WorldWideScience

Sample records for cells mobilize myeloid-derived

  1. Myeloid derived suppressor cells in human diseases

    OpenAIRE

    Greten, Tim F.; Manns, Michael P.; Korangy, Firouzeh

    2011-01-01

    Myeloid derived suppressor cells (MDSC) have been described as a heterogeneous cell population with potent immune suppressor function in mice. Limited data are available on MDSC in human diseases. Interpretation of these data is complicated by the fact that different markers have been used to analyze human MDSC subtypes in various clinical settings. Human MDSC are CD11b+, CD33+, HLA-DRneg/low and can be divided into granulocytic CD14− and monocytic CD14+ subtypes. Interleukin 4Rα, VEGFR, CD15...

  2. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model.

    Directory of Open Access Journals (Sweden)

    Zhuoshun Yang

    Full Text Available Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs and regulatory T (Treg cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy.

  3. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model.

    Science.gov (United States)

    Yang, Zhuoshun; Zhang, Biao; Li, Dapeng; Lv, Meng; Huang, Chunmei; Shen, Guan-Xin; Huang, Bo

    2010-01-01

    Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy. PMID:20111717

  4. Mast Cells Mobilize Myeloid-Derived Suppressor Cells and Treg Cells in Tumor Microenvironment via IL-17 Pathway in Murine Hepatocarcinoma Model

    OpenAIRE

    Zhuoshun Yang; Biao Zhang; Dapeng Li; Meng Lv; Chunmei Huang; Guan-Xin Shen; Bo Huang

    2010-01-01

    Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regu...

  5. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    OpenAIRE

    Mikyšková, R. (Romana); Indrová, M. (Marie); Polláková, V. (Veronika); Bieblová, J. (Jana); Šímová, J; Reiniš, M

    2012-01-01

    Myeloid-derived suppressor cells (MDSC) play an important role in tumor escape from antitumor immunity. MDSC accumulate in the lymphoid organs and blood during tumor growth and their mobilization was also reported after cyclophosphamide (CY) administration. In this communication, spleen MDSC accumulating after CY therapy (CY-MDSC) were compared with those expanded in mice bearing human papilloma viruses 16-associated TC-1 carcinoma (TU-MDSC). Although both CY-MDSC and TU-MDSC accelerated grow...

  6. Induction of myeloid-derived suppressor cells by tumor exosomes

    OpenAIRE

    Xiang, Xiaoyu; Poliakov, Anton; Liu, Cunren; Liu, Yuelong; Deng, Zhong-Bin; wang, Jianhua; Cheng, Ziqiang; Shah, Spandan V.; Wang, Gui-Jun; Zhang, Liming; Grizzle, William E.; Mobley, Jim; Zhang, Huang-Ge

    2009-01-01

    Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor cells are taken up by bone marrow myeloid cells. Here, we extend those findings showing that exosomes isolated from T-exosomes switch the di...

  7. Myeloid-derived suppressor cells in transplantation and cancer

    OpenAIRE

    Ochando, Jordi C.; Chen, Shu Hsia

    2012-01-01

    Myeloid-derived suppressor cells (MDSC) are myeloid cells that suppress the immune response, a definition that reflects both their origin and their function. As negative regulators of the immune response, MDSC represent a novel therapeutic approach for manipulating the immune system toward tolerance or immunity. MDSC are present in cancer patients and tumor-bearing mice and are in part responsible for the inhibition of the cell-mediated immune response against the tumor. Our laboratories inve...

  8. Myeloid-Derived Suppressor Cells in Bacterial Infections

    Science.gov (United States)

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  9. Myeloid-derived suppressor cells: Natural regulators for transplant tolerance

    OpenAIRE

    Boros, Peter; Ochando, Jordi C.; Chen, Shu-hsia; Bromberg, Jonathan S.

    2010-01-01

    Myeloid derived suppressor cells (MDSC) contribute to the negative regulation of immune response in cancer patients. This review summarizes results on important issues related to MDSC biology, including expansion and activation of MDSC, phenotype, and subsets as well pathways and different mechanisms by which these cells exert their suppressive effect. Recent observations suggesting that MDSC may have roles in transplant tolerance are presented. Although therapeutic targeting and destruction ...

  10. Exosomes from myeloid derived suppressor cells carry biologically active proteins

    OpenAIRE

    Burke, Meghan; Choksawangkarn, Waeowalee; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they inhibit natural anti-tumor immunity and are an obstacle to anti-cancer immunotherapies. They mediate immune suppression through their production of proteins and soluble mediators that prevent the activation of tumor-reactive T lymphyocytes, polarize macrophages towards a tumor-promoting phenotype, and facilitate angiogenesis. The accumulation and suppressive potency of MDSC is regulated by inflammation with...

  11. Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer1

    OpenAIRE

    Ostrand-Rosenberg, Suzanne; Sinha, Pratima

    2009-01-01

    Many cancer immunotherapies developed in experimental animals have been tested in clinical trials. Although some have shown modest clinical effects, most have not been effective. Recent studies have identified myeloid-origin cells that are potent suppressors of tumor immunity and therefore a significant impediment to cancer immunotherapy. “Myeloid-derived suppressor cells” (MDSC) accumulate in the blood, lymph nodes, and bone marrow and at tumor sites in most patients and experimental animals...

  12. Polarization and reprogramming of myeloid-derived suppressor cells

    OpenAIRE

    Yang, Wen-Chin; Ma, Ge; Chen, Shu-hsia; Pan, Ping-Ying

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) have recently emerged as one of the central regulators of the immune system. In recent years, interest in understanding MDSC biology and applying MDSC for therapeutic purpose has exploded exponentially. Despite recent progress in MDSC biology, the mechanisms underlying MDSC development from expansion and activation to polarization in different diseases remain poorly understood. More recent studies have demonstrated that two MDSC subsets, M (monocytic)-M...

  13. Myeloid-derived suppressor cells as a Trojan horse

    OpenAIRE

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-01-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  14. Myeloid-derived suppressor cells in Chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Cesarina eGiallongo

    2015-05-01

    Full Text Available The suppression of the immune system create a permissive environment for development and progression of cancer. One population of immunosuppressive cells that have become the focus of intense study is myeloid derived suppressor cells (MDSCs, immature myeloid cells able to induce immune-escape, angiogenesis and tumor progression. Two different subpopulations have been identified and studied: granulocytic and monocytic MDSCs, with a different immunophenotype and immunosuppressive properties. Recently, an accumulation of both Gr-MDSCs and Mo-MDSCs cells has been found in the peripheral blood of chronic myeloid leukemia (CML patients. They are part of the tumor clone showing BCR/ABL expression. Imatinib therapy decreases both MDSCs and arginase 1 levels to normal ones. This review will focus on actual knowledge for human MDSCs and their immunosuppressive activity in CML patients with a critical attention to comparison of Gr-MDSCs and polymorphonuclear cells (PMNs. We will then suggest the monitoring of MDSCs in patients who have discontinued tyrosine kinase inhibitors (TKIs therapy to evaluate if their increase could correlate with disease relapse.

  15. Drafting the proteome landscape of myeloid-derived suppressor cells.

    Science.gov (United States)

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. PMID:26403437

  16. Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm.

    Science.gov (United States)

    Wang, Jen Chin; Kundra, Ajay; Andrei, Mirela; Baptiste, Stacey; Chen, Chi; Wong, Ching; Sindhu, Hemant

    2016-04-01

    Although BCR-ABL negative myeloproliferative neoplasms (MPN)--and especially myelofibrosis (MF)--are recognized to be associated with autoimmune phenomena, immune derangements in MPN have been much less studied. Myeloid-derived suppressor cells (MDSC) are one type of important immune modulator cell. Therefore, we studied MDSCs in MPN disease. MDSCs were studied in two cohorts: the first cohort was 55 patients including 16 primary myelofibrosis (PMF), 7 post-polycythemia vera (PV)-MF, 2 post-essential thrombocythemia (ET)-MF, 11 ET, 17 PV, 2 undefined MPN disorder, and 23 normal controls; the second cohort included 38 patients: 17 ET, 7 PMF, 3 ET-MF, 2 PV-MF, 9 PV patients, and 20 normal volunteers. The second cohort was studied using freshly collected specimens and a comparable age group as controls. CD11b(+), CD14(-), and CD33(+) cells were defined as MDSCs in both cohorts by flow cytometry. Since there are no differences in MDSC levels among different MPN categories, they were grouped as MPNs. The results showed that MDSCs were significantly elevated in MPNs compared with controls in both cohorts. We also performed RT-PCR and found that MPN patients have significantly elevated arginase-1 mRNA compared with controls, and sorted MDSCs were found to have suppressor T cell activity in MPNs, substantiating the hypothesis that levels of MDSCs are, in fact, deranged in MPNs. MDSC levels were not correlated with JAK2 status, white blood cells, Hb levels, platelet counts, splenomegaly, or the degree of bone marrow fibrosis (in MF). Further studies in immune therapy involving MDSC inhibitors or differentiation may be developed to treat MPN disease. PMID:26943702

  17. Correlation between myeloid-derived suppressor cells and gastric cancer begin with chronic gastritis

    Institute of Scientific and Technical Information of China (English)

    朱立宁

    2012-01-01

    Objective To investigate the correlation between the ratio change of circulating myeloid-derived suppressor cells(MDSCs) and cellular immune function in healthy volunteers,chronic gastritis patients,gastric intraepithelial neoplasia patients and gastric cancer patients

  18. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    Science.gov (United States)

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  19. Myeloid-derived Suppressor Cells Inhibit T Cell Activation by Depleting Cystine and Cysteine

    OpenAIRE

    Minu K Srivastava; Sinha, Pratima; Clements, Virginia K.; Rodriguez, Paulo; Ostrand-Rosenberg, Suzanne

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients and are potent inhibitors of T-cell-mediated anti-tumor immunity. Their inhibitory activity is attributed to production of arginase, reactive oxygen species, inducible nitric oxide synthase, and IL-10. We now report that MDSC also block T cell activation by sequestering cystine and limiting the availability of cysteine. Cysteine is an essential amino acid for T cell activation because T cells lack cystathionase, which...

  20. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma

    OpenAIRE

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSC...

  1. Myeloid-Derived Suppressor Cells and anti-tumor T cells: a complex relationship

    OpenAIRE

    Monu, Ngozi R.; Frey, Alan B.

    2012-01-01

    Myeloid-Derived Suppressor Cells (MDSC) are immature myeloid cells that are potent inhibitors of immune cell function and which accumulate under conditions of inflammation, especially cancer. MDSC are suggested to promote the growth of cancer by both enhancement of tumor angiogenesis and metastasis and also inhibition of antitumor immune responses. The presence of deficient and/or defective antitumor adaptive and innate immune responses, coincident with accumulation of MDSC in lymphoid organs...

  2. Reciprocal relationship between myeloid-derived suppressor cells and T cells

    OpenAIRE

    Nagaraj, Srinivas; Youn, Je-in; Gabrilovich, Dmitry I.

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of myeloid cells that play a major role in the regulation of immune responses in many pathological conditions. These cells have a common myeloid origin, relatively immature state, common genetic and biochemical profiles, and, most importantly, the ability to inhibit immune responses. Although initial studies of MDSC were almost exclusively performed in tumor-bearing mice or cancer patients, in recent years, it became clear that...

  3. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties

    OpenAIRE

    Rodrigues, Jennifer C.; Gonzalez, Guido C.; Zhang, Lei; Ibrahim, George; Kelly, John J.; Gustafson, Michael P.; Yi LIN; Dietz, Allan B.; Forsyth, Peter A; Yong, V. Wee; Parney, Ian F.

    2009-01-01

    Glioblastoma patients are immunosuppressed, yet glioblastomas are highly infiltrated by monocytes/macrophages. Myeloid-derived suppressor cells (MDSC; immunosuppressive myeloid cells including monocytes) have been identified in other cancers and correlate with tumor burden. We hypothesized that glioblastoma exposure causes normal monocytes to assume an MDSC-like phenotype and that MDSC are increased in glioblastoma patients. Healthy donor human CD14+ monocytes were cultured with human gliobla...

  4. Myeloid-derived suppressor cells as a novel target for the control of osteolytic bone disease

    OpenAIRE

    Sawant, Anandi; Ponnazhagan, Selvarangan

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) from mice bearing bone metastases differentiate into functional osteoclasts in vitro and in vivo, through a signaling pathway that relies on nitric oxide. In addition, MDSC-targeting drugs have been shown to robustly inhibit osteolysis. Thus, MDSC stand out as novel osteoclast progenitors and hence as candidate targets for the control of osteolytic bone disease.

  5. Clinical Perspectives on Targeting of Myeloid Derived Suppressor Cells in the Treatment of Cancer

    OpenAIRE

    YanaGeorgeNajjar; JamesHaroldFinke

    2013-01-01

    Tumors escape immune recognition by several mechanisms, and induction of myeloid derived suppressor cells (MDSC) is thought to play a major role in tumor mediated immune evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature dendritic cells, granulocytes or macrophages, and are characterized by the ability to suppress T cell and natural killer (NK) cell function. They are increased in patients with cancer including renal cell carcinoma (RCC), and their levels ...

  6. 25 Role of Myeloid Derived Suppressor Cells in Asthma

    OpenAIRE

    Nelson, Allison; Parkerson, Jim; Lockey, Richard F.; Mohapatra, Subhra; Mohapatra, Shyam; Nagaraj, Srinivas

    2012-01-01

    Background We know that a heterogeneous group of myeloid cells termed myeloid derived suppressor cells (MDSC) accumulate in almost all pathological conditions, which elicit an inflammatory signal. The exact role played by these cells in asthma is not known. In this study we investigated the function and role of these cells in asthma. Methods Accumulation of MDSC and other subsets of myeloid cells were analyzed from peripheral blood mononuclear cells from patients with non-severe asthma (FEV1)...

  7. Clinical Perspectives on Targeting of Myeloid Derived Suppressor Cells in the Treatment of Cancer

    OpenAIRE

    Najjar, Yana G.; Finke, James H.

    2013-01-01

    Tumors escape immune recognition by several mechanisms, and induction of myeloid derived suppressor cells (MDSC) is thought to play a major role in tumor mediated immune evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature dendritic cells, granulocytes, or macrophages, and are characterized by the ability to suppress T cell and natural killer cell function. They are increased in patients with cancer including renal cell carcinoma (RCC), and their levels have...

  8. Hampering the Immune Suppressors: Therapeutic Targeting of Myeloid-Derived Suppressor Cells (MDSC) in Cancer

    OpenAIRE

    Albeituni, Sabrin Husein; Ding, Chuanlin; Yan, Jun

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with suppressive properties that preferentially expand in cancer. MDSC mainly suppress T cell proliferation and cytotoxicity, inhibit NK cell activation, and induce the differentiation and expansion of regulatory T cells (Tregs). The wide spectrum of MDSC suppressive activity in cancer and its role in tumor progression have rendered these cells a promising target for effective cancer immunotherapy...

  9. The Role of Myeloid-Derived Suppressor Cells in Immune Ontogeny

    OpenAIRE

    Gantt, Soren; Gervassi, Ana; Jaspan, Heather; Horton, Helen

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of c...

  10. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function

    OpenAIRE

    Sahakian, Eva; Powers, John J.; Chen, Jie; Deng, Susan L.; Cheng, Fengdong; Distler, Allison; Woods, David M.; Rock-Klotz, Jennifer; Laino, Andressa Sodre'; Youn, Je-In; Woan, Karrune V.; Villagra, Alejandro; Gabrilovich, Dmitry,; Sotomayor, Eduardo M.; Pinilla-Ibarz, Javier

    2014-01-01

    Myeloid-derived suppressor cells (MDSC's), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting ...

  11. Immunoregulatory Role of Myeloid-derived Cells in Inflammatory Bowel Disease.

    Science.gov (United States)

    Leal, Marcelo Cerf; Däbritz, Jan

    2015-12-01

    As the frontiers of immunological research expand, new insights into the pathogenesis of long poorly understood diseases, such as inflammatory bowel disease (IBD), are opening up new possible avenues for treatment. Myeloid-derived cells (i.e., monocytes, macrophages, neutrophils, and dendritic cells), long believed to be effector cells driving the initiation of inflammation, have been increasingly shown to have immunoregulatory effects previously underappreciated. Dysfunction in the immunoregulatory roles of these cells may play a part in the pathogenesis of a subset of patients with IBD. The role of myeloid-derived suppressor cells, initially described in cancer, have been shown to play an important role in the balancing of effector and regulatory T cells in inflammation as well, and their role in IBD is also explored. The potential for future cell-based therapies for IBD is enhanced by the advances being made in the understanding of the innate immune system in the intestine. PMID:26244650

  12. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells

    OpenAIRE

    De Veirman, Kim; Van Ginderachter, Jo A; Lub, Susanne; De Beule, Nathan; Thielemans, Kris; Bautmans, Ivan; Oyajobi, Babatunde O.; De Bruyne, Elke; Menu, Eline; Lemaire, Miguel; van Riet, Ivan; Vanderkerken, Karin; Valckenborgh, Els Van

    2015-01-01

    Myeloid-derived suppressor cells (MDSC) are contributing to an immunosuppressive environment by their ability to inhibit T cell activity and thereby promoting cancer progression. An important feature of the incurable plasma cell malignancy Multiple Myeloma (MM) is immune dysfunction. MDSC were previously identified to be present and active in MM patients, however little is known about the MDSC-inducing and -activating capacity of MM cells. In this study we investigated the effects of the tumo...

  13. The Liver is a Site for Tumor Induced Myeloid-Derived Suppressor Cell Accumulation and Immunosuppression

    OpenAIRE

    Ilkovitch, Dan; Lopez, Diana M.

    2009-01-01

    Tumor-induced immunosuppression plays a key role in tumor evasion of the immune system. A key cell population recognized as myeloid-derived suppressor cells (MDSC) contributes and helps orchestrate this immunosuppression. MDSC can interact with T cells, macrophages, and NK cells, to create an environment favorable for tumor progression. In various tumor models their presence at high levels has been reported in the bone marrow, blood, spleen, and tumor. We report for the first time that MDSC a...

  14. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site

    OpenAIRE

    Haverkamp, Jessica M.; Crist, Scott A.; Elzey, Bennett D.; Cimen, Cansu; Ratliff, Timothy L

    2011-01-01

    Current thinking suggests that despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1+CD11b+ cells can become suppressive when exposed to inflammatory stimuli. In vitro evaluation shows MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC function enhances T cell responses. However, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T cell responses in vivo has not been directl...

  15. Kinetics of human myeloid-derived suppressor cells after blood draw

    OpenAIRE

    Grützner, Eva; Stirner, Renate; Arenz, Lukas; Athanasoulia, Anastasia P.; Schrödl, Kathrin; Berking, Carola; Bogner, Johannes R; Draenert, Rika

    2016-01-01

    Background Human myeloid-derived suppressor cells (MDSC) have been described as a group of immature myeloid cells which exert immunosuppressive action by inhibiting function of T lymphocytes. While there is a huge scientific interest to study these cells in multiple human diseases, the methodological approach varies substantially between published studies. This is problematic as human MDSC seem to be a sensible cell type concerning not only cryopreservation but also time point after blood dra...

  16. Direct and Differential Suppression of Myeloid-derived Suppressor Cell Subsets by Sunitinib is Compartmentally Constrained

    OpenAIRE

    Ko, Jennifer S.; Rayman, Patricia; Ireland, Joanna; Swaidani, Shadi; Li, Geqiang; Bunting, Kevin D.; Rini, Brian; Finke, James H.; Cohen, Peter A.

    2010-01-01

    The anti-angiogenic drug sunitinib is a receptor tyrosine-kinase inhibitor with significant, yet not curative, therapeutic impacts in metastatic renal cell carcinoma (mRCC). Sunitinib is also an immunomodulator, potently reversing myeloid-derived suppressor cell (MDSC) accumulation and T-cell inhibition in the blood even of non-responder RCC patients. We observed that sunitinib similarly prevented MDSC accumulation and restored normal T-cell function to spleens of tumor-bearing mice, independ...

  17. Subsets of Myeloid-Derived Suppressor Cells in Tumor Bearing Mice1

    OpenAIRE

    Youn, Je-in; Nagaraj, Srinivas; Collazo, Michelle; Gabrilovich, Dmitry I.

    2008-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase in the population of MDSC. Variability of MDSC expansion in vivo matched closely the effect of tumor-cell condition media (TCCM) in vitro....

  18. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384. ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  19. Mechanism of T-cell tolerance induced by myeloid-derived suppressor cells1

    OpenAIRE

    Nagaraj, Srinivas; Schrum, Adam G.; Cho, Hyun-Il; Celis, Esteban; Gabrilovich, Dmitry I.

    2010-01-01

    Antigen-specific T-cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSC) in the induction of CD8+ T-cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of antigen-specific CD8+ T cells, with peptide-loaded MDSC, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR t...

  20. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer

    OpenAIRE

    Sawant, Anandi; Deshane, Jessy; Jules, Joel; Lee, Carnella M.; Harris, Brittney A.; Feng, Xu; Ponnazhagan, Selvarangan

    2012-01-01

    Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth but the factors contributing to aggressive bone destruction are not well understood. In this study, we demonstrate the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Since MDSC originate from the same myeloid lineage as m...

  1. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity

    OpenAIRE

    Ostrand-Rosenberg, Suzanne

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) accumulate in most cancer patients and experimental animals with cancer. They accumulate in response to pro-inflammatory mediators and they use a variety of mechanisms to block both innate and adaptive antitumor immunity. Because of their critical role in obstructing immune responses, MDSC are a strategic obstacle to immunotherapies that require activation of the host’s cell-mediated and innate immune responses. Following a brief description of the fact...

  2. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    OpenAIRE

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and B...

  3. Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer

    OpenAIRE

    Goedegebuure, P.; Mitchem, J.B.; Porembka, M.R.; Tan, M.C.B.; Belt, B.A.; Wang-Gillam, A.; Gillanders, W. E.; Hawkins, W G; Linehan, D.C.

    2011-01-01

    Recent studies describe a heterogeneous population of cells of the myeloid lineage, termed myeloid derived suppressor cells (MDSC), which are observed with increased prevalence in the peripheral blood and tumor microenvironment of cancer patients, including pancreatic cancer. Accumulation of MDSC in the peripheral circulation has been related to extent of disease, and correlates with stage. MDSC have primarily been implicated in promoting tumor growth by suppressing antitumor immunity. There ...

  4. Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer

    OpenAIRE

    Wesolowski, Robert; Markowitz, Joseph; Carson, William E

    2013-01-01

    Myeloid Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cells that are increased in states of cancer, inflammation and infection. In malignant states, MDSC are induced by tumor secreted growth factors. MDSC play an important part in suppression of host immune responses through several mechanisms such as production of arginase 1, release of reactive oxygen species and nitric oxide and secretion of immune-suppressive cytokines. This leads to a permissive immun...

  5. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    OpenAIRE

    Rieber, Nikolaus; Singh, Anurag; ÖZ, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically...

  6. Proinflammatory S100 Proteins Regulate the Accumulation of Myeloid-Derived Suppressor Cells1

    OpenAIRE

    Sinha, Pratima; Okoro, Chinonyerem; Foell, Dirk; Freeze, Hudson H.; Ostrand-Rosenberg, Suzanne; Srikrishna, Geetha

    2008-01-01

    Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1β, IL-6, and PGE2 induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK ce...

  7. Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer

    OpenAIRE

    Aliper, Alexander M.; FRIEDEN-KOROVKINA, VICTORIA P.; Buzdin, Anton; Roumiantsev, Sergey A.; Zhavoronkov, Alex

    2014-01-01

    In solid cancers, myeloid derived suppressor cells (MDSC) infiltrate (peri)tumoral tissues to induce immune tolerance and hence to establish a microenvironment permissive to tumor growth. Importantly, the mechanisms that facilitate such infiltration or a subsequent immune suppression are not fully understood. Hence, in this study, we aimed to delineate disparate molecular pathways which MDSC utilize in murine models of colon or breast cancer. Using pathways enrichment analysis, we completed i...

  8. Myeloid-derived suppressor cells in the development of lung cancer

    OpenAIRE

    Ortiz, Myrna L.; Lu, Lily; Ramachandran, Indu; Gabrilovich, Dmitry I.

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are widely implicated in immune suppression associated with tumor progression and chronic inflammation. However, very little is known about their possible role in tumor development. Here, we evaluated the role of MDSC in two experimental models of lung cancer: inflammation-associated lung cancer caused by chemical carcinogen urethane in combination with exposure to cigarette smoke (CS); and transgenic CC10Tg model not associated with inflammation. Expos...

  9. Proteomic Pathway Analysis Reveals Inflammation Increases Myeloid-Derived Suppressor Cell Resistance to Apoptosis*

    OpenAIRE

    Chornoguz, Olesya; Grmai, Lydia; Sinha, Pratima; Artemenko, Konstantin A.; Zubarev, Roman A.; Ostrand-Rosenberg, Suzanne

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) accumulate in patients and animals with cancer where they mediate systemic immune suppression and obstruct immune-based cancer therapies. We have previously demonstrated that inflammation, which frequently accompanies tumor onset and progression, increases the rate of accumulation and the suppressive potency of MDSC. To determine how inflammation enhances MDSC levels and activity we used mass spectrometry to identify proteins produced by MDSC induced in...

