD gene expression, which might reduce ROS production in the injured liver. Engrafted hMSCs expressed cytokeratin CK18 and CK19 and AFP genes indicating possible hepatocyte differentiation. The presence of hMSCs expressing VEGF and Ang-1 in the perivascular region, associated with an increased expression of VEGFr1, r2 in the liver, can confer a role of secreting cells to hMSCs in order to maintain the endothelial function. To explain the benefits to the liver of hMSC engraftment, we find that hMSCs secreted NGF, HGF, and anti-inflammatory molecules IL-10, IL1-RA contributing to prevention of apoptosis, increasing cell proliferation in the liver which might correct liver dysfunction. MSCs are potent candidates to repair and protect healthy tissues against radiation damages.

  5. 3, 3', 5-triiodo-L-thyronine Increases In Vitro Chondrogenesis of Mesenchymal Stem Cells From Human Umbilical Cord Stroma Through SRC2.

    Science.gov (United States)

    Fernández-Pernas, Pablo; Fafián-Labora, Juan; Lesende-Rodriguez, Iván; Mateos, Jesús; De la Fuente, Alexandre; Fuentes, Isaac; De Toro Santos, Javier; Blanco García, Fco; Arufe, María C

    2016-09-01

    Our group focuses on the study of mesenchymal stem cells (MSCs) from human umbilical cord stroma or Warthońs jelly and their directed differentiation toward chondrocyte-like cells capable of regenerating damaged cartilage when transplanted into an injured joint. This study aimed to determine whether lactogenic hormone prolactin (PRL) or 3, 3', 5-triiodo-L-thyronine (T3), the active thyroid hormone, modulates chondrogenesis in our in vitro model of directed chondrogenic differentiation, and whether Wnt signalling is involved in this modulation. MSCs from human umbilical cord stroma underwent directed differentiation toward chondrocyte-like cells by spheroid formation. The addition of T3 to the chondrogenic medium increased the expression of genes linked to chondrogenesis like collagen type 2, integrin alpha 10 beta 1, and Sox9 measured by quantitative real time polymerase chain reaction (qRT-PCR) analysis. Levels of collagen type 2 and aggrecane analyzed by immunohistochemistry, and staining by Safranin O were increased after 14 days in spheroid culture with T3 compared to those without T3 or only with PRL. B-catenin, Frizzled, and GSK-3β gene expressions were significantly higher in spheroids cultured with chondrogenic medium (CM) plus T3 compared to CM alone after 14 days in culture. The increase of chondrogenic differentiation was inhibited when the cells were treated with T3 plus ML151, an inhibitor of the T3 steroid receptor. This work demonstrates, for first time, that T3 promotes differentiation towards chondrocytes-like cells in our in vitro model, that this differentiation is mediated by steroid receptor co-activator 2 (SRC2) and does not induce hypertrophy. J. Cell. Biochem. 117: 2097-2108, 2016. © 2016 Wiley Periodicals, Inc.

  6. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Lin, Haihong; Luo, Xinping; Jin, Bo; Shi, Haiming; Gong, Hui

    2015-04-01

    The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without affecting the levels of total Akt, ERK1/2, and p38MAPK in MSCs. After transfection, MSCs secreted more EPO which enhanced the capability of proliferation and migration. Moreover, our results suggested that the enhanced proliferation and migration might be associated with activation of PI3K/Akt and ERK or inhibition of P38MAPK signaling pathway.

  7. Dynamic Tracking of Injected Mesenchymal Stem Cells after Myocardial Infarction in Rats: A Serial 7T MRI Study

    Science.gov (United States)

    Chen, Xiuyu; Lu, Minjie; Ma, Ning; Yin, Gang; Cui, Chen

    2016-01-01

    Purpose. To track the fate of micron-sized particles of iron oxide (MPIO) labeled mesenchymal stem cells (MSCs) in vivo in a rat myocardial infarction model using 7T magnetic resonance imaging (MRI) scanner. Materials and Methods. Male MSCs (2 × 106/50 μL) dual-labeled with MPIO and CM-DiI were injected into the infarct periphery 7 days after myocardial infarction (MI). The control group received cell-free media injection. The temporal stem cell location, signal intensity, and cardiac function were dynamically assessed using a 7T MRI at 24 h before transplantation (baseline), 3 days, 2 weeks, and 4 weeks after transplantation, respectively. Results. MR hypointensities caused by MPIOs were observed on T2⁎-weighted images at all time points after MSCs injection. Cine-MRI showed that MSCs moderated progressive left ventricular remodeling. Double staining for iron and CD68 revealed that most of the iron-positive cells were CD68-positive macrophages. Real-time PCR for rat SRY gene showed the number of survival MSCs considerably decreased after transplantation. MSC-treated hearts had significantly increased capillary density in peri-infarct region and lower cardiomyocytes apoptosis and fibrosis formation. Conclusions. Iron particles are not a reliable marker for in vivo tracking the long-term fate of MSCs engraftment. Despite of poor cell retention, MSCs moderate left ventricular remodeling after MI. PMID:27656215

  8. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury.

    Science.gov (United States)

    Liu, Yu; He, Zhi-Jie; Xu, Bo; Wu, Qi-Zhu; Liu, Gang; Zhu, Hongyan; Zhong, Qian; Deng, David Y; Ai, Hua; Yue, Qiang; Wei, Yi; Jun, Shen; Zhou, Guangqian; Gong, Qi-Yong

    2011-05-19

    Cell tracking using iron oxide nanoparticles has been well established in MRI. However, in experimental rat models, the intrinsic iron signal derived from erythrocytes masks the labeled cells. The research evaluated a clinically applied Gd-DTPA for T1-weighted positive enhancement for cell tracking in spinal cord injury (SCI) rat models. MSCs were labeled with jetPEI/Gd-DTPA particles to evaluate the transfection efficiency by MRI in vitro. Differentiation assays were carried out to evaluate the differentiation ability of Gd-DTPA-labeled MSCs. The Gd-DTPA-labeled MSCs were transplanted to rat SCI model and monitored by MRI in vivo. Fluorescence images were taken to confirm the MRI results. Behavior test was assessed with Basso, Beattie, and Bresnahan (BBB) scoring in 6weeks after cell transplantation. The Gd-labeled MSCs showed a significant increase in signal intensity in T1-weighted images. After local transplantation, Gd-DTPA-labeled MSCs could be detected in SCI rat models by the persistent T1-weighted positive enhancement from 3 to 14days. Under electronic microscope, Gd-DTPA/jetPEI complexes were mostly observed in cytoplasm. Fluorescence microscopy examination showed that the Gd-labeled MSCs survived and distributed within the injured spinal cord until 2weeks. The Gd-labeled MSCs were identified and tracked with MRI by cross and sagittal sections. The BBB scores of the rats with labeled MSCs transplantation were significantly higher than those of control rats. Our results demonstrated that Gd-DTPA is appropriate for cell tracking in rat model of SCI, indicating that an efficient and nontoxic label method with Gd-DTPA could properly track MSCs in hemorrhage animal models.

  9. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  10. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis.

    Science.gov (United States)

    Coimbra, L S; Steffens, J P; Alsadun, S; Albiero, M L; Rossa, C; Pignolo, R J; Spolidorio, L C; Graves, D T

    2015-12-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.

  11. Toll-like receptor 2/6-dependent stimulation of mesenchymal stem cells promotes angiogenesis by paracrine factors

    Directory of Open Access Journals (Sweden)

    H Kokemüller

    2013-09-01

    Full Text Available Reconstruction of critical size bone defects represents a major challenge in orthopaedic surgery. Insufficient angiogenesis is a limiting factor for engraftment of large-scale tissue transplants. Transplantation or stimulation of local mesenchymal stem cells (MSCs represents a potential solution to enhance angiogenesis. We recently identified angiogenic properties for the Toll-like receptor (TLR 2/6 agonist MALP-2 and now investigated if MALP-2 could be used to stimulate MSCs in order to promote angiogenesis in vitro and in vivo.Human MSCs from the bone marrow of healthy subjects were isolated, cultured and expanded in vitro and were shown to be positive for mesenchymal stem cells markers as well as for the MALP-2 receptors TLR2 and TLR6. MALP-2 directly enhanced migration but not proliferation of human MSCs. Conditioned medium from MALP-2 stimulated MSCs significantly increased proliferation, migration and tube formation of endothelial cells. Analysis of the conditioned medium from MSCs revealed that MALP-2 stimulation enhanced the secretion of several chemokines and growth factors including vascular endothelial growth factors (VEGF and granulocyte-macrophage colony-stimulating factor (GM-CSF. Finally, we studied MALP-2 effects on MSCs in a sheep model of tissue engineering in vivo. Therefore, MSCs were isolated from the iliac crest of black head sheep and co-cultivated with MALP-2 ex vivo. Implantation of autologous MSCs within a scaffold cylinder into the M. latissimus dorsi significantly enhanced vessel density of these constructs after 6 months.We here present the first evidence that TLR2/6-dependent stimulation of MSCs promotes angiogenesis in vitro and in vivo offering a novel strategy for therapeutic angiogenesis, e.g., for tissue engineering of bone.

  12. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    Science.gov (United States)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing.

  13. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics.

    Science.gov (United States)

    Garcia-Gomez, Antonio; Sanchez-Guijo, Fermin; Del Cañizo, M Consuelo; San Miguel, Jesus F; Garayoa, Mercedes

    2014-07-26

    Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented.

  14. Biodistribution of Mesenchymal Stem/Stromal Cells in a Preclinical Setting

    Directory of Open Access Journals (Sweden)

    Luc Sensebé

    2013-01-01

    Full Text Available Due to their multi/pluripotency and immunosuppressive properties, mesenchymal stem/stromal cells (MSCs are important tools for treatment of immune disorders and tissue repair. The increasing uses of MSCs lead to the development of production processes that need to be in accordance with good manufacturing practices (GMP. In Europe, MSCs are somatic cell-therapy products, referred to as advanced-therapy medicinal products (ATMPs, and in the United States MSCs must comply with current good tissue practice requirements. The safety and efficacy of MSCs must be ensured, whatever the cell source, and studies of dose and biodistribution are important aspects of safety testing. Preclinical data on biodistribution and pharmacodynamics are mandatory for approval. It is important to demonstrate that MSCs do not have unwanted homing that could drive to inappropriate differentiation in some organ or to support cancer development as suggested in some experiments. All these aspects should be addressed in a risk-based approach according to recently published guidelines by EMA. In the present article, we summarize the main approaches for labeling and tracking of infused MSCs, report on current animal models, and give an overview of available results on biodistribution.

  15. Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation

    Science.gov (United States)

    Hiruma, Yuko; Honjo, Tadashi; Jelinek, Diane F.; Windle, Jolene J.; Shin, Jaekyoon; Roodman, G. David

    2009-01-01

    Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serves as a platform to facilitate formation of signaling complexes for these pathways. Therefore, we determined if targeting only p62 would inhibit multiple signaling pathways activated in the MM microenvironment and thereby decrease MM cell growth and osteoclast formation. Signaling through NF-κB and p38 MAPK was increased in primary stromal cells from MM patients. Increased interleukin-6 (IL-6) production by MM stromal cells was p38 MAPK-dependent while increased vascular cell adhesion molecule-1 (VCAM-1) expression was NF-κB–dependent. Knocking-down p62 in patient-derived stromal cells significantly decreased protein kinase Cζ (PKCζ), VCAM-1, and IL-6 levels as well as decreased stromal cell support of MM cell growth. Similarly, marrow stromal cells from p62−/− mice produced much lower levels of IL-6, tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL) and supported MM cell growth and osteoclast formation to a much lower extent than normal cells. Thus, p62 is an attractive therapeutic target for MM. PMID:19282458

  16. Documentation of Customer Management Processes: Regards for MSCs Performance

    Directory of Open Access Journals (Sweden)

    Hassan Khalili

    2014-07-01

    Full Text Available This study seeks the role of documentation of customer management processes on MSCs performance. Customer management processes includes: customer acquisition and customer retention that document the process helps sales managers in better planning. The population of the research is firms of industrial state of East Azerbaijan and Fars Provinces. The questionnaire gathered as an email and firm Attending survey, the dataset involved responses from sales and directors of the 127 firms. KMO and Bartlett's sphericity index for sampling adequacy was used the results indicate that the number of samples is suitable for factor analysis. Construction validation, so Cronbach's alpha, Spearman-Brown coefficient and Guttman split-half Coefficient was used to assess questionnaire that results show that the instrument has good validity and reliability. The regression analysis and path analysis have used for analyzing data and testing the research hypothesizes. In accordance with the results of simple linear regression analysis, documentation in compared management practices to facilitate employee and customer relationships for predict of performance has no information relative content. In addition, environmental turbulence has a negative impact on performance. But the results of hierarchical regression analyzes showed that documentation has information valuable content for predict of performance. Finally, ‎ the results of article have presented ‎solutions to salesperson and managers, and will help academics to understand the documentation CM processes.

  17. Efficacy of Topical Mesenchymal Stem Cell Therapy in the Treatment of Experimental Dry Eye Syndrome Model

    Directory of Open Access Journals (Sweden)

    Emrullah Beyazyıldız

    2014-01-01

    Full Text Available Purpose. The current study was set out to address the therapeutic efficacy of topically applied mesenchymal stem cells (MSCs on dry eye syndrome (DES induced by benzalkonium chloride (BAC in rats. Methods. Rats were divided into two groups just after establishment of DES. Eye drops containing either bromodeoxyuridine labeled MSCs (n=9 or phosphate buffer solution (n=7 were topically applied once daily for one week. Schirmer test, break-up time score, ocular surface evaluation tests, and corneal inflammatory index scoring tests were applied to all rats at baseline and after treatment. All rats were sacrificed after one week for histological and electron microscopic analysis. Results. Mean aqueous tear volume and tear film stability were significantly increased in rats treated with MSCs (P<0.05. Infiltration of bromodeoxyuridine labeled MSCs into the meibomian glands and conjunctival epithelium was observed in MSCs treated rats. Increased number of secretory granules and number of goblet cells were observed in MSCs treated rats. Conclusion. Topical application of MSCs could be a safe and effective method for the treatment of DES and could potentially be used for further clinical research studies.

  18. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats.

    Science.gov (United States)

    Chung, Hyo-jin; Chung, Wook-hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Suh, Hyun Jung; Lee, Dong-Hun; Hwang, Soo-Han; Do, Sun Hee; Kim, Hwi-Yool

    2016-03-01

    We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.