  10. Myeloid derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow

    OpenAIRE

    Ramachandran, Indu; Martner, Anna; Pisklakova, Alexandra; Condamine, Thomas; Chase, Tess; Vogl, Thomas; Roth, Johannes; Gabrilovich, Dmitry; Nefedova, Yulia

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are one of the major factors limiting immune response in cancer. However, their role in bone marrow (BM), the site of primary localization of multiple myeloma (MM), is poorly understood. In this study we found a significant accumulation of CD11b+CD14−CD33+ immune suppressive MDSC in BM of patients with newly diagnosed MM. To assess the possible role of MDSC in MM, we used immune competent mouse models. Immune suppressive MDSC accumulated in BM of mice a...

  11. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.

    Science.gov (United States)

    Qu, Peng; Wang, Li-Zhen; Lin, P Charles

    2016-09-28

    Myeloid derived suppressor cells (MDSCs) are a group of immature myeloid cells accumulated in most cancer patients and mouse tumor models. MDSCs suppress host immune response and concurrently promote tumor angiogenesis, thereby promote tumor growth and progression. In this review, we discuss recent progresses in expansion and activity of tumor MDSCs, and describe new findings about immunosuppressive function of different subtypes of MDSCs in cancer. We also discussed tumor angiogenic activities and pro-tumor invasion/metastatic roles of MDSCs in tumor progression. PMID:26519756

  12. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards

    Science.gov (United States)

    Bronte, Vincenzo; Brandau, Sven; Chen, Shu-Hsia; Colombo, Mario P.; Frey, Alan B.; Greten, Tim F.; Mandruzzato, Susanna; Murray, Peter J.; Ochoa, Augusto; Ostrand-Rosenberg, Suzanne; Rodriguez, Paulo C.; Sica, Antonio; Umansky, Viktor; Vonderheide, Robert H.; Gabrilovich, Dmitry I.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. In recent years, ample evidence supports key contributions of MDSC to tumour progression through both immune-mediated mechanisms and those not directly associated with immune suppression. MDSC are the subject of intensive research with >500 papers published in 2015 alone. However, the phenotypic, morphological and functional heterogeneity of these cells generates confusion in investigation and analysis of their roles in inflammatory responses. The purpose of this communication is to suggest characterization standards in the burgeoning field of MDSC research. PMID:27381735

  13. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.

    Science.gov (United States)

    Kumar, Vinit; Patel, Sima; Tcyganov, Evgenii; Gabrilovich, Dmitry I

    2016-03-01

    Myeloid-derived suppressor cells (MDSC) are one of the major components of the tumor microenvironment. The main feature of these cells is their potent immune suppressive activity. MDSC are generated in the bone marrow and, in tumor-bearing hosts, migrate to peripheral lymphoid organs and the tumor to contribute to the formation of the tumor microenvironment. Recent findings have revealed differences in the function and fate of MDSC in the tumor and peripheral lymphoid organs. We review these findings here and, in this context, we discuss the current understanding as to the nature of these differences, the underlying mechanisms, and their potential impact on the regulation of tumor progression. PMID:26858199

  14. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis

    OpenAIRE

    Hammerich, Linda; Tacke, Frank

    2015-01-01

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bone marrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an i...

  15. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors

    Science.gov (United States)

    Kerkar, Sid P.; Goldszmid, Romina S.; Muranski, Pawel; Chinnasamy, Dhanalakshmi; Yu, Zhiya; Reger, Robert N.; Leonardi, Anthony J.; Morgan, Richard A.; Wang, Ena; Marincola, Francesco M.; Trinchieri, Giorgio; Rosenberg, Steven A.; Restifo, Nicholas P.

    2011-01-01

    Solid tumors are complex masses with a local microenvironment, or stroma, that supports tumor growth and progression. Among the diverse tumor-supporting stromal cells is a heterogeneous population of myeloid-derived cells. These cells are alternatively activated and contribute to the immunosuppressive environment of the tumor; overcoming their immunosuppressive effects may improve the efficacy of cancer immunotherapies. We recently found that engineering tumor-specific CD8+ T cells to secrete the inflammatory cytokine IL-12 improved their therapeutic efficacy in the B16 mouse model of established melanoma. Here, we report the mechanism underlying this finding. Surprisingly, direct binding of IL-12 to receptors on lymphocytes or NK cells was not required. Instead, IL-12 sensitized bone marrow–derived tumor stromal cells, including CD11b+F4/80hi macrophages, CD11b+MHCIIhiCD11chi dendritic cells, and CD11b+Gr-1hi myeloid–derived suppressor cells, causing them to enhance the effects of adoptively transferred CD8+ T cells. This reprogramming of myeloid-derived cells occurred partly through IFN-γ. Surprisingly, direct presentation of antigen to the transferred CD8+ T cells by tumor was not necessary; however, MHCI expression on host cells was essential for IL-12–mediated antitumor enhancements. These results are consistent with a model in which IL-12 enhances the ability of CD8+ T cells to collapse large vascularized tumors by triggering programmatic changes in otherwise suppressive antigen-presenting cells within tumors and support the use of IL-12 as part of immunotherapy for the treatment of solid tumors. PMID:22056381

  16. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  17. Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells MDSC and CD4+ T cells

    OpenAIRE

    Nagaraj, Srinivas; Gabrilovich, Dmitry I.

    2012-01-01

    Myeloid derived Suppressor Cells play a critical role in T cell suppression in cancer. Here, we discuss the mechanisms of how MDSC suppress CD4+ or CD8+ T cells in an antigen dependent or non-dependent manner.

  18. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner

    OpenAIRE

    Michels, Tillmann; Shurin, Galina V.; Naiditch, Hiam; Sevko, Alexandra; Umansky, Viktor; Shurin, Michael R.

    2012-01-01

    Myeloid cells play a key role in the outcome of anti-tumor immunity and response to anti-cancer therapy, since in the tumor microenvironment they may exert both stimulatory and inhibitory pressures on the proliferative, angiogenic, metastatic, and immunomodulating potential of tumor cells. Therefore, understanding the mechanisms of myeloid regulatory cell differentiation is critical for developing strategies for the therapeutic reversal of myeloid derived suppressor cell (MDSC) accumulation i...

  19. Subpopulations of Myeloid-Derived Suppressor Cells (MDSC) impair T cell responses through independent nitric oxide-related pathways

    OpenAIRE

    Raber, Patrick L.; Thevenot, Paul; Sierra, Rosa; Wyczechowska, Dorota; Halle, Daniel; Ramirez, Maria E; Ochoa, Augusto; Fletcher, Matthew; Velasco, Cruz; Wilk, Anna; Reiss, Krzysztof; Rodriguez, Paulo C.

    2013-01-01

    The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we ...

  20. Arginase I–Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes

    OpenAIRE

    Rodriguez, Paulo C.; Ernstoff, Marc S; Hernandez, Claudia; Atkins, Michael; Zabaleta, Jovanny; Sierra, Rosa; Ochoa, Augusto C.

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) producing arginase I are increased in the peripheral blood of patients with renal cell carcinoma (RCC). MDSC inhibit T-cell function by reducing the availability of l-arginine and are therefore considered an important tumor escape mechanism. We aimed to determine the origin of arginase I–producing MDSC in RCC patients and to identify the mechanisms used to deplete extracellular l-arginine. The results show that human MDSC are a subpopulation of activate...

  1. IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function

    OpenAIRE

    Elkabets, Moshe; Ribeiro, Vera S. G.; Dinarello, Charles A.; Ostrand-Rosenberg, Suzanne; Di Santo, James P; Apte, Ron N.; Vosshenrich, Christian A J

    2010-01-01

    Chronic inflammation is associated with promotion of malignancy and tumor progression. Many tumors enhance the accumulation of myeloid-derived suppressor cells (MDSC), which contribute to tumor progression and growth by suppressing anti-tumor immune responses. Tumor-derived IL-1β secreted into the tumor microenvironment has been shown to induce the accumulation of MDSC possessing an enhanced capacity to suppress T cells. In this study, we found that the enhanced suppressive potential of IL-1β...

  2. Doxorubicin Eliminates Myeloid-Derived Suppressor Cells and Enhances the Efficacy of Adoptive T Cell Transfer in Breast Cancer

    OpenAIRE

    Alizadeh, Darya; Trad, Malika; Hanke, Neale T.; Larmonier, Claire B.; Janikashvili, Nona; Bonnotte, Bernard; Katsanis, Emmanuel; Larmonier, Nicolas

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) expand in tumor-bearing hosts and play a central role in cancer immune evasion by inhibiting adaptive and innate immunity. They therefore represent a major obstacle for successful cancer immunotherapy. Different strategies have thus been explored to deplete and/or inactivate MDSC in vivo. Using a murine mammary cancer model, we demonstrated that doxorubicin selectively eliminates MDSC in the spleen, blood and tumor beds. Furthermore, residual MDSC from ...

  3. Myeloid Derived Suppressor Cells Are Present at High Frequency in Neonates and Suppress In Vitro T Cell Responses

    OpenAIRE

    Gervassi, Ana; Lejarcegui, Nicholas; Dross, Sandra; Jacobson, Amanda; Itaya, Grace; Kidzeru, Elvis; Gantt, Soren; Jaspan, Heather; Horton, Helen

    2014-01-01

    Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and chil...

  4. Clinical Perspectives on Targeting of Myeloid Derived Suppressor Cells in the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Yana George Najjar

    2013-03-01

    Full Text Available Tumors escape immune recognition by several mechanisms, and induction of myeloid derived suppressor cells (MDSC is thought to play a major role in tumor mediated immune evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature dendritic cells, granulocytes or macrophages, and are characterized by the ability to suppress T cell and natural killer (NK cell function. They are increased in patients with cancer including renal cell carcinoma (RCC, and their levels have been shown to correlate with prognosis and overall survival. Multiple methods of inhibiting MDSCs are currently under investigation. These can broadly be categorized into methods that a promote differentiation of MDSC into mature, non-suppressive cells (all trans retinoic acid, vitamin D, b decrease MDSC levels (sunitinib, gemcitabine, 5-FU, CDDO-Me, or c functionally inhibit MDSC (PDE-5 inhibitors, COX-2 inhibitors. Recently, several pre-clinical tumor models of combination therapy involving sunitinib plus vaccines and/or adoptive therapy have shown promise in MDSC inhibition and improved outcomes in the tumor bearing host. Current clinical trials are underway in RCC patients to assess not only the impact on clinical outcome, but how this combination can enhance anti-tumor immunity and reduce immune suppression. Decreasing immune suppression by MDSC in the cancer host may improve outcomes and prolong survival in this patient population.

  5. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer.

    Science.gov (United States)

    Najjar, Yana G; Finke, James H

    2013-01-01

    Tumors escape immune recognition by several mechanisms, and induction of myeloid derived suppressor cells (MDSC) is thought to play a major role in tumor mediated immune evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature dendritic cells, granulocytes, or macrophages, and are characterized by the ability to suppress T cell and natural killer cell function. They are increased in patients with cancer including renal cell carcinoma (RCC), and their levels have been shown to correlate with prognosis and overall survival. Multiple methods of inhibiting MDSCs are currently under investigation. These can broadly be categorized into methods that (a) promote differentiation of MDSC into mature, non-suppressive cells (all trans retinoic acid, vitamin D), (b) decrease MDSC levels (sunitinib, gemcitabine, 5-FU, CDDO-Me), or (c) functionally inhibit MDSC (PDE-5 inhibitors, cyclooxygenase 2 inhibitors). Recently, several pre-clinical tumor models of combination therapy involving sunitinib plus vaccines and/or adoptive therapy have shown promise in MDSC inhibition and improved outcomes in the tumor bearing host. Current clinical trials are underway in RCC patients to assess not only the impact on clinical outcome, but how this combination can enhance anti-tumor immunity and reduce immune suppression. Decreasing immune suppression by MDSC in the cancer host may improve outcomes and prolong survival in this patient population. PMID:23508517

  6. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Xu; Jun Hu; Min Wang; Feng Peng; Rui Tian; Xing-Jun Guo; Yu Xie; Ren-Yi Qin

    2016-01-01

    BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are heterogeneous cell types that suppress T-cell responses in cancer patients and animal models, some MDSC subpopula-tions are increased in patients with pancreatic cancer. The present study was to investigate a specific subset of MDSCs in patients with pancreatic cancer and the mechanism of MDSCs increase in these patients. METHODS: Myeloid cells from whole blood were collected from 37 patients with pancreatic cancer, 17 with cholangiocarcinoma, and 47 healthy controls. Four pancreatic cancer cell lines were co-culturedwithnormalperipheralbloodmononuclearcells(PBMCs) to test the effect of tumor cells on the conversion of PBMCs to MDSCs. Levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and arginase activity in the plasma of cancer patients were analyzed by enzyme-linked immunosorbent assay. RESULTS: CD14+/CD11b+/HLA-DR- MDSCs were increased in patients with pancreatic or bile duct cancer compared with those in healthy controls, and this increase was correlated with clinical cancer stage. Pancreatic cancer cell lines induced PBMCs to MDSCs in a dose-dependent manner. GM-CSF and arginase activity levels were significantly increased in the se-rum of patients with pancreatic cancer. CONCLUSIONS: MDSCsweretumorrelated:tumorcellsinduced PBMCs to MDSCs in a dose-dependent manner and circulating CD14+/CD11b+/HLA-DR- MDSCs in pancreatic cancer patients were positively correlated with tumor burden. MDSCs might be useful markers for pancreatic cancer detection and progression.

  7. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells

    Science.gov (United States)

    Pallett, Laura J.; Gill, Upkar S.; Quaglia, Alberto; Sinclair, Linda V.; Jover-Cobos, Maria; Schurich, Anna; Singh, Kasha P.; Thomas, Niclas; Das, Abhishek; Chen, Antony; Fusai, Giuseppe; Bertoletti, Antonio; Cantrell, Doreen A.; Kennedy, Patrick T.; Davies, Nathan A.; Haniffa, Muzlifah; Maini, Mala K.

    2015-01-01

    Infection with hepatitis B virus (HBV) results in disparate degrees of tissue injury: it can replicate without pathological consequences or trigger immune-mediated necroinflammatory liver damage. We investigated the potential for myeloid-derived suppressor cells (MDSC) to suppress T cell-mediated immunopathology in this setting. Granulocytic MDSC (gMDSC) expanded transiently in acute resolving HBV, decreasing before peak hepatic injury. In persistent infection, arginase-expressing gMDSC (and circulating arginase) increased most in phases characterized by HBV replication without immunopathology, whilst L-arginine decreased. gMDSC expressed liver-homing chemokine receptors and accumulated in the liver, their expansion being supported by hepatic stellate cells. We provide in vitro and ex vivo evidence that gMDSC potently inhibited T cells in a partially arginase-dependent manner. L-arginine-deprived T cells upregulated system-L amino acid transporters to increase uptake of essential nutrients and attempt metabolic reprogramming. These data demonstrate the capacity of expanded arginase-expressing gMDSC to regulate liver immunopathology in HBV infection. PMID:25962123

  8. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    Science.gov (United States)

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. PMID:27261626

  9. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment

    OpenAIRE

    Corzo, Cesar A.; Condamine, Thomas; Lu, Lily; Cotter, Matthew J.; Youn, Je-in; Cheng, Pingyan; Cho, Hyun-Il; Celis, Esteban; Quiceno, David G.; Padhya, Tapan; McCaffrey, Thomas V.; McCaffrey, Judith C.; Gabrilovich, Dmitry I.

    2010-01-01

    Myeloid-derived suppressor cells (MDSCs) are a major component of the immune-suppressive network described in cancer and many other pathological conditions. We demonstrate that although MDSCs from peripheral lymphoid organs and the tumor site share similar phenotype and morphology, these cells display profound functional differences. MDSC from peripheral lymphoid organs suppressed antigen-specific CD8+ T cells but failed to inhibit nonspecific T cell function. In sharp contrast, tumor MDSC su...

  10. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors.

    Science.gov (United States)

    Wu, Tingting; Zhao, Yang; Wang, Hao; Li, Yang; Shao, Lijuan; Wang, Ruoyu; Lu, Jun; Yang, Zhongzhou; Wang, Junjie; Zhao, Yong

    2016-01-01

    CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs) play critical roles in controlling the processes of tumors, infections, autoimmunity and graft rejection. Immunosuppressive drug rapamycin (RPM), targeting on the key cellular metabolism molecule mTOR, is currently used in clinics to treat patients with allo-grafts, autoimmune diseases and tumors. However, the effect of RPM on MDSCs has not been studied. RPM significantly decreases the cell number and the immunosuppressive ability on T cells of CD11b(+) Ly6C(high) monocytic MDSCs (M-MDSCs) in both allo-grafts-transplanted and tumor-bearing mice respectively. Mice with a myeloid-specific deletion of mTOR have poor M-MDSCs after grafting with allo-skin tissue or a tumor. Grafting of allo-skin or tumors significantly activates glycolysis pathways in myeloid precursor cells in bone marrow, which is inhibited by RPM or mTOR deletion. 2-deoxyglucose (2-DG), an inhibitor of the glycolytic pathway, inhibits M-MDSC differentiation from precursors, while enhancing glycolysis by metformin significantly rescues the RPM-caused deficiency of M-MDSCs. Therefore, we offer evidence supporting that mTOR is an intrinsic factor essential for the differentiation and immunosuppressive function of M-MDSCs and that these metabolism-relevant medicines may impact MDSCs-mediated immunosuppression or immune tolerance induction, which is of considerable clinical importance in treating graft rejection, autoimmune diseases and cancers. PMID:26833095

  11. Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs

    Directory of Open Access Journals (Sweden)

    Emilia Maria Cristina Mazza

    2014-12-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs have been shown to control self-reactive and anti-graft effector T-cells in autoimmunity and transplantation, but their therapeutic use is limited by their scarce availability in the peripheral blood of tumor-free donors. We isolated and characterized a novel population of myeloid suppressor cells, named fibrocytic MDSC (f-MDSC, which are differentiated from umbilical cord blood (UCB precursors (Zoso et al., 2014. This MDSC subset promotes regulatory T-cell expansion and induces normoglycemia in a xenogeneic model of type 1 diabetes. Here we describe in details the experimental design and the bioinformatics analyses of the gene expression dataset used to investigate the molecular mechanisms at the base of MDSC tolerogenic and suppressive properties. We also provide an R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset. Raw and pre-processed data are available at Gene Expression Omnibus under accession GSE52376.

  12. Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2.

    Science.gov (United States)

    Beury, Daniel W; Carter, Kayla A; Nelson, Cassandra; Sinha, Pratima; Hanson, Erica; Nyandjo, Maeva; Fitzgerald, Phillip J; Majeed, Amry; Wali, Neha; Ostrand-Rosenberg, Suzanne

    2016-04-15

    Tumor-induced myeloid-derived suppressor cells (MDSC) contribute to immune suppression in tumor-bearing individuals and are a major obstacle to effective immunotherapy. Reactive oxygen species (ROS) are one of the mechanisms used by MDSC to suppress T cell activation. Although ROS are toxic to most cells, MDSC survive despite their elevated content and release of ROS. NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates a battery of genes that attenuate oxidative stress. Therefore, we hypothesized that MDSC resistance to ROS may be regulated by Nrf2. To test this hypothesis, we used Nrf2(+/+)and Nrf2(-/-)BALB/c and C57BL/6 mice bearing 4T1 mammary carcinoma and MC38 colon carcinoma, respectively. Nrf2 enhanced MDSC suppressive activity by increasing MDSC production of H2O2, and it increased the quantity of tumor-infiltrating MDSC by reducing their oxidative stress and rate of apoptosis. Nrf2 did not affect circulating levels of MDSC in tumor-bearing mice because the decreased apoptotic rate of tumor-infiltrating MDSC was balanced by a decreased rate of differentiation from bone marrow progenitor cells. These results demonstrate that Nrf2 regulates the generation, survival, and suppressive potency of MDSC, and that a feedback homeostatic mechanism maintains a steady-state level of circulating MDSC in tumor-bearing individuals. PMID:26936880

  13. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.

    Science.gov (United States)

    Rui, Ke; Tian, Jie; Tang, Xinyi; Ma, Jie; Xu, Ping; Tian, Xinyu; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-08-01

    Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects. PMID:26832917

  14. The influence of myeloid-derived suppressor cells on angiogenesis and tumor growth after cancer surgery.

    Science.gov (United States)

    Wang, Jun; Su, Xiaosan; Yang, Liu; Qiao, Fei; Fang, Yu; Yu, Lu; Yang, Qian; Wang, Yiyin; Yin, Yanfeng; Chen, Rui; Hong, Zhipeng

    2016-06-01

    While myeloid-derived suppressor cells (MDSCs) have been reported to participate in the promotion of angiogenesis and tumor growth, little is known about their presence and function during perioperative period. Here, we demonstrated that human MDSCs expressing CD11b(+) , CD33(+) and HLA-DR(-) significantly increased in lung cancer patients after thoracotomy. CD11b(+) CD33(+) HLA-DR(-) MDSCs isolated 24 hr after surgery from lung cancer patients were more efficient in promoting angiogenesis and tumor growth than MDSCs isolated before surgical operation in allograft tumor model. In addition, CD11b(+) CD33(+) HLA-DR(-) MDSCs produced high levels of MMP-9. Using an experimental lung metastasis mouse model, we demonstrated that the numbers of metastases on lung surface and Gr-1(+) CD11b(+) MDSCs at postoperative period were enhanced in proportion to the degree of surgical manipulation. We also examined that syngeneic bone marrow mesenchymal stem cells (BMSCs) significantly inhibited the induction and proliferation of Gr-1(+) CD11b(+) MDSCs and further prevented lung metastasis formation in the mice undergoing laparotomy. Taken together, our results suggest that postoperatively induced MDSCs were qualified with potent proangiogenic and tumor-promotive ability and this cell population should be considered as a target for preventing postoperative tumor metastasis. PMID:26756887

  15. Computational Algorithm-Driven Evaluation of Monocytic Myeloid-Derived Suppressor Cell Frequency For Prediction of Clinical Outcomes

    OpenAIRE

    Kitano, Shigehisa; Postow, Michael A.; Ziegler, Carly G.K.; Kuk, Deborah; Panageas, Katherine S.; Cortez, Czrina; Rasalan, Teresa; Adamow, Mathew; Yuan, Jianda; Wong, Philip; Altan-Bonnet, Gregoire; Wolchok, Jedd D.; Lesokhin, Alexander M.

    2014-01-01

    Evaluation of myeloid-derived suppressor cells (MDSC), a cell type implicated in T-cell suppression, may inform immune status. However, a uniform methodology is necessary for prospective testing as a biomarker. We report the use of a computational algorithm-driven analysis of whole blood and cryopreserved samples for monocytic MDSC (m-MDSC) quantity that removes variables related to blood processing and user definitions. Applying these methods to samples from melanoma patients identifies diff...

  16. Flt3 ligand mediates STAT3-independent expansion, but STAT3-dependent activation of myeloid-derived suppressor cells

    OpenAIRE

    Rosborough, Brian R.; Mathews, Lisa R.; Matta, Benjamin M.; Liu, Quan; Raïch-Regué, Dàlia; Thomson, Angus W.; Turnquist, Hēth R.

    2014-01-01

    The Flt3-Flt3 ligand (Flt3L) pathway is critically involved in the differentiation and homeostasis of myeloid cells, including dendritic cells (DC); however, its role in the expansion and function of myeloid-derived suppressor cells (MDSC) has not been determined. Herein, we describe the ability of Flt3L to expand and activate murine MDSC capable of suppressing allograft rejection upon adoptive transfer. While Flt3L expands and augments the stimulatory capacity of myeloid DC, MDSC expanded by...

  17. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function

    Directory of Open Access Journals (Sweden)

    Eunyoung Chun

    2015-07-01

    Full Text Available Our study reveals a non-canonical role for CCL2 in modulating non-macrophage, myeloid-derived suppressor cells (MDSCs and shaping a tumor-permissive microenvironment during colon cancer development. We found that intratumoral CCL2 levels increased in patients with colitis-associated colorectal cancer (CRC, adenocarcinomas, and adenomas. Deletion of CCL2 blocked progression from dysplasia to adenocarcinoma and reduced the number of colonic MDSCs in a spontaneous mouse model of colitis-associated CRC. In a transplantable mouse model of adenocarcinoma and an APC-driven adenoma model, CCL2 fostered MDSC accumulation in evolving colonic tumors and enhanced polymorphonuclear (PMN-MDSC immunosuppressive features. Mechanistically, CCL2 regulated T cell suppression of PMN-MDSCs in a STAT3-mediated manner. Furthermore, CCL2 neutralization decreased tumor numbers and MDSC accumulation and function. Collectively, our experiments support that perturbing CCL2 and targeting MDSCs may afford therapeutic opportunities for colon cancer interception and prevention.

  18. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells.

    Science.gov (United States)

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N; Weber, Alexander N R; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-04-01

    Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  19. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    OpenAIRE

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulati...

  20. Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4

    OpenAIRE

    Bunt, Stephanie K.; Clements, Virginia K.; Hanson, Erica M.; Sinha, Pratima; Ostrand-Rosenberg, Suzanne

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) are potent inhibitors of anti-tumor immunity that facilitate tumor progression by blocking the activation of CD4+ and CD8+ T cells and by promoting a type 2 immune response through their production of IL-10 and down-regulation of macrophage production of IL-12. MDSC accumulate in many cancer patients and are a significant impediment to active cancer immunotherapies. Chronic inflammation has been shown recently to enhance the accumulation of MDSC and to ...

  1. Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease

    OpenAIRE

    Markowitz, Joseph; Brooks, Taylor R.; Duggan, Megan C.; Paul, Bonnie K.; Pan, Xueliang; Wei, Lai; Abrams, Zachary; Luedke, Eric; Lesinski, Gregory B; Mundy-Bosse, Bethany; Bekaii-Saab, Tanios; Carson, William E

    2014-01-01

    Elevated levels of myeloid-derived suppressor cells (MDSCs) induced by tumor-derived factors are associated with inhibition of immune responses in patients with gastrointestinal malignancies. We hypothesized that pro-MDSC cytokines and levels of MDSC in the peripheral blood would be elevated in pancreatic adenocarcinoma patients with progressive disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 16 pancreatic cancer patients undergoing chemotherapy and phenotyped for MDSC ...

  2. The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity

    OpenAIRE

    Youn, Je-in; Gabrilovich, Dmitry I.

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) play an important role in the cellular network regulating immune responses in cancer, chronic infectious diseases, autoimmunity, and in other pathologic conditions. Morphological, phenotypic and functional heterogeneity is a hallmark of MDSC. This heterogeneity demonstrates the plasticity of this immune suppressive myeloid compartment, and shows how various tumors and infectious agents can have similar biological effects on myeloid cells despite the dif...

  3. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  4. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    International Nuclear Information System (INIS)

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1

  5. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis

    Institute of Scientific and Technical Information of China (English)

    Linda; Hammerich; Frank; Tacke

    2015-01-01

    Myeloid derived suppressor cells(MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bonemarrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11 b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11 b and Gr1(Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins(SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma(HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases.

  6. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis.

    Science.gov (United States)

    Hammerich, Linda; Tacke, Frank

    2015-08-15

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bone marrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins (SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases. PMID:26301117

  7. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  8. Myeloid derived suppressor cells in multiple myeloma: preclinical research and translational opportunities

    Directory of Open Access Journals (Sweden)

    Cirino eBotta

    2014-12-01

    Full Text Available Immunosuppressive cells have been reported to play an important role in tumor progression mainly because of their capability to promote immune-escape, angiogenesis and metastasis. Among them, myeloid derived suppressor cells (MDSCs have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr-1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM of multiple myeloma (MM patients with a role in disease progression and/or drug resistance. Preclinical models recapitulating the complexity of the MM-related BM microenvironment (BMM are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs and for the development of new agents targeting MM-associated immune suppressive cells.This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.

  9. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  10. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function.

    Science.gov (United States)

    Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier

    2015-02-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies. PMID:25155994

  11. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    International Nuclear Information System (INIS)

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b+Gr1+ MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b+Gr1+ MDSCs. • Pam2CSK4 supports survival of CD11b+Gr1+ MDSCs in vivo

  12. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy

    OpenAIRE

    Diaz-Montero, C Marcela; Salem, Mohamed Labib; Nishimura, Michael I.; Garrett-Mayer, Elizabeth; Cole, David J.; Montero, Alberto J

    2008-01-01

    Abnormal accumulation of myeloid-derived suppressor cells (MDSC) is an important mechanism of tumor immune evasion. Cyclophosphamide (CTX) has also been shown in non-tumor bearing animals to cause transient surges in MDSC. Knowledge of MDSC is primarily based on preclinical work, and to date only few published studies have involved cancer patients. The goal of this study was to test the hypothesis that circulating MDSC levels correlate with clinical cancer stage, CTX-based chemotherapy, and m...

  13. Tumor-Induced Myeloid-derived Suppressor Cell Function is Independent of IFNγ and IL-4Rα

    OpenAIRE

    Sinha, Pratima; Parker, Katherine H.; Horn, Lucas; Ostrand-Rosenberg, Suzanne

    2012-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients and experimental animals where they exert a profound immune suppression and are a significant obstacle to immunotherapy. IFNγ and IL-4Rα have been implicated as essential molecules for MDSC development and immunosuppressive function. If IFNγ and IL-4Rα are critical regulators of MDSC, then they are potential targets for preventing MDSC accumulation or inhibiting MDSC function. Because data supporting a role for IFNγ a...

  14. Mechanism regulating reactive oxygen species in tumor induced myeloid-derived suppressor cells1: MDSC and ROS in cancer

    OpenAIRE

    Corzo, Cesar A.; Cotter, Matthew J.; Cheng, Pingyan; Cheng, Fendong; Kusmartsev, Sergei; Sotomayor, Eduardo; Padhya, Tapan; McCaffrey, Thomas V.; McCaffrey, Judith C.; Gabrilovich, Dmitry I.

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) are a major component of the immune suppressive network described in cancer and many other pathological conditions. Recent studies have demonstrated that one of the major mechanisms of MDSC-induced immune suppression is mediated by reactive oxygen species (ROS). However, the mechanism of this phenomenon remained unknown. In this study we observed a substantial up-regulation of ROS by MDSC in all of seven different tumor models and in patients with head ...

  15. Reduced Inflammation in the Tumor Microenvironment Delays the Accumulation of Myeloid-Derived Suppressor Cells and Limits Tumor Progression

    OpenAIRE

    Bunt, Stephanie K.; YANG, LINGLIN; Sinha, Pratima; Clements, Virginia K.; Leips, Jeff; Ostrand-Rosenberg, Suzanne

    2007-01-01

    Chronic inflammation is frequently associated with malignant growth and is thought to promote and enhance tumor progression, although the mechanisms which regulate this relationship remain elusive. We reported previously that interleukin (IL)-1β promoted tumor progression by enhancing the accumulation of myeloid-derived suppressor cells (MDSC), and hypothesized that inflammation leads to cancer through the production of MDSC which inhibit tumor immunity. If inflammation-induced MDSC promote t...

  16. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells

    OpenAIRE

    Parker, Katherine; Sinha, Pratima; Horn, Lucas A.; Clements, Virginia K.; Yang, Huan; Li, Jianhua; Tracey, Kevin J.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSC may define an element of the pathogenic inflammatory processes that ...

  17. Generation of myeloid-derived suppressor cells using prostaglandin E2

    Directory of Open Access Journals (Sweden)

    Obermajer Nataša

    2012-09-01

    Full Text Available Abstract Myeloid-derived suppressor cells (MDSCs are natural immunosuppressive cells and endogenous inhibitors of the immune system. We describe a simple and clinically compatible method of generating large numbers of MDSCs using the cultures of peripheral blood-isolated monocytes supplemented with prostaglandin E2 (PGE2. We observed that PGE2 induces endogenous cyclooxygenase (COX2 expression in cultured monocytes, blocking their differentiation into CD1a+ dendritic cells (DCs and inducing the expression of indoleamine 2,3-dioxygenase 1, IL-4Rα, nitric oxide synthase 2 and IL-10 - typical MDSC-associated suppressive factors. The establishment of a positive feedback loop between PGE2 and COX2, the key regulator of PGE2 synthesis, is both necessary and sufficient to promote the development of CD1a+ DCs to CD14+CD33+CD34+ monocytic MDSCs in granulocyte macrophage colony stimulating factor/IL-4-supplemented monocyte cultures, their stability, production of multiple immunosuppressive mediators and cytotoxic T lymphocyte-suppressive function. In addition to PGE2, selective E-prostanoid receptor (EP2- and EP4-agonists, but not EP3/1 agonists, also induce the MDSCs development, suggesting that other activators of the EP2/4- and EP2/4-driven signaling pathway (adenylate cyclase/cAMP/PKA/CREB may be used to promote the development of suppressive cells. Our observations provide a simple method for generating large numbers of MDSCs for the immunotherapy of autoimmune diseases, chronic inflammatory disorders and transplant rejection.

  18. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin.

    Science.gov (United States)

    Zhou, Junmin; Donatelli, Sarah S; Gilvary, Danielle L; Tejera, Melba M; Eksioglu, Erika A; Chen, Xianghong; Coppola, Domenico; Wei, Sheng; Djeu, Julie Y

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) constitute a key checkpoint that impedes tumor immunity against cancer. Chemotherapeutic intervention of MDSCs has gained ground as a strategy for cancer therapy but its mechanism remains obscure.We report here a unique mechanism by which monocytic (M)-MDSCs are spared, allowing them to polarize towards M1 macrophages for reactivation of immunity against breast cancer. We first demonstrated that curcumin, like docetaxel (DTX), can selectively target CD11b(+)Ly6G(+)Ly6C(low) granulocytic (G)-MDSCs, sparing CD11b(+)Ly6G(-)Ly6C(high) M-MDSCs, with reduced tumor burden in 4T1-Neu tumor-bearing mice. Curcumin treatment polarized surviving M-MDSCs toward CCR7(+) Dectin-1(-)M1 cells, accompanied by IFN-γ production and cytolytic function in T cells. Selective M-MDSC chemoresistence to curcumin and DTX was mediated by secretory/cytoplasmic clusterin (sCLU). sCLU functions by trapping Bax from mitochondrial translocation, preventing the apoptotic cascade. Importantly, sCLU was only found in M-MDSCs but not in G-MDSCs. Knockdown of sCLU in M-MDSCs and RAW264.7 macrophages was found to reverse their natural chemoresistance. Clinically, breast cancer patients possess sCLU expression only in mature CD68(+) macrophages but not in immature CD33(+) immunosuppressive myeloid cells infiltrating the tumors. We thus made the seminal discovery that sCLU expression in M-MDSCs accounts for positive immunomodulation by chemotherapeutic agents. PMID:27405665

  19. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin

    Science.gov (United States)

    Zhou, Junmin; Donatelli, Sarah S.; Gilvary, Danielle L.; Tejera, Melba M.; Eksioglu, Erika A.; Chen, Xianghong; Coppola, Domenico; Wei, Sheng; Djeu, Julie Y.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) constitute a key checkpoint that impedes tumor immunity against cancer. Chemotherapeutic intervention of MDSCs has gained ground as a strategy for cancer therapy but its mechanism remains obscure.We report here a unique mechanism by which monocytic (M)-MDSCs are spared, allowing them to polarize towards M1 macrophages for reactivation of immunity against breast cancer. We first demonstrated that curcumin, like docetaxel (DTX), can selectively target CD11b+Ly6G+Ly6Clow granulocytic (G)-MDSCs, sparing CD11b+Ly6G−Ly6Chigh M-MDSCs, with reduced tumor burden in 4T1-Neu tumor-bearing mice. Curcumin treatment polarized surviving M-MDSCs toward CCR7+ Dectin-1−M1 cells, accompanied by IFN-γ production and cytolytic function in T cells. Selective M-MDSC chemoresistence to curcumin and DTX was mediated by secretory/cytoplasmic clusterin (sCLU). sCLU functions by trapping Bax from mitochondrial translocation, preventing the apoptotic cascade. Importantly, sCLU was only found in M-MDSCs but not in G-MDSCs. Knockdown of sCLU in M-MDSCs and RAW264.7 macrophages was found to reverse their natural chemoresistance. Clinically, breast cancer patients possess sCLU expression only in mature CD68+ macrophages but not in immature CD33+ immunosuppressive myeloid cells infiltrating the tumors. We thus made the seminal discovery that sCLU expression in M-MDSCs accounts for positive immunomodulation by chemotherapeutic agents. PMID:27405665

  20. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy.

    Science.gov (United States)

    Baniyash, Michal

    2016-07-01

    Chronic inflammation, typical of various diseases including cancer, is a "silent bomb within the body," leading to complications that are only evident in most cases upon their appearance, when disease is already deteriorated. Chronic inflammation is associated with accumulation of myeloid-derived suppressor cells (MDSCs), which lead to immunosuppression. MDSCs have numerous harmful effects as they support tumor initiation, tumor growth and spreading, which in turn, perpetuate the inflammatory and suppressive conditions, thus preventing anticancer responses. As the concept of the immune system combating many types of tumors was revived in recent years, immunotherapy has dramatically changed the view of cancer treatment, and numerous novel therapies have been developed and approved by the FDA. However, cumulative clinical data point at very limited success rates. It is most likely that the developing chronic inflammation and MDSC-induced immunosuppression interfere with responses to such treatments and hence are major obstacles in achieving higher response rates to immune-based therapies. Moreover, chemotherapies were shown to have adverse immunoregulatory effects, enhancing or decreasing MDSC levels and activity, thus affecting treatment success. Therefore, therapeutic manipulations of chronic inflammation and MDSCs during cancer development are likely to enhance efficacy of immune- and chemo-based treatments, switching chronic pro-cancer inflammatory environments to an anticancerous milieu. Based on the functional relevance of immune networking in tumors, it is critical to merge monitoring immune system biomarkers into the traditional patient's categorization and treatment regimens. This will provide new tools for clinical practice, allowing appropriate management of cancer patients toward a better-personalized medicine. PMID:27225641

  1. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs

    Directory of Open Access Journals (Sweden)

    Sherger Matthew

    2012-10-01

    Full Text Available Abstract Background Myeloid derived suppressor cells (MDSCs are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifcying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11blow/CADO48low cell population that is increased in the peripheral blood of tumor-bearing dogs. Results Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11blow/CADO48Alow cells (7.9% as compared to the control dogs (3.6%. Additionally, sorted CD11blow/CADO48Alow generated in vitro suppressed the proliferation of canine lymphocytes. Conclusions The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11blow/CADO48Alow cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice and utilizes commercially available canine-specific antibodies. Importantly, CD11blow/CADO48Alow from a tumor environment

  2. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  3. Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer

    OpenAIRE

    Dufait, Inès; Schwarze, Julia Katharina; Liechtenstein, Therese; Leonard, Wim; Jiang, Heng; Escors, David; Ridder, Mark De; Breckpot, Karine

    2015-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that accumulate in tumor-bearing subjects and which strongly inhibit anti-cancer immune responses. To study the biology of MDSC in colorectal cancer (CRC), we cultured bone marrow cells in conditioned medium from CT26 cells, which are genetically modified to secrete high levels of granulocyte-macrophage colony-stimulating factor. This resulted in the generation of high numbers of CD11b+ Ly6G+ granulocytic and CD11...

  4. Myeloid-Derived Suppressor Cells Interact with Tumors in Terms of Myelopoiesis, Tumorigenesis and Immunosuppression: Thick as Thieves

    Directory of Open Access Journals (Sweden)

    Alexandra Sevko, Viktor Umansky

    2013-01-01

    Full Text Available Tumor progression is often associated with chronic inflammation in the tumor microenvironment, which is mediated by numerous cytokines, chemokines and growth factors produced by cancer and stroma cells. All these mediators support tumor development and immunosuppression in autocrine and/or paracrine ways. Neutralization of chronic inflammatory conditions can lead to the restoration of anti-tumor immune responses. Among stroma cells infiltrating tumors, myeloid-derived suppressor cells (MDSCs represent one of the most important players mediating immunosuppression. These cells may not only inhibit an anti-tumor immunity but also directly stimulate tumorigenesis as well as tumor growth and expansion. Therefore, understanding the mechanisms of generation, migration to the tumor site and activation of MDSC is necessary for the development of new strategies of tumor immunotherapy.

  5. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion.

    Science.gov (United States)

    Zoso, Alessia; Mazza, Emilia M C; Bicciato, Silvio; Mandruzzato, Susanna; Bronte, Vincenzo; Serafini, Paolo; Inverardi, Luca

    2014-11-01

    By restraining T-cell activation and promoting Treg-cell expansion, myeloid-derived suppressor cells (MDSCs) and tolerogenic DCs can control self-reactive and antigraft effector T cells in autoimmunity and transplantation. Their therapeutic use and characterization, however, is limited by their scarce availability in the peripheral blood of tumor-free donors. In the present study, we describe and characterize a novel population of human myeloid suppressor cells, named fibrocytic MDSC, which are differentiated from umbilical cord blood precursors by 4-day culture with FDA-approved cytokines (recombinant human-GM-CSF and recombinant human-G-CSF). This MDSC subset, characterized by the expression of MDSC-, DC-, and fibrocyte-associated markers, promotes Treg-cell expansion and induces normoglycemia in a xenogeneic mouse model of Type 1 diabetes. In order to exert their protolerogenic function, fibrocytic MDSCs require direct contact with activated T cells, which leads to the production and secretion of IDO. This new myeloid subset may have an important role in the in vitro and in vivo production of Treg cells for the treatment of autoimmune diseases, and in either the prevention or control of allograft rejection. PMID:25113564

  6. Swift Intrahepatic Accumulation of Granulocytic Myeloid-Derived Suppressor Cells in a Humanized Mouse Model of Toxic Shock Syndrome.

    Science.gov (United States)

    Szabo, Peter A; Goswami, Ankur; Memarnejadian, Arash; Mallett, Christiane L; Foster, Paula J; McCormick, John K; Haeryfar, S M Mansour

    2016-06-15

    Toxic shock syndrome (TSS) and other superantigen-mediated illnesses are associated with 'systemic' immunosuppression that jeopardizes the host's ability to fight pathogens. Here, we define a novel mechanism of 'local' immunosuppression that may benefit the host. Systemic exposure to staphylococcal enterotoxin B (SEB) rapidly and selectively recruited CD11b(+)Gr-1(high)Ly-6C(+) granulocytic myeloid-derived suppressor cells (MDSCs) to the liver of HLA-DR4 transgenic mice. Hepatic MDSCs inhibited SEB-triggered T cell proliferation in a reactive oxygen species-dependent manner, and ex vivo-generated human MDSCs also similarly attenuated the proliferative response of autologous T cells to SEB. We propose a role for MDSCs in mitigating excessive tissue injury during TSS. PMID:26908735

  7. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2.

    Science.gov (United States)

    Xu, Yaping; Zhao, Wenxiu; Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-02-23

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  8. Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms.

    Science.gov (United States)

    Cao, Lauren Y; Chung, Jin-Sung; Teshima, Takahiro; Feigenbaum, Lawrence; Cruz, Ponciano D; Jacobe, Heidi T; Chong, Benjamin F; Ariizumi, Kiyoshi

    2016-09-01

    Psoriasis vulgaris is an inflammatory skin disease caused by hyperactivated T cells regulated by positive and negative mechanisms; although the former have been much studied, the latter have not. We studied the regulatory mechanism mediated by myeloid-derived suppressor cells (MDSCs) and showed that MDSCs expanded in melanoma patients express dendritic cell-associated heparan sulfate proteoglycan-dependent integrin ligand, a critical mediator of T-cell suppressor function. We examined expansion of DC-HIL(+) MDSCs in psoriasis and characterized their functional properties. Frequency of DC-HIL(+) monocytic MDSCs (CD14(+)HLA-DR(no/low)) in blood and skin was markedly increased in psoriatic patients versus healthy control subjects, but there was no statistically significant relationship with disease severity (based on Psoriasis Area and Severity Index score). Blood DC-HIL(+) MDSC levels in untreated patients were significantly higher than in treated patients. Compared with melanoma-derived MDSCs, psoriatic MDSCs exhibited significantly reduced suppressor function and were less dependent on DC-HIL, but they were capable of inhibiting proliferation and IFN-γ and IL-17 responses of autologous T cells. Psoriatic MDSCs were functionally diverse among patients in their ability to suppress allogeneic T cells and in the use of either IL-17/arginase I or IFN-γ/inducible nitric oxide synthase axis as suppressor mechanisms. Thus, DC-HIL(+) MDSCs are expanded in psoriasis patients, and their mechanistic heterogeneity and relative functional deficiency may contribute to the development of psoriasis. PMID:27236103

  9. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance.

    Science.gov (United States)

    Liu, Qiaofei; Liao, Quan; Zhao, Yupei

    2016-02-01

    The mechanisms of distant metastasis of malignancies largely remain unknown. Circulating tumor cells (CTC) derived from the primary cancer initiate distant metastasis by entering and traversing the bloodstream. Current methods to detect CTC are based on the notion that CTC do not express the common leukocyte antigen CD45. However, these methods neglect the fact that CTC can directly adhere to platelets and immune cells and therefore appear to be CD45-positive. The potential effects of interactions between CTC and adhesive immune cells have been largely overlooked, despite the fact that most CTC are killed by immune effector cells and only those that evade immune surveillance result in clonal expansion and metastatic lesions. It is crucial to define the characteristics that allow a select CTC population to escape immune surveillance; particularly, it must be determined whether interactions between CTC and adhesive immune cells provide a protective effect on CTC survival. If interactions between CTC and adhesive immune cells offer a selective advantage to those CTC cells, the next consideration is which characteristics of a CTC-immune cell population allow sufficient protection to facilitate immune evasion. Myeloid-derived suppressor cells (MDSC) are a large heterogeneous population of immature myeloid cells that accumulate during cancer progression to induce extensively systemic and local immunosuppression, a phenomenon that has been demonstrated to facilitate cancer distant metastasis. We hypothesize, therefore, that CTC populations interacting with adhesive immune cells will have different biological behavior than CTC populations alone. Further, we hypothesize that CTC can create a defensive shield consisting of adhesive MDSC, which allows evasion of immune surveillance and therefore facilitates distant metastatic lesions. This possibility highlights the importance of direct interactions between CTC and adhesive immune cells and suggests the potential target that

  10. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Younis, Rania H; Han, Kyu Lee; Webb, Tonya J

    2016-02-01

    One of the mechanisms by which malignancies can induce immune suppression is through the production of cytokines that affect the maturation and differentiation of inflammatory cells in the tumor microenvironment. Semaphorin 4D (Sema4D) is a proangiogenic cytokine produced by several malignancies, which has been described in the regulation of the immune system. In the present study, we examined the role of human head and neck squamous cell carcinoma (HNSCC)-secreted Sema4D on myeloid cell differentiation. CD33(+) cells cultured in HNSCC cell line-derived conditioned medium differentiated into myeloid derived suppressor cells (MDSC) (CD33(+)CD11b(+)HLA-DR(-/low)). The addition of anti-Sema4D Ab to HNSCC conditioned medium significantly reduced the expansion of the MDSC population. Similarly, knockdown of Sema4D in an HNSCC cell line resulted in a loss of MDSC function as shown by a decrease in the production of the immune-suppressive cytokines arginase-1, TGF-β, and IL-10 by MDSC, concomitant with recovery of T cell proliferation and IFN-γ production following stimulation of CD3/CD28. Importantly, CD33(+) myeloid and T cells cultured in conditioned medium of HNSCC cells in which Sema4D was knocked down promoted antitumor inflammatory profile, through recovery of the effector T cells (CD4(+)T-bet(+) and CD8(+)T-bet(+)), as well as a decrease in regulatory T cells (CD4(+)CD25(+)FOXP3(+)). We also showed that Sema4D was comparable to GM-CSF in its induction of MDSC. Collectively, this study describes a novel immunosuppressive role for Sema4D in HNSCC through induction of MDSC, and it highlights Sema4D as a therapeutic target for future studies to enhance the antitumorigenic inflammatory response in HNSCC and other epithelial malignancies. PMID:26740106

  11. Blockade of myeloid derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma

    OpenAIRE

    Kodumudi, Krithika N.; Weber, Amy; Sarnaik, Amod A.; Pilon-Thomas, Shari

    2012-01-01

    Administration of non-myeloablative chemotherapeutic agents or total body irradiation (TBI) prior to adoptive transfer of tumor-specific T cells may reduce or eliminate immunosuppressive populations such as T regulatory cells (Tregs) and myeloid derived suppressor cells (MDSC). Little is known about these populations during immune reconstitution. This study was designed to understand the reconstitution rate and function of these populations post TBI in melanoma tumor bearing mice. Reconstitut...

  12. Myeloid-derived suppressor cells contribute to systemic lupus erythaematosus by regulating differentiation of Th17 cells and Tregs.