  19. Quantum dot labeling of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cascio Wayne E

    2007-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture. Results A dose-response to QDs in rat bone marrow MSCs was assessed in Control (no-QDs, Low concentration (LC, 5 nmol/L and High concentration (HC, 20 nmol/L groups. QD yield and retention, MSC survival, proinflammatory cytokines, proliferation and DNA damage were evaluated in MSCs, 24 -120 hrs post QD labeling. In addition, functional integration of QD labeled MSCs in an in vitro cardiomyocyte co-culture was assessed. A dose-dependent effect was measured with increased yield in HC vs. LC labeled MSCs (93 ± 3% vs. 50% ± 15%, p 90% of QD labeled cells were viable in all groups, however, at 120 hrs increased apoptosis was measured in HC vs. Control MSCs (7.2% ± 2.7% vs. 0.5% ± 0.4%, p Conclusion Fluorescent QDs label MSC effectively in an in vitro co-culture model. QDs are easy to use, show a high yield and survival rate with minimal cytotoxic effects. Dose-dependent effects suggest limiting MSC QD exposure.

  20. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  1. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Lee, D H; Kang, S K; Lee, R H; Ryu, J M; Park, H Y; Choi, H S; Bae, Y C; Suh, K T; Kim, Y K; Jung, Jin Sup

    2004-01-01

    The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.

  2. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  3. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  4. Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: an in vitro study.

    Science.gov (United States)

    Li, Xinping; Zhang, Mingsheng; Bai, Liming; Bai, Wenfang; Xu, Weicheng; Zhu, Hongxiang

    2012-12-01

    Mesenchymal stem cells (MSCs) are capable of self-renew and multipotent differatiation which allows them to be sensitive to microenvironment is altered. Pulsed electromagnetic fields (PEMF) can affect cellular physiology of some types of cells. This study was undertaken to investigate the effects of PEMF on the growth and cell cycle arrest of MSCs expanded in vitro. To achieve this, cultured of normal rat MSCs, the treatment groups were respectively irradiated by 50 Hz PEMF at 10 mT of flux densities for 3 or 6 h. The effects of PEMF on cell proliferation, cell cycle arrest, and cell surface antigen phenotype were investigated. Our results showed that exposed MSCs had a significant proliferative capacity (P cell growth was not different (P>0.05) at an earlier phase after PEMF treatment. Exposure to PEMF had a significant increase the percentage of MSCs in G1 phase compare with the control group, with a higher percentage of cells in G1 phase exposed for 6 h then that for 3 h. At the 16th hour after treatment, PEMF had no significant effect on cell proliferation and cell cycle (P>0.05). These results suggested that PEMF enhanced MSCs proliferation with time-independent and increased the percentage of cells at the G1 phase of the cell cycle in a time-dependent manner, and the effect of PEMF on the cell proliferation and cell cycle arrest of MSCs was temporal after PEMF treatment.

  5. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    Science.gov (United States)

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  6. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  7. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs, which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF-gene-modified MSCs on radiation-induced intestinal injury (RIII.Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis.The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α and interferon-gamma (IFN-γ, increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells.Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  8. Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix.

    Science.gov (United States)

    Filioli Uranio, M; Valentini, L; Lange-Consiglio, A; Caira, M; Guaricci, A C; L'Abbate, A; Catacchio, C R; Ventura, M; Cremonesi, F; Dell'Aquila, M E

    2011-05-01

    The possibility to isolate canine mesenchymal stem cells (MSCs) from foetal adnexa is interesting since several canine genetic disorders are reported to resemble similar dysfunctions in humans. In this study, we successfully isolated, cytogenetically and molecularly characterized, and followed the differentiation potency of canine MSCs from foetal adnexa, such as amniotic fluid (AF), amniotic membrane (AM), and umbilical cord matrix (UCM). In the three types of cell lines, the morphology of proliferating cells typically appeared fibroblast-like, and the population doubling time (DT) significantly increased with passage number. For AF- and AM-MSCs, cell viability did not change with passages. In UCM-MSCs, cell viability remained at approximately constant levels up to P6 and significantly decreased from P7 (P < 0.05). Amnion and UCM-MSCs expressed embryonic and MSC markers, such as Oct-4 CD44, CD184, and CD29, whereas AF-MSCs expressed Oct-4, CD44. Expression of the hematopoietic markers CD34 and CD45 was not found. Dog leucocyte antigens (DLA-DRA1 and DLA-79) were expressed only in AF-MSCs at P1. Isolated cells of the three cell lines at P3 showed multipotent capacity, and differentiated in vitro into neurocyte, adipocyte, osteocyte, and chondrocyte, as demonstrated by specific stains and expression of molecular markers. Cells at P4 showed normal chromosomal number, structure, and telomerase activity. These results demonstrate that, in dog, MSCs can be successfully isolated from foetal adnexa and grown in vitro. Their proven stemness and chromosomal stability indicated that MSCs could be used as a model to study stem cell biology and have an application in therapeutic programs.

  9. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  10. MiR-124 suppresses the chemotactic migration of rat mesenchymal stem cells toward HGF by downregulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Yue, Qing; Zhang, Yu; Li, Xianyang; He, Lihong; Hu, Ya'nan; Wang, Xianyao; Xu, Xiaojing; Shen, Yixin; Zhang, Huanxiang

    2016-09-01

    Mesenchymal stem cells (MSCs) exhibit the potential to repair a wide variety of injured adult tissues. The migration capability of MSCs is an important determinant of the efficiency of MSC transplant therapy. MicroRNAs (miRNAs) are increasingly implicated in regulating the migration of MSCs. Herein, we show that the expression of miR-124 was downregulated in rat MSCs (rMSCs) treated with hepatocyte growth factor (HGF). Overexpression of miR-124 significantly reduced the chemotactic migration of rMSCs toward HGF, while inhibition of endogenous miR-124 promoted the chemotactic migration. A further study revealed that miR-124 directly targeted FZD4 and LRP6, which encode a receptor and co-receptor of the Wnt/β-catenin signaling pathway, respectively, thus reducing the activity of this signaling. Consistently, activation of the Wnt/β-catenin signaling pathway by LiCl and ΔN89β-catenin rescued the inhibitory effect of miR-124 on the chemotactic migration of rMSCs toward HGF, while inhibition of Wnt/β-catenin signaling by FH535 abrogated the enhanced chemotactic response achieved by the miR-124 inhibitor. Collectively, our study demonstrates that miR-124 downregulates Wnt/β-catenin signaling via targeting FZD4 and LRP6 and thus suppresses the chemotactic migration of rMSCs toward HGF.

  11. Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways.

    Science.gov (United States)

    Zhang, Xue; Zhou, Chenhui; Zha, Xuan; Xu, Zhoumei; Li, Li; Liu, Yuyu; Xu, Liangliang; Cui, Liao; Xu, Daohua; Zhu, Baohua

    2015-09-01

    Apigenin is a plant-derived flavonoid and has been reported to prevent bone loss in ovariectomized mice, but the role of apigenin on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been reported. In the present study, the effect of apigenin on osteogenic differentiation of hMSCs was explored. Our results showed that apigenin treatment significantly increased alkaline phosphatase (ALP) activity and mineralization in hMSCs. RT-PCR revealed that apigenin markedly up-regulated the mRNA expression of osteopontin (OPN) and the transcription factors runt-related transcription factor 2 (Runx2). The expression of Runx2 and osterix (OSX) proteins were also increased in hMSCs differentiating into osteoblasts after treatment with apigenin. Furthermore, we investigated the signaling pathways responsible for osteogenic differentiation of apigenin in hMSCs. We found that apigenin treatment significantly increased the levels of p-JNK, p-p38 in hMSCs and addition of the inhibitors of JNK (SP600125) or p38 MAPK (SB203580) eliminated the stimulating effects of apigenin. In addition, addition of SP600125 or SB203580 also blocked apigenin-induced ALP activity, OPN, Runx2, and OSX expression and meanwhile inhibited bone nodule formation. Taken together, these findings suggest apigenin promotes the osteogenesis of hMSCs through activation of JNK and p38 MAPK signal pathways which leads to Runx2 and OSX expressions to induce the formation of bone nodule.

  12. The Effects of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A Review

    Science.gov (United States)

    Bateman, Marjorie E.; Strong, Amy L.; McLachlan, John A.; Burow, Matthew E.; Bunnell, Bruce A.

    2017-01-01

    Endocrine-disrupting chemicals (EDCs) are prevalent in the environment, and epidemiologic studies have suggested that human exposure is linked to chronic diseases, such as obesity and diabetes. In vitro experiments have further demonstrated that EDCs promote changes in mesenchymal stem cells (MSCs), leading to increases in adipogenic differentiation, decreases in osteogenic differentiation, activation of pro-inflammatory cytokines, increases in oxidative stress, and epigenetic changes. Studies have also shown alteration in trophic factor production, differentiation ability, and immunomodulatory capacity of MSCs, which have significant implications to the current studies exploring MSCs for tissue engineering and regenerative medicine applications and the treatment of inflammatory conditions. Thus, the consideration of the effects of EDCs on MSCs is vital when determining potential therapeutic uses of MSCs, as increased exposure to EDCs may cause MSCs to be less effective therapeutically. This review focuses on the adipogenic and osteogenic differentiation effects of EDCs as these are most relevant to the therapeutic uses of MSCs in tissue engineering, regenerative medicine, and inflammatory conditions. This review will highlight the effects of EDCs, including organophosphates, plasticizers, industrial surfactants, coolants, and lubricants, on MSC biology. PMID:28119665

  13. Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis.

    Science.gov (United States)

    Kim, Kyoung Sub; Park, Wooram; Na, Kun

    2015-01-01

    To improve the gadolinium (Gd) internalization efficiency in stem cells, gadolinium-chelate nanoparticles were prepared from a pullulan derivative (pullulan-deoxycholic acid (DOCA)-diethylene triamine pentaacetic (DTPA)-Gd conjugate; PDDG) and then the PDDG was entrapped into human mesenchymal stem cells (hMSCs) by the photochemical-internalization (PCI) method for cancer diagnosis via the cancer homing property of hMSCs. The internalization efficiency of Gd in hMSCs was significantly increased to 98 ± 4 pg Gd/cell from 32 ± 2 pg Gd/cell via the PCI method. Moreover, the Gd-entrapped hMSCs revealed a low exocytosis ratio of gadolinium-chelate nanoparticles during cell division in vitro and a high cellular labeling efficiency for at least 21 days in vivo. The cancer-targeting and diagnosis effect of the Gd-entrapped hMSCs were confirmed in a small CT26 tumor-bearing mice model. The stem cells detected an early tumor (∼3 mm(3)) within 2 h using 4.7-T MR and optical imaging. The results demonstrated that the PCI-mediated internalization of Gd-incorporated nanoparticles into hMSCs is a promising protocol for efficient cell labeling and tracking.

  14. Role of Suppressor of Cytokine Signaling 3 in the Immune Modulation of Mesenchymal Stromal Cells.

    Science.gov (United States)

    Yang, Chen; Zheng, Chunquan; Lin, Hai; Li, Jing; Zhao, Keqing

    2016-02-01

    The underlying mechanisms of mesenchymal stromal cells (MSCs) on immune modulation to treat allergic diseases remain unclear. Here, we showed that the suppressor of cytokine signaling 3 (SOCS3) is an important immune modulator expressed by MSCs, which is significantly increased by interferon-γ (IFN-γ). In addition, we observed that SOCS3 is a crucial mediator of the anti-proliferative and functional effects of MSCs on T cells and B cells. The immune modulation of MSCs through SOCS3 is mediated by cell-cell contacts. Moreover, SOCS3 could serve as an indicator to predict the potential immune modulatory of MSCs derived from different donors. Furthermore, treatment with anti-SOCS3 Ab significantly decreased ovalbumin-specific antibodies and neutrophil infiltration in ovalbumin-induced allergic rhinitis (AR) mice. Our results suggest that SOCS3 serves as an immune modulator interfering with T cells and B cells, and SOCS3 may act as a predictive marker for immune modulatory of MSCs.

  15. Intracellular levels of calmodulin are increased in transformed cells

    Institute of Scientific and Technical Information of China (English)

    WANG; HONGQINGZHANG; 等

    1992-01-01

    By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.

  16. The Effect of Matrix Stiffness on the Differentiation of Mesenchymal Stem Cells in Response to TGF-β

    Science.gov (United States)

    Park, Jennifer S.; Chu, Julia S.; Tsou, Anchi D.; Diop, Rokhaya; Tang, Zhenyu; Wang, Aijun; Li, Song

    2011-01-01

    Bone marrow mesenchymal stem cells (MSCs) are a valuable cell source for tissue engineering and regenerative medicine. Transforming growth factor β (TGF-β) can promote MSC differentiation into either smooth muscle cells (SMCs) or chondrogenic cells. Here we showed that matrix stiffness modulated these differential effects. MSCs on soft substrates had less spreading, fewer stress fibers and lower proliferation rate than MSCs on stiff substrates. MSCs on stiff substrates had higher expression of SMC markers α-actin and calponin-1; in contrast, MSCs on soft substrates had a higher expression of chondrogenic marker collagen-II and adipogenic marker lipoprotein lipase (LPL). TGF-β increased SMC marker expression on stiff substrates. However, TGF-β increased chondrogenic marker and suppressed adipogenic marker on the soft substrates, while adipogenic medium and soft substrates induced adipogenic differentiation effectively. Rho GTPase was involved in the expression of all aforementioned lineage markers, but did not account for the differential effects of matrix stiffness. In addition, soft substrates did not significantly affect Rho activity, but inhibited Rho-induced stress fiber formation and α-actin assembly. Further analysis showed that MSCs on soft matrices had weaker cell adhesion, and that the suppression of cell adhesion strength mimicked the effects of soft substrates on the lineage marker expression. These results provide insights of how matrix stiffness differentially regulates stem cell differentiation, and have significant implications for the design of biomaterials with appropriate mechanical property for tissue regeneration. PMID:21397942

  17. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jienny; Byeon, Jeong Su; Lee, Keum Sil; Gu, Na-Yeon; Lee, Gyeong Been; Kim, Hee-Ryang; Cho, In-Soo; Cha, Sang-Ho

    2016-03-01

    Mesenchymal stem cells (MSCs) have the ability to differentiate into multi-lineage cells, which confers great promise for use in regenerative medicine. In this study, canine adipose MSCs (cAD-MSCs) were isolated from canine adipose tissue. These cells clearly represented stemness (Oct4, Sox2, and Nanog) and differentiation potential into the mesoderm (adipocytes, chondrocytes, and osteoblasts) at early passages. The aim of this study was to evaluate the effects of hypoxia on the differentiation potential into mesoderm, and the expression of anti-apoptotic genes associated with cell survival for the optimal culturing of MSCs. We observed that the proliferation of the cAD-MSCs meaningfully increased when cultured under hypoxic condition than in normoxic condition, during 7 consecutive passages. Also, we found that hypoxia strongly expressed anti-senescence related genes such as HDAC1 (histone deacetylase 1), DNMT1 (DNA (cytosine-5)-methyltransferase 1), Bcl-2 (inhibitor of apoptosis), TERT (telomerase reverse transcriptase), LDHA (lactate dehydrogenase A), SLC2A1 (glucose transporter), and DKC1 (telomere holoenzyme complex) and differentiation potential of cAD-MSCs into chondrocytes, than seen under the normoxic culture conditions. We also examined the multipotency of hypoxic conditioned MSCs using quantitative real-time RT-PCR. We found that the expression levels of stemness genes such as Oct-4, Nanog, and Sox-2 were increased in hypoxic condition when compared to the normoxic condition. Collectively, these results suggest that hypoxic conditions have the ability to induce proliferation of MSCs and augment their chondrogenic potential. This study suggests that cell proliferation of cAD-MSC under hypoxia could be beneficial, when considering these cells for cell therapies of canine bone diseases.

  18. Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach.

    Directory of Open Access Journals (Sweden)

    Jessica M Donnelly

    Full Text Available Studies using Helicobacter-infected mice show that bone marrow-derived mesenchymal stem cells (MSCs can repopulate the gastric epithelium and promote gastric cancer progression. Within the tumor microenvironment of the stomach, pro-inflammatory cytokine interferon-gamma (IFNγ and Sonic hedgehog (Shh are elevated. IFNγ is implicated in tumor proliferation via activation of the Shh signaling pathway in various tissues but whether a similar mechanism exists in the stomach is unknown. We tested the hypothesis that IFNγ drives MSC proliferation and recruitment, a response mediated by Shh signaling. The current study uses transplantation of an in vitro transformed mesenchymal stem cell line (stMSC(vect, that over-expresses hedgehog signaling, in comparison to non-transformed wild-type MSCs (wtMSCs, wtMSCs transfected to over-express Shh (wtMSC(Shh, and stMSCs transduced with lentiviral constructs containing shRNA targeting the Shh gene (stMSC(ShhKO. The effect of IFNγ on MSC proliferation was assessed by cell cycle analysis in vitro using cells treated with recombinant IFNγ (rmIFNγ alone, or in combination with anti-Shh 5E1 antibody, and in vivo using mice transplanted with MSCs treated with PBS or rmIFNγ. In vitro, IFNγ significantly increased MSC proliferation, a response mediated by Shh that was blocked by 5E1 antibody. The MSC population collected from bone marrow of PBS- or IFNγ-treated mice showed that IFNγ significantly increased the percentage of all MSC cell lines in S phase, with the exception of the stMSCs(ShhKO cells. While the MSC cell lines with intact Shh expression were recruited to the gastric mucosa in response to IFNγ, stMSCs(ShhKO were not. Hedgehog signaling is required for MSC proliferation and recruitment to the stomach in response to IFNγ.

  19. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion.

    Directory of Open Access Journals (Sweden)

    Bing Han

    Full Text Available BACKGROUND: Mesenchymal stem cells (MSCs have been considered as ideal cells for the treatment of a variety of diseases. However, aging and spontaneous differentiation of MSCs during culture expansion dampen their effectiveness. Previous studies suggest that ex vivo aging of MSCs is largely caused by epigenetic changes particularly a decline of histone H3 acetylation levels in promoter regions of pluripotent genes due to inappropriate growth environment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined whether histone deacetylase inhibitor trichostatin A (TSA could suppress the histone H3 deacetylation thus maintaining the primitive property of MSCs. We found that in regular adherent culture, human MSCs became flatter and larger upon successive passaging, while the expression of pluripotent genes such as Oct4, Sox2, Nanog, Rex-1, CD133 and TERT decreased markedly. Administration of low concentrations of TSA in culture significantly suppressed the morphological changes in MSCs otherwise occurred during culture expansion, increased their proliferation while retaining their cell contact growth inhibition property and multipotent differentiation ability. Moreover, TSA stabilized the expression of the above pluripotent genes and histone H3 acetylation levels in K9 and K14 in promoter regions of Oct4, Sox2 and TERT. CONCLUSIONS/SIGNIFICANCE: Our results suggest that TSA may serve as an effective culture additive to maintain the primitive feature of MSCs during culture expansion.

  20. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect.

    Science.gov (United States)

    Horie, Masafumi; Sekiya, Ichiro; Muneta, Takeshi; Ichinose, Shizuko; Matsumoto, Kenji; Saito, Hirohisa; Murakami, Takashi; Kobayashi, Eiji

    2009-04-01

    Osteoarthritis in the knees, which can be caused by meniscal defect, constitutes an increasingly common medical problem. Repair for massive meniscal defect remains a challenge owing to a lack of cell kinetics for the menisci precursors in knee joint. The synovium plays pivotal roles during the natural course of meniscal healing and contains mesenchymal stem cells (MSCs) with high chondrogenic potential. Here, we investigated whether intra-articular injected synovium-MSCs enhanced meniscal regeneration in rat massive meniscal defect. To track the injected cells, we developed transgenic rats expressing dual luciferase (Luc) and LacZ. The cells derived from synovium of the rats demonstrated colony-forming ability and multipotentiality, both characteristics of MSCs. Hierarchical clustering analysis revealed that gene expression of meniscal cells was closer to that of synovium-MSCs than to that of bone marrow-MSCs. Two to 8 weeks after five million Luc/LacZ+ synovium-MSCs were injected into massive meniscectomized knee of wild-type rat, macroscopically, the menisci regenerated much better than it did in the control group. After 12 weeks, the regenerated menisci were LacZ positive, produced type 2 collagen, and showed meniscal features by transmission electron microscopy. In in-vivo luminescence analysis, photons increased in the meniscus-resected knee over a 3-day period, then decreased without detection in all other organs. LacZ gene derived from MSCs could not be detected in other organs except in synovium by real-time PCR. Synovium-MSCs injected into the massive meniscectomized knee adhered to the lesion, differentiated into meniscal cells directly, and promoted meniscal regeneration without mobilization to distant organs.

  1. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy.

    Science.gov (United States)

    Freeman, F E; Haugh, M G; McNamara, L M

    2016-04-01

    Recent in vitro tissue engineering approaches have shown that chondrogenic priming of human bone marrow mesenchymal stem cells (MSCs) can have a positive effect on osteogenesis in vivo. However, whether chondrogenic priming is an effective in vitro bone regeneration strategy is not yet known. In particular, the appropriate timing for chondrogenic priming in vitro is unknown albeit that in vivo cartilage formation persists for a specific period before bone formation. The objective of this study is to determine the optimum time for chondrogenic priming of MSCs to enhance osteogenic differentiation by MSCs in vitro. Pellets derived from murine and human MSCs were cultured in six different media groups: two control groups (chondrogenic and osteogenic) and four chondrogenic priming groups (10, 14, 21 and 28 days priming). Biochemical analyses (Hoechst, sulfate glycosaminoglycan (sGAG), Alkaline Phosphate (ALP), calcium), histology (Alcian Blue, Alizarin Red) and immunohistochemistry (collagen types I, II and X) were performed on the samples at specific times. Our results show that after 49 days the highest amount of sGAG production occurred in MSCs chondrogenically primed for 21 days and 28 days. Moreover we found that chondrogenic priming of MSCs in vitro for specific amounts of time (14 days, 21 days) can have optimum influence on their mineralization capacity and can produce a construct that is mineralized throughout the core. Determining the optimum time for chondrogenic priming to enhance osteogenic differentiation in vitro provides information that might lead to a novel regenerative treatment for large bone defects, as well as addressing the major limitation of core degradation and construct failure.

  2. NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation.

    Science.gov (United States)

    Wang, Linghao; Chen, Ke; Wan, Xinxing; Wang, Fang; Guo, Zi; Mo, Zhaohui

    2017-03-18

    Osteoporosis is one of the most common skeletal disease featured by osteopenia and adipose accumulation in bone tissue. NLRP3 inflammasome activation is an essential player in aging-related chronic diseases like osteoporosis, particularly due to the causal caspase-1 activation and its correlation to adipose accumulation in bone tissue. Moreover, the expression of anti-aging/senescence SIRT1 was reported to decline along with aging. As the major cellular contributor of bone formation, mesenchymal stem cells (MSCs) are multipotent stem cells processing mutually exclusive differentiatability toward osteocytes or adipocytes. Therefore, we hypothesized that NLRP3 inflammasome activation promotes adipogenesis and repress osteogenesis in MSCs via inhibiting SIRT1 expression. We activated NLRP3 inflammasome in human MSCs via lipopolysaccharide and palmitic acid (LPS/PA) treatment for self-renewal maintenance, adipogenic differentiation or osteogenic differentiation. LPS/PA treatment significantly increased NLRP3 expression, decreased SIRT1 expression and promoted caspase-1 activity in MSCs. LPS/PA treatment also boosted adipogenesis of MSCs and suppressed osteogenesis. Moreover, inhibition of caspase-1 activity repressed adipogenic differentiation and partially improved osteogenic differentiation of MSCs with LPS/PA treatment. Our study demonstrated the pivotal roles of NLRP3 inflammasome and downstream mediator caspase-1 for the progress of osteo-differentiation MSCs, and offered novel therapeutic target of treatment for osteoporosis.

  3. Upregulation of Renin-Angiotensin System in Bone Marrow Mesenchymal Stem Cells Under Hypoxia Conditions

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-rong; GAO Jing-hong; LI Qing-ping

    2014-01-01

    Objective:To investigate the expressions of AT1-R, AT2-R and angiotensin converting enzyme (ACE) in mesenchymal stem cells (MSCs) under hypoxia and serum deprivation condition. Methods:Bone MSCs were isolated, cultured and identiifed by anti-CD29 and anti-CD11b/c with flow cytometry. The ischemic injury model was established by exposing MSCs to hypoxia and serum deprivation (Hypoxia/SD). Cell viability and apoptotic rate were detected by trypan blue staining, CCK8 assays and Annexin V-FITC staining. The mRNA expressions of AT1-R, AT2-R and ACE were determined by Reverse Transcription-PCR and Real-time Quantitative PCR, The expression of AT1-R, AT2-R and ACE protein were measured by Western-blot. Results:MSCs expressed CD29, but not the CD11b/c. The purity of MSCs employed was up to 97%. The results of trypan blue staining along with CCK8 and Annexin V-FITC staining proved that the injury model induced by Hypoxia/SD was successfully established. MSCs under hypoxia and serum deprivation for 24 h induced a rapid increase in mRNA expression of AT1-R, AT2-R and ACE as well as their protein expressions. Conclusion:The local RAS in MSCs is activated by Hypoxia/SD stimulation and the mRNA and protein expressions of AT1-R, AT2-R and ACE are up-regulated.

  4. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning.

  5. Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral sparing in a transgenic rat model of Huntington's disease.

    Science.gov (United States)

    Rossignol, Julien; Fink, Kyle; Davis, Kendra; Clerc, Steven; Crane, Andrew; Matchynski, Jessica; Lowrance, Steven; Bombard, Matthew; Dekorver, Nicholas; Lescaudron, Laurent; Dunbar, Gary L

    2014-02-01

    Stem cells have gained significant interest as a potential treatment of neurodegenerative diseases, including Huntington's disease (HD). One source of these cells is adult neural stem cells (aNSCs), which differentiate easily into neuronal lineages. However, these cells are vulnerable to immune responses following transplantation. Another source is bone-marrow-derived mesenchymal stem cells (MSCs), which release neurotrophic factors and anti-inflammatory cytokines following transplantation, and are less vulnerable to rejection. The goal of this study was to compare the efficacy of transplants of MSCs, aNSCs, or cotransplants of MSCs and aNSCs for reducing deficits in a transgenic rat model of HD. HD rats received intrastriatal transplantations of 400,000 MSCs, aNSCs, or a combination of MSCs/aNSCs, while wild-type and HD controls were given vehicle. Rats were tested on the rotarod over the course of 20 weeks. The results indicated that transplants of: (a) aNSCs produced a strong immune response and conferred short-term behavioral benefits; (b) MSCs elicited a relatively weak immune response, and provided a longer term behavioral benefit; and (c) combined MSCs and aNSCs conferred long-term behavioral benefits and increased survival of the transplanted aNSCs. The finding that cotransplanting MSCs with aNSCs can prolong aNSC survival and provide greater behavioral sparing than when the transplants contains only aNSCs suggests that MSCs are capable of creating a more suitable microenvironment for aNSC survival. This cotransplantation strategy may be useful as a future therapeutic option for treating HD, especially if long-term survival of differentiated cells proves to be critically important for preserving lasting functional outcomes.

  6. Hypoxic pretreatment of human umbilical cord mesenchymal stem cells regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Chuan TONG

    2016-08-01

    Full Text Available Objective  To investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs on macrophage polarization under hypoxia. Methods  hUC-MSCs were obtained by explants adherent culture and cultured under normoxia (21% O2 and hypoxia (5% O2. The multi-directional differentiation of hUC-MSCs was observed by osteogenic and adipogenic differentiation induction. Live/death staining was performed to detect the cell viability, and ELISA was executed to detect the protein content in supernatant of hUC-MSCs. Transwell chamber was employed to co-culture the hUC-MSCs cultured under normoxia and hypoxia and macrophage (THP-1 stimulated by lipopolysaccharide (IPS, then the polarization of THP-1 was detected by immunofluorescence, and the secretions of inflammatory factor and anti-inflammatory factor of THP-1 were detected by ELISA. Results  hUC-MSCs cultured under hypoxia showed the ability of osteogenic and adipogenic multi-directional differentiation. Live/death staining showed the high cell viability of hUC-MSCs cultured under normoxia and hypoxia. The expression levels of prostaglandin E2 (PGE2 and indoleamine 2,3-dioxygenase (IDO were significantly higher in the hUC-MSCs cultured under hypoxia than in those cultured under normoxia. hUCMSCs cultured under hypoxia promoted the polarization of THP-1 to M2, obviously reduced the expression of TNF-α and IL-1β, and increased the expression of IL-10 significantly. Conclusion hUC-MSCs cultured under hypoxia may promote the polarization of THP-1 to M2 and improve the viability of anti-inflammatory. DOI: 10.11855/j.issn.0577-7402.2016.07.01

  7. Acoustic trauma increases cochlear and hair cell uptake of gentamicin.

    Directory of Open Access Journals (Sweden)

    Hongzhe Li

    Full Text Available BACKGROUND: Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity. METHODS: Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy. RESULTS: Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides. CONCLUSIONS: Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.