    Science.gov (United States)

    Ji, Jianjian; Xu, Jingjing; Zhao, Shuli; Liu, Fei; Qi, Jingjing; Song, Yuxian; Ren, Jing; Wang, Tingting; Dou, Huan; Hou, Yayi

    2016-08-01

    Although major advancements have made in investigating the aetiology of SLE (systemic lupus erythaematosus), the role of MDSCs (myeloid-derived suppressor cells) in SLE progression remains confused. Recently, some studies have revealed that MDSCs play an important role in lupus mice. However, the proportion and function of MDSCs in lupus mice and SLE patients are still poorly understood. In the present study, we investigated the proportion and function of MDSCs using different stages of MRL/lpr lupus mice and specimens from SLE patients with different activity. Results showed that splenic granulocytic (G-)MDSCs were significantly expanded by increasing the expression of CCR1 (CC chemokine receptor 1) in diseased MRL/lpr lupus mice and in high-disease-activity SLE patients. However, the proportion of monocytic (M-)MDSCs remains similar in MRL/lpr lupus mice and SLE patients. G-MDSCs produce high levels of ROS (reactive oxygen species) through increasing gp91(phox) expression, and activated TLR2 (Toll-like receptor 2) and AIM2 (absent in melanoma 2) inflammasome in M-MDSCs lead to IL-1β (interleukin 1β) expression in diseased MRL/lpr mice and high-disease-activity SLE patients. Previous study has revealed that MDSCs could alter the plasticity of Th17 (T helper 17) cells and Tregs (regulatory T-cells) via ROS and IL-1β. Co-culture experiments showed that G-MDSCs impaired Treg differentiation via ROS and M-MDSCs promoted Th17 cell polarization by IL-1β in vitro Furthermore, adoptive transfer or antibody depletion of MDSCs in MRL/lpr mice confirmed that MDSCs influenced the imbalance of Tregs and Th17 cells in vivo Our results indicate that MDSCs with the capacity to regulate Th17 cell/Treg balance may be a critical pathogenic factor in SLE. PMID:27231253

  13. Diminished immune response to vaccinations in obesity: role of myeloid-derived suppressor and other myeloid cells.

    Science.gov (United States)

    Chen, Shiyi; Akbar, Sheikh Mohammad Fazle; Miyake, Teruki; Abe, Masanori; Al-Mahtab, Mamun; Furukawa, Shinya; Bunzo, Matsuura; Hiasa, Yoichi; Onji, Morikazu

    2015-01-01

    Obesity is a chronic inflammatory condition associated with an increased production of cytokines and exacerbated immune response. However, obese subjects are susceptible to infections and respond poorly to vaccines. This study evaluated the immune responses of obese mice and the underlying mechanisms by exploring the roles of myeloid cells. Diet-induced obese (DIO) mice were prepared from C57BL/6J mice fed a high-calorie and high-fat diet for 12 weeks. Humoral and cellular immune responses of DIO mice to a hepatitis B vaccine containing the hepatitis B surface antigen (HBsAg) were assessed in sera and via a lymphoproliferative assay, respectively. The effects of CD11b(+)GR1(+) myeloid-derived suppressor cells (MDSC) and CD11b(+)GR1(-) non-MDSC on T cell proliferation and cytokine production were compared via a cell culture system. The production of cytokines, expression of activation and exhaustion markers, and proportions of apoptotic T cells were estimated with flow cytometry. Increased T and B lymphocyte proliferation and higher interferon-γ and tumor necrosis factor-α levels were detected in spleen cells and liver non-parenchymal cell cultures of DIO mice compared to controls (pproduction, decrease in T cell activation, and increase in T cell exhaustion and apoptosis (p<0.05). MDSC play an important role in mediating impaired antigen-specific immunity. PMID:25660173

  14. Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer.

    Science.gov (United States)

    D'Amico, Lucia; Mahajan, Sahil; Capietto, Aude-Hélène; Yang, Zhengfeng; Zamani, Ali; Ricci, Biancamaria; Bumpass, David B; Meyer, Melissa; Su, Xinming; Wang-Gillam, Andrea; Weilbaecher, Katherine; Stewart, Sheila A; DeNardo, David G; Faccio, Roberta

    2016-05-01

    Tumor-stroma interactions contribute to tumorigenesis. Tumor cells can educate the stroma at primary and distant sites to facilitate the recruitment of heterogeneous populations of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs). MDSCs suppress T cell responses and promote tumor proliferation. One outstanding question is how the local and distant stroma modulate MDSCs during tumor progression. Down-regulation of β-catenin is critical for MDSC accumulation and immune suppressive functions in mice and humans. Here, we demonstrate that stroma-derived Dickkopf-1 (Dkk1) targets β-catenin in MDSCs, thus exerting immune suppressive effects during tumor progression. Mice bearing extraskeletal tumors show significantly elevated levels of Dkk1 in bone microenvironment relative to tumor site. Strikingly, Dkk1 neutralization decreases tumor growth and MDSC numbers by rescuing β-catenin in these cells and restores T cell recruitment at the tumor site. Recombinant Dkk1 suppresses β-catenin target genes in MDSCs from mice and humans and anti-Dkk1 loses its antitumor effects in mice lacking β-catenin in myeloid cells or after depletion of MDSCs, demonstrating that Dkk1 directly targets MDSCs. Furthermore, we find a correlation between CD15(+) myeloid cells and Dkk1 in pancreatic cancer patients. We establish a novel immunomodulatory role for Dkk1 in regulating tumor-induced immune suppression via targeting β-catenin in MDSCs. PMID:27045006

  15. Granulocytic Myeloid-Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype.

    Science.gov (United States)

    Köstlin, Natascha; Hofstädter, Kathrin; Ostermeir, Anna-Lena; Spring, Bärbel; Leiber, Anja; Haen, Susanne; Abele, Harald; Bauer, Peter; Pollheimer, Jürgen; Hartl, Dominik; Poets, Christian F; Gille, Christian

    2016-02-01

    Tolerance induction toward the semiallogeneic fetus is crucial to enable a successful pregnancy; its failure is associated with abortion or preterm delivery. Skewing T cell differentiation toward a Th2-dominated phenotype seems to be pivotal in maternal immune adaption, yet underlying mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that mediate T cell suppression and are increased in cord blood of healthy newborns and in peripheral blood of pregnant women. In this study, we demonstrate that granulocytic MDSCs (GR-MDSCs) accumulate in human placenta of healthy pregnancies but are diminished in patients with spontaneous abortions. Placental GR-MDSCs effectively suppressed T cell responses by expression of arginase I and production of reactive oxygen species and were activated at the maternal-fetal interface through interaction with trophoblast cells. Furthermore, GR-MDSCs isolated from placenta polarized CD4(+) T cells toward a Th2 cytokine response. These results highlight a potential role of GR-MDSCs in inducing and maintaining maternal-fetal tolerance and suggest them as a promising target for therapeutic manipulation of pregnancy complications. PMID:26712947

  16. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils.

    Directory of Open Access Journals (Sweden)

    Zvi G Fridlender

    Full Text Available The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN and to the granulocytic fraction of MDSC (G-MDSC.In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes, and cytokines (e.g. TNF-α, IL-1-α/β, were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.

  17. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    OpenAIRE

    Veltman, Joris; Lambers, Margaretha E. H.; Nimwegen, Menno; Hendriks, Rudi; Hoogsteden, Henk; Aerts, Joachim; Hegmans, Joost

    2010-01-01

    textabstractBackground: Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immu...

  18. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    OpenAIRE

    Veltman Joris D; Lambers Margaretha EH; van Nimwegen Menno; Hendriks Rudi W; Hoogsteden Henk C; Aerts Joachim GJV; Hegmans Joost PJJ

    2010-01-01

    Abstract Background Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunoth...

  19. Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells.

    Science.gov (United States)

    Ou, Lingling; Shi, Ying; Dong, Wenqi; Liu, Chunming; Schmidt, Thomas J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Fan, Daping; Ai, Walden

    2015-05-01

    Pressure ulcers (PUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Myeloid-derived suppressor cells (MDSCs) accumulate as a result of inflammation and promote cutaneous wound healing by mechanisms that are not fully understood. Recently, MDSCs have been shown to differentiate into fibrocytes, which serve as emerging effector cells that enhance cell proliferation in wound healing. We postulate that in wound healing MDSCs not only execute their immunosuppressive function to regulate inflammation but also stimulate cell proliferation once they differentiate into fibrocytes. In the current study, by using full-thickness and PU mouse models, we found that Kruppel-like factor 4 (KLF4) deficiency resulted in decreased accumulation of MDSCs and fibrocytes, and wound healing was significantly delayed. Conversely, KLF4 activation by the plant-derived product Mexicanin I increased the number of MDSCs and fibrocytes and accelerated the wound healing. Collectively, our study revealed a previously unreported function of MDSCs in cutaneous wound healing and identified Mexicanin I as a potential agent to accelerate PU wound healing. PMID:25581502

  20. PcpA Promotes Higher Levels of Infection and Modulates Recruitment of Myeloid-Derived Suppressor Cells during Pneumococcal Pneumonia.

    Science.gov (United States)

    Walker, Melissa M; Novak, Lea; Widener, Rebecca; Grubbs, James Aaron; King, Janice; Hale, Joanetha Y; Ochs, Martina M; Myers, Lisa E; Briles, David E; Deshane, Jessy

    2016-03-01

    We used two different infection models to investigate the kinetics of the PcpA-dependent pneumococcal disease in mice. In a bacteremic pneumonia model, we observed a PcpA-dependent increase in bacterial burden in the lungs, blood, liver, bronchoalveolar lavage, and spleens of mice at 24 h postinfection. This PcpA-dependent effect on bacterial burden appeared earlier (within 12 h) in the focal pneumonia model, which lacks bacteremia or sepsis. Histological changes show that the ability of pneumococci to make PcpA was associated with unresolved inflammation in both models of infection. Using our bacteremic pneumonia model we further investigated the effects of PcpA on recruitment of innate immune regulatory cells. The presence of PcpA was associated with increased IL-6 levels, suppressed production of TRAIL, and reduced infiltration of polymorphonuclear cells. The ability of pneumococci to make PcpA negatively modulated both the infiltration and apoptosis of macrophages and the recruitment of myeloid-derived suppressor-like cells. The latter have been shown to facilitate the clearance and control of bacterial pneumonia. Taken together, the ability to make PcpA was strongly associated with increased bacterial burden, inflammation, and negative regulation of innate immune cell recruitment to the lung tissue during bacteremic pneumonia. PMID:26829988

  1. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk.

    Science.gov (United States)

    Zhao, Ai-Min; Xu, Hai-Jing; Kang, Xiao-Min; Zhao, Ai-Min; Lu, Li-Ming

    2016-02-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that suppress both innate and adaptive immune responses through multiple mechanisms. In recent years, much of our knowledge of the function of MDSCs has come from cancer studies. However, a few recent advances have begun to characterize MDSCs in feto-maternal immune cross-talk. The microenvironment at the fetal-maternal interface is a complex milieu of trophoblasts and maternally-derived cells, which are biased to tolerogenic and Th2-type responses. Current data reveal that MDSCs accumulate at the fetal-maternal interface in healthy pregnancies. Yet, little is known about how MDSCs develop and why the response of MDSCs is heavily granulocytic. In this review, we discuss recent findings on the molecular mechanisms that regulate the expansion and function of MDSCs, in addition to various roles of MDSCs implicated in the modulation of feto-maternal immune cross-talk. Understanding the roles of MDSCs in inducing maternal-fetal tolerance, which is compromised in patients suffering from pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, and preterm birth, we thus propose that the immunomodulatory activity of MDSCs should be carefully considered for the therapeutic approaches targeting pregnancy complications. PMID:26599285

  2. Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo.

    Science.gov (United States)

    Hegde, Venkatesh L; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2015-06-01

    Cannabidiol (CBD) is a natural nonpsychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naive immune system is not precisely understood. In this study, we observed that administering CBD into naive mice triggers robust induction of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) in the peritoneum, which expressed functional arginase 1, and potently suppressed T cell proliferation ex vivo. Furthermore, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b(+)Ly6-G(+)Ly6-C(+) granulocytic and CD11b(+)Ly6-G(-)Ly6-C(+) monocytic subtypes, with monocytic MDSC exhibiting higher T cell-suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (Kit(W/W-v)) mast cell-deficient mice. MDSC response was reconstituted upon transfer of wild-type bone marrow-derived mast cells in Kit(W/W-v) mice, suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1, and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of peroxisome proliferator-activated receptor γ in luciferase reporter assay, and PPAR-γ selective antagonist completely inhibited MDSC induction in vivo, suggesting its critical role. Together, the results suggest that CBD may induce activation of PPAR-γ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC. PMID:25917103

  3. Resistance to Streptozotocin-Induced Autoimmune Diabetes in Absence of Complement C3: Myeloid-Derived Suppressor Cells Play a Role

    OpenAIRE

    Gao, Xiaogang; Liu, Huanhai; He, Bin; Fu, Zhiren

    2013-01-01

    The contribution of complement to the development of autoimmune diabetes has been proposed recently. The underlying mechanisms, however, remain poorly understood. We hypothesize that myeloid-derived suppressor cells (MDSC), which act as regulators in autoimmunity, play a role in resistance to diabetes in absence of complement C3. Indeed, MDSC number was increased significantly in STZ-treated C3−/− mice. These cells highly expressed arginase I and inducible nitric oxide synthase (iNOS). Import...

  4. Antigen-specific CD4+ T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling

    OpenAIRE

    Nagaraj, Srinivas; Nelson, Allison; Youn, Je-in; Cheng, Pingyan; Quiceno, David; Gabrilovich, Dmitry I.

    2012-01-01

    Myeloid-derived suppressor cells (MDSC) play a major role in cancer-related immune suppression, yet the nature of this suppression remains controversial. In this study, we evaluated the ability of MDSC to elicit CD4+ T cell tolerance in different mouse tumor models. In contrast to CD8+ T-cell tolerance, which could be induced by MDSC in all the tumor models tested, CD4+ T-cell tolerance could be elicited in only one of the models (MC38) where a substantial level of MHC class II was expressed ...

  5. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer

    OpenAIRE

    Iclozan, Cristina; Antonia, Scott; Chiappori, Alberto; Chen, Dung-Tsa; Gabrilovich, Dmitry

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are one of the major factors limiting the efficacy of immune therapy. In a clinical trial of patients with extensive stage small cell lung cancer (SCLC) we tested the possibility that targeting MDSC can improve the induction of immune responses by a cancer vaccine. Forty-one patients with extensive stage SCLC were randomized into three arms: arm A - control, arm B - vaccination with dendritic cells transduced with wild-type p53, and arm C – vaccination ...

  6. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Junling Zhuang

    Full Text Available Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA, a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.

  7. High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia.

    Science.gov (United States)

    Hou, Yu; Feng, Qi; Xu, Miao; Li, Guo-Sheng; Liu, Xue-Na; Sheng, Zi; Zhou, Hai; Ma, Ji; Wei, Yu; Sun, Yuan-Xin; Yu, Ying-Yi; Qiu, Ji-Hua; Shao, Lin-Lin; Liu, Xin-Guang; Hou, Ming; Peng, Jun

    2016-03-24

    Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. In this study, the MDSC population was evaluated in adult patients with primary immune thrombocytopenia (ITP), where cell-mediated immune mechanisms are involved in platelet destruction. Our data demonstrated that both the numbers and suppressive functions of MDSCs were impaired in the peripheral blood and spleens of patients with ITP compared with healthy control patients. High-dose dexamethasone (HD-DXM) treatment rescued MDSC numbers in patients with ITP. And DXM modulation promoted the suppressive function of MDSCs induced in vitro. Moreover, the expression of interleukin 10 and transforming growth factor β was significantly upregulated in DXM-modulated MDSCs compared with the unmodulated cultures. DXM-modulated MDSCs inhibited autologous CD4(+)T-cell proliferation and significantly attenuated cytotoxic T lymphocyte-mediated platelet lysis, further indicating enhanced control over T-cell responses. Elevated expression of the transcription factor Ets1 was identified in DXM-modulated MDSCs. Transfection of Ets-1 small interfering RNA efficiently blocked regulatory effects of MDSCs, which almost offset the augmentation of MDSC function by DXM. Meanwhile, splenocytes from CD61 knockout mice immunized with CD61(+)platelets were transferred into severe combined immunodeficient (SCID) mouse recipients (C57/B6 background) to induce a murine model of severe ITP. We passively transferred the DXM-modulated MDSCs induced from bone marrow of wild-type C57/B6 mice into the SCID mouse recipients, which significantly increased platelet counts in vivo compared with those receiving splenocyte engraftment alone. These findings suggested that impaired MDSCs are involved in the pathogenesis of ITP, and that HD-DXM corrected MDSC functions via a mechanism underlying glucocorticoid action and Ets1. PMID:26744458

  8. Tumor-expressed iNOS controls induction of functional myeloid derived suppressor cells (MDSC) through modulation of VEGF release1

    OpenAIRE

    Jayaraman, Padmini; Parikh, Falguni; Lopez-Rivera, Esther; Hailemichael, Yared; Clark, Amelia; Ma, Ge; Cannan, David; Ramacher, Marcel; Kato, Masashi; Overwijk, Willem W.; Chen, Shu-hsia; Umansky, Viktor Y.; Sikora, Andrew G.

    2012-01-01

    Inducible nitric oxide synthase (iNOS) is a hallmark of chronic inflammation which is also overexpressed in melanoma and other cancers. While iNOS is a known effector of myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, its pivotal position at the interface of inflammation and cancer also makes it an attractive candidate regulator of MDSC recruitment. We hypothesized that tumor-expressed iNOS controls MDSC accumulation and acquisition of suppressive activity in melanoma. CD11...

  9. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study.

    Science.gov (United States)

    Mandruzzato, Susanna; Brandau, Sven; Britten, Cedrik M; Bronte, Vincenzo; Damuzzo, Vera; Gouttefangeas, Cécile; Maurer, Dominik; Ottensmeier, Christian; van der Burg, Sjoerd H; Welters, Marij J P; Walter, Steffen

    2016-02-01

    There is an increasing interest for monitoring circulating myeloid-derived suppressor cells (MDSCs) in cancer patients, but there are also divergences in their phenotypic definition. To overcome this obstacle, the Cancer Immunoguiding Program under the umbrella of the Association of Cancer Immunotherapy is coordinating a proficiency panel program that aims at harmonizing MDSC phenotyping. After a consultation period, a two-stage approach was designed to harmonize MDSC phenotype. In the first step, an international consortium of 23 laboratories immunophenotyped 10 putative MDSC subsets on pretested, peripheral blood mononuclear cells of healthy donors to assess the level of concordance and define robust marker combinations for the identification of circulating MDSCs. At this stage, no mandatory requirements to standardize reagents or protocols were introduced. Data analysis revealed a small intra-laboratory, but very high inter-laboratory variance for all MDSC subsets, especially for the granulocytic subsets. In particular, the use of a dead-cell marker altered significantly the reported percentage of granulocytic MDSCs, confirming that these cells are especially sensitive to cryopreservation and/or thawing. Importantly, the gating strategy was heterogeneous and associated with high inter-center variance. Overall, our results document the high variability in MDSC phenotyping in the multicenter setting if no harmonization/standardization measures are applied. Although the observed variability depended on a number of identified parameters, the main parameter associated with variation was the gating strategy. Based on these findings, we propose further efforts to harmonize marker combinations and gating parameters to identify strategies for a robust enumeration of MDSC subsets. PMID:26728481

  10. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  11. Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Júlia Kurkó

    Full Text Available Myeloid-derived suppressor cells (MDSCs are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF of mice with proteoglycan (PG-induced arthritis (PGIA, a T cell-dependent autoimmune model of rheumatoid arthritis (RA. However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.Murine bone marrow (BM cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF, interleukin-6 (IL-6, and granulocyte colony-stimulating factor (G-CSF. The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined.BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the

  12. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer

    NARCIS (Netherlands)

    Edgington-Mitchell, L.E.; Rautela, J.; Duivenvoorden, H.M.; Jayatilleke, K.M.; Linden, W.A. van der; Verdoes, M.; Bogyo, M.; Parker, B.S.

    2015-01-01

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvi

  13. C-reactive protein exacerbates renal ischemia-reperfusion injury: are myeloid-derived suppressor cells to blame?

    Science.gov (United States)

    Pegues, Melissa A; McWilliams, Ian L; Szalai, Alexander J

    2016-07-01

    Myeloid-derived suppressor cells (MDSCs) are a CD11b(+)Gr1(+) population in mice that can be separated into granulocytic (g-MDSC) and monocytic (m-MDSC) subtypes based on their expression of Ly6G and Ly6C. Both MDSC subtypes are potent suppressors of T cell immunity, and their contribution has been investigated in a plethora of diseases including renal cancer, renal transplant, and chronic kidney disease. Whether MDSCs contribute to the pathogenesis of acute kidney injury (AKI) remains unknown. Herein, using human C-reactive protein (CRP) transgenic (CRPtg) and CRP-deficient mice (CRP(-/-)) subjected to bilateral renal ischemia-reperfusion injury (IRI), we confirm our earlier finding that CRP exacerbates renal IRI and show for the first time that this effect is accompanied in CRPtg mice by a shift in the balance of kidney-infiltrating MDSCs toward a suppressive Ly6G(+)Ly6C(low) g-MDSC subtype. In CRPtg mice, direct depletion of g-MDSCs (using an anti-Gr1 monoclonal antibody) reduced the albuminuria caused by renal IRI, confirming they play a deleterious role. Remarkably, treatment of CRPtg mice with an antisense oligonucleotide that specifically blocks the human CRP acute-phase response also led to a reduction in renal g-MDSC numbers and improved albuminuria after renal IRI. Our study in CRPtg mice provides new evidence that MDSCs participate in the pathogenesis of renal IRI and shows that their pharmacological depletion is beneficial. If ongoing investigations confirm that CRP is an endogenous regulator of MDSCs in CRPtg mice, and if this action is recapitulated in humans, then targeting CRP or/and MDSCs might offer a new approach for the treatment of AKI. PMID:27053688

  14. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer

    OpenAIRE

    Edgington-Mitchell, Laura E.; Rautela, Jai; Duivenvoorden, Hendrika M.; Jayatilleke, Krishnath M.; Wouter A. van der Linden; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S.

    2015-01-01

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activit...

  15. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  16. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice

    OpenAIRE

    Chandra, D; Jahangir, A.; Quispe-Tintaya, W; Einstein, M H; Gravekamp, C

    2013-01-01

    Background: Myeloid-derived suppressor cells (MDSCs) are present in large numbers in blood of mice and humans with cancer, and they strongly inhibit T-cell and natural killer (NK) cell responses, at young and old age. We found that a highly attenuated bacterium Listeria monocytogenes (Listeriaat)-infected MDSC and altered the immune-suppressing function of MDSC. Methods: Young (3 months) and old (18 months) BALB/cByJ mice with metastatic breast cancer (4T1 model) were immunised with Listeriaa...

  17. Lack of Significant Elevation of Myeloid-Derived Suppressor Cells in Peripheral Blood of Chronically Hepatitis C Virus-Infected Individuals

    OpenAIRE

    Nonnenmann, Julia; Stirner, Renate; Roider, Julia; Jung, Maria C.; Schrödl, Kathrin; Bogner, Johannes R; Draenert, Rika

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients rela...

  18. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer

    DEFF Research Database (Denmark)

    Idorn, Manja; Køllgaard, Tania; Kongsted, Per;

    2014-01-01

    function of immune suppressive cell subsets in the peripheral blood of 41 patients with prostate cancer (PC) and 36 healthy donors (HD) showed a significant increase in circulating CD14(+) HLA-DR(low/neg) monocytic MDSC (M-MDSC) and Tregs in patients with PC compared to HD. Furthermore, M-MDSC frequencies......Myeloid-derived suppressor cells (MDSC) are believed to play a role in immune suppression and subsequent failure of T cells to mount an efficient anti-tumor response, by employing both direct T-cell inhibition as well as induction of regulatory T cells (Tregs). Investigating the frequency and...... correlated positively with Treg levels. In vitro proliferation assay with autologous T cells confirmed M-MDSC-mediated T-cell suppression, and intracellular staining of immune suppressive enzyme iNOS revealed a higher expression in M-MDSC from patients with PC. Increased frequencies of M-MDSC correlated with...

  19. Differential Induction of Ly6G and Ly6C Positive Myeloid Derived Suppressor Cells in Chronic Kidney and Liver Inflammation and Fibrosis

    OpenAIRE

    Höchst, Bastian; Mikulec, Julita; Baccega, Tania; Metzger, Christina; Welz, Meike; Peusquens, Julia; Tacke, Frank; Knolle, Percy; Kurts, Christian; Diehl, Linda; Ludwig-Portugall, Isis

    2015-01-01

    CD11b+Gr1+ myeloid derived suppressor cells (MDSC) are known to be very potent suppressors of T cell immunity and can be further stratified into granulocytic MDSC and monocytic MDSC in mice based on expression of Ly6G or Ly6C, respectively. Here, using these markers and functional assays, we aimed to identify whether MDSC are induced during chronic inflammation leading to fibrosis in both kidney and liver and whether additional markers could more specifically identify these MDSC subsets. In a...

  20. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients

    OpenAIRE

    Napolitano, Maria; D'Alterio, Crescenzo; Cardone, Eleonora; Trotta, Anna Maria; Pecori, Biagio; Rega, Daniela; PACE, UGO; Scala, Dario; Scognamiglio, Giosuè; Tatangelo, Fabiana; Cacciapuoti, Carmela; Pacelli, Roberto; Delrio, Paolo; Scala, Stefania

    2015-01-01

    Short-course preoperative radiotherapy (SC-RT) followed by total mesorectal excision (TME) is one therapeutic option for locally advanced rectal cancer (LARC) patients. Since radio-induced DNA damage may affect tumor immunogenicity, Myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) were evaluated in 13 patients undergoing SC-RT and TME for LARC. Peripheral Granulocytic-MDSCs (G-MDSC) [LIN−/HLA-DR−/CD11b+/CD14−/CD15+/CD33+], Monocytic (M-MDSC) [CD14+/HLA-DR−/lowCD11b+/CD3...

  1. Prognostic Significance of Monocytes and Monocytic Myeloid-Derived Suppressor Cells in Diffuse Large B-Cell Lymphoma Treated with R-CHOP

    Directory of Open Access Journals (Sweden)

    Chongyang Wu

    2016-07-01

    Full Text Available Background/Aims: To evaluate the prognostic significance of monocytes and monocytic myeloid-derived suppressor cells (M-MDSCs for patients with diffuse large B-cell lymphoma (DLBCL under R-CHOP chemotherapy. Methods: Flow cytometry (FCM was applied to measure M-MDSCs (CD14+ HLA-DRlow/− M-MDSCs. Results: Analysis of 144 patients with DLBCL under R-CHOP treatment showed that the 5-year overall survival rate was 61.09% (95% CI: 43.72%-72.56% and the average survival time of patients with monocytes (% ≥ 8% was shorter than those with monocytes (% 2 (P = 0.0397, meanwhile, there was no significant difference in survival of patients with monocytes (% ≥ 8% compared to patients with monocytes (% Conclusion: Our results indicated that monocytes (% and M-MDSCs combined with R-IPI may be a simple and efficient immunological index to evaluate prognosis.