  8. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration.

    Science.gov (United States)

    Wodewotzky, T I; Lima-Neto, J F; Pereira-Júnior, O C M; Sudano, M J; Lima, S A F; Bersano, P R O; Yoshioka, S A; Landim-Alvarenga, F C

    2012-12-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  9. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  10. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  11. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  12. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds

    DEFF Research Database (Denmark)

    Zou, Lijin; Luo, Yonglun; Chen, Muwan

    2013-01-01

    -lineages differentiation: osteogenic, adipogenic, and chondrogenic, and lost pluripotency - as seen with the loss of markers OCT3/4 and TRA-1-81 - and tumorigenicity. However, these iPS-MSCs are still positive for marker NANOG. We further explored the osteogenic potential of the hiPS-MSCs in synthetic polymer...... polycaprolactone (PCL) scaffolds or PCL scaffolds functionalized with natural polymer hyaluronan and ceramic TCP (PHT) both in vitro and in vivo. Our results showed that these iPS-MSCs are functionally compatible with the two 3D scaffolds tested and formed typically calcified structure in the scaffolds. Overall...

  13. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  14. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion.

    Science.gov (United States)

    Larsen, Jesper; Dall, Morten; Antvorskov, Julie Christine; Weile, Christian; Engkilde, Kåre; Josefsen, Knud; Buschard, Karsten

    2014-10-01

    Dietary gluten influences the development of type 1 diabetes in nonobese diabetic (NOD) mice and biobreeding rats, and has been shown to influence a wide range of immunological factors in the pancreas and gut. In the present study, the effects of gluten on NK cells were studied in vitro and in vivo. We demonstrated that gliadin increased direct cytotoxicity and IFN-γ secretion from murine splenocytes and NK cells toward the pancreatic beta-cell line MIN6 cells. Additionally, stimulation of MIN6 cells led to a significantly increased proportion of degranulating C57BL/6 CD107a(+) NK cells. Stimulation of C57BL/6 pancreatic islets with gliadin significantly increased secretion of IL-6 more than ninefold. In vivo, the gluten-containing diet led to a higher expression of NKG2D and CD71 on NKp46(+) cells in all lymphoid organs in BALB/c and NOD mice compared with the gluten-free diet. Collectively, our data suggest that dietary gluten increases murine NK-cell activity against pancreatic beta cells. This mechanism may contribute to development of type 1 diabetes and explain the higher disease incidence associated with gluten intake in NOD mice.

  15. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  16. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells

    OpenAIRE

    Van Pham, Phuc; Vu, Ngoc Bich; Pham, Vuong Minh; Truong, Nhung Hai; Pham, Truc Le-Buu; Dang, Loan Thi-Tung; Nguyen, Tam Thanh; Bui, Anh Nguyen-Tu; Phan, Ngoc Kim

    2014-01-01

    Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable U...

  17. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  18. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus

    Science.gov (United States)

    Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo

    2015-01-01

    The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected. PMID:26167475

  19. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-li HUANG; Zhi-gao JIANG; Ruo-feng QIU; Wei-yi MAI; Jian KUANG; Xiao-yan CAI; Yu-gang DONG; Yun-zhao HU; Yuan-bin SONG; An-ping CAI

    2012-01-01

    Objective:To explore the effects of insulin-like growth factor-1 (IGF-1) on migration,proliferation and differentiation of mesenchymal stem cells (MSCs).Methods:MSCs were obtained from Sprague-Dawley rats by a combination of gradient centrifugation and cell culture techniques and treated with IGF-1 at concentrations of 5-20 ng/ml.Proliferation of MSCs was determined as the mean doubling time.Expression of CXC chemokine receptor 4 (CXCR4)and migration property were determined by flow cytometry and transwell migration essay,respectively.mRNA expression of GATA-4 and collagen ∥ was determined by reverse transcription-polymerase chain reaction (RT-PCR).Results:The mean doubling time of MSC proliferation was decreased,and the expression of CXCR4 on MSCs and migration of MSCs were increased by IGF-1,all in a dose-dependent manner,while the optimal concentration of IGF-1 on proliferation and migration was different.IGF-1 did not affect the expression of GATA-4 or collagen ∥ mRNA.Conclusions:IGF-1 dose-dependently stimulated the proliferation of MSCs,upregulated the expression of CXCR4,and accelerated migration.There was no apparent differentiation of MSCs to cardiomyocytes or chondrocytes after culturing with IGF-1 alone.

  20. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Fernando Ezquer

    2015-01-01

    Full Text Available The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs administration on diabetic nephropathy (DN progression. After diabetes induction, one group of mice received the vehicle (DM and other group received a single dose of MSCs (DM + MSCs. DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes, DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.

  1. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus.

    Science.gov (United States)

    Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo

    2015-01-01

    The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.

  2. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    Science.gov (United States)

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  3. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China); Liu, B. [Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei (China); Wang, H.P. [Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei (China); Zhang, L. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-05-31

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.

  4. Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rene Rodriguez

    2009-04-01

    Full Text Available There is growing evidence about the role of mesenchymal stem cells (MSCs as cancer stem cells in many sarcomas. Nevertheless, little is still known about the cellular and molecular mechanisms underlying MSCs transformation. We aimed at investigating the role of p53 and p21, two important regulators of the cell cycle progression and apoptosis normally involved in protection against tumorigenesis. Mesenchymal stem cells from wild-type, p21-/-p53+/+, and p21-/-p53+/- mice were cultured in vitro and analyzed for the appearance of tumoral transformation properties after low, medium, and high number of passages both in vitro and in vivo. Wild-type or p21-/-p53+/+ MSCs did not show any sign of tumoral transformation. Indeed, after short-term in vitro culture, wild-type MSCs became senescent, and p21-/-p53+/+ MSCs showed an elevated spontaneous apoptosis rate. Conversely, MSCs carrying a mutation in one allele of the p53 gene (p21-/-p53+/- MSCs completely lost p53 expression after in vitro long-term culture. Loss of p53 was accompanied by a significant increase in the growth rate, gain of karyotypic instability, loss of p16 expression, and lack of senescence response. Finally, these cells were able to form fibrosarcomas partially differentiated into different mesenchymal lineages when injected in immunodeficient mice both after subcutaneous and intrafemoral injection. These findings show that MSCs are very sensitive to mutations in genes involved in cell cycle control and that these deficiencies can be at the origin of some mesodermic tumors.

  5. Purkinje cell intrinsic excitability increases after synaptic long term depression.

    Science.gov (United States)

    Yang, Zhen; Santamaria, Fidel

    2016-09-01

    Coding in cerebellar Purkinje cells not only depends on synaptic plasticity but also on their intrinsic membrane excitability. We performed whole cell patch-clamp recordings of Purkinje cells in sagittal cerebellar slices in mice. We found that inducing long-term depression (LTD) in the parallel fiber to Purkinje cell synapses results in an increase in the gain of the firing rate response. This increase in excitability is accompanied by an increase in the input resistance and a decrease in the amplitude of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated voltage sag. Application of a HCN channel blocker prevents the increase in input resistance and excitability without blocking the expression of synaptic LTD. We conclude that the induction of parallel fiber-Purkinje cell LTD is accompanied by an increase in excitability of Purkinje cells through downregulation of the HCN-mediated h current. We suggest that HCN downregulation is linked to the biochemical pathway that sustains synaptic LTD. Given the diversity of information carried by the parallel fiber system, we suggest that changes in intrinsic excitability enhance the coding capacity of the Purkinje cell to specific input sources.

  6. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  7. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  8. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review

    NARCIS (Netherlands)

    Vonk, L.A.; Windt, de T.S.; Slaper-Cortenbach, Ineke C.M.; Saris, D.B.F.

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, wh

  9. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    OpenAIRE

    Mari Dezawa; Taeko Shigemoto; Fumitaka Ogura; Shohei Wakao; Yasumasa Kuroda

    2012-01-01

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have no...

  10. SHP-1 phosphatase activity counteracts increased T cell receptor affinity.

    Science.gov (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie

    2013-03-01

    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  11. Transgenic cells with increased plastoquinone levels and methods of use

    Science.gov (United States)

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    2016-12-27

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, or a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.

  12. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  13. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink

    2015-10-01

    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  14. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds.

    Science.gov (United States)

    Leferink, Anne M; Chng, Yhee-Cheng; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2015-01-01

    One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  15. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Claire Mennan

    2013-01-01

    Full Text Available Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs sourced from several different cord regions, including artery, vein, cord lining, and Wharton’s jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.

  16. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Science.gov (United States)

    Wright, Karina; Bhattacharjee, Atanu; Balain, Birender; Richardson, James; Roberts, Sally

    2013-01-01

    Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics. PMID:23984420

  17. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  18. Increasing the efficiency of polymer solar cells by silicon nanowires.

    Science.gov (United States)

    Eisenhawer, B; Sensfuss, S; Sivakov, V; Pietsch, M; Andrä, G; Falk, F

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  19. Isolation and characterization of exosome from human embryonic stem cell-derived c-myc-immortalized mesenchymal stem cells

    NARCIS (Netherlands)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; De Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular b

  20. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; LiyunZhong

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  1. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension.

    Science.gov (United States)

    Lim, Jisun; Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun; Lee, Sei Won; Kim, Kyunggon; Kim, In-Gyu; Shin, Dong-Myung

    2016-04-22

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called "priming" factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK(p42/44) and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients.

  2. Mesenchymal stem cells alleviate atherosclerosis by elevating number and function of CD4(+)CD25 (+)FOXP3 (+) regulatory T-cells and inhibiting macrophage foam cell formation.

    Science.gov (United States)

    Wang, Zhi Xiao; Wang, Chong Quan; Li, Xiao Yan; Feng, Gao Ke; Zhu, Hong Ling; Ding, Yan; Jiang, Xue Jun

    2015-02-01

    Atherosclerosis is a chronic inflammatory disease characterized by the formation of plaques inside arteries, leading to narrowing and blockage. Potential therapeutic strategies include expanding the population of regulatory T-cells (Tregs) to enhance atheroprotective immunity, and inhibiting the formation of macrophage foam cells. Here, we studied the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) on atherosclerotic plaque formation in Apolipoprotein E(-/-) (ApoE-KO) mice, and elucidated the underlying mechanism. BM-MSCs isolated from 4 week-old ApoE-KO mice were evaluated by flow cytometry for expression of MSC-specific markers. Thirty eight week-old ApoE-KO mice were randomly divided into three experimental groups (n = 10 per group): 1. MSC group-received BM-MSCs intravenously; 2. Vehicle group-received DMEM; 3. Control group-did not receive any treatment. Administration of MSCs resulted in a marked decrease in the size of atherosclerotic plaques 3 months after treatment. In addition, the number and function of CD4(+)CD25(+)FOXP3(+) regulatory T-cells (Tregs) in cultured splenocytes, and the expression of FOXP3 at both mRNA and protein levels, was significantly increased in the MSC group. In vitro experiments further indicated that the formation of macrophage foam cells was inhibited by treatment with MSCs, accompanied by a significant downregulation in CD36 and scavenger receptor A (SRA). Our findings suggest that MSCs play an atheroprotective role by enhancing the number and function of Tregs and inhibiting the formation of macrophage foam cells. Hence, administration of MSCs to atherosclerotic patients might have significant clinical benefits.

  3. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow.

    Science.gov (United States)

    Yan, Zhong-Jie; Hu, Yu-Qin; Zhang, Hong-Tian; Zhang, Peng; Xiao, Zong-Yu; Sun, Xin-Lin; Cai, Ying-Qian; Hu, Chang-Chen; Xu, Ru-Xiang

    2013-05-01

    Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.

  4. Mechanism of in Vitro Differentiation of Bone Marrow Stromal Cells into Neuron-like Cells

    Institute of Scientific and Technical Information of China (English)

    褚倩; 王亚平; 傅新巧; 张苏明

    2004-01-01

    Summary: In order to study whether marrow stromal cells (MSCs) can be induced into nerve-like cells in vitro, and the mechanism, the MSCs in Wistar rats were isolated and cultured, and then induced with DMSO and BHA in vitro. The expression of specific marking proteins in neurons, glia and neural stem cells were detected before preinduction, at 24 h of preinduction, at 6 h, 24 h, and 48 h of neuronal induction by using immunohistochemistry and Western blotting. The ultrastructural changes after the inducement were observed. The results showed that after the inducement, many MSCs turned into bipolar, multipolar and taper, and then intersected as network structure. At the same time, some MSCs had the typical neuron-like ultrastructure. Immunohistochemistry revealed that NeuN and Nestin expression was detectable after inducement, but there was no GFAP and CNP expression. Western blotting showed the expression of Nestin was strong at 6 h of neuronal induction, and decreased at 24 h, 48 h of the induction. NeuN was detectable at 6 h of neuronal induction, and increased at 24 h, 48 h of the induction. It was concluded MSCs were induced intc neural stem cells, and then differentiated into neuron-like cells in vitro.

  5. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  6. Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: Influence of microenvironment, tissue origin and growth factor

    Directory of Open Access Journals (Sweden)

    N Shintani

    2011-11-01

    Full Text Available nchymal stromal cells (MSCs, which reside within various tissues, are utilized in the engineering of cartilage tissue. Dexamethasone (DEX – a synthetic glucocorticoid – is almost invariably applied to potentiate the growth-factor-induced chondrogenesis of MSCs in vitro, albeit that this effect has been experimentally demonstrated only for transforming-growth-factor-beta (TGF-β-stimulated bone-marrow-derived MSCs. Clinically, systemic glucocorticoid therapy is associated with untoward side effects (e.g., bone loss and increased susceptibility to infection. Hence, the use of these agents should be avoided or limited. We hypothesize that the influence of DEX on the chondrogenesis of MSCs depends upon their tissue origin and microenvironment [absence or presence of an extracellular matrix (ECM], as well as upon the nature of the growth factor. We investigated its effects upon the TGF-β1- and bone-morphogenetic-protein 2 (BMP-2-induced chondrogenesis of MSCs as a function of tissue source (bone marrow vs. synovium and microenvironment [cell aggregates (no ECM vs. explants (presence of a natural ECM]. In aggregates of bone-marrow-derived MSCs, DEX enhanced TGF-β1-induced chondrogenesis by an up-regulation of cartilaginous genes, but had little influence on the BMP-2-induced response. In aggregates of synovial MSCs, DEX exerted no remarkable effect on either TGF-β1- or BMP-2-induced chondrogenesis. In synovial explants, DEX inhibited BMP-2-induced chondrogenesis almost completely, but had little impact on the TGF-β1-induced response. Our data reveal that steroids are not indispensable for the chondrogenesis of MSCs in vitro. Their influence is context dependent (tissue source of the MSCs, their microenvironment and the nature of the growth-factor. This finding has important implications for MSC based approaches to cartilage repair.