  2. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway.

    Science.gov (United States)

    Ren, Jun P; Zhao, Juan; Dai, Jun; Griffin, Jeddidiah W D; Wang, Ling; Wu, Xiao Y; Morrison, Zheng D; Li, Guang Y; El Gazzar, Mohamed; Ning, Shun B; Moorman, Jonathan P; Yao, Zhi Q

    2016-08-01

    T cells play a pivotal role in controlling viral infection; however, the precise mechanisms responsible for regulating T-cell differentiation and function during infections are incompletely understood. In this study, we demonstrated an expansion of myeloid-derived suppressor cells (MDSCs), in particular the monocytic MDSCs (M-MDSCs; CD14(+) CD33(+) CD11b(+) HLA-DR(-/low) ), in patients with chronic hepatitis C virus (HCV) infection. Notably, HCV-induced M-MDSCs express high levels of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and interleukin-10 (IL-10) compared with healthy subjects. Blocking STAT3 signalling reduced HCV-mediated M-MDSC expansion and decreased IL-10 expression. Importantly, we observed a significant increase in the numbers of CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells following incubation of healthy peripheral blood mononuclear cells (PBMCs) with MDSCs derived from HCV-infected patients or treated with HCV core protein. In addition, depletion of MDSCs from PBMCs led to a significant reduction of Foxp3(+) Treg cells developed during chronic HCV infection. Moreover, depletion of MDSCs from PBMCs significantly increased interferon-γ production by CD4(+) T effector (Teff) cells derived from HCV patients. These results suggest that HCV-induced MDSCs promote Treg cell development and inhibit Teff cell function, suggesting a novel mechanism for T-cell regulation and a new strategy for immunotherapy against human viral diseases. PMID:27149428

  3. Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines

    OpenAIRE

    Arger Nicholas; Bingham Brigid; Russell Sarah M; Megiel Carolina; Lechner Melissa G; Woo Tammy; Epstein Alan L

    2011-01-01

    Abstract Background Tumor immune tolerance can derive from the recruitment of suppressor cell populations, including myeloid-derived suppressor cells (MDSC). In cancer patients, MDSC accumulation correlates with increased tumor burden, but the mechanisms of MDSC induction remain poorly understood. Methods This study examined the ability of human tumor cell lines to induce MDSC from healthy donor PBMC using in vitro co-culture methods. These human MDSC were then characterized for morphology, p...

  4. Protection against HPV-16-Associated Tumors Requires the Activation of CD8+ Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Diniz, Mariana O; Sales, Natiely S; Silva, Jamile R; Ferreira, Luís Carlos S

    2016-08-01

    Active anticancer immunotherapeutic approaches have been shown to induce cellular or humoral immune responses in patients, but, thus far, the observed outcomes did not ensure their recommendation for clinical use. The induction of tumor-specific CD8(+) T cells, although required for the clearance of most solid tumors, was shown to be insufficient for the development of a successful immunotherapeutic approach. The suppressive immune environment triggered by tumors, including the expansion of myeloid-derived suppressor cells (MDSC), is detrimental to the development of antitumor immune responses and precludes the generation of more promising clinical outcomes. In this work, we characterized the CD8(+) T-cell population specifically involved in the control of tumor growth and the role of MDSCs after administration of an antitumor therapeutic DNA vaccine targeting human papillomavirus type 16 (HPV-16)-associated tumors. Activation of cytotoxic high-avidity CD8(+) T cells with an effector memory phenotype was found in mice grafted with tumor cells expressing the HPV-16 oncoproteins. In addition, MDSC antibody depletion further enhanced the immunotherapeutic effects of the vaccine, resulting in the complete eradication of tumor cells. Collectively, the current results indicate that the simultaneous control of MDSCs and activation of high-avidity tumor-specific effector memory CD8(+) T cells are key features for tumor protection by immunotherapeutic approaches and deserve further testing under clinical conditions. Mol Cancer Ther; 15(8); 1920-30. ©2016 AACR. PMID:27222537

  5. Hepatitis C virus regulates the production of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells through PI3K pathway and autocrine signaling.

    Science.gov (United States)

    Pang, Xiaoli; Song, Hongxiao; Zhang, Qianqian; Tu, Zhengkun; Niu, Junqi

    2016-03-01

    Hepatitis C virus (HCV) infection is a major liver disease that ultimately develops into chronic hepatitis. Consequently, such patients are predisposed to serious complications, such as hepatocellular carcinoma. In HCV-infected patients, impaired T-cell responses are associated with persistent infection. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in suppressing T-cell responses. In this study, we investigated the capacity and mechanism through which HCV transforms CD14+ monocytes into monocytic (Mo)-MDSCs. We showed that HCV core protein promotes CD14+ monocytes to develop a CD14+HLA-DR/low phenotype with upregulated indoleamine 2,3-dioxygenase (IDO) expression and suppressed T-cell proliferation. Importantly, HCV-induced Mo-MDSC production was attributed to the PI3K pathway via induction of IL-10 and TNF-α secretion. This process could be reversed by polyinosinic:polycytidylic acid (polyI:C) treatment. In conclusion, our results suggest that HCV regulates Mo-MDSC production from monocytes through the PI3K pathway and autocrine cytokines. The latter can serve as effective targets for novel HCV therapies. PMID:26821305

  6. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells.

    Science.gov (United States)

    Däbritz, Jan; Judd, Louise M; Chalinor, Heather V; Menheniott, Trevelyan R; Giraud, Andrew S

    2016-01-01

    STAT3 regulates the expansion of myeloid-derived suppressor cells (MDSCs) during inflammation, infection and cancer. Hyperactivation of STAT3 in gp130(757F/F) mice is associated with protection from experimental colitis. This study determined mechanisms for this protection and compared this to mice with myeloid-specific STAT3-deficiency (LysMcre/STAT3(flox); gp130(757F/F) LysMcre/STAT3(flox)). Acute and chronic colitis was induced and colons were removed for histological, mRNA and protein analysis. Cell populations from spleen, mesenteric lymph node and colon were analyzed for different myeloid cell populations using flow cytometry. Functions of MDSCs and LPS-stimulated peritoneal macrophages were further characterized by in vitro and in vivo assays. Here we show that the resistance to experimental colitis in gp130(757F/F) mice is via myeloid-cell specific STAT3 activation, MDSC expansion and increased production of suppressive and protective cytokines. PMID:26848037

  7. Invariant NKT cells are resistant to circulating CD15(+) myeloid-derived suppressor cells in patients with head and neck cancer.

    Science.gov (United States)

    Horinaka, Atsushi; Sakurai, Daiju; Ihara, Fumie; Makita, Yuji; Kunii, Naoki; Motohashi, Shinichiro; Nakayama, Toshinori; Okamoto, Yoshitaka

    2016-03-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature and progenitor myeloid cells with an immunosuppressive role in various types of cancer, including head and neck squamous cell carcinoma (HNSCC). However, the effect on the host immune system, especially on invariant NKT (iNKT) cells with potent anti-tumor activity, remains unclear. In this study, we investigated the effects of circulating MDSC subsets on the peripheral lymphocytes of patients with head and neck tumors. A significant accumulation of CD15(+) granulocytic MDSC (G-MDSC) and CD14(+) monocytic MDSC (M-MDSC) was demonstrated in HNSCC patients. The percentage of G-MDSC showed an inverse correlation with the percentage of T cells in the peripheral blood. The increased G-MDSC was significantly associated with advanced clinical stage and poor prognosis of HNSCC patients. The proliferation and viability of T cells were suppressed by CD15(+) cells, and the suppression was reversed by adding the hydrogen peroxide scavenger catalase. However, iNKT cell activation upon α-galactosylceramide (αGalCer) stimulation was not affected by the presence or absence of CD15(+) G-MDSC. These results indicate that increased G-MDSC negatively affects peripheral T cell immunity, but not iNKT cells, in HNSCC patients, and that T cells are more sensitive to hydrogen peroxide produced by G-MDSC than iNKT cells. Cancer immunotherapy designed to enhance the antitumor activity of iNKT cells by stimulation with αGalCer may remain effective in the presence of G-MDSC. PMID:26679292

  8. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

    Science.gov (United States)

    Goh, Celeste C; Roggerson, Krystal M; Lee, Hai-Chon; Golden-Mason, Lucy; Rosen, Hugo R; Hahn, Young S

    2016-03-01

    The hepatitis C virus (HCV) infects ∼200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver. PMID:26826241

  9. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    OpenAIRE

    Mikyšková, R; Indrová, M. (Marie); Vlková, V. (Veronika); Bieblová, J. (Jana); Šímová, J; Paračková, Z. (Zuzana); Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, M

    2014-01-01

    MDSCs represent one of the key players mediating immunosuppression. These cells accumulate in the TME, lymphoid organs, and blood during tumor growth. Their mobilization was also reported after CY therapy. DNMTi 5AC has been intensively studied as an antitumor agent. In this study, we examined, using two different murine tumor models, the modulatory effects of 5AC on TU-MDSCs and CY-MDSCs tumor growth and CY therapy. Indeed, the percentage of MDSCs in the TME and spleens of 5AC-treated mice b...

  10. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  11. Differential induction of Ly6G and Ly6C positive myeloid derived suppressor cells in chronic kidney and liver inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    Bastian Höchst

    Full Text Available CD11b+Gr1+ myeloid derived suppressor cells (MDSC are known to be very potent suppressors of T cell immunity and can be further stratified into granulocytic MDSC and monocytic MDSC in mice based on expression of Ly6G or Ly6C, respectively. Here, using these markers and functional assays, we aimed to identify whether MDSC are induced during chronic inflammation leading to fibrosis in both kidney and liver and whether additional markers could more specifically identify these MDSC subsets. In an adenine-induced model of kidney inflammation/fibrosis suppressive Ly6Gpos MDSC were induced. The suppressive function within the Ly6G+ MDSC population was exclusively present in IFNγRβ expressing cells. In contrast, in chronic inflammation in the liver induced by bile duct ligation, suppressive capacity was exclusively present in the Ly6Cpos MDSC subset. Gene expression analyses confirmed the differential origins and regulation of those MDSC subsets. Additionally, depletion of MDSC in either kidney or liver fibrosis enhanced fibrosis markers, indicating a protective role for MDSC in organ fibrosis. Thus, our data demonstrate that during liver inflammation and kidney fibrosis MDSC with similar function arise bearing a distinct marker profile and arising from different cell populations.

  12. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model.

    Science.gov (United States)

    Huang, Xiang; Cui, Shiyun; Shu, Yongqian

    2016-02-01

    The objective of this study was to investigate the immunomodulatory effect of cisplatin (DDP) on the frequency, phenotype and function of myeloid-derived suppressor cells (MDSC) in a murine B16 melanoma model. C57BL/6 mice were inoculated with B16 cells to establish the murine melanoma model and randomly received treatment with different doses of DDP. The percentages and phenotype of MDSC after DDP treatment were detected by flow cytometry. The immunoinhibitory function of MDSC was analyzed by assessing the immune responses of cocultured effector cells through CFSE-labeling assay, detection of interferon-γ production and MTT cytotoxic assay, respectively. Tumor growth and mice survival were monitored to evaluate the antitumor effect of combined DDP and adoptive cytokine-induced killer (CIK) cell therapy. DDP treatment selectively decreased the percentages, modulated the surface molecules and attenuated the immunoinhibitory effects of MDSC in murine melanoma model. The combination of DDP treatment and CIK therapy exerted synergistic antitumor effect against B16 melanoma. DDP treatment selectively downregulated the frequency and immunoinhibitory function of MDSC in B16 melanoma model, indicating the potential mechanisms mediating its immunomodulatory effect. PMID:26590944

  13. Resistance to Streptozotocin-Induced Autoimmune Diabetes in Absence of Complement C3: Myeloid-Derived Suppressor Cells Play a Role.

    Directory of Open Access Journals (Sweden)

    Xiaogang Gao

    Full Text Available The contribution of complement to the development of autoimmune diabetes has been proposed recently. The underlying mechanisms, however, remain poorly understood. We hypothesize that myeloid-derived suppressor cells (MDSC, which act as regulators in autoimmunity, play a role in resistance to diabetes in absence of complement C3. Indeed, MDSC number was increased significantly in STZ-treated C3-/- mice. These cells highly expressed arginase I and inducible nitric oxide synthase (iNOS. Importantly, depletion of MDSC led to the occurrence of overt diabetes in C3-/- mice after STZ. Furthermore, C3-/- MDSC actively suppressed diabetogenic T cell proliferation and prevented/delayed the development of diabetes in arginase and/or iNOS-dependent manner. Both Tregs and transforming growth factor-β (TGF-β are crucial for MDSC induction in STZ-treated C3-/- mice as depletion of Tregs or blocking TGF-β bioactivity dramatically decreased MDSC number. These findings indicate that MDSC are implicated in resistance to STZ-induced diabetes in the absence of complement C3, which may be helpful for understanding of mechanisms underlying preventive effects of complement deficiency on autoimmune diseases.

  14. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment.

    Science.gov (United States)

    Mikysková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Símová, Jana; Paracková, Zuzana; Pajtasz-Piasecka, Elzbieta; Rossowska, Joanna; Reinis, Milan

    2014-01-01

    MDSCs represent one of the key players mediating immunosuppression. These cells accumulate in the TME, lymphoid organs, and blood during tumor growth. Their mobilization was also reported after CY therapy. DNMTi 5AC has been intensively studied as an antitumor agent. In this study, we examined, using two different murine tumor models, the modulatory effects of 5AC on TU-MDSCs and CY-MDSCs tumor growth and CY therapy. Indeed, the percentage of MDSCs in the TME and spleens of 5AC-treated mice bearing TRAMP-C2 or TC-1/A9 tumors was found decreased. The changes in the MDSC percentage were accompanied by a decrease in the Arg-1 gene expression, both in the TME and spleens. CY treatment of the tumors resulted in additional MDSC accumulation in the TME and spleens. This accumulation was subsequently inhibited by 5AC treatment. A combination of CY with 5AC led to the highest tumor growth inhibition. Furthermore, in vitro cultivation of spleen MDSCs in the presence of 5AC reduced the percentage of MDSCs. This reduction was associated with an increased percentage of CD11c(+) and CD86(+)/MHCII(+) cells. The observed modulatory effect on MDSCs correlated with a reduction of the Arg-1 gene expression, VEGF production, and loss of suppressive capacity. Similar, albeit weaker effects were observed when MDSCs from the spleens of tumor-bearing animals were cultivated with 5AC. Our findings indicate that beside the direct antitumor effect, 5AC can reduce the percentage of MDSCs accumulating in the TME and spleens during tumor growth and CY chemotherapy, which can be beneficial for the outcome of cancer therapy. PMID:24389335

  15. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    Directory of Open Access Journals (Sweden)

    Veltman Joris D

    2010-08-01

    Full Text Available Abstract Background Myeloid-derived suppressor cells (MDSC are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS and nitric oxide (NO. Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies. Methods MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2 inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy. Results We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy. Conclusions We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity.

  16. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    International Nuclear Information System (INIS)

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies. MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy. We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy. We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity

  17. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Gallego-Ortega, David; Ledger, Anita; Roden, Daniel L; Law, Andrew M K; Magenau, Astrid; Kikhtyak, Zoya; Cho, Christina; Allerdice, Stephanie L; Lee, Heather J; Valdes-Mora, Fatima; Herrmann, David; Salomon, Robert; Young, Adelaide I J; Lee, Brian Y; Sergio, C Marcelo; Kaplan, Warren; Piggin, Catherine; Conway, James R W; Rabinovich, Brian; Millar, Ewan K A; Oakes, Samantha R; Chtanova, Tatyana; Swarbrick, Alexander; Naylor, Matthew J; O'Toole, Sandra; Green, Andrew R; Timpson, Paul; Gee, Julia M W; Ellis, Ian O; Clark, Susan J; Ormandy, Christopher J

    2015-12-01

    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer. PMID:26717410

  18. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    2015-12-01

    Full Text Available During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

  19. Reductions in Myeloid-Derived Suppressor Cells and Lung Metastases using AZD4547 Treatment of a Metastatic Murine Breast Tumor Model

    Directory of Open Access Journals (Sweden)

    Li Liu

    2014-03-01

    Full Text Available Background: AZD4547, a small-molecule inhibitor targeting the tyrosine kinase of Fibroblast Growth Factor Receptors (FGFRs, is currently under phase II clinical study for human subjects having breast cancer, while the underlying mechanism remains elusive. The aim of this study is to explore the potential mechanism by which AZD4547 inhibits breast tumor lung metastases at the level of the tumor microenvironment. Methods: First, through in vitro experiments, we investigated the efficacy of the FGFRs inhibitor AZD4547 on 4T1 tumor cells for their proliferation, apoptosis, migration, and invasion. Second, by in vivo animal experiments, we evaluated the effects of AZD4547 on tumor growth and lung metastases in 4T1 tumor-bearing mice. Finally, we examined the impact of AZD4547 on the infiltration of myeloid-derived suppressor cells (MDSCs in lung, spleens, peripheral blood and tumor. Results: Through this study we found that AZD4547 could efficiently suppress tumor 4T1 cells through restraining their proliferation, blocking migration and invasion, and inducing apoptosis in vitro. In animal model we also demonstrated that AZD4547 was able to inhibit tumor growth and lung metastases, consistent with the decreased MDSCs accumulation in the tumor and lung tissues, respectively. Moreover, the reduced number of MDSCs in peripheral blood and spleens were also observed in the AZD4547-treated mice. Importantly, through the AZD4547 treatment, the CD4+ and CD8+ T-cells were significantly increased in tumor and spleens. Conclusion: Our studies showed that AZD4547 can inhibit breast cancer cell proliferation, induce its apoptosis and block migration and invasion in vitro and suppress tumor growth and lung metastases by modulating the tumor immunologic microenvironment in vivo.

  20. The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer.

    OpenAIRE

    Annels, NE; Shaw, VE; Gabitass, RF; Billingham, L.; Corrie, P; Eatock, M; Valle, J.; Smith, D; Wadsley, J.; Cunningham, D; Pandha, H; Neoptolemos, JP; Middleton, G.

    2013-01-01

    In pre-clinical models, the only two chemotherapy drugs which have been demonstrated to directly reduce the number of myeloid-derived suppressor cells (MDSCs) are gemcitabine and 5-fluorouracil. Here we analyze the dynamics of MDSCs, phenotyped as Lin-DR-CD11b+, in patients with advanced pancreatic cancer receiving the combination of gemcitabine and capecitabine, a 5-FU pro-drug. We found no evidence that gemcitabine and capecitabine directly reduce MDSC% in patients. Gemcitabine and capecita...

  1. Myeloid-derived suppressor cells attenuate Th1 development through IL-6 production to promote tumor progression

    OpenAIRE

    Hirotake Tsukamoto

    2013-01-01

    Collaborative action between tumor cells and host-derived suppressor cells leads to peripheral tolerance of T cells to tumor antigens. Currently, IL-6 and a soluble form of IL-6 receptor are increasingly attracting attention as the therapeutic targets because their levels rise in various cancer patients. Here, we demonstrated that in tumor-bearing mice, generation of tumor antigen-specific effector Th1 cells was significantly attenuated, and impaired Th1 differentiation was restored by the te...

  2. Deficiency of Kruppel-like factor KLF4 in myeloid-derived suppressor cells inhibits tumor pulmonary metastasis in mice accompanied by decreased fibrocytes.

    Science.gov (United States)

    Shi, Y; Ou, L; Han, S; Li, M; Pena, M M O; Pena, E A; Liu, C; Nagarkatti, M; Fan, D; Ai, W

    2014-01-01

    The importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) bearing monocyte markers in tumor metastasis has been well established. Recently, it was reported that these cells possess phenotypic plasticity and differentiate into fibrocytes, very distinct cells that are precursors of tumorigenic myofibroblasts. However, the importance of this transdifferentiation in tumor metastasis has not been explored. Here, we describe the role of MDSC-derived fibrocytes in tumor metastasis that is regulated by Kruppel-like factor 4 (KLF4), a transcription factor that is critical to monocyte differentiation and to promotion of cancer development. Using mouse metastasis models of melanoma and breast cancer, we found that KLF4 knockout was associated with significantly reduced pulmonary metastasis, which was accompanied by decreased populations of MDSCs, fibrocytes and myofibroblasts in the lung. Cause-effect studies by adoptive transfer revealed that KLF4 deficiency in MDSCs led to significantly reduced lung metastasis that was associated with fewer MDSC-derived fibrocytes and myofibroblasts. Mechanistically, KLF4 deficiency significantly compromised the generation of fibrocytes from MDSCs in vitro. During this process, KLF4 expression levels were tightly linked with those of fibroblast-specific protein-1 (FSP-1), deficiency of which resulted in no metastasis in mice as has been previously reported. In addition, KLF4 bound directly to the FSP-1 promoter as determined by chromatin immunoprecipitation and overexpression of KLF4 increased the FSP-1 promoter activities. Taken together, our results suggest that MDSCs not only execute their immunosuppressive function to promote metastatic seeding as reported before, but also boost metastatic tumor growth after they adopt a fibrocyte fate. Therefore, KLF4-mediated fibrocyte generation from MDSCs may represent a novel mechanism of MDSCs contributing to tumor metastasis and supports the feasibility of inhibiting KLF4 or

  3. Analysis of Monocytic and Granulocytic Myeloid-Derived Suppressor Cells Subsets in Patients with Hepatitis C Virus Infection and Their Clinical Significance

    Directory of Open Access Journals (Sweden)

    Gang Ning

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs have been shown to inhibit T-cell responses in many diseases, but, in hepatitis C virus (HCV infected patients, MDSCs are still poorly studied. In this assay, we investigated the phenotype and frequency of two new populations of MDSCs denoted as monocytic and granulocytic MDSCs (M-MDSCs and G-MDSCs in HCV infected patients and analyzed their clinical significance in these patients respectively. We found that the frequency of CD14+HLA-DR-/low cells (M-MDSCs from HCV infected patients (mean ± SE, 3.134% ± 0.340% was significantly increased when compared to healthy controls (mean ± SE, 1.764% ± 0.461% (Z = −2.438, P = 0.015, while there was no statistical difference between the frequency of HLA-DR-/lowCD33+CD11b+CD15+ (G-MDSCs of HCV infected patients and healthy donors (0.201% ± 0.038% versus 0.096% ± 0.026%, P > 0.05, which suggested that HCV infection could cause the proliferation of M-MDSCs instead of G-MDSCs. Besides, we found that the frequency of M-MDSCs in HCV infected patients had certain relevance with age (r = 0.358, P = 0.003; patients older than 40 years old group (mean ± SE, 3.673% ± 0.456% had a significantly higher frequency of M-MDSCs than that of age less than 40 years old group (mean ± SE, 2.363% ± 0.482% (Z = −2.685, P = 0.007. The frequency of M-MDSCs, however, had no correlation with HCV RNA loads, aspartate aminotransferase (AST, alanine aminotransferase (ALT, and the level of liver inflammation degree.

  4. A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma.

    Science.gov (United States)

    Stanojevic, Ivan; Miller, Karolina; Kandolf-Sekulovic, Lidija; Mijuskovic, Zeljko; Zolotarevski, Lidija; Jovic, Milena; Gacevic, Milomir; Djukic, Mirjana; Arsenijevic, Nebojsa; Vojvodic, Danilo

    2016-02-01

    Seventy-eight melanoma patients and 10 healthy individuals were examined. Follow-up examinations of all melanoma patients were performed regularly every three months. Myeloid-derived suppressor cells (MDSC) were defined as lineage negative (CD3(-), CD19(-), CD56(-)), HLA-DR(-/low), CD11b(+) and CD33(+). Classification of granulocytic (GrMDSC) and monocytic (MoMDSC) subsets was based on the CD15 and CD14 expression, respectively. Unlike the MoMDSC, that were present in 60% of healthy controls and 15% of melanoma patients, the GrMDSC were present in all examined participants, and the melanoma patients were found to have statistically higher frequencies compared with healthy controls. Accordingly, we kept focused on GrMDSC frequencies in relation to the melanoma stages and course of the disease. The GrMDSC values are highest in stage IV melanoma patients, with statistical significance compared with stages IA, IB, IIA and IIB. Patients with progression had statistically higher GrMDSC counts comparing with those with stable disease (P = 0.0079). Patients who had progression-free interval (PFI) 12 months (P = 0.0333). GrMDSC showed significant negative correlation with PFI intervals (P = 0.0095). The GrMDSC subset was predominant in all our patients. We confirmed that GrMDSC do accumulate early in the peripheral blood of melanoma patients and their frequencies correlate narrowly with the clinical stage and the spread of the disease. The increase in GrMDSC frequencies correlates well with a progressive disease and could be considered a potential predictive biomarker of high-risk melanoma cases that are more likely to have a shorter PFI. PMID:26391013

  5. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR⁻/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Brimnes, M K; Vangsted, Annette Juul; Knudsen, L M;

    2010-01-01

    immune status in patients with MM seems crucial prior to active immune therapy. We evaluated the proportion of both, DC, Treg cells and myeloid-derived suppressor cells (MDSC) in peripheral blood from patients with MM at diagnosis and in remission as well as patients with monoclonal gammopathy of......+FOXP3+ Treg cells was increased in patients at diagnosis and not in patients in remission or with MGUS. Also, Treg cells from patients with MM were functionally intact as they were able to inhibit proliferation of both CD4 and CD8 T cells. Finally, we observed an increase in the proportion of CD14+HLA......-DR¿/low MDSC in patients with MM at diagnosis, illustrating that this cell fraction is also distorted in patients with MM. Taken together, our results illustrate that, both mDC, pDC, Treg cells and MDSC are affected in patients with MM underlining the fact that the immune system is dysregulated as a...