  7. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-02-29

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.

  8. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.

    Science.gov (United States)

    Joerger-Messerli, Marianne S; Marx, Caterina; Oppliger, Byron; Mueller, Martin; Surbek, Daniel V; Schoeberlein, Andreina

    2016-02-01

    The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.

  9. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  10. p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Qian Cong

    2016-04-01

    Full Text Available Bone marrow-derived mesenchymal stromal cells (BM-MSCs are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling.

  11. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders;

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  12. Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

    Directory of Open Access Journals (Sweden)

    Wilhelm Paulander

    Full Text Available It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH• formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP. Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

  13. EPS8 inhibition increases cisplatin sensitivity in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Lidija K Gorsic

    Full Text Available Cisplatin, a commonly used chemotherapeutic, is associated with ototoxicity, renal toxicity and neurotoxicity, thus identifying means to increase the therapeutic index of cisplatin may allow for improved outcomes. A SNP (rs4343077 within EPS8, discovered through a genome wide association study of cisplatin-induced cytotoxicity and apoptosis in lymphoblastoid cell lines (LCLs, provided impetus to further study this gene. The purpose of this work was to evaluate the role of EPS8 in cellular susceptibility to cisplatin in cancerous and non-cancerous cells. We used EPS8 RNA interference to determine the effect of decreased EPS8 expression on LCL and A549 lung cancer cell sensitivity to cisplatin. EPS8 knockdown in LCLs resulted in a 7.9% increase in cisplatin-induced survival (P = 1.98 × 10(-7 and an 8.7% decrease in apoptosis (P = 0.004 compared to control. In contrast, reduced EPS8 expression in lung cancer cells resulted in a 20.6% decrease in cisplatin-induced survival (P = 5.08 × 10(-5. We then investigated an EPS8 inhibitor, mithramycin A, as a potential agent to increase the therapeutic index of cisplatin. Mithramycin A decreased EPS8 expression in LCLs resulting in decreased cellular sensitivity to cisplatin as evidenced by lower caspase 3/7 activation following cisplatin treatment (42.7% ± 6.8% relative to control P = 0.0002. In 5 non-small-cell lung carcinoma (NSCLC cell lines, mithramycin A also resulted in decreased EPS8 expression. Adding mithramycin to 4 NSCLC cell lines and a bladder cancer cell line, resulted in increased sensitivity to cisplatin that was significantly more pronounced in tumor cell lines than in LCL lines (p<0.0001. An EGFR mutant NSCLC cell line (H1975 showed no significant change in sensitivity to cisplatin with the addition of mithramycin treatment. Therefore, an inhibitor of EPS8, such as mithramycin A, could improve cisplatin treatment by increasing sensitivity of tumor relative to normal cells.

  14. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    Science.gov (United States)

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  15. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  16. Towards personalized regenerative cell therapy

    DEFF Research Database (Denmark)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells...... and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation...... of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing...

  17. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways.

    Science.gov (United States)

    Shang, Jin; Yao, Yuan; Fan, Xin; Shangguan, Lei; Li, Jie; Liu, Huan; Zhou, Yue

    2016-04-01

    Mesenchymal stem cells (MSCs) are important seed cells for tissue engineering and are promising targets for cell-based therapies. However, the replicative senescence of MSCs during in vitro culture limits their research and clinical applications. The molecular mechanisms underlying the replicative senescence of MSCs are not fully understood. Evidence suggests that miRNAs play important roles in replicative senescence. A microarray analysis found that the miR-29c-3p level was significantly increased during the MSC senescence process. In our study, we investigated the roles of miR-29c-3p in senescence of MSCs. We cultured MSCs for long periods of time, up and down-regulated the miR-29c-3p expression in MSCs, and examined the senescent phenotype changes. The over-expression of miR-29c-3p led to enhanced senescence-associated-β-galactosidase (SA-β-gal) staining, senescence associated secretory phenotype (SASP), senescence associated heterochromatic foci (SAHF), reduced proliferation ability, retarded osteogenic differentiation and corresponding changes in senescence markers, whereas the miR-29c-3p down-regulation had the opposite results. Dual-luciferase reporter assays demonstrated that CNOT6 is the target gene of miR-29c-3p. Knockdown of CNOT6 confirmed its inhibitory effects on the senescence of MSCs. In addition, Western blot results showed that both the p53-p21 and the p16-pRB pathways were activated during the miR-29c-3p-induced senescence of MSCs. In conclusion, our results demonstrate that miR-29c-3p promotes the senescence of MSCs by targeting CNOT6 through p53-p21 and p16-pRB pathways and highlight the contribution of post-transcriptional regulation to stem cell senescence.

  18. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Science.gov (United States)

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice.

  19. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging

    Directory of Open Access Journals (Sweden)

    Peter T. Sage

    2015-07-01

    Full Text Available Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR cells to stimulatory T follicular helper (TFH cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice.

  20. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms

    Science.gov (United States)

    Brenner, Annette K.; Nepstad, Ina; Bruserud, Øystein

    2017-01-01

    Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.

  1. The effects of GM1 and Bfgf synergistically inducing adult rat bone marrow stromal cells to form neural progenitor cells and their differentiation

    Institute of Scientific and Technical Information of China (English)

    张卉; 王纪佐; 孙红宇; 张建宁; 杨树源

    2004-01-01

    Objective: To investigate the effects of GM1 on inducing adult rat bone marrow stromal cells(MSCs) to form neural progenitor cells and their differentiation. Methods: Purified MSCs were induced by different components of basic fibroblast growth factor (bFGF) alone, GM1 alone or combination of bFGF with GM1. After 3 days' incubation, fibronectin and collagen I were detected with immunocytochemistry, and nestin was detected with immunofluorescence. Neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and galactose cerebroside (GalC) were detected with immunocytochemistry after 7 days' incubation. Results: After induction with bFGF alone or combination of bFGF and GM1, some MSCs exhibited the phenotypes of neural progenitor cells, and then neurons and astrocytes. In these two groups, the positive cells for fibronectin and collagen I decreased markedly after 3 days' induction. At the same time, the positive cells for nestin increased markedly. After 7 days' induction, NSE and GFAP-positive cells increased significantly. Furthermore, the addition of bFGF and GM1 caused the maximal variation. However, addition of GM1 alone had no inductive effects.Conclusions: Combination of bFGF with GM1 may synergistically promote the transformation of MSCs and differentiation into neurons and astrocyte-like cells. The results suggest a promising route for the application of MSCs.

  2. Intra-arterial delivery of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Watanabe

    2016-01-01

    Full Text Available While treatments have been developed to combat stroke, such as intravenous recombinant tissue plasminogen activator and endovascular recanalization therapies, their ability to decrease the long-term disability that accompanies stroke is limited. Currently, stem cell research focused on mesenchymal stem cells (MSCs. MSCs are multipotent, nonhematopoietic stem cells found in the stromal fraction of the bone marrow, along with the connective tissue of most organs. MSCs are an increasingly appealing cell source due to the relative ease in which they can be retrieved, developed, and handled in vitro. Despite the fact that numerous paths of stem cell transport to the brain in acute ischemic stroke (AIS exist, the intra-arterial (IA route of stem cell transport is most attractive. This is due to its great potential for clinical translation, especially considering the growing clinical application of endovascular treatment for AIS. Here, we evaluate research examining IA delivery of MSCs to the stroke region. The results of the study revealed the maximum tolerated dose and that the optimal time for administration was 24 h, following cerebral ischemia. It is important that future translational studies are performed to establish IA administration of MSCs as a widely used treatment for AIS.

  3. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  4. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  5. A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells.

    Science.gov (United States)

    Li, Li; Zhu, Jing; Tian, Jie; Liu, Xiaoyan; Feng, Chuan

    2010-12-01

    MSCs possess the capacity of self-renewal and potential of differentiation into various kinds of specialized tissue cells including myocardiocytes. From self-renewing to oriented differentiation, chromatin is remodeled into heritable states that allow activation or maintain the repression of regulatory genes, which means specific genes in self-renewing switched off and specific genes in oriented differentiation activated (Bernstein et al. Cell 125:315-326, 2006). These epigenetic states are established and controlled largely by specific patterns of histone posttranslational modifications, in particular, histone acetylation (Li Nat Rev Genet 3:662-673, 2002). In cardiomyocyte differentiation of rat MSCs, we focused on Gcn5, which linked a known transcriptional coactivator with catalytic histone acetyltransferase activity (Brownell et al. Cell 84:843-851, 1996). To clarify participatory in vivo role of Gcn5, using an RNA interference (RNAi) strategy employing shRNA to specifically knockdown Gcn5 expression in MSCs, we found that HAT activity altered dynamically depended on the inhibition of Gcn5 during MSCs differentiation. Chromatin immunoprecipitation (ChIP) assay showed the increased binding of acetyl histone H3 to the early cardiomyocyte-specific genes GATA4 and NKx2.5 promoters in cardiomyocyte differentiation of MSCs by 5-azacytidine inducing, whereas the decreased binding with lower Gcn5 expression. Cell ultrastructure analysis revealed that MSCs induced by 5-azacytidine possess morphological characteristics of cardiomyocyte cells. The shape of MSCs transfected by Gcn5 RNAi was similar to normal MSCs, but the chromatin showed heavy electron-density and a hard-packed structure. This intermediate state of chromatin may be an inactive part of MSCs differentiation. These results demonstrate that Gcn5, possessing acetyltransferase activity, is involved in regulating chromatin configuration around GATA4 and NKx2.5 in cardiomyocyte differentiation of rat MSCs by

  6. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats.

    Directory of Open Access Journals (Sweden)

    Yifeng Ke

    Full Text Available Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β, antiangiogenic cytokine (TSP-1 and decrease those promoting inflammation (TNF-α, chemotaxis (MIP-1α and MCP-1 and angiogenesis (VEGF and MMP-2. This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.

  7. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis

    Directory of Open Access Journals (Sweden)

    Leah A. Marquez-Curtis

    2013-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.

  8. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    Science.gov (United States)

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  9. Retroviral-mediated transfer and functional expression of multidrug resistance gene in human placenta mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    HAN Li-ying; YE Ming-zhu; LI Ya-ping; WANG Bo-wei; WANG Qiang; ZHAO Shu-hua; LI He-lian

    2008-01-01

    Background Most of gynecologic malignancies are sensitive to chemotherapy. Myelosuppression is the main dose-related toxicity of many chemotherapeutic drugs. The human multidrug resistance (mdrl) gene is well known for its ability to confer drug resistance. This study aimed to explore the feasibility of expression and resistance of mdrl gene transduction into human placenta mesenchymal stem cells (P-MSCs) by retrovirus vector.Methods Human P-MSCs were isolated from trypsin-digested term placentas, and their immunophenotypes and differentiation potential were evaluated. Human P-MSCs were transduced by reconstructed retroviral vector containing the mdrl gene and green fluorescent protein (GFP) reporter gene. The integration and expression of the mdrl gene were observed indirectly by the expression of GFP, and fluorescence-activated cell sorter was used to evaluate the functional activity of permeability glycoprotein (P-gp) encoded by the mdrl gene. The stimulating test was made in vitro to show pleiotropic drug resistance of transfected cells.Results The isolated, cultured and expanded P-MSCs expressed stem cell markers such as CD29, CD44 and CD73,and showed osteogenic and adipogenic differentiation potentials under appropriate conditions. The expression of P-gp in the non-transfected P-MSCs cells was (0.4±0.1)%, but increased to (28.1±4.7)% after gene transfection (P<0.01). And positive staining of P-gp located mainly at cell membrane and cytoplasm. Accumulation and extrusion assays showed that P-gp expressed by the transfected cells had pump-functional activity and could efflux daunomycin out of cells. The analysis of cell survival confirmed that transfected P-MSCs had a characteristic of multidrug resistance with a significant increase in the resistance to anticancer agents.Conclusions Transfer and expression of human mdrl gene mediated by retrovirus vector conferred P-MSCs drug resistance. It might provide a new alternative to chemoprotection strategies.

  10. A safe and efficient method to retrieve mesenchymal stem cells from three-dimensional fibrin gels.

    Science.gov (United States)

    Carrion, Bita; Janson, Isaac A; Kong, Yen P; Putnam, Andrew J

    2014-03-01

    Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.

  11. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  12. Increased differentiation of Th22 cells in Hashimoto's thyroiditis.

    Science.gov (United States)

    Bai, Xue; Sun, Jie; Wang, Weiwei; Shan, Zhongyan; Zheng, Hongzhi; Li, Yushu; Zhao, Yuhang; Gong, Ming; Teng, Weiping

    2014-01-01

    As Th22 subsets are identified, their involvement in the pathogenesis of numerous autoimmune diseases has become apparent. In this study, we investigated differentiation of Th22 cells in the autoimmune thyroid diseases including Hashimoto's thyroiditis (HT) and Graves' disease (GD). Besides, we also explored the involvement of Th22 cells in an iodine-induced autoimmune thyroiditis (AIT) model (i.e., NOD.H-2(h4) mice). In HT patients, we showed the level of circulating Th22 cells correlated with the level of serum IL-22, and was significantly higher than in GD patients and healthy control subjects. Levels of serum IL-6, a major Th22 cell differentiation effector, were also higher in HT, and correlated with Th22 cells concentration. Peripheral blood mononuclear cells isolated from HT patients produced larger amounts of IL-6 in vitro than did those isolated from other groups. Furthermore, unlike those from GD patients, T lymphocytes from HT patients showed an enhanced differentiation in vitro into Th22 cells in the presence of recombinant IL-6 and TNF-α. In addition, levels of circulating Th22 cells and titers of thyroid peroxidase antibody were positively correlated in HT patients. In NOD.H-2(h4) mice, higher numbers of Th22 cells were observed in the spleens of the AIT group, while splenocytes of this group also produced larger amounts of IL-6 and IL-22 in vitro compared with the control. Intra-thyroid infiltrating IL-22+ lymphocytes were significantly increased in mice of the AIT group compared with the control. Our results indicate that Th22 cells may contribute to the pathogenesis of HT.

  13. Increased sensitivity to interferon-alpha in psoriatic T cells

    DEFF Research Database (Denmark)

    Eriksen, Karsten Wessel; Lovato, Paola; Skov, Lone

    2005-01-01

    disease characterized by CD8(+)-infiltrating T cells. In this study, we therefore investigate IFN-alpha signaling in T cells isolated from involved skin of psoriatic patients. We show that psoriatic T cells have increased and prolonged responses to IFN-alpha, on the level of signal transducers......Psoriasis is a chronic inflammatory skin disease characterized by abnormal epidermal proliferation. Several studies have shown that skin-infiltrating activated T cells and cytokines play a pivotal role during the initiation and maintenance of the disease. Interferon (IFN)-alpha plays an important...... role in host defense against infections, but recent data have also implicated IFN-alpha in psoriasis. Thus, IFN-alpha induces or aggravates psoriasis in some patients, and mice lacking a transcriptional attenuator of IFN-alpha/beta signaling spontaneously develop a psoriasis-like inflammatory skin...

  14. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    Science.gov (United States)

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  15. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  16. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  17. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field

    Directory of Open Access Journals (Sweden)

    Z Zhao

    2011-11-01

    Full Text Available At sites of bone fracture, naturally-occurring electric fields (EFs exist during healing and may guide cell migration. In this study, we investigated whether EFs could direct the migration of bone marrow mesenchymal stem cells (BM-MSCs, which are known to be key players in bone formation. Human BM-MSCs were cultured in direct current EFs of 10 to 600 mV/mm. Using time-lapse microscopy, we demonstrated that an EF directed migration of BM-MSCs mainly to the anode. Directional migration occurred at a low threshold and with a physiological EF of ~25 mV/mm. Increasing the EF enhanced the MSC migratory response. The migration speed peaked at 300 mV/mm, at a rate of 42 ±1 µm/h, around double the control (no EF migration rate. MSCs showed sustained response to prolonged EF application in vitro up to at least 8 h. The electrotaxis of MSCs with either early (P3-P5 or late (P7-P10 passage was also investigated. Migration was passage-dependent with higher passage number showing reduced directed migration, within the range of passages examined. An EF of 200 mV/mm for 2 h did not affect cell senescence, phenotype, or osteogenic potential of MSCs, regardless of passage number within the range tested (P3-P10. Our findings indicate that EFs are a powerful cue in directing migration of human MSCs in vitro. An applied EF may be useful to control or enhance migration of MSCs during bone healing.

  18. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    Gu, Zhifeng; Jiang, Jinxia; Tan, Wei; Xia, Yunfei; Cao, Haixia; Meng, Yan; Da, Zhanyun; Liu, Hong; Cheng, Chun

    2013-01-01

    Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  19. p53/p21 Pathway Involved in Mediating Cellular Senescence of Bone Marrow-Derived Mesenchymal Stem Cells from Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Zhifeng Gu

    2013-01-01

    Full Text Available Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs from systemic lupus erythematosus (SLE patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  20. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  1. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  2. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  3. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions.

    Science.gov (United States)

    Berry, Suzanne E

    2015-01-01

    Mesenchymal stem cells (MSCs) and mesoangioblasts (MABs) are multipotent cells that differentiate into specialized cells of mesodermal origin, including skeletal muscle cells. Because of their potential to differentiate into the skeletal muscle lineage, these multipotent cells have been tested for their capacity to participate in regeneration of damaged skeletal muscle in animal models of muscular dystrophy. MSCs and MABs infiltrate dystrophic muscle from the circulation, engraft into host fibers, and bring with them proteins that replace the functions of those missing or truncated. The potential for systemic delivery of these cells increases the feasibility of stem cell therapy for the large numbers of affected skeletal muscles in patients with muscular dystrophy. The present review focused on the results of preclinical studies with MSCs and MABs in animal models of muscular dystrophy. The goals of the present report were to (a) summarize recent results, (b) compare the efficacy of MSCs and MABs derived from different tissues in restoration of protein expression and/or improvement in muscle function, and (c) discuss future directions for translating these discoveries to the clinic. In addition, although systemic delivery of MABs and MSCs is of great importance for reaching dystrophic muscles, the potential concerns related to this method of stem cell transplantation are discussed.

  4. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells.

    Science.gov (United States)

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo

    2015-11-01

    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  5. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells.

  6. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy.

    Science.gov (United States)

    de Girolamo, Laura; Lucarelli, Enrico; Alessandri, Giulio; Avanzini, Maria Antonietta; Bernardo, Maria Ester; Biagi, Ettore; Brini, Anna Teresa; D'Amico, Giovanna; Fagioli, Franca; Ferrero, Ivana; Locatelli, Franco; Maccario, Rita; Marazzi, Mario; Parolini, Ornella; Pessina, Augusto; Torre, Maria Luisa; Italian Mesenchymal Stem Cell Group

    2013-01-01

    Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.

  7. Mesenchymal Stem/Stromal Cells: A New "Cells as Drugs" Paradigm. Efficacy and Critical Aspects in Cell Therapy

    Science.gov (United States)

    de Girolamo, Laura; Lucarelli, Enrico; Alessandri, Giulio; Avanzini, Maria Antonietta; Bernardo, Maria Ester; Biagi, Ettore; Brini, Anna Teresa; D’Amico, Giovanna; Fagioli, Franca; Ferrero, Ivana; Locatelli, Franco; Maccario, Rita; Marazzi, Mario; Parolini, Ornella; Pessina, Augusto; Torre, Maria Luisa

    2013-01-01

    Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects. PMID:23278600

  8. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.

    Science.gov (United States)

    Bikas, Athanasios; Jensen, Kirk; Patel, Aneeta; Costello, John; McDaniel, Dennis; Klubo-Gwiezdzinska, Joanna; Larin, Olexander; Hoperia, Victoria; Burman, Kenneth D; Boyle, Lisa; Wartofsky, Leonard; Vasko, Vasyl

    2015-12-01

    Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.

  9. Carboxymethylcellulose (CMC) formed nanogels with branched poly(ethyleneimine) (bPEI) for inhibition of cytotoxicity in human MSCs as a gene delivery vehicles.

    Science.gov (United States)

    Yang, Han Na; Park, Ji Sun; Jeon, Su Yeon; Park, Keun-Hong

    2015-05-20

    Specific vehicles are necessary for safe and efficient gene transfection into cells. Nano-type hydrogels (nanogel) comprising carboxymethylcellulose (CMC) complexed with branched type cationic poly(ethleneimine) (bPEI) were used as gene delivery vehicles. When complexes of CMC and bPEI were used in vitro, CMC showed nano-gel type properties, as shown by the results of a viscosity test, and bPEI showed low cytotoxicity comparing to bPEI alone. Together, these properties are shown to maintain high gene transfection efficiency. In viability experiments using three types of adult stem cells, cell viability varied depending on the branch form of PEI and whether or not it is in a complex with CMC. The gene delivery efficacy showed that the CMC nanogel complexed with bPEI (CMC-bPEI) showed more uptaking and gene transfection ability in hMSCs comparing to bPEI alone. In osteogenesis, the CMC-bPEI complexed with OSX pDNA showed more easy internalization than bPEI alone complexed with OSX pDNA in hMSCs. Specific genes and proteins related in osteogenic differentiation were expressed in hMSCs when the CMC-bPEI complexed with OSX pDNA was used.

  10. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  11. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  12. Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Russell, Katie C; Tucker, H Alan; Bunnell, Bruce A; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S; Strickler, Karen L; Lin, Shuwen; Lacey, Michelle R; O'Connor, Kim C

    2013-10-01

    Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. Sc(LO)NG2(HI) and Sc(LO)NG2(HI)CD146(HI) MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5-2.2 times the value for the parental controls. The Sc(LO) gate enriches for rapidly dividing cells. Addition of the NG2(HI) gate increases cell survival to 1.5 times the parental control. Further addition of the CD146(HI) gate does not significantly

  13. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Simonsen, Janne Lytoft; Rosada, Cecilia; Serakinci, Nedime;

    2002-01-01

    Human bone marrow stromal cells (hMSCs) were stably transduced by a retroviral vector containing the gene for the catalytic subunit of human telomerase (hTERT). Transduced cells (hMSC-TERTs) had telomerase activity, and the mean telomere length was increased as compared with that of control cells......, did not form tumors, and had a normal karyotype. When implanted subcutaneously in immunodeficient mice, the transduced cells formed more bone than did normal cells. These results suggest that ectopic expression of telomerase in hMSCs prevents senescence-associated impairment of osteoblast functions....

  14. Labelling and tracking of human mesenchymal stromal cells in preclinical studies and large animal models of degenerative diseases.

    Science.gov (United States)

    Vaegler, Martin; Maerz, Jan K; Amend, Bastian; da Silva, Luis Arenas; Mannheim, Julia G; Fuchs, Kerstin; Will, Susanne; Sievert, Karl D; Stenzl, Arnulf; Hart, Melanie L; Aicher, Wilhelm K

    2014-01-01

    Success of stem cell therapies were reported in different medical disciplines, including haematology, rheumatology, orthopaedic surgery, traumatology, and others. Currently, more than 4000 clinical trials using stem cells have been completed or are underway, among which 378 investigated or are at present investigating mesenchymal stromal cells (MSCs). The majority of clinical trials using stem- or progenitor- cells, including hematopoietic stem cells and MSCs, target the immune system. However, therapies based on MSCs are increasingly implemented to treat symptoms in which failure of the resident stem cells in situ, or malfunction of tissues or structures are not associated with immune cells or inflammation, but instead are associated with mechanical or metabolic stress, ageing, developmental or acquired malformations, and other causes. To proceed further in the development of stem cell therapies as a safe and effective treatment for surgical and other medical specialities, the behaviour of MSCs implanted in preclinical models and their impact on the site of application need to be explored in detail. Depending on the pre-clinical model employed, tracking of labelled stem cells in live animals makes an enormous difference for exploration of the mechanisms and kinetics involved in MSC-mediated tissue regeneration. Here we review (pre-)clinically applicable key methods to label human MSCs for short and long-term observations in small and large animal models.

  15. Hesperetin inhibit adipocyte differentiation and enhance Bax- and p21-mediated adipolysis in human mesenchymal stem cell adipogenesis.

    Science.gov (United States)

    Subash-Babu, Pandurangan; Alshatwi, Ali A

    2015-03-01

    We aimed to explore the antiadipogenic and adipolysis effect of hesperetin in human mesenchymal stem cells (hMSCs)-induced adipogenesis. IC50 value of hesperetin was higher for hMSCs such as 149.2 ± 13.2 μmol for 24 h and 89.4 ± 11.4 μmol in 48 h, whereas in preadipocytes was 87.6 ± 9.5 μmol and 72.4 ± 5.6 μmol in 24 h and 48 h, respectively. Hesperetin treatment (5, 10, and 20 μmol) to adipogenesis-induced hMSCs (Group 1) and preadipocytes (Group 2) resulted in a significantly (p p21 expression in Group 2 compared to untreated preadipocytes. hMSCs cultured in adipogenic medium along with hesperetin significantly inhibited adipocyte differentiation and increased the proapoptotic gene expression levels in preadipocyte. Our result indicates the antiadipogenic and adipolysis effects of hesperetin.

  16. Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Matsuno, Tomonori [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Tamazawa, Gaku [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Satoh, Tazuko [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Yamazaki, Atsushi [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Uchimura, Eiji [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Ohno, Tadao [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2007-06-01

    Fibronectin (Fn) and type I collagen (Col) were immobilized on a surface of a hydroxyapatite (HAP) ceramic by coprecipitation with calcium phosphate in a supersaturated calcium phosphate solution prepared by mixing clinically approved infusion fluids. These proteins and the calcium phosphate precipitate formed a composite surface layer. As a result, the proteins were immobilized firmly as not to be released completely for 3 d in a physiological salt solution. When human mesenchymal stem cells (hMSCs) were cultured on a HAP ceramic in a differentiation medium supplemented with dexamethasone, {beta}-glycerophosphate and ascorbic acid, hMSCs spread well within 1 h. The alkaline phosphatase (ALP) activity of hMSCs cultured on the Fn-calcium phosphate composite layer significantly increased compared with that of hMSCs cultured on the untreated HAP ceramic. On the other hand, Col did not increase the ALP activity of hMSCs and no synergy between Fn and Col was observed. Therefore, the Fn-calcium phosphate composite layer formed on the HAP is useful for the enhancement of the spreading and osteogenic differentiation of hMSCs in vitro.

  17. Mesenchymal Stem Cells Facilitate In Vitro Development of Human Preantral Follicle.

    Science.gov (United States)

    Xia, Xi; Wang, Tianren; Yin, Tailang; Yan, Liying; Yan, Jie; Lu, Cuilin; Zhao, Liang; Li, Min; Zhang, Yan; Jin, Hongyan; Zhu, Xiaohui; Liu, Ping; Li, Rong; Qiao, Jie

    2015-11-01

    Biological folliculogenesis is a lengthy and complicated process, and follicle growth microenvironment is poorly understood. Mesenchymal stem cells (MSCs) have been shown to establish a supportive microenvironment for wound repair, autoimmune diseases amelioration, and tumor development. Therefore, this study is aimed to investigate whether MSCs could help to reconstruct a microenvironment to facilitate the in vitro follicle development. Here we show human MSCs significantly promote the survival rates, increase the growth velocity, and improve the viability of preantral follicles in a dose-dependent manner. Further analyses reveal that growth differentiation factor 9 and bone morphogenetic protein 15 in oocytes and inhibin βA and transforming growth factor β1 in granulose cells within the follicles cocultured with MSCs express notably higher than those in the follicles cultured without MSCs. In summary, our findings demonstrate a previously unrecognized function of MSCs in promoting preantral follicle development and provide a useful strategy to optimize fertility preservation and restoration by facilitating in vitro follicle growth.

  18. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis

    Science.gov (United States)

    Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L.; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs. PMID:28135282

  19. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  20. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews.

    Science.gov (United States)

    Yin, Cunping; Liang, Yuan; Zhang, Jian; Ruan, Guangping; Li, Zian; Pang, Rongqing; Pan, Xinghua

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  1. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS.

    Science.gov (United States)

    Akitake, Bradley; Anishkin, Andriy; Liu, Naili; Sukharev, Sergei

    2007-12-01

    We describe a mechanism connecting the adaptive behavior of the bacterial mechanosensitive channel MscS to the flexibility of the pore-lining helix TM3. Simulated expansion of the channel structure revealed straightening of a characteristic kink near Gly113 in the open state; return to the closed state produced an alternative kink at Gly121. Patch-clamp experiments showed that higher helical propensity introduced by a G113A mutation prevented inactivation. A similar mutation, G121A, kinetically impeded both closure and inactivation. Duplicating the glycines at each of these sites to increase flexibility produced directly opposite effects. The severely toxic G113A G121A mutation resulted in channels that could not inactivate or close with the release of tension. These data suggest that the open MscS features straight TM3 helices, which act as collapsible 'struts'. Closure and desensitization rely on buckling at Gly121, whereas the crystal-like kink at Gly113 is a feature of the inactivated state.