  6. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1–dependent mechanism that is up-regulated by interleukin-13

    OpenAIRE

    Highfill, Steven L.; Rodriguez, Paulo C.; Zhou, Qing; Goetz, Christine A.; Koehn, Brent H; Veenstra, Rachelle; Taylor, Patricia A.; Panoskaltsis-Mortari, Angela; Serody, Jonathan S.; Munn, David H.; Tolar, Jakub; Ochoa, Augusto C.; Blazar, Bruce R.

    2010-01-01

    Myeloid-derived suppressor cells (MDSCs) are a well-defined population of cells that accumulate in the tissue of tumor-bearing animals and are known to inhibit immune responses. Within 4 days, bone marrow cells cultured in granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor resulted in the generation of CD11b+Ly6GloLy6C+ MDSCs, the majority of which are interleukin-4Rα (IL-4Rα+) and F4/80+. Such MDSCs potently inhibited in vitro allogeneic T-cell respons...

  7. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    International Nuclear Information System (INIS)

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4+T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  8. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Yi, E-mail: in_shuyi@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China); Wang, Chien-Yu, E-mail: sallywang1973@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Yang, Ning-Sun, E-mail: nsyang@gate.sinica.edu.tw [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China)

    2011-09-10

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4{sup +}T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  9. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.

    Science.gov (United States)

    Heine, Annkristin; Schilling, Judith; Grünwald, Barbara; Krüger, Achim; Gevensleben, Heidrun; Held, Stefanie Andrea Erika; Garbi, Natalio; Kurts, Christian; Brossart, Peter; Knolle, Percy; Diehl, Linda; Höchst, Bastian

    2016-03-01

    Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8(+) T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches. PMID:26786874

  10. Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Arger Nicholas

    2011-06-01

    Full Text Available Abstract Background Tumor immune tolerance can derive from the recruitment of suppressor cell populations, including myeloid-derived suppressor cells (MDSC. In cancer patients, MDSC accumulation correlates with increased tumor burden, but the mechanisms of MDSC induction remain poorly understood. Methods This study examined the ability of human tumor cell lines to induce MDSC from healthy donor PBMC using in vitro co-culture methods. These human MDSC were then characterized for morphology, phenotype, gene expression, and function. Results Of over 100 tumor cell lines examined, 45 generated canonical CD33+HLA-DRlowLineage- MDSC, with high frequency of induction by cervical, ovarian, colorectal, renal cell, and head and neck carcinoma cell lines. CD33+ MDSC could be induced by cancer cell lines from all tumor types with the notable exception of those derived from breast cancer (0/9, regardless of hormone and HER2 status. Upon further examination, these and others with infrequent CD33+ MDSC generation were found to induce a second subset characterized as CD11b+CD33lowHLA-DRlowLineage-. Gene and protein expression, antibody neutralization, and cytokine-induction studies determined that the induction of CD33+ MDSC depended upon over-expression of IL-1β, IL-6, TNFα, VEGF, and GM-CSF, while CD11b+ MDSC induction correlated with over-expression of FLT3L and TGFβ. Morphologically, both CD33+ and CD11b+ MDSC subsets appeared as immature myeloid cells and had significantly up-regulated expression of iNOS, NADPH oxidase, and arginase-1 genes. Furthermore, increased expression of transcription factors HIF1α, STAT3, and C/EBPβ distinguished MDSC from normal counterparts. Conclusions These studies demonstrate the universal nature of MDSC induction by human solid tumors and characterize two distinct MDSC subsets: CD33+HLA-DRlowHIF1α+/STAT3+ and CD11b+HLA-DRlowC/EBPβ+, which should enable the development of novel diagnostic and therapeutic reagents for

  11. 髓系衍生抑制性细胞与感染性疾病的关系%Research progress on myeloid-derived suppressor cells in infective diseases

    Institute of Scientific and Technical Information of China (English)

    吴丹霄; 夏大静

    2008-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of myeloid cells composed of immature dendritic cells, macrophages, granulocytes and other myeloid cells at early stages of differentiation. Infection and other diseases can induce the MDSC's accumulation in lymphoid organs and pathological site and, eventually, their acti-vation. These cells which have suppressive function can negatively regulate the immune system through several ways. Recent findings on the M DSC's phenotype, properties, recruiting and activating factors, mechanisms of immunoregulation and relations to infection diseases are summarized in the review.%髓系衍生抑制性细胞(MDSC)是一群具有高度异质性的髓系细胞群体,包括未成熟DC、巨噬细胞、粒细胞和其他早期分化阶段的髓系细胞等.在感染等疾病状态下,机体内环境产生募集和活化MDSC的因素,导致大量MDSC在淋巴器官及病变局部聚集并活化,随后通过多条途径下调机体的免疫应答,发挥免疫抑制的功能.此文就MDSC的性质、募集和活化的因素、免疫调节机制及其与感染性疾病的关系进行综述.

  12. Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells

    Science.gov (United States)

    Payne, Kyle K; Zoon, Christine K; Wan, Wen; Marlar, Khin; Keim, Rebecca C; Kenari, Mehrab Nasiri; Kazim, A Latif; Bear, Harry D; Manjili, Masoud H

    2016-01-01

    Two major barriers in the immunotherapy of breast cancer include tumor-induced immune suppression and the establishment of long-lasting immune responses against the tumor. Recently, we demonstrated in an animal model of breast carcinoma that expanding and reprogramming tumor-sensitized lymphocytes, ex vivo, yielded T memory (Tm) cells as well as activated CD25+ NKT cells and NK cells. The presence of activated CD25+ NKT and NK cells rendered reprogrammed T cells resistant to MDSC-mediated suppression, and adoptive cellular therapy (ACT) of reprogrammed lymphocytes protected the host from tumor development and relapse. Here, we performed a pilot study to determine the clinical applicability of our protocol using peripheral blood mononuclear cells (PBMCs) of breast cancer patients, ex vivo. We show that bryostatin 1 and ionomycin (B/I) combined with IL-2, IL-7 and IL-15 can expand and reprogram tumor-sensitized PBMCs. Reprogrammed lymphocytes contained activated CD25+ NKT and NK cells as well as Tm cells and displayed enhanced reactivity against HER-2/neu in the presence of MDSCs. The presence of activated NKT cells was highly correlated with the rescue of anti-HER-2/neu immune responses from MDSC suppression. Ex vivo blockade experiments suggest that the NKG2D pathway may play an important role in overcoming MDSC suppression. Our results show the feasibility of reprogramming tumor-sensitized immune cells, ex vivo, and provide rationale for ACT of breast cancer patients. PMID:24197563

  13. Myeloid-Derived Suppressor Cells Down-Regulate L-Selectin Expression on CD4+ and CD8+ T Cells1

    OpenAIRE

    Hanson, Erica M.; Clements, Virginia K.; Sinha, Pratima; Ilkovitch, Dan; Ostrand-Rosenberg, Suzanne

    2009-01-01

    Effective cell-mediated antitumor immunity requires the activation of tumor-reactive T cells and the trafficking of activated T cells to tumor sites. These processes involve the extravasation of lymphocytes from the blood and lymphatics, and their homing to lymph nodes and tumors. L-selectin (CD62L) is an important molecule in these processes. It directs naive lymphocytes to peripheral lymph nodes where they become activated and it traffics naive lymphocytes to inflammatory environments, such...

  14. Prognostic significance of peripheral monocytic myeloid-derived suppressor cells and monocytes in patients newly diagnosed with diffuse large b-cell lymphoma

    OpenAIRE

    Wu, Chongyang; Wu, Xiangyang; Zhang, Xiaoni; Chai, Ye; Guo, Qi; Li, Lijuan; Yue, Lingling; Bai, Jun; Wang, Zhiping; Zhang, Liansheng

    2015-01-01

    Objective: The revised International Prognostic Index (R-IPI) aids in predicting the prognosis of patients with diffuse large B cell lymphoma (DLBCL), but R-IPI yields no significant differences in assessing different subtypes of DLBCL. It is necessary to identify patients with a high-risk of DLBCL and alternative therapy should be delivered as early as possible. Methods: In total, 144 patients newly diagnosed with DLBCL including 63 GCB-DLBCL and 81 non-GCB-DLBCL and 30 healthy controls were...

  15. Preparation of Myeloid Derived Suppressor Cells (MDSC) from Naive and Pancreatic Tumor-bearing Mice using Flow Cytometry and Automated Magnetic Activated Cell Sorting (AutoMACS)

    OpenAIRE

    Nelson, Nadine; Szekeres, Karoly; Cooper, Denise; Ghansah, Tomar

    2012-01-01

    MDSC are a heterogeneous population of immature macrophages, dendritic cells and granulocytes that accumulate in lymphoid organs in pathological conditions including parasitic infection, inflammation, traumatic stress, graft-versus-host disease, diabetes and cancer1-7. In mice, MDSC express Mac-1 (CD11b) and Gr-1 (Ly6G and Ly6C) surface antigens7. It is important to note that MDSC are well studied in various tumor-bearing hosts where they are significantly expanded and suppress anti-tumor imm...

  16. Yeast-Derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer.

    Science.gov (United States)

    Albeituni, Sabrin H; Ding, Chuanlin; Liu, Min; Hu, Xiaoling; Luo, Fengling; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-Ge; Yan, Jun

    2016-03-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. In this study, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP; a ligand to engage and activate dectin-1, oral treatment in vivo) significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of polymorphonuclear MDSC but not monocytic MDSC (M-MDSC), and decreased polymorphonuclear MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80(+)CD11c(+) cells in vitro that served as potent APC to induce Ag-specific CD4(+) and CD8(+) T cell responses in a dectin-1-dependent manner. Additionally, Erk1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c(+) cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated s.c. with Lewis lung carcinoma cells. This effect was dependent on the dectin-1 receptor. Strikingly, patients with non-small cell lung carcinoma that had received WGP treatment for 10-14 d prior to any other treatment had a decreased frequency of CD14(-)HLA-DR(-)CD11b(+)CD33(+) MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer. PMID:26810222

  17. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    Science.gov (United States)

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. PMID:26194418

  18. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells

    OpenAIRE

    Gallego-Ortega, David; Ledger, Anita; Roden, Daniel L.; Law, Andrew M. K.; Magenau, Astrid; Kikhtyak, Zoya; Cho, Christina; Allerdice, Stephanie L.; Lee, Heather J.; Valdes-Mora, Fatima; Herrmann, David; Salomon, Robert; Young, Adelaide I. J.; Lee, Brian Y.; Sergio, C Marcelo

    2015-01-01

    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angi...

  19. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    OpenAIRE

    David Gallego-Ortega; Anita Ledger; Roden, Daniel L.; Law, Andrew M. K.; Astrid Magenau; Zoya Kikhtyak; Christina Cho; Allerdice, Stephanie L.; Lee, Heather J.; Fatima Valdes-Mora; David Herrmann; Robert Salomon; Young, Adelaide I. J.; Lee, Brian Y.; C Marcelo Sergio

    2015-01-01

    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angi...

  20. Key role of the positive feedback between PGE2 and COX2 in the biology of myeloid-derived suppressor cells

    OpenAIRE

    Kalinski, Pawel; Obermajer, Nataša

    2012-01-01

    PGE(2) is the key factor needed for MDSCs development, accumulation and functional stability. PGE(2) initiates an EP2/EP4-mediated positive feedback between COX2 and PGE(2) in monocytic precursors, redirecting dendritic cell differentiation to MDSCs. COX2- or EP2/EP4- blockade abrogates MDSC functions and their CXCR4-CXCL12-mediated attraction to cancer environment, providing convenient immunotherapeutic targets.

  1. Piperlongumine attenuates collagen-induced arthritis via expansion of myeloid-derived suppressor cells and inhibition of the activation of fibroblast-like synoviocytes.

    Science.gov (United States)

    Sun, Jian; Xu, Ping; Du, Xueping; Zhang, Qinggang; Zhu, Yuchang

    2015-04-01

    Piperlonguminine (PL), a key compound from the Piper longum fruit, is known to exhibit anti‑tumor and anti‑inflammatory activities. However, little is known about its effects on collagen‑induced arthritis (CIA). Fibroblast‑like synoviocytes (FLS) have a pivotal role in the development of rheumatoid arthritis (RA). Myeloid‑derived suppressor cells (MDSCs) are able to suppress T cell responses and have important roles in the regulation of autoimmune arthritis. The current study investigated whether PL alters the progression of RA. It was determined that PL reduces the arthritis score and histopathologic lesions in a mouse model of CIA. PL also reduces the expression levels of serum anti‑collagen II antibodies (anti‑CⅡ), tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β, IL‑23 and IL‑17 in CIA mice. In draining lymph nodes (DLNs), MDSCs were significantly expanded, however, the number of Th17 cells was markedly decreased by PL treatment. Additionally, PL reduced secretion of IL‑1β, IL‑23 and IL‑17 by TNF‑α‑stimulated human RA FLS. PL significantly inhibited the migration and invasion of TNF‑α‑stimulated human RA FLS. These results indicate that PL may be a candidate therapeutic agent for the treatment of RA, via the expansion of MDSCs and the inhibition of the Th17 response and activation of FLS. PMID:25435301

  2. Relationship between myeloid-derived suppressor cells and related immune cells in the process of tumor progression%髓源性抑制细胞在肿瘤进展过程中与相关免疫细胞的作用

    Institute of Scientific and Technical Information of China (English)

    林生力; 牛伟新

    2013-01-01

    Myeloid-derived suppressor cells are a heterogeneous population of early myeloid progenitors,immature granulocytes,macrophages,and dendritic cells at different stages of differentiation.These cells have the capacity to suppress both the innate immunity response mediated by the cytotoxic natural killer cells and natural killer T cells,and the adaptive immune response mediated by CD4+ and CD8+ T cells.In addition,myeloid-derived suppressor cells have close links with macrophages,dendritic cells,regulate T cells and so on,and also play an important role in the process of tumor progression.%髓源性抑制细胞是一群异质性细胞的统称,包括各种分化状态的骨髓祖细胞、未成熟粒细胞、巨噬细胞和树突细胞等.髓源性抑制细胞可以抑制肿瘤毒性自然杀伤细胞和自然杀伤T细胞介导的固有免疫,以及CD4+CD8+T细胞介导的适应性免疫,并与巨噬细胞、树突细胞、调节性T细胞等有着密切联系,在肿瘤的发生、发展过程中起着重要的作用.

  3. Δ9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8.

    Science.gov (United States)

    Sido, Jessica Margaret; Yang, Xiaoming; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2015-04-01

    MDSCs are potent immunosuppressive cells that are induced during inflammatory responses, as well as by cancers, to evade the anti-tumor immunity. We recently demonstrated that marijuana cannabinoids are potent inducers of MDSCs. In the current study, we investigated the epigenetic mechanisms through which THC, an exogenous cannabinoid, induces MDSCs and compared such MDSCs with the naïve MDSCs found in BM of BL6 (WT) mice. Administration of THC into WT mice caused increased methylation at the promoter region of DNMT3a and DNMT3b in THC-induced MDSCs, which correlated with reduced expression of DNMT3a and DNMT3b. Furthermore, promoter region methylation was decreased at Arg1 and STAT3 in THC-induced MDSCs, and consequently, such MDSCs expressed higher levels of Arg1 and STAT3. In addition, THC-induced MDSCs secreted elevated levels of S100A8, a calcium-binding protein associated with accumulation of MDSCs in cancer models. Neutralization of S100A8 by use of anti-S100A8 (8H150) in vivo reduced the ability of THC to trigger MDSCs. Interestingly, the elevated S100A8 expression also promoted the suppressive function of MDSCs. Together, the current study demonstrates that THC mediates epigenetic changes to promote MDSC differentiation and function and that S100A8 plays a critical role in this process. PMID:25713087

  4. Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690.

    Science.gov (United States)

    Hegde, Venkatesh L; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P; Singh, Narendra P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2013-12-27

    Δ(9)-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b(+)Gr-1(+) MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b(+)Ly6G(+)Ly6C(+) and CD11b(+)Ly6G(-)Ly6C(+) purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in

  5. 脓毒症时髓源性抑制细胞亚群及其比值的变化%Variation of subsets of myeloid derived suppressor cells and their ratio in septic mice

    Institute of Scientific and Technical Information of China (English)

    王慧; 赵擎宇; 黄朝峰; 赵梅; 徐小谢

    2016-01-01

    Objective To investigate the dynamic variation of subsets of myeloid derived suppressor cells (MDSC) and their ratio in septic mice, and to discuss their role in the development of sepsis. Methods Male C57BL/6 mice were randomly divided into sepsis model group and sham group according to random number table. Polymicrobial sepsis was induced by using cecal ligation and puncture (CLP), while mice in sham group only underwent laparotomy and laparorrhaphy without CLP. Thirty mice in each group were used to observe living condition, and the 20-day survival rate was compared between the two groups. In addition, subsets of MDSC in peripheral blood, spleen and bone marrow were analyzed with flow cytometry for other 60 mice (12 mice at each time point, as 0, 3, 7, 12 and 20 days). Spleens were harvested at 7 days for weighing, and single cell suspension of spleen tissue was prepared for splenocyte counting. Histopathologic changes in spleen tissue and liver tissue were observed under light microscope after hematoxylin and eosin (HE) stain. Results ① No mice died in sham group within 20 days after the operation. On the other hand, 10 mice in model group died within 20 days, and the difference in survival rate between the two groups was statistically significant (100.0% vs. 66.7%, χ2 = 11.861, P = 0.001). ② The spleens in model group showed obvious enlargement and significantly outweighed as compared with those in sham group (mg: 413.33±41.63 vs. 111.67±17.56, t = 11.564, P = 0.000), and the total count of splenocytes was significantly higher than that in sham group (×109/L: 21.20±2.43 vs. 1.87±0.06, t = 13.578, P = 0.005). ③ Pathological sections with HE staining showed that the liver tissue and spleen tissue remained normal in sham group. In model group, the hepatic tissue showed acute inflammatory reaction, including tissue disruption, capillary congestion, infiltration of neutrophils, marked edema of hepatocytes and focal hepatocellular necrosis. Abnormalities

  6. 老年小鼠CD11b+GR-1+髓源性抑制细胞免疫功能特点及机制研究%Study on characteristics and immune mechanisms of CD11b+GR-1+ myeloid-derived suppressor cells in elderly mice

    Institute of Scientific and Technical Information of China (English)

    陈思文; 王翎; 苏楠; 张光波; 刘红梅; 潘旭东; 李洁

    2015-01-01

    目的 以健康青年小鼠为对照,探讨健康老年小鼠CD11b+ GR 1+髓源性抑制细胞(MDSCs)免疫功能特点及机制. 方法 随机选取健康C57BL/6青年鼠(1~2月龄)和老年鼠(>18月龄)各20只,采用免疫磁珠分选法获得足量健康青年鼠、老年鼠脾脏CD11b+ GR-1+ MDSCs,运用溴脱氧尿嘧啶核苷-酶联免疫吸附实验(BrdU Elisa)测定青年鼠、老年鼠CD11b+ GR-1+ MDSCs对T细胞增殖的影响.通过Transwcll小室共培养实验及实时荧光定量PCR法检测青年鼠、老年鼠CD11b+ GR 1+ MDSCs免疫抑制功能的差异. 结果 与青年鼠比较,老年鼠MDSCs能明显抑制T细胞增殖(t=8.67,P<0.001),而这一作用可被Transwell明显逆转(t=6.93,P<0.001);与青年鼠比较,老年鼠MDSCs的精氨酸酶-1、诱导型一氧化氮合成酶、活性氧、白介素-10、白介素-13和转化生长因子-β基因表达量明显增高(t值分别为9.04、4.86、7.04、6.92、4.51、5.46,P<0.05或P<0.01). 结论 健康老年小鼠CD11b+ GR-1+ MDSCs可通过细胞-细胞间接触抑制和分泌免疫抑制性介质两种途径显著抑制T细胞增殖.%Objective To study characteristics and immune mechanisms of CD11b+ GR-1-myeloid-derived suppressor cells (CD11b+ GR 1+ MDSCs) in elderly mice,as compared with those of healthy young mice.Methods Totally 20 healthy C57BL/6 young mice (aged 1-2 months) and 20 elderly mice (aged over 18 months) were randomly chosen and splenetic CD11b+ GR-1+ MDSCs were sorted with the MDSCs Isolation Kit.In vitro assays,the effects of young and elderly CD1 1b+ GR 1+ MDSCs on the proliferation of T cells were determined by Brdu Elisa.Transwell co-culture and real-timePCR were used to identify the mechanisms of different immune suppressive functions of CD11b+GR 1+ MDSCs sorted from young mice and elderly mice.Results Compared with young MDSCs,elderly MDSCs could evidently suppress the proliferation of T cells (t=8.67,P<0.001),and this function could be reversed by trans

  7. Advances in Stem Cell Mobilization

    OpenAIRE

    Hopman, Rusudan K.; DiPersio, John F.

    2014-01-01

    Use of granulocyte colony stimulating factor (G-CSF)–mobilized peripheral blood hematopoietic progenitor cells (HPC) has largely replaced bone marrow (BM) as a source of stem cells for both autologous and allogeneic cell transplantation. With G-CSF alone, up to 35% of patients are unable to mobilize sufficient numbers of CD34 cells/kg to ensure successful and consistent multi-lineage engraftment and sustained hematopoietic recovery. To this end, research is ongoing to identify new agents or c...

  8. Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report

    Science.gov (United States)

    Liyanage, Sidath E.; Fantin, Alessandro; Villacampa, Pilar; Lange, Clemens A.; Denti, Laura; Cristante, Enrico; Smith, Alexander J.; Ali, Robin R.; Luhmann, Ulrich F.

    2016-01-01

    Objective— Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the importance of VEGF or its upstream regulators hypoxia-inducible factor-1α (HIF1α) and hypoxia-inducible factor-2α (HIF2α) as myeloid-derived regulators of ONV remains to be determined. Approach and Results— We used 2 mouse models of ONV, choroidal neovascularization and oxygen-induced retinopathy, to show that Vegfa is highly expressed by several cell types, but not myeloid cells during ONV. Moreover, myeloid-specific VEGF ablation did not reduce total ocular VEGF during choroidal neovascularization or oxygen-induced retinopathy. In agreement, the conditional inactivation of Vegfa, Hif1a, or Epas1 in recruited and resident myeloid cells that accumulated at sites of neovascularization did not significantly reduce choroidal neovascularization or oxygen-induced retinopathy. Conclusions— The finding that myeloid cells are not a significant local source of VEGF in these rodent models of ONV suggests that myeloid function in neovascular eye disease differs from skin wound healing and other neovascular pathologies. PMID:26603154

  9. CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma

    OpenAIRE

    James, Britnie R.; Anderson, Kristin G; Brincks, Erik L.; Kucaba, Tamara A.; Norian, Lyse A.; Masopust, David; Griffith, Thomas S.

    2014-01-01

    Tumor progression occurs through the modulation of a number of physiological parameters, including the development of immunosuppressive mechanisms to prevent immune detection and response. Among these immune evasion mechanisms, the mobilization of myeloid-derived suppressor cells (MDSC) is a major contributor to the suppression of antitumor T-cell immunity. Patients with renal cell carcinoma (RCC) show increased MDSC, and methods are being explored clinically to reduce the prevalence of MDSC ...

  10. Cell mobility after endocytosis of carbon nanotubes

    Science.gov (United States)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  11. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  12. Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans

    OpenAIRE

    Fadini, Gian Paolo; Albiero, Mattia; Vigili de Kreutzenberg, Saula; Boscaro, Elisa; Cappellari, Roberta; Marescotti, Mariacristina; Poncina, Nicol; Agostini, Carlo; Avogaro, Angelo

    2013-01-01

    OBJECTIVE Diabetes mellitus (DM) increases cardiovascular risk, at least in part, through shortage of vascular regenerative cells derived from the bone marrow (BM). In experimental models, DM causes morphological and functional BM alterations, but information on BM function in human DM is missing. Herein, we sought to assay mobilization of stem and proangiogenic cells in subjects with and without DM. RESEARCH DESIGN AND METHODS In a prospective trial (NCT01102699), we tested BM responsiveness...

  13. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Šímová, Jana; Paračková, Zuzana; Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, Milan

    2014-01-01

    Roč. 95, č. 5 (2014), s. 743-753. ISSN 0741-5400 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GAP301/10/2174 Institutional support: RVO:68378050 Keywords : arginase-1 * immunosuppression * microenvironment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.289, year: 2014

  14. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function

    NARCIS (Netherlands)

    Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.; Müller, M.R.; Blander, J.M.; Tacke, F.; Trautwein, C.

    2010-01-01

    Acute-phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and antiinflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined. Us

  15. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function

    OpenAIRE

    Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.; Müller, M.R.; Blander, J.M.; Tacke, F; Trautwein, C

    2010-01-01

    Acute-phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and antiinflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined. Using a mouse model of polymicrobial sepsis, we show that abrogation of APP production by hepatocyte-specific gp130 deletion, the signaling receptor shared by IL-6 family cytokines, strongly increase...

  16. Microfabricated mobile microplates for handling single adherent cells

    International Nuclear Information System (INIS)

    This paper describes a method for manipulating adherent cells using microfabricated mobile microplates. This method allows us to change the positions of the cells without detaching them from the plates. A variable number of adherent cells ranging from one to a few cells were patterned on microplates (50–75 µm in diameter and 2 µm in thickness) that were fixed to a poly(dimethylsiloxane) (PDMS) sheet. The cell-patterned microplates were released by physical means without the use of chemicals and were manipulated using the flow of the surrounding liquid while the cells were alive. Using this technique, manual handling of two different types of adherent cells, NIH/3T3 and HepG2, was demonstrated in a culture dish. Key advantages of our cell-handling technique using mobile microplates include the ability to move adherent cells as if they were floating cells and to handle multiple numbers of different types of cells on a substrate

  17. Fuel cell technology for prototype logistic fuel cell mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  18. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    Science.gov (United States)

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  19. Precise Location Acquisition of Mobility Data Using Cell ID

    Directory of Open Access Journals (Sweden)

    Shafqat Ali Shad

    2012-05-01

    Full Text Available Cellular network data has become a hot source of study for extraction of user-mobility and spatio-temporal trends. Location binding in mobility data can be done through different methods like GPS, service provider assisted faux-GPS and Cell Global Identity (CGI. Among these Cell Global Identity is most inexpensive method and readily available solution for mobility extraction; however exact spatial extraction is somehow a problem in it. This paper presents the spatial extraction technique of mobile phone user raw data which carries the information like location information, proximity location and activity of subjects. This work mainly focuses on the data pre-processing methodology and technique to interpret the low level mobility data into high level mobility information using the designed clustering methodology and publically available Cell-IDs databases. Work proposed the semi- supervised strategy to derive the missing locations thorough the usage of semantic tag information and removal of spatial outliers for precise mobility profile building.

  20. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  1. Norepinephrine Stimulates Mobilization of Endothelial Progenitor Cells after Limb Ischemia

    OpenAIRE

    Jiang, Qijun; Ding, Shifang; Wu, Jianxiang; Liu, Xing; Wu, Zonggui

    2014-01-01

    Objective During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs) mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE) secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. Methods and Results EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in...

  2. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  3. Mobilization of stem and progenitor cells in cardiovascular diseases

    OpenAIRE

    Wojakowski, W; Landmesser, U.; Bachowski, R; Jadczyk, T; M. Tendera

    2012-01-01

    Circulating bone marrow (BM)-derived stem and progenitor cells (SPCs) participate in turnover of vascular endothelium and myocardial repair after acute coronary syndromes. Acute myocardial infarction (MI) produces a generalized inflammatory reaction, including mobilization of SPCs, increased local production of chemoattractants in the ischemic myocardium, as well as neural and humoral signals activating the SPC egress from the BM. Several types of circulating BM cells were identified in the p...

  4. Mapping eGFP Oligomer Mobility in Living Cell Nuclei

    OpenAIRE

    Nicolas Dross; Corentin Spriet; Monika Zwerger; Gabriele Müller; Waldemar Waldeck; Jörg Langowski

    2009-01-01

    Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific...

  5. Mapping eGFP Oligomer Mobility in Living Cell Nuclei

    Science.gov (United States)

    Zwerger, Monika; Müller, Gabriele; Waldeck, Waldemar; Langowski, Jörg

    2009-01-01

    Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers. PMID:19347038

  6. Mapping eGFP oligomer mobility in living cell nuclei.

    Directory of Open Access Journals (Sweden)

    Nicolas Dross

    Full Text Available Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.

  7. Mobility Enhancement of Red Blood Cells with Biopolymers

    Science.gov (United States)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  8. Fuel cells for portable, mobile and hybrid applications

    International Nuclear Information System (INIS)

    The introduction of fuel cell systems for a variety of low-power applications (below 1000 watts) means they can be used for applications such as portable power sources and mobile power sources. The energy and power are separate elements in a fuel cell system. The power is provided by the fuel cell stack (output characteristics are dependent on the cell active area, number of cells, and operating conditions), and the energy is defined by the fuel (hydrogen) storage. The authors indicated that proton exchange membrane fuel cells are the most appropriate for small fuel cell systems, since they have a temperature range ambient to 90 Celsius, ambient air (non-humidified), and load following response. In addition, they possess a solid electrolyte, high power density and specific power, and low-pressure operation. Simplicity of operation is the key to the design of a fuel cell system. The parameters to be considered include hydrogen supply, air supply, water management, and thermal management. Some of the options available for fuels are: compressed hydrogen, metal hydrides, chemical hydrides, and carbon-based hydrogen storage. Some of the factors that will help in determining market penetration are: rapid cost reduction with volume, fuel infrastructure, proven reliability, and identification of applications where fuel cells provide superior performance. 2 figs

  9. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  10. Mobilities

    DEFF Research Database (Denmark)

    . The selection will cover diverse topics such as theories, concepts, methods, and approaches as well as it will explore various modes of mobilities and the relationship to everyday life practices. The selection also covers the ‘politics of mobilities’ from local urban planning schemes to geopolitical...... issues of refugees and environmental degradation. The spaces and territories marked by mobilities as well as the sites marked by the bypassing of such are explored. Moreover, the architectural and technological dimensions to infrastructures and sites of mobilities will be included as well as the issues...... of power, social exclusion, consumption, surveillance and mobilities history to mention some of the many themes covered by this reference work. This new title will focus on the academic contributions to this understanding by primarily focusing on works and publications in the aftermath of the seminal...

  11. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization.

    Science.gov (United States)

    Ryan, Marnie A; Nattamai, Kalpana J; Xing, Ellen; Schleimer, David; Daria, Deidre; Sengupta, Amitava; Köhler, Anja; Liu, Wei; Gunzer, Matthias; Jansen, Michael; Ratner, Nancy; Le Cras, Timothy D; Waterstrat, Amanda; Van Zant, Gary; Cancelas, Jose A; Zheng, Yi; Geiger, Hartmut

    2010-10-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes. PMID:20871610

  12. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!

    OpenAIRE

    Borlongan, CV

    2011-01-01

    Mobilizing bone cells to the head, astutely referred to as ‘bonehead’ therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies imp...

  13. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    Directory of Open Access Journals (Sweden)

    Qijun Jiang

    Full Text Available OBJECTIVE: During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. METHODS AND RESULTS: EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05. The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. CONCLUSION: These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor

  14. Integrating cell phones and mobile technologies into public health practice: a social marketing perspective.

    Science.gov (United States)

    Lefebvre, Craig

    2009-10-01

    Mobile communications are being used for many purposes, from instant messaging (IM), mobile or microblogging (Twitter), social networking sites (Facebook, MySpace), e-mail to basic voicemail. A brief background on cell phone and mobile technology use in public health is reviewed. The focus of the article is framing the use of mobile technologies in public health from a social marketer's perspective--using the 4 Ps marketing mix as a guide. PMID:19809002

  15. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    Science.gov (United States)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  16. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  17. DI-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts

    Institute of Scientific and Technical Information of China (English)

    Baoquan Lu; Xiaoming Shang; Yongqiu Li; Hongying Ma; Chunqin Liu; Jianmin Li; Yingqi Zhang; Shaoxin Yao

    2011-01-01

    Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization.

  18. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  19. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective.

    Science.gov (United States)

    Saraceni, F; Shem-Tov, N; Olivieri, A; Nagler, A

    2015-07-01

    Although stem cell mobilization has been performed for more than 20 years, little is known about the effects of mobilizing agents on apheresis composition and the impact of graft cell subsets on patients' outcome. With the increasing use of plerixafor and the inclusion of poor mobilizers in autologous transplant procedures, new parameters other than CD34(+) stem cell dose are emerging; plerixafor seems to mobilize more primitive CD34(+)/CD38(-) stem cells compared with G-CSF, but their correlation with stable hematopoietic engraftment is still obscure. Immune recovery is as crucial as hematopoietic reconstitution, and higher T and natural killer cells infused within the graft have been correlated with better outcome in autologous transplant; recent studies showed increased mobilization of immune effectors with plerixafor compared with G-CSF, but further data are needed to clarify the clinical impact of these findings. In the allogeneic setting, much evidence suggests that mobilized T-cell alloreactivity is tempered by G-CSF, probably with the mediation of dendritic cells, even though no clear correlation with GVL and GVHD has been found. Plerixafor is not approved in healthy donors yet; early data suggest it might mobilize a GVHD protective balance of immune effectors, but further studies are needed to define its role in allogeneic transplant. PMID:25665044

  20. Enhanced cell visiting probability for QoS provisioning in mobile multimedia communications

    OpenAIRE

    Islam, M; Murshed, M.; Dooley, L. S.

    2004-01-01

    This paper presents an enhanced cell visiting probability (CVP) estimation technique by integrating both mobility parameters such as position, direction, and speed together with exponential call duration probability of mobile units. These improved CVP estimates can be used in both adaptive and nonadaptive mobile networks to enhance QoS parameters. This paper also presents a new shadow-clustering scheme based on these enhanced CVPs, which is then applied to the call admission control scheme si...

  1. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields

    OpenAIRE

    Lucas, Daniel; Bruns, Ingmar; Battista, Michela; Mendez-Ferrer, Simon; Magnon, Claire; Kunisaki, Yuya; Frenette, Paul S.

    2012-01-01

    The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF–enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF recept...

  2. Virginia Tech Mobile delivers news to cell phones, PDAs

    OpenAIRE

    Lazenby, Jenna

    2006-01-01

    Virginia Tech Mobile-a new service that delivers the latest Virginia Tech news and information to cellular phones or personal digital assistants (PDAs)-is now available to anyone interested in the latest news from Virginia Tech.

  3. Balancing High-Load Scenarios with Next Cell Predictions and Mobility Pattern Recognition

    OpenAIRE

    Michaelis, Stefan

    2012-01-01

    Knowing where a mobile user will be next can deliver a tremendous increase in network performance under high load, as this knowledge enables pro-active load balancing. To derive this information, sequences of traversed cells are fed into pattern detection algorithms. After the training phase the learned model predicts each user’s next cell. Even for complex scenarios, the prediction accuracy can exceed 90%. Predictions are used to rearrange mobile connections in a simulat...

  4. Role of Endogenous Bone Marrow Stem Cells Mobilization in Repair of Damaged Inner Ear in Rats

    OpenAIRE

    Elbana, Ahmed M.; Abdel-Salam, Seddik; Ghada M. Morad; Ahmed A. Omran

    2015-01-01

    Background and Objectives The utilization of the stem cells is widely used in the last few years in different fields of medicine, either by external transplantation or endogenous mobilization, most of these studies still experimental on animals; few were tried on human as in the spinal cord injury or myocardial infarction. As regard its use in the inner ear, stem cell transplantation was examined in many previous studies, while the mobilization idea is a new method to be experimented in inner...

  5. Enhanced distance-based location management of mobile communication systems using a cell coordinates approach

    OpenAIRE

    Chan, HW; Ng, CK

    2005-01-01

    In managing the locations of mobile users in mobile communication systems, the distance-based strategy has been proven to have better performance than other dynamic strategies, but is difficult to implement. In this paper, a simple approach is introduced to implement the distance-based strategy by using the cell coordinates in calculating the physical distance traveled. This approach has the advantages of being independent of the size, shape, and distribution of cells, as well as catering for...

  6. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  7. Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor

    DEFF Research Database (Denmark)

    Hess, David A; Bonde, Jesper; Craft, Timothy P;

    2007-01-01

    ) or purified CD34(+) cells was compared at limiting dilution into NOD/SCID mice. Human AMD3100-mobilized MNC possessed enhanced repopulating frequency in comparison to G-CSF-mobilized MNC from paired donors, and purified CD34(+) progenitors were at least as efficient as the G-CSF mobilized cells. The...... frequencies of NOD/SCID repopulating cells (SRC) were 1 SRC in 8.7 x 10(6) AMD3100-mobilized MNC compared to 1 SRC in 29.0 x 10(6) G-CSF-mobilized MNC, and 1 SRC in 1.2 x 10(5) AMD3100-mobilized CD34(+) cells compared to 1 SRC in 1.8 x 10(5) G-CSF-mobilized CD34(+) cells. Hematopoietic differentiation of...

  8. Plerixafor for autologous stem-cell mobilization and transplantation for patients in Ontario

    Science.gov (United States)

    Kouroukis, C.T.; Varela, N.P.; Bredeson, C.; Kuruvilla, J.; Xenocostas, A.

    2016-01-01

    Background High-dose chemotherapy with autologous stem-cell transplantation (asct) is an accepted part of standard therapy for patients with hematologic malignancies. Usually, stem-cell mobilization uses granulocyte colony–stimulating factor (g-csf); however, some patients are not able to be mobilized with chemotherapy and g-csf, and such patients could be at higher risk of failing mobilization. Plerixafor is a novel mobilization agent that is absorbed quickly after subcutaneous injection and, at the recommended dose of 0.24 mg/kg, provides a sustained increase in circulating CD34+ cells for 10–18 hours. The main purpose of the present report was to evaluate the most current evidence on the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct for patients in Ontario so as to make recommendations for clinical practice and to assist Cancer Care Ontario in decision-making with respect to this intervention. Methods The medline and embase databases were systematically searched for evidence from January 1996 to March 2015, and the best available evidence was used to draft recommendations relevant to the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct. Final approval of this practice guideline report was obtained from both the Stem Cell Transplant Steering Committee and the Report Approval Panel of the Program in Evidence-Based Care. Recommendations These recommendations apply to adult patients considered for asct: ■ Adding plerixafor to g-csf is an option for initial mobilization in patients with non-Hodgkin lymphoma or multiple myeloma who are eligible for asct when chemotherapy cannot be used and only g-csf mobilization is available.■ For patients with a low peripheral blood CD34+ cell count (for example, <10/μL) at the time of anticipated stem-cell harvesting, or with an inadequate first-day apheresis collection, it is recommended that plerixafor be added to the

  9. Proteomics analysis of human endothelial cells after shortterm exposure to mobile phone radiation

    International Nuclear Information System (INIS)

    Mobile phones have been a part of our everyday life in the developed world since the late 1990s. This has raised concerns over the potential health risks of mobile phone use. Biological and health effects potentially caused by mobile phone radiation have been extensively studied and several biological and medical endpoints have been examined. So far, results have not been conclusive on the potential effects of mobile phone radiation. Mobile phones generate a modulated radio frequency electromagnetic field (RF-EMF), which is a form of non-ionizing radiation. This means that mobile phone radiation does not have enough energy to ionize atoms and it cannot break chemical bonds directly (e.g., in DNA strands). There could, however, be other mechanisms by which mobile phone radiation may affect cellular and physiological functions. Whether these mechanisms exist is unknown. In this thesis, large-scale screening techniques, such as proteomics, were applied to examine changes on the proteome level after exposure to mobile phone radiation. Proteomics techniques allow the screening of several hundreds, and even thousands, of proteins simultaneously, and are thus more efficient than single endpoint techniques. Four different types of human endothelial cells (two cell lines, two types of primary cells) were exposed to two types of mobile phone radiation (900 and 1800 MHz GSM). The proteome of these cells was examined immediately after short-term exposure using two-dimensional gel electrophoresis (2DE). Two protein detection/analysis techniques were used: silver staining for the cell line samples and difference gel electrophoresis (DIGE) for the primary cells. 2DE-DIGE technology is currently a state-of-the-art technique in 2DE studies. Several changes were found in the proteome of the human endothelial cell line EA.hy926 after exposure to 900 MHz GSM mobile phone radiation. In addition, the proteome of a variant of the same cell line, the EA.hy926v1, was affected after 900 MHz

  10. Effects of non-thermal mobile phone radiation on breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Zen Fourie

    2011-09-01

    Full Text Available Mobile phone usage currently exceeds landline communication in Africa. The extent of this usage has raised concerns about the long-term health effects of the ongoing use of mobile phones. To assess the physiological effects of radiation from mobile phones in vitro, MCF-7 breast adenocarcinoma cells were exposed to 2W/kg non-thermal 900-MHz mobile phone radiation. The effects investigated were those on metabolic activity, cell morphology, cell cycle progression, phosphatidylserine (PS externalisation and the generation of reactive oxygen species and nitrogen species. Statistically insignificant increases in mitochondrial dehydrogenase activity were observed in irradiated cells when compared to controls. Fluorescent detection of F-actin demonstrated an increase in F-actin stress fibre formation in irradiated MCF-7 cells. Cell cycle progression revealed no statistically significant variation. A small increase in early and late apoptotic events in irradiated MCF-7 cells was observed. No statistically significant changes were observed in reactive oxygen and reactive nitrogen species generation. In addition, quantitative and qualitative analyses of cell cycle activity and nuclear and cytosolic changes, respectively, revealed no significant changes. In conclusion, exposure to 1 h of 900-MHz irradiation induced an increase in PS externalisation and an increase in the formation of F-actin stress fibres in MCF-7 cells. Data obtained from this study, and their correlation with other studies, provides intriguing links between radio frequency radiation and cellular events and warrant further investigation.

  11. Increased natural killer-cell mobilization and cytotoxicity during marital conflict.

    Science.gov (United States)

    Dopp, J M; Miller, G E; Myers, H F; Fahey, J L

    2000-03-01

    Natural killer (NK) cells are reproducibly mobilized into the circulation in response to intense physical exercise or acute psychological stress, and altered expression of adhesion molecules potentially contributes to NK-cell mobilization. Studies of leukocyte mobilization during acute stress have used psychological stressors which facilitate tight experimental control but have limited applicability to everyday life. We therefore used a laboratory model of marital conflict as an experientially meaningful acute stressor to elucidate relationships among conflict, cardiovascular reactivity, and altered leukocyte phenotype and function. Forty-one ethnically diverse, nondistressed, healthy married couples were asked to discuss a specific problem in their marriage for 15 min. Blood pressure and heart rate were measured before, during, and after the discussion, and blood was remotely drawn at the same time points to quantify numbers of specific leukocyte subsets, NK-cell adhesion molecule expression, and NK cytotoxicity. Couples responded to the conflict task with cardiovascular reactivity; increases in the percentages of circulating NK cells and CD8(+) T cells and decreases in the percentage of circulating CD4(+) T cells; decreases in the percentage of NK cells that express L-selectin; and increases in NK-cell cytotoxicity without a commensurate increase in per-cell cytotoxicity. Rapid downregulation or shedding of L-selectin (CD62L) from NK cells did not contribute to their mobilization during conflict. Instead, CD62L(-) NK cells were mobilized while CD62L(+) NK cells were selectively retained in the vascular marginating pool and/or in extravascular tissue. From a broader perspective, the data support the hypothesis that altered trafficking of specific leukocyte subsets is an integral component of the fight-or-flight response to an acute stressor. PMID:10729214

  12. Using technology to promote mobile learning: engaging students with cell phones in the classroom.

    Science.gov (United States)

    Robb, Meigan; Shellenbarger, Teresa

    2012-01-01

    Advancements in cell phone technology have impacted every aspect of society. Individuals have instant access to social networks, Web sites, and applications. Faculty need to consider using these mobile devices to enrich the classroom. The authors discuss how they successfully designed and incorporated cell phone learning activities into their classrooms. Teaching-learning strategies using cell phone technology and recommendations for overcoming challenges associated with cell phone use in the classroom are discussed. PMID:23086071

  13. Autophagy is required for stem cell mobilization by G-CSF

    DEFF Research Database (Denmark)

    Leveque-El Mouttie, Lucie; Vu, Therese; Lineburg, Katie E.;

    2015-01-01

    Granulocyte colony-stimulating factor (G-CSF) is widely used clinically to prevent neutropenia after cytotoxic chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Autophagy, a process of cytoplasmic component recycling, maintains cellular homeostasis and protects...... the cell during periods of metabolic stress or nutrient deprivation. We have observed that G-CSF activates autophagy in neutrophils and HSCs from both mouse and human donors. Furthermore, G-CSF-induced neutrophil and HSC mobilization is impaired in the absence of autophagy. In contrast, autophagy...... is dispensable for direct HSC mobilization in response to the CXCR4 antagonist AMD3100. Altogether, these data demonstrate an important role for G-CSF in invoking autophagy within hematopoietic and myeloid cells and suggest that this pathway is critical for ensuring cell survival in response to clinically...

  14. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent.

    Science.gov (United States)

    Bendall, Linda J; Bradstock, Kenneth F

    2014-08-01

    G-CSF was among the first cytokines to be identified and rapidly transitioned into clinical medicine. Initially used to promote the production of neutrophils in patients with chemotherapy-induced neutropenia it helped to revolutionize the delivery of cancer therapy. Its ability to mobilize hematopoietic stem cells from the bone marrow into the blood was subsequently exploited, changing the face of hematopoietic stem cell transplantation. Today the knowledge gained in unraveling the mechanisms of stem cell mobilization by G-CSF is being explored as a means to increase chemosensitivity in hematological malignancies. This review provides a brief history of G-CSF and then focuses on recent advances in our understanding of G-CSF-induced stem cell mobilization and the potential clinical application of this knowledge in chemo-sensitization. PMID:25131807

  15. Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment

    OpenAIRE

    Hoggatt, Jonathan; Pelus, Louis M.

    2011-01-01

    The vast majority of hematopoietic stem cells (HSCs) reside in specialized niches within the bone marrow during steady state, maintaining lifelong blood cell production. A small number of HSCs normally traffic throughout the body; however, exogenous stimuli can enhance their release from the niche and entry into the peripheral circulation. This process, termed mobilization, has become the primary means to acquire a stem cell graft for hematopoietic transplant at most transplant centers. Curre...

  16. Electron and Hole Drift Mobility Measurements on Methylammonium Lead Iodide Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-25

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  17. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

    Science.gov (United States)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-01

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  18. Rescue stem cell mobilization with plerixafor economizes leukapheresis in patients with multiple myeloma.

    Science.gov (United States)

    Hundemer, Michael; Engelhardt, Melanie; Bruckner, Thomas; Kraeker, Sandra; Schmitt, Anita; Sauer, Sandra; Neben, Kai; Witzens-Harig, Mathias; Goldschmidt, Hartmut; Ho, Anthony D; Wuchter, Patrick

    2014-12-01

    While extensive data demonstrated that plerixafor improves stem cell harvest in difficult-to-mobilize patients, economic concerns limit a broader application. We retrospectively assessed the effect of an early plerixafor rescue regimen for mobilization in patients with multiple myeloma. Patients were intended for high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (ABSCT) and therefore received cyclophosphamide-based mobilization chemotherapy and consecutive stimulation with granulocyte colony-stimulating factor (G-CSF). Fifteen patients with poor stem cell harvest in the first leukapheresis session received plerixafor. Data were compared with a matched historic control group of 45 patients who also had a poor stem cell yield in the first apheresis session, but continued mobilization with G-CSF alone. Patients in the plerixafor group collected significantly more CD34+ cells in total (median 4.9 vs. 3.7 [range 1.6-14.1 vs. 1.1-8.0] × 10(6) CD34+ cells /kg bw; P 2.0 vs. 4.0 [range 2-3 vs. 2-9] procedures; P < 0.001). The efficiency of the collected stem cells in terms of hematologic engraftment after ABSCT was found to be equal in both groups. These data demonstrate that rescue mobilization with plerixafor triggered by a low stem cell yield in the first leukapheresis session is effective. Although the actual economic benefit may vary depending on the local leukapheresis costs, the median saving of two leukapheresis procedures offsets most of the expenses for the substance in this setting. An exemplary cost calculation is provided to illustrate this effect. PMID:24771277

  19. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping;

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast...

  20. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    OpenAIRE

    Kuster Niels; Nylund Reetta; Leszczynski Dariusz

    2010-01-01

    Abstract Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in exp...

  1. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    OpenAIRE

    Nylund, Reetta; KUSTER, Niels; Leszczynski, Dariusz

    2010-01-01

    Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression o...

  2. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells

    OpenAIRE

    Liu, Yu-Xiao; Li, Guo-Qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-Wen; Zhang, Yi; Li, An-Ming

    2015-01-01

    Background The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Methods Human glioblastoma cell lines, U251-MG and U87-MG, ...

  3. Low-dose cyclophosphamide effectively mobilizes peripheral blood stem cells in patients with autoimmune disease.

    Science.gov (United States)

    Blank, Norbert; Lisenko, Katharina; Pavel, Petra; Bruckner, Thomas; Ho, Anthony D; Wuchter, Patrick

    2016-07-01

    For patients with severe and refractory autoimmune diseases, high-dose chemotherapy and autologous hematopoietic stem cell transplantation has been established as a considerable therapeutic option in recent years. In this retrospective single-center analysis, we assessed the feasibility and efficacy of peripheral blood stem cells (PBSC) mobilization and collection in 35 patients with refractory autoimmune disease (AID). The mobilization data of 15 patients with systemic sclerosis (SSc), 11 patients with multiple sclerosis (MS), and 9 patients with other AID were analyzed. Stem cell mobilization with cyclophosphamide chemotherapy 2 × 2 g/m(2) (n = 16) or 1 × 2 g/m(2) (n = 17) and G-CSF followed by PBSC collection was performed between 1999 and 2015. Leukapheresis was performed in 16 inpatients and 19 outpatients. All patients reached their collection goal and no collection failures were observed. The median PBSC collection result was 12.2 (SSc), 8.0 (MS), and 8.2 (other AID) × 10(6) CD34+ cells/kg, respectively. Twenty-five of 35 (71%) patients achieved a sufficient collection with one leukapheresis session, while 6 patients (17%) required two and 4 patients (11%) required three or more leukapheresis sessions. No correlation of the collected PBSC number was observed regarding age, body weight, diagnosis, disease duration, skin sclerosis, or previous cyclophosphamide. Mobilization chemotherapy with cyclophosphamide 2 × 2 g/m(2) and 1 × 2 g/m(2) delivered comparable mobilization results with leukapheresis on day 13 or 14. In summary, we demonstrate that PBSC collection is safe and feasible in patients with AID. Mobilization chemotherapy with cyclophosphamide 1 × 2 g/m(2) and 2 × 2 g/m(2) is equally effective in those patients. PMID:26381040

  4. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells.