  2. Increasing intracellular bioavailable copper selectively targets prostate cancer cells.

    Science.gov (United States)

    Cater, Michael A; Pearson, Helen B; Wolyniec, Kamil; Klaver, Paul; Bilandzic, Maree; Paterson, Brett M; Bush, Ashley I; Humbert, Patrick O; La Fontaine, Sharon; Donnelly, Paul S; Haupt, Ygal

    2013-07-19

    The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.

  3. Increased mast cell numbers in a calcaneal tendon overuse model.

    Science.gov (United States)

    Pingel, J; Wienecke, J; Kongsgaard, M; Behzad, H; Abraham, T; Langberg, H; Scott, A

    2013-12-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats were divided in two groups: running group (n = 12); sedentary control group (n = 12). The running-group was exposed to the HIUR exercise protocol for 7 weeks. The calcaneal tendons of both hind limbs were dissected. The right tendon was used for histologic analysis using Bonar score, immunohistochemistry, and second harmonic generation microscopy (SHGM). The left tendon was used for quantitative polymerase chain reaction (qPCR) analysis. An increased tendon cell density in the runners were observed compared to the controls (P = 0.05). Further, the intensity of immunostaining of protein kinase B, P = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further that these changes are associated with an increased mast cell density.

  4. Genetic complementation of human muscle cells via directed stem cell fusion.

    Science.gov (United States)

    Gonçalves, Manuel A F V; Swildens, Jim; Holkers, Maarten; Narain, Anjali; van Nierop, Gijsbert P; van de Watering, Marloes J M; Knaän-Shanzer, Shoshan; de Vries, Antoine A F

    2008-04-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the X chromosome-linked DMD gene, which encodes the sarcolemma-stabilizing protein-dystrophin. Initial attempts at DMD therapy deployed muscle progenitor cells from healthy donors. The utilization of these cells is, however, hampered by their immunogenicity, while those from DMD patients are scarce and display limited ex vivo replication. Nonmuscle cells with myogenic capacity may offer valuable alternatives especially if, to allow autologous transplantation, they are amenable to genetic intervention. As a paradigm for therapeutic gene transfer by heterotypic cell fusion we are investigating whether human mesenchymal stem cells (hMSCs) can serve as donors of recombinant DMD genes for recipient human muscle cells. Here, we show that forced MyoD expression in hMSCs greatly increases their tendency to participate in human myotube formation turning them into improved DNA delivery vehicles. Efficient loading of hMSCs with recombinant DMD was achieved through a new tropism-modified high-capacity adenoviral (hcAd) vector directing striated muscle-specific synthesis of full-length dystrophin. This study introduces the principle of genetic complementation of gene-defective cells via directed cell fusion and provides an initial framework to test whether transient MyoD synthesis in autologous, gene-corrected hMSCs increases their potential for treating DMD and, possibly, other muscular dystrophies.

  5. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  6. Characterization of common marmoset (Callithrix jacchus) bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kanda, Akifumi; Sotomaru, Yusuke; Nobukiyo, Asako; Yamaoka, Emi; Hiyama, Eiso

    2013-01-01

    Mesenchymal stem cells (MSCs) could be useful for regenerative medicine because they can beharvested easily from the bone marrow of living donors and the cells can be differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro. To apply MSCs for the medical treatment of human diseases as regenerative medicine, detailed experimental characterization of the cells is required. Recently, a New World primate, the common marmoset (Callithrix jacchus), has been widely used as a new human disease model because of its ease of handling and breeding. Although common marmoset MSCs have been established and will be used in preclinical studies of regenerative medicine, the characteristics of these cells remain unclear. Aiming to characterize common marmoset MSCs further, we harvested common marmoset bone marrow-derived cells (cmBMDCs) from the femurs of newborn males. We revealed that the morphology of the cells was similar to common marmoset fibroblasts, and extracellular matrix components, such as gelatin and fibronectin, were effective for their proliferation and formation of colony-forming unit fibroblasts. Furthermore, we were able to differentiate cmBMDCs into adipocytes, osteocytes, and chondrocytes in vitro, and they expressed the MSCmarkers CD44, CD73, CD90, and CD105, but their expression decreased with increasing passage number. The data demonstrate that cmBMDCs exhibit characteristics of MSCs and thus it would be beneficial to use these cells in preclinical studies.

  7. Hydroxytyrosol increases norepinephrine transporter function in pheochromocytoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Luzon-Toro, Berta [Institute of Parasitology and Biomedicine ' Lopez-Neyra' , Spanish National Research Council (CSIC), 18100 Granada (Spain); Geerlings, Arjan [Puleva Biotech, 18004 Granada (Spain); Hilfiker, Sabine [Institute of Parasitology and Biomedicine ' Lopez-Neyra' , Spanish National Research Council (CSIC), 18100 Granada (Spain)], E-mail: sabine.hilfiker@ipb.csic.es

    2008-10-15

    Introduction: The norepinephrine transporter is responsible for the intracellular uptake of {sup 131}I- iodometaiodobenzylguanidine ({sup 131}I-MIBG), which is used for the diagnostic localization and treatment of pheochromocytomas as well as other tumors such as neuroblastomas and carcinoids. This agent is variably delivered into tumor cells by the norepinephrine transporter, but few studies have shown treatments that work to increase norepinephrine transporter activity. The objective of the present study was to test the possible beneficial effects of hydroxytyrosol in enhancing norepinephrine transporter function, which may have implications for its combined use with {sup 131}I-MIBG in the diagnosis and treatment of pheochromocytomas. Methods: Rat pheochromocytoma PC12 cells were labeled with [{sup 3}H]-norepinephrine in the presence or absence of different concentrations of hydroxytyrosol, a naturally occurring compound with strong antioxidant properties, followed by measurements of uptake and release of radiolabeled norepinephrine. Results: Hydroxytyrosol pronouncedly increased norepinephrine transporter activity, with the rapid onset excluding effects on norepinephrine transporter expression levels. Concomitant with increased norepinephrine transporter activity, hydroxytyrosol caused a decrease of both spontaneous and evoked norepinephrine release, indicating that it affects pre-existing plasma membrane-associated norepinephrine transporter, rather than the incorporation of novel norepinephrine transporter molecules into the plasma membrane. Conclusion: Hydroxytyrosol potently enhances norepinephrine transporter activity in pheochromocytoma PC12 cells, suggesting that combinatorial therapy employing hydroxytyrosol may improve the effectiveness of {sup 131}I-MIBG as a diagnosis and treatment modality.

  8. Distribution and differentiation of mesenchymal stem cells in tumor tissue

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-feng; CHEN Jun; XU Zhi-shun; ZHANG Ke-qin

    2009-01-01

    .308, P=0.204). The tumor growth rate of the test group increased gradually in the third and fourth weeks, and the difference of the mean maximum tumor diameter between the two groups also increased gradually and was statistically significant (P<0.05). MSCs distributed uniformly in tumor tissue one week after transplantation while most were distributed in the tumor stroma three weeks after transplantation. The double labeling immunofluorescence showed that the expression of α-SMA as well as Vimentin increased significantly three weeks after mesenchymal stem cells engrafted into tumor, indicating that MSCs had differentiated into myofibroblasts under the induction of the tumor microenvironment.Conclusion MSCs can accelerate the tumor development and can differentiate into myofibroblast under the induction of tumor microenvironment.

  9. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application.

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  10. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  11. Local release from affinity-based polymers increases urethral concentration of the stem cell chemokine CCL7 in rats.

    Science.gov (United States)

    Rivera-Delgado, Edgardo; Sadeghi, Zhina; Wang, Nick X; Kenyon, Jonathan; Satyanarayan, Sapna; Kavran, Michael; Flask, Chris; Hijaz, Adonis Z; von Recum, Horst A

    2016-04-21

    The protein chemokine (C-C motif) ligand 7 (CCL7) is significantly over-expressed in urethral and vaginal tissues immediately following vaginal distention in a rat model of stress urinary incontinence. Further evidence, in this scenario and other clinical scenarios, indicates CCL7 stimulates stem cell homing for regenerative repair. This CCL7 gradient is likely absent or compromised in the natural repair process of women who continue to suffer from SUI into advanced age. We evaluated the feasibility of locally providing this missing CCL7 gradient by means of an affinity-based implantable polymer. To engineer these polymers we screened the affinity of different proteoglycans, to use them as CCL7-binding hosts. We found heparin to be the strongest binding host for CCL7 with a 0.323 nM dissociation constant. Our experimental approach indicates conjugation of heparin to a polymer backbone (using either bovine serum albumin or poly (ethylene glycol) as the base polymer) can be used as a delivery system capable of providing sustained concentrations of CCL7 in a therapeutically useful range up to a month in vitro. With this approach we are able to detect, after polymer implantation, significant increase in CCL7 in the urethral tissue directly surrounding the polymer implants with only trace amounts of human CCL7 present in the blood of the animals. Whole animal serial sectioning shows evidence of retention of locally injected human mesenchymal stem cells (hMSCs) only in animals with sustained CCL7 delivery, 2 weeks after affinity-polymers were implanted.

  12. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model.

    Science.gov (United States)

    Lee, Eun-Sol; Lim, Jung-Yeon; Im, Keon-Il; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2015-01-01

    Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy. Treg cells were generated from eGFP-expressing C57BL/6 mice (Tregegfp cells) to distinguish the transferred Treg cells; recipients were then examined at different time points after BMT. Systemic infusion of MSCs and Treg cells improved survival and GVHD scores, effectively downregulating pro-inflammatory Th×and Th17 cells. These therapeutic effects of combined cell therapy resulted in an increased Foxp3+ Treg cell population. Compared to single cell therapy, adoptively transferred Tregegfp cells only showed prolonged survival in the combined cell therapy group on day 21 after allogeneic BMT. In addition, Foxp3+ Treg cells, generated endogenously from recipients, significantly increased. Significantly higher levels of Tregegfp cells were also detected in aGVHD target organs in the combined cell therapy group compared to the Treg cells group. Thus, our data indicate that MSCs may induce the long-term survival of transferred Treg cells, particularly in aGVHD target organs, and may increase the repopulation of endogenous Treg cells in recipients after BMT. Together, these results support the potential of combined cell therapy using MSCs and Treg cells for preventing aGVHD.

  13. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Huang Tu; Jing-Xiang Song; Xiao-Jun Xue; Xian-Wei Guo; Yun-Xia Ma; Zhi-Yao Chen; Zhong-Dong Zou; Lie Wang

    2012-01-01

    AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells (MSCs) in severe acute peritonitis (SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into three groups:nonsodium deoxycholate (SDOC) group (non-SODC group),SDOC group,and a MSCs intervention group (i.e.,a co-culture system of MSCs and pancreatic acinar cells + SDOC).The cell survival rate,the concentration of malonaldehyde (MDA),the density of superoxide dismutase (SOD),serum amylase (AMS) secretion rate and lactate dehydrogenase (LDH) leakage rate were detected at various time points.In a separate study,Sprague Dawley rats were randomly divided into either an SAP group or an SAP + MSCs group.Serum AMS,MDA and SOD,interleukin (IL)-6,IL-10,and tumor necrosis factor (TNF)-α levels,intestinal mucosa injury scores and proliferating cells of small intestinal mucosa were measured at various time points after injecting either MSCs or saline into rats.In both studies,the protective effect of MSCs was evaluated.RESULTS:In vitro,The cell survival rate of pancreatic acinar cells and the density of SOD were significantly reduced,and the concentration of MDA,AMS secretion rate and LDH leakage rate were significantly increased in the SDOC group compared with the MSCs intervention group and the Non-SDOC group at each time point.In vivo,Serum AMS,IL-6,TNF-α and MAD level in the SAP + MSCs group were lower than the SAP group;however serum IL-10 level was higher than the SAP group.Serum SOD level was higher than the SAP group at each time point,whereas a significant betweengroup difference in SOD level was only noted after 24 h.Intestinal mucosa injury scores was significantly reduced and the proliferating cells of small intestinal mucosa became obvious after injecting MSCs.CONCLUSION:MSCs can effectively relieve injury to pancreatic acinar cells and small intestinal epithelium,promote the proliferation of enteric epithelium and repair of the mucosa

  14. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    Science.gov (United States)

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  15. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  16. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    OpenAIRE

    Ehrhardt, H.; Wachter, F; Grunert, M.; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 o...

  17. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer.

    Science.gov (United States)

    Böcker, Wolfgang; Yin, Zhanhai; Drosse, Inga; Haasters, Florian; Rossmann, Oliver; Wierer, Matthias; Popov, Cvetan; Locher, Melanie; Mutschler, Wolf; Docheva, Denitsa; Schieker, Matthias

    2008-08-01

    Human mesenchymal stem cells (hMSCs) can be readily isolated from bone marrow and differentiate into multiple tissues, making them a promising target for future cell and gene therapy applications. The low frequency of hMSCs in bone marrow necessitates their isolation and expansion in vitro prior to clinical use, but due to senescence-associated growth arrest during culture, limited cell numbers can be generated. The lifespan of hMSCs has been extended by ectopic expression of human telomerase reverse transcriptase (hTERT) using retroviral vectors. Since malignant transformation was observed in hMSCs and retroviral vectors cause insertional mutagenesis, we ectopically expressed hTERT using lentiviral gene transfer. Single-cell-derived hMSC clones expressing hTERT did not show malignant transformation in vitro and in vivo after extended culture periods. There were no changes observed in the expression of tumour suppressor genes and karyotype. Cultured hMSCs lack telomerase activity, but it was significantly increased by ectopic expression of hTERT. HTERT expression prevented hMSC senescence and the cells showed significantly higher and unlimited proliferation capacity. Even after an extended culture period, hMSCs expressing hTERT preserved their stem cells character as shown by osteogenic, adipogenic and chondrogenic differentiation. In summary, extending the lifespan of human mesenchymal stem cells by ectopic expression of hTERT using lentiviral gene transfer may be an attractive and safe way to generate appropriate cell numbers for cell and gene therapy applications.

  18. The synergistic immunoregulatory effects of culture-expanded mesenchymal stromal cells and CD4(+25(+Foxp3+ regulatory T cells on skin allograft rejection.

    Directory of Open Access Journals (Sweden)

    Jung Ho Lee

    Full Text Available Mesenchymal stromal cells (MSCs are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1, tail skin grafts from C57BL/6 (H-2k(b mice were grafted onto the lateral thoracic wall of BALB/c (H-2k(d mice. Group A mice (control group, n = 9 did not receive any further treatment after preconditioning, whereas groups B and C (n = 9 received cell therapy with MSCs or Tregs, respectively, on days -1, +6 and +13 relative to the skin transplantation. Group D (n = 10 received cell therapy with MSCs and Tregs on days -1, +6 and +13. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group on day +7, and the immunomodulatory effects of the cell therapy were evaluated by flow cytometry and real-time PCR. Our results show that allograft survival was significantly longer in group D compared to the control group (group A. Flow cytometric analysis and real-time PCR for splenocytes revealed that the Th2 subpopulation in group D increased significantly compared to the group B. Also, the expression of Foxp3 and STAT 5 increased significantly in group D compared to the conventional cell therapy groups (B and C. Taken together, these data suggest that a combined cell therapy approach with MSCs and Tregs has a synergistic effect on immunoregulatory function in vivo, and might provide a novel strategy for improving survival in allograft transplantation.

  19. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    Science.gov (United States)

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  20. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression.

    Science.gov (United States)

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco; Silvestris, Franco

    2015-06-15

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM.

  1. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    Science.gov (United States)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-02-09

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo.

  2. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  3. Increased B cell and cytotoxic NK cell proportions and increased T cell responsiveness in blood of natalizumab-treated multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Johan Mellergård

    Full Text Available BACKGROUND: Changes in the blood lymphocyte composition probably both mediate and reflect the effects of natalizumab treatment in multiple sclerosis, with implications for treatment benefits and risks. METHODS: A broad panel of markers for lymphocyte populations, including states of activation and co-stimulation, as well as functional T cell responses to recall antigens and mitogens, were assessed by flow cytometry in 40 patients with relapsing multiple sclerosis before and after one-year natalizumab treatment. RESULTS: Absolute numbers of all major lymphocyte populations increased after treatment, most markedly for NK and B cells. The fraction of both memory and presumed regulatory B cell subsets increased, as did CD3(-CD56(dim cytotoxic NK cells, whereas CD3(-CD56(bright regulatory NK cells decreased. The increase in cell numbers was further associated with a restored T cell responsiveness to recall antigens and mitogens in functional assays. CONCLUSIONS: Our data confirms that natalizumab treatment increases the number of lymphocytes in blood, likely mirroring the expression of VLA-4 being highest on NK and B cells. This finding supports reduction of lymphocyte extravasation as a main mode of action, although the differential effects on subpopulation composition suggests that cell-signalling may also be affected. The systemic increase in T cell responsiveness reflects the increase in numbers, and while augmenting anti-infectious responses systemically, localized responses may become correspondingly decreased.

  4. Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start BabyBUMP Project.

    Science.gov (United States)

    Boyle, Kristen E; Patinkin, Zachary W; Shapiro, Allison L B; Baker, Peter R; Dabelea, Dana; Friedman, Jacob E

    2016-03-01

    Maternal obesity increases the risk for pediatric obesity; however, the molecular mechanisms in human infants remain poorly understood. We hypothesized that mesenchymal stem cells (MSCs) from infants born to obese mothers would demonstrate greater potential for adipogenesis and less potential for myogenesis, driven by differences in β-catenin, a regulator of MSC commitment. MSCs were cultured from the umbilical cords of infants born to normal-weight (prepregnancy [pp] BMI 21.1 ± 0.3 kg/m(2); n = 15; NW-MSCs) and obese mothers (ppBMI 34.6 ± 1.0 kg/m(2); n = 14; Ob-MSCs). Upon differentiation, Ob-MSCs exhibit evidence of greater adipogenesis (+30% Oil Red O stain [ORO], +50% peroxisome proliferator-activated receptor (PPAR)-γ protein; P cells, total β-catenin protein content was 10% lower and phosphorylated Thr41Ser45/total β-catenin was 25% higher (P cells was positively correlated with the percent fat mass in infants (r = 0.475; P < 0.05). These results suggest that altered GSK-3β/β-catenin signaling in MSCs of infants exposed to maternal obesity may have important consequences for MSC lineage commitment, fetal fat accrual, and offspring obesity risk.

  5. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  6. Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    Fenghua TAO; Feng LI; Guanghui LI; Feng PAN

    2008-01-01

    To find a new source of seed cells for constructing tissue-engineered intervertebral disc, nucleus pulposus (NP) cells and mesenchymal stem cells (MSCs) were isolated from New Zealand white rabbits. The nuclcus pulposus cells population was fluorescence-laelled and co-cultured with MSCs with or without direct contact. Morphological changes were observed every 12 h. Semi-quantitaive reverse transcriptase-polymerase chain reaction was performed to assess the expression levels of Sox-9, aggreacan and type Ⅱ collagen every 24 h after the co-culture. MSCs treated with direct contact rounded up and presented a ring-like appearance. The expression of marker genes was significantly increased when cells were co-cultured with direct contact for 24 h. No significant change was found after coculture without direct contact. Co-culture of NP cells and MSCs with direct contact is a reliable method for generating large amount of NP cells used for cell-based tissue engineering therapy.

  7. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  8. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model

    Institute of Scientific and Technical Information of China (English)

    Ling Qiao; Zhili Xu; Tiejun Zhao; Zhigang Zhao; Mingxia Shi; Robert C Zhao; Lihong Ye; Xiaodong Zhang

    2008-01-01

    Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells. In this study, we investigated the effects of hMSCs on two human hepatoma cell lines (H7402 and HepG2) using an animal transplantation model, a co-culture system and conditioned media from hMSCs. Animal transplantation studies showed that the latent time for tumor formation was prolonged and that the tumor size was smaller when SCID mice were injected with H7402 cells and an equal number of Z3 hMSCs. When co-cultured with Z3 cells, H7402 cell proliferation decreased, apoptosis increased, and the expression of Bcl-2, c-Myc, proliferating cell nuclear antigen (PCNA) and survivin was downregulated. After treatment with conditioned media derived from Z3 hMSC cultures, H4702 cells showed decreased colony-forming ability and decreased proliferation. 1m-munoblot analysis showed that β-catenin, Bcl-2, c-Myc, PCNA and survivin expression was downregulated in H7402 and HepG2 cells. Taken together, our findings demonstrate that hMSCs inhibit the malignant phenotypes of the H7402 and HepG2 human liver cancer cell lines, which include proliferation, colony-forming ability and oncogene expression both in vitro and in vivo. Furthermore, our studies provide evidence that the Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition.

  9. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  10. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow.

    Science.gov (United States)

    Klein, Caroline; Strobel, Julian; Zingsem, Jürgen; Richter, Richard H; Goecke, Tamme W; Beckmann, Matthias W; Eckstein, Reinhold; Weisbach, Volker

    2013-12-01

    In most cases, the amount of hematopoietic stem and progenitor cells (HSPCs) in a single cord blood (CB) unit is not sufficient for allogenic transplantation of adults. Therefore, two CB units are usually required. The ex vivo expansion of HSPCs from CB in coculture with mesenchymal stroma cells (MSCs) might be an alternative. It was investigated, whether bone marrow-derived MSCs, which have to be obtained in an invasive procedure, introduce a further donor and increases the risk of transmissible infectious diseases for the patient can be replaced by MSCs from amnion, chorion, Wharton's jelly, amniotic fluid, and CB, which can be isolated from placental tissue which is readily available when CB is sampled. In a two-step ex vivo coculture mononuclear cells from cryopreserved CB were cultured with different MSC-feederlayers in a medium supplemented with cytokines (stem cell factor, thrombopoietin [TPO], and granulocyte colony-stimulating factor). Expansion rates were analyzed as well, by long-term culture-initiating cell (LTC-IC) and colony-forming unit (CFU) assays, as by measuring CD34(+)- and CD45(+)-cells. Due to the comparably low number of 5×10(2) to 1×10(4) CD34(+)-cells per cm(2) MSC-monolayer, we observed comparably high expansion rates from 80 to 391,000 for CFU, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. Expansion of LTC-IC was partly observed. Compared to the literature, we found a better expansion rate of CD34(+)-cells with MSCs from all different sources. This is probably due to the comparably low number of 5×10(2) to 1×10 CD34(+)-cells per cm(2) MSC-monolayer we used. Comparably, high expansion rates were observed from 80 to 391,000 for CFUs, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. However, the expansion of CD34(+)-cells was significantly more effective with MSCs from bone marrow compared to MSCs from amnion, chorion, and Wharton's jelly. The comparison of MSCs from bone marrow with MSCs from CB and

  11. Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jianchun Lian

    2016-01-01

    Full Text Available Background and Objective. It is important to guarantee the quality of stem cells. Serial passage is the main approach to expand stem cells. This study evaluated effects of serial passage on the biological characteristics of human umbilical cord Wharton’s jelly-derived MSCs (WJ MSCs. Methods. Biological properties of WJ MSCs in the early (less than 10 passages, P10, middle (P11–20, and late (more than P20 phases including cell proliferation, cell cycle, phenotype, senescence, oncogene expression, stemness marker expression, and differentiation capacity were evaluated using flow cytometry, real-time PCR, immunocytofluorescence, and western blot. Results. It was found that there were no significant differences in cell proliferation, cell cycle, phenotype, and stemness marker expression in different phases. However, the expression of senescence-related gene, p21, and oncogene, c-Myc, was significantly upregulated in the late phase, which had close relations with the obviously increased cell senescence. Moreover, cardiac differentiation capability of WJ MSCs decreased whereas the propensity for neural differentiation increased significantly in the middle phase. Conclusions. This study reveals that WJ MSCs in the early and middle phases are relatively stable, and effect of serial passage on the lineage-specific differentiation should be considered carefully.

  12. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  13. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  14. The Use of Mesenchymal Stem Cells for the Treatment of Autoimmunity: From Animals Models to Human Disease.

    Science.gov (United States)

    Fierabracci, Alessandra; Del Fattore, Andrea; Muraca, Marta; Delfino, Domenico Vittorio; Muraca, Maurizio

    2016-01-01

    Mesenchymal stem cells are multipotent progenitors able to differentiate into osteoblasts, chondrocytes and adipocytes. These cells also exhibit remarkable immune regulatory properties, which stimulated both in vitro and in vivo experimental studies to unravel the underlying mechanisms as well as extensive clinical applications. Here, we describe the effects of MSCs on immune cells and their application in animal models as well as in clinical trials of autoimmune diseases. It should be pointed out that, while the number of clinical applications is increasing steadily, results should be interpreted with caution, in order to avoid rising false expectations. Major issues conditioning clinical application are the heterogeneity of MSCs and their unpredictable behavior following therapeutic administration. However, increasing knowledge on the interaction between exogenous cell and host tissue, as well as some encouraging clinical observations suggest that the therapeutic applications of MSCs will be further expanded on firmer grounds in the near future.

  15. Evaluation of mechanical properties of human mesenchymal stem cells during differentiation to smooth muscle cells.

    Science.gov (United States)

    Khani, Mohammad-Mehdi; Tafazzoli-Shadpour, Mohammad; Rostami, Mostafa; Peirovi, Habibollah; Janmaleki, Mohsen

    2014-07-01

    Human mesenchymal stem cells (hMSCs) are multipotent cells appropriate for a variety of tissue engineering and cell therapy applications. Mechanical properties of hMSCs during differentiation are associated with their particular metabolic activity and regulate cell function due to alternations in cytoskeleton and structural elements. The objective of this study is to evaluate elastic and viscoelastic properties of hMSCs during long term cultivation in control and transforming growth factor-β1 treatment groups using micropipette aspiration technique. The mean Young's modulus (E) of the control samples remained nearly unchanged during 6 days of cultivation, but that of the test samples showed an initial reduction compared to its relevant control sample after 2 days of treatment by biological growth factor, followed by a significant rise after 4 and 6 days. The viscoelastic creep tests showed that both instantaneous and equilibrium moduli significantly increased with the treatment time and reached to maximum values of 622.9 ± 114.2 and 144.3 ± 11.6 Pa at the sixth day, respectively, while increase in apparent viscosity was not statistically significant. Such change of mechanical properties of hMSCs during specific lineage commitment contributes to regenerative medicine as well as stem-cell-based therapy in which biophysical signals regulate stem cell fate.

  16. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to gener

  17. Bone marrow mesenchymal stromal cells affect the cell cycle arrest effect of genotoxic agents on acute lymphocytic leukemia cells via p21 down-regulation.

    Science.gov (United States)

    Zhang, Yiran; Hu, Kaimin; Hu, Yongxian; Liu, Lizhen; Wang, Binsheng; Huang, He

    2014-09-01

    The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.

  18. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Science.gov (United States)

    Thottakkattumana Parameswaran, Vishnu; Barker, John Howard

    2017-01-01

    Background Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  19. Effects of Graphene Quantum Dots on the Self-Renewal and Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Qiu, Jichuan; Li, Deshuai; Mou, Xiaoning; Li, Jianhua; Guo, Weibo; Wang, Shu; Yu, Xin; Ma, Baojin; Zhang, Shan; Tang, Wei; Sang, Yuanhua; Gil, Pilar Rivera; Liu, Hong

    2016-03-01

    The influence of graphene quantum dots (GQDs) on key characteristics of bone marrow derived mesenchymal stem cells (MSCs) phenotype (i.e., self-renewal, differentiation potential, and pluripotency) is systematically investigated in this work. First, the viability and impact of GQDs on the self-renewal potential of MSCs is evaluated in order to determine a threshold for the exposing dose. Second, GQDs uptake by MSCs is confirmed due to the excellent fluorescent properties of the particles. They exhibit a homogenous cytoplasmatic distribution that increases with the time and concentration. Third, the impact of GQDs on the osteogenic differentiation of MSCs is deeply characterized. An enhanced activity of alkaline phosphatase promoted by GQDs indicates early activation of osteogenesis. This is also confirmed upon GQD-induced up-regulation of phenotypically related osteogenic genes (Runx2, osteopontin, and osteocalcin) and specific biomarkers expression (osteopontin and osteocalcin). GQDs also effectively enhance the formation of calcium-rich deposits characteristics of osteoblasts. Furthermore, genes microarray results indicate that the enhanced osteogenic differentiation of MSCs by GQDs is in progress through a bone morphogenetic protein and transforming growth factor-β relative signaling pathways. Finally, intracytoplasmatic lipid detection shows that GQDs can also promote the adipogenic differentiation of MSCs, thus confirming the prevalence of their pluripotency potential.

  20. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    DEFF Research Database (Denmark)

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma....... Therefore, we examined whether Epac1 regulates FGF2-mediated cell-cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase...... in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached...

  1. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In