    Science.gov (United States)

    Tolar, Jakub; McGrath, John A

    2014-09-01

    Novel therapeutic tools to accelerate wound healing would have a major impact on the overall burden of skin disease. Lin et al. demonstrate in mice that endogenous bone marrow stem cell mobilization, produced by a pharmacologic combination of AMD3100 and tacrolimus, leads to faster and better-quality wound healing, findings that have exciting potential for clinical translation. PMID:25120149

  5. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  6. Use of plerixafor for hematopoietic stem cells mobilization in allograft donors

    Directory of Open Access Journals (Sweden)

    D. N. Balashov

    2015-01-01

    Full Text Available Unsuccessful mobilization of hematopoietic stem cells (HSCs before apheresis in allograft donor is a factor adversely affecting the characteristics of the obtained cell product and, as a consequence, the therapy outcome. This study investigates the efficacy and safety of plerixafor as an additional alternative drug for HSCs mobilization after nsuccessful mobilization using G-CSF. Mobilization of HSC in all cases was performed using a preparation of G-CSF during 5 days. The ineffectiveness of this in 17 donors was revealed on the fourth day from the beginning of the mobilization, and therefore plerixafor was administered to all donors in this cohort 11–12 hours before cytapheresis. Use of plerixafor allowed obtaining a transplant with good cellular characteristics in all cases. Plerixafor safety profile comparable with GCSF has also been demonstrated. Based on the results of this study it was concluded about efficacy and feasibility of plerixafor as “rescue” therapy after unsuccessful mobilizationwith G-CSF.

  7. Fuel cells in mobile applications; Die Brennstoffzelle im mobilen Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, J.K.H. [Daimler Benz AG, Stuttgart (Germany)

    1996-06-01

    The contribution presents the new electric vehicle developed by Daimler Benz AG, NECAR II (New Electric Car), which is fuelled by fuel cells. The future prospects of this technology are discussed. (MM) [Deutsch] Berichtet wird kurz ueber das von Daimler Benz AG vorgestellte Brennstoffzellen-Elektrofahrzeug NECAR II - New Electric Car - sowie ueber die Zukunftsaussichten dieses Antriebs. (MM) (MM)

  8. Addition of plerixafor for CD34+ cell mobilization in six healthy stem cell donors ensured satisfactory grafts for transplantation

    DEFF Research Database (Denmark)

    Hauge, Anne Werner; Haastrup, Eva Kannik; Sengeløv, Henrik;

    2014-01-01

    In allogeneic hematopoietic stem cell (HSC) transplantation, collection of a sufficient number of HSCs at a fixed time point is crucial. For HSC mobilization into the peripheral blood, the standard regimen, that is, granulocyte-colony-stimulating factor (G-CSF), may be inadequate. Use of plerixafor...... as adjuvant to G-CSF is so far off-label in healthy donors....

  9. Finite mobility effects on the radiative efficiency limit of pn -junction solar cells

    Science.gov (United States)

    Mattheis, Julian; Werner, Jürgen H.; Rau, Uwe

    2008-02-01

    The maximum power conversion efficiency of a solar cell as defined by the Shockley-Queisser (SQ) radiative recombination limit relies on the assumption that the collection probability for all photogenerated electron/hole pairs is unity. This assumption implies a virtually infinite mobility μn of the photogenerated charge carriers. In order to compute the radiative efficiency limit with finite mobilities, we solve the continuity equation for minority carrier transport including an additional photon recycling term that accounts for emission of photons by radiative recombination and their subsequent reabsorption. This approach quantitatively connects the SQ approach with the classical diode theory. Even when assuming radiative recombination as the only loss mechanism, the maximum efficiency achievable within our model is reduced drastically when μn drops below a critical value. This critical value depends on the absorption coefficient, the doping density of the absorber material, as well as on the thickness and the light trapping scheme of the solar cell. Thus, these material and device parameters gain a fundamental importance as soon as finite carrier mobility is considered. Our theory yields a criterion that has to be fulfilled by any photovoltaic material in order to guarantee charge separation even in an otherwise most ideal case. Exemplary application of our model to three real photovoltaic materials, crystalline silicon (c-Si) , amorphous silicon (a-Si:H) , as well as Cu(In,Ga)Se2 (CIGS), shows that mobilities of c-Si and CIGS are three, respectively, 1 order of magnitude above this critical limit whereas the effective hole mobilities in a-Si:H are scattered around the critical value. A comparison between solar cells and light-emitting diodes with finite mobility and finite nonradiative lifetime reveals that materials for these complementary devices have to fulfill different requirements.

  10. Cell-wall hemicelluloses as mobile carbon stores in plants

    OpenAIRE

    Schädel, Christina

    2009-01-01

    Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compounds. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprisin...

  11. Defective TGFβ signaling in bone marrow-derived cells prevents Hedgehog-induced skin tumors

    OpenAIRE

    Fan, Qipeng; Gu, Dongsheng; Liu, Hailan; Yang, Ling; Zhang, Xiaoli; Yoder, Mervin C.; Kaplan, Mark H.; Xie, Jingwu

    2013-01-01

    Hedgehog (Hh) signaling in cancer cells drives changes in the tumor microenvironment that are incompletely understood. Here we report that Hh- driven tumors exhibit an increase in myeloid-derived suppressor cells (MDSC) and a decrease in T cells, indicative of an immune suppressive tumor microenvironment. This change was associated with activated TGFβ signaling in several cell types in BCCs. We determined that TGFβ signaling in bone marrow (BM)-derived cells, not keratinocytes, regulates MDSC...

  12. Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells

    International Nuclear Information System (INIS)

    We examine the dark and the illuminated current-voltage (J-V) characteristics of poly(3-octylthiophene) (P3OT)/single-wall carbon nanotube (SWNT) composite photovoltaic cells as a function of SWNT concentration. Using an exponential band tail model, the influence of SWNT concentration on the J-V characteristics of the cells is analysed in terms of corresponding parameters such as effective hole mobility, short-circuit current, and open-circuit voltage. For the device with optimum 1% SWNT concentration, the increased photoresponse (∼500 times) as compared to the pristine P3OT cell can be attributed partly to the increase (∼50 times) in effective hole mobility, due to the reduction of localized states of the pristine P3OT matrix, and partly to the enhanced exciton extraction at the polymer/nanotube junctions

  13. Mobilities Mobilities

    Directory of Open Access Journals (Sweden)

    César Pompeyo

    2011-12-01

    Full Text Available Urry, John (2007 Mobilities.Oxford: Polity Press.Urry, John (2007 Mobilities.Oxford: Polity Press.John Urry (1946-, profesor en la Universidad de Lancaster, es un sociólogo de sobra conocido y altamente reputado en el panorama internacional de las ciencias sociales. Su dilatada carrera, aparentemente dispersa y diversificada, ha seguido senderos bastante bien definidos dejando tras de sí un catálogo extenso de obras sociológicas de primer nivel. Sus primeros trabajos se centraban en el campo de la teoría social y la filosofía de las ciencias sociales o de la sociología del poder [...

  14. Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations

    International Nuclear Information System (INIS)

    Complete text of publication follows. The health concerns have been raised following the enormous increase in the use of wireless mobile telephones through out the world. This investigation had been taken, with the motive to find out whether mobile phone radiations cause any in vivo effects on the frequency of micronucleated exfoliated cells in the exposed subjects. A total of 109 subjects including 85 regular mobile phone users (exposed) and 24 non-users (controls) had participated in this study. Exfoliated cells were obtained by swabbing the buccal-mucosa from exposed as well as sex-age-matched controls. One thousand exfoliated cells were screened from each individual for nuclear anomalies including micronuclei (MN), karyolysis (KL), karyorrhexis (KH), broken egg (BE) and bi-nucleated (BN) cells. The average daily duration of exposure to mobile phone radiations is 61.26 minutes with an overall average duration of exposure in term of years is 2.35 years in exposed subjects along with the 9.84±0.745 MNC (micronucleated cells) and 10.72±0.889 TMN (total micronuclei) as compared to zero duration of exposure along with average 3.75±0.774 MNC and 4.00±0.808 TMN in controls. The means are significantly different in case MNC and TMN at 0.01% level of significance. For all other nuclear anomalies (KL, KH, BE and BN cells) the means are found statistically nonsignificant. A positive correlation was found in the frequency of MNC and TMN with respect to duration of exposure time.

  15. Mobilization of regulatory T cells in response to carotid injury does not influence subsequent neointima formation.

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    Full Text Available AIM: T cells have been attributed an important role in modulating repair responses following vascular injury. The aim of this study was to investigate the role of different T cell subsets in this context. METHODS AND RESULTS: A non-obstructive collar was introduced to inflict carotid artery injury in mice and subsequent activation of immune cells in draining lymph nodes and spleen were studied by flow cytometry. Carotid artery injury of wild type mice was associated with mobilization of both Th1 type CD4(+IFNγ(+ and regulatory CD4(+CD25(+FoxP3(+ T cells in draining lymph nodes. Studies using FoxP3-green fluorescent protein (GFP transgenic C57/Bl6 mice demonstrated scattered presence of regulatory T cells in the adventitial tissue of injured arteries as well as a massive emigration of regulatory T cells from the spleen in response to carotid injury. However, deletion of antigen presentation to CD4+ T cells (H2(0 mice, as well as deletion of regulatory T cells (through treatment with blocking anti-CD25 antibodies, did not affect neointima formation. Also deletion of antigen presentation to CD8(+ T cells (Tap1(0 mice was without effect on carotid collar-induced neointima formation. CONCLUSION: The results demonstrate that carotid artery injury is associated with mobilization of regulatory T cells. Depletion of regulatory T cells does not, however, influence the subsequent repair processes leading to the formation of a neointima. The results also demonstrate that lack of CD8(+ T cells does not influence neointima formation in presence of functional CD4(+ T cells and B cells.

  16. Tbo-Filgrastim versus Filgrastim during Mobilization and Neutrophil Engraftment for Autologous Stem Cell Transplantation.

    Science.gov (United States)

    Elayan, Mohammed M; Horowitz, Justin G; Magraner, Jose M; Shaughnessy, Paul J; Bachier, Carlos

    2015-11-01

    There are limited data available supporting the use of the recombinant granulocyte colony-stimulating factor (G-CSF), tbo-filgrastim, rather than traditionally used filgrastim to mobilize peripheral blood stem cells (PBSC) or to accelerate engraftment after autologous stem cell transplantation (ASCT). We sought to compare the efficacy and cost of tbo-filgrastim to filgrastim in these settings. Patients diagnosed with lymphoma or plasma cell disorders undergoing G-CSF mobilization, with or without plerixafor, were included in this retrospective analysis. The primary outcome was total collected CD34(+) cells/kg. Secondary mobilization endpoints included peripheral CD34(+) cells/μL on days 4 and 5 of mobilization, adjunctive use of plerixafor, CD34(+) cells/kg collected on day 5, number of collection days and volumes processed, number of collections reaching 5 million CD34(+) cells/kg, and percent reaching target collection goal in 1 day. Secondary engraftment endpoints included time to neutrophil and platelet engraftment, number of blood product transfusions required before engraftment, events of febrile neutropenia, and length of stay. A total of 185 patients were included in the final analysis. Patients receiving filgrastim (n = 86) collected a median of 5.56 × 10(6) CD34(+) cells/kg, compared with a median of 5.85 × 10(6) CD34(+) cells/kg in the tbo-filgrastim group (n = 99; P = .58). There were no statistically significant differences in all secondary endpoints with the exception of apheresis volumes processed (tbo-filgrastim, 17.0 liters versus filgrastim, 19.7 liters; P units versus filgrastim, 1.4 units; P = .04). In conclusion, tbo-filgrastim demonstrated similar CD34(+) yield compared with filgrastim in mobilization and post-transplantation settings, with no clinically meaningful differences in secondary efficacy and safety endpoints. Furthermore, tbo-filgrastim utilization was associated with cost savings of approximately $1406 per patient

  17. Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application.

    Science.gov (United States)

    Inukai, Munehiro; Horike, Satoshi; Itakura, Tomoya; Shinozaki, Ryota; Ogiwara, Naoki; Umeyama, Daiki; Nagarkar, Sanjog; Nishiyama, Yusuke; Malon, Michal; Hayashi, Akari; Ohhara, Takashi; Kiyanagi, Ryoji; Kitagawa, Susumu

    2016-07-13

    We describe the encapsulation of mobile proton carriers into defect sites in nonporous coordination polymers (CPs). The proton carriers were encapsulated with high mobility and provided high proton conductivity at 150 °C under anhydrous conditions. The high proton conductivity and nonporous nature of the CP allowed its application as an electrolyte in a fuel cell. The defects and mobile proton carriers were investigated using solid-state NMR, XAFS, XRD, and ICP-AES/EA. On the basis of these analyses, we concluded that the defect sites provide space for mobile uncoordinated H3PO4, H2PO4(-), and H2O. These mobile carriers play a key role in expanding the proton-hopping path and promoting the mobility of protons in the coordination framework, leading to high proton conductivity and fuel cell power generation. PMID:27324658

  18. Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording)

    Science.gov (United States)

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-10-01

    Organic semiconductors typically possess low charge carrier mobilities and Langevin-type recombination dynamics, which both negatively impact the performance of organic solar cells and photodetectors. Charge transport in organic solar cells is usually characterized by the mobility-lifetime product. Using newly developed transient and steady state photocurrent measurement techniques we show that the onset of efficiency limiting photocarrier recombination is determined by the charge that can be stored on the electrodes of the device. It is shown that significant photocarrier recombination can be avoided when the total charge inside the device, defined by the trapped, doping-induced and mobile charge carriers, is less than the electrode charge. Based upon this physics we propose the mobility-recombination coefficient product as an alternative and more convenient figure of merit to minimize the recombination losses. We validate the results in 3 different organic semiconductor-based light harvesting systems with very different charge transport properties. The findings allow the determination of the charge collection efficiency in fully operational devices. In turn, knowing the conditions under which non-geminate recombination is eliminated enables one to quantify the generation efficiency of free charge carriers. The results are relevant to a wide range of light harvesting systems, particularly those based upon disordered semiconductors, and require a rethink of the critical parameters for charge transport.

  19. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction

    OpenAIRE

    Bao-xia Zhang; Jin-sheng Zhang; Mei-mei Du; Xiao-ya Wang; Wei Li

    2016-01-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Pana...

  20. Endogenous bone marrow stem cell mobilization in rats: Its potential role in homing and repair of damaged inner ear

    OpenAIRE

    Elbana, Ahmed M.; Seddik Abdel-Salam; Ghada M. Morad; Mohamed Ibrahim; Ahmed A. Omran

    2015-01-01

    The stem cells are widely used in the last few years in different fields of medicine, either by external transplantation or endogenous mobilization, most of these studies are still experimental on animals; few were tried on humans as in the spinal cord injury or myocardial infarction. As regards its use in the inner ear, stem cell transplantation was examined in many previous studies, while the mobilization idea is a new method to be experimented in inner ear hair cell regeneration. The ai...

  1. The Change of Mobility and Deformability of Red Cell Membrane in the Patients with Cerebral Infarction

    Institute of Scientific and Technical Information of China (English)

    Wang Hongyu

    2000-01-01

    To study the blood cell hemoyheology,the mobility and deformability of red cell membrane,the activity and assembly of platelets ,the content of cholesterol crvstals and thrombus in circulation in cerebral infarction patientrs. Observing the cell hemorheologi cal condition of the red clee, platelet,cholesterol cryitals, and active thrombus in active blood analysis with Bradford's microscope(15,000 times). The study indicates that in the ceredral infarction patients,the red cell appeared rowleax and its deformbility was poor and its membrane mobility reduvde(P<0.05). In this group blood viscosity was higher, the platelet assembling rate rose and the thrombus in circulation increases more signifi cantly than the nomal group (P<0.01). The change of membrane mobility,the rsising of platelet assemble rate, the in creasing of plasma viscosity and flowing embolism are the important pathological basis of cerebral infarction. It may provide important material and practical meaning for precluding,diagnosing,curing and prognosising ischmia cerebralvas cular diseases.

  2. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

    International Nuclear Information System (INIS)

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay '' a well known technique widely used for detecting fragmented DNA in various types of cells'' was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29''43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within ''safety levels'' alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17''20, 2000, pp. 169''175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545''578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of

  3. Proliferation and telomere length in acutely mobilized blood mononuclear cells in HIV infected patients

    DEFF Research Database (Denmark)

    Søndergaard, S R; Essen, M V; Schjerling, P;

    2002-01-01

    infusion for 1 h. Blood was sampled before, during and 1 h after adrenalin infusion. Proliferation and mean telomere restriction fragment length (telomeres) of blood mononuclear cells (BMNC) and purified CD8+ and CD4+ cells were investigated at all time points. In patients, the proliferation to pokeweed...... mitogens (PWM) was lower and decreased more during adrenalin infusion. After adrenalin infusion the proliferation to PWM was restored only in the controls. In all subjects telomeres in CD4+ cells declined during adrenalin infusion. Additionally, the patients had shortened telomeres in their CD8+ cells, and...... particularly HAART treated patients had shortened telomeres in all cell-subtypes. The finding that patients mobilized cells with an impaired proliferation to PWM during and after adrenalin infusion has possible clinical relevance for HIV infected patients during pathological stressful conditions, such as...

  4. Mobile phone

    International Nuclear Information System (INIS)

    Almost the entire Norwegian population has cell phone. The usefulness of the cell phone is great, but can use a mobile phone to health or discomfort? How can exposure be reduced? NRPA follows research and provides advice on mobile phone use. (AG)

  5. Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts

    Directory of Open Access Journals (Sweden)

    Leray Geneviève

    2005-02-01

    Full Text Available Abstract Background Most cancer cells are characterized by mobile lipids visible on proton NMR (1H-NMR, these being comprised mainly of methyl and methylene signals from lipid acyl chains. Erythroleukemia K562 cells show narrow signals at 1.3 and 0.9 ppm, corresponding to mobile lipids (methylene and methyl, respectively, which are reduced when K562 cells are multidrug resistant (MDR. While the significance of the mobile lipids is unknown, their subcellular localization is still a matter of debate and may lie in the membrane or the cytoplasm. In this study, we investigate the role of cholesterol in the generation of mobile lipid signals. Results The proportion of esterified cholesterol was found to be higher in K562-sensitive cells than in resistant cells, while the total cholesterol content was identical in both cell lines. Cholesterol extraction in the K562 wild type (K562wt cell line and its MDR counterpart (K562adr, using methyl-β-cyclodextrin, was accompanied by a rise of mobile lipids in K562wt cells only. The absence of caveolae was checked by searching for the caveolin-1 protein in K562wt and K562adr cells. However, cholesterol was enriched in another membrane microdomain designated as "detergent-insoluble glycosphingomyelin complexes" or rafts. These microdomains were studied after extraction with triton X-100, a mild non-ionic detergent, revealing mobile lipid signals preserved only in the K562wt spectra. Moreover, following perturbation/disruption of these microdomains using sphingomyelinase, mobile lipids increased only in K562wt cells. Conclusion These results suggest that cholesterol and sphingomyelin are involved in mobile lipid generation via microdomains of detergent-insoluble glycosphingomyelin complexes such as rafts. Increasing our knowledge of membrane microdomains in sensitive and resistant cell lines may open up new possibilities in resistance reversion.

  6. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    Science.gov (United States)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  7. Optimization of a Cell Counting Algorithm for Mobile Point-of-Care Testing Platforms

    Directory of Open Access Journals (Sweden)

    DaeHan Ahn

    2014-08-01

    Full Text Available In a point-of-care (POC setting, it is critically important to reliably count the number of specific cells in a blood sample. Software-based cell counting, which is far faster than manual counting, while much cheaper than hardware-based counting, has emerged as an attractive solution potentially applicable to mobile POC testing. However, the existing software-based algorithm based on the normalized cross-correlation (NCC method is too time- and, thus, energy-consuming to be deployed for battery-powered mobile POC testing platforms. In this paper, we identify inefficiencies in the NCC-based algorithm and propose two synergistic optimization techniques that can considerably reduce the runtime and, thus, energy consumption of the original algorithm with negligible impact on counting accuracy. We demonstrate that an AndroidTM smart phone running the optimized algorithm consumes 11.5× less runtime than the original algorithm.

  8. Lineage Extrinsic and Intrinsic Control of Immunoregulatory Cell Numbers by SHIP

    OpenAIRE

    Collazo, Michelle M.; Paraiso, Kim HT; Park, Mi-Young; Hazen, Amy L.; Kerr, William G.

    2012-01-01

    We previously showed that germline or induced SHIP-deficiency expands immunoregulatory cell numbers in T lymphoid and myeloid lineages. We postulated these increases could be interrelated. Here we show that myeloid specific ablation of SHIP leads to expansion of both myeloid-derived suppressor cell (MDSC) and regulatory T cell (Treg) numbers indicating SHIP-dependent control of Treg numbers by a myeloid cell type. Conversely, T lineage specific ablation of SHIP leads to expansion of Treg numb...

  9. Transplantation of mobilized peripheral blood mononuclear cells for peripheral arterial occlusive disease of the lower extremity

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng YANG; Yanxiang WU; Hongmei WANG; Yifeng XU; Bo XU; Xin LU; Yibin ZANG; Fa WANG; Yue ZHANG

    2006-01-01

    Objectives To assess the clinical efficacy, safety, and feasibility of autologous transplantation of mobilized peripheral blood mononuclear cells (PBMNCs) for patients with peripheral arterial occlusive disease (PAOD) of the lower extremity. Methods A total of 152 patients with PAOD of the lower extremity were enrolled into this non-controlled observational study from November 2003 to March 2006. All patients received subcutaneous injections of recombinant human granulocyte colony-stimulating factor (G-CSF, 450600 μg/day) for 5 days in order to mobilize stem/progenitor cells; their PBMNCs were collected and transplanted by multiple intramuscular injections into ischemic limbs. Patients were followed up for at least 12 weeks. Results At 12 weeks, primarymanifestations,including lower limb pain and coldness, were significantly improved in 137 (90.1%) of the patients; limb ulcers improved or healed in 46 (86.8%) of the 53 patients, while 25 of the 48 (47.9%) patients with limb gangrene remained steady or improved. Ankle-brachial index (ABI) improved in 33 (22%) of the cases, and TcPO2 increased in 45 (30%) of the cases. Angiography before treatment, and at 12 weeks after treatment, was performed in 10 of the patients and showed formation of new collateral vessels. No severe adverse effects or complications specifically related to cell transplantation were observed. Conclusion Autologous transplantation of G-CSF-mobilized PBMNCs might be a safe and effective treatment for lower limb ischemic disorder.(J Geriatr Cardiol 2006; 3:178-80.)

  10. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  11. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    Science.gov (United States)

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  12. Down-Regulated MAC30 Expression Inhibits Proliferation and Mobility of Human Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Xu

    2014-05-01

    Full Text Available Background: Gastric cancer is one of the most common cancers in the world. MAC30/Transmembrane protein 97 (TMEM97 is aberrantly up-regulated in many human carcinoma cells. However, the function of MAC30 in gastric carcinoma cells is not studied. Material and Methods: To investigate the function of MAC30 in gastric carcinoma, we used RNA silencing technology to knock down the expression of MAC30 in gastric cancer cells BGC-823 and AGS. Real-time quantitative PCR and Western blot were used to analyze the mRNA level and the related protein expression. The localization of MAC30 and lamellipodia was observed by immunofluorescence. The biological phenotypes of gastric cells were examined by cell proliferation assay, cell cycle analysis, apoptosis assay, cell migration and invasion assay. Results: We found that down-regulation of MAC30 expression efficiently inhibited the proliferation of gastric cancer cells. Furthermore, the mobility of gastric cancer cells was also inhibited by down-regulation of MAC30. Moreover, we found that MAC30 knockdown inhibited AKT phosphorylation and reduced the expression of cyclinB1 and WAVE2. Conclusion: To our knowledge, this is the first report investigating the effect of MAC30 on growth, cell cycle, migration, and invasion in gastric carcinoma cells via suppressing AKT signaling pathway. MAC30 may be a potential therapeutic target for treatment of gastric carcinoma.

  13. Mobilization of CD133+ progenitor cells in patients with acute cerebral infarction.

    Directory of Open Access Journals (Sweden)

    Dominik Sepp

    Full Text Available Progenitor cells (PCs contribute to the endogenous repair mechanism after ischemic events. Interleukin-8 (IL-8 as part of the acute inflammatory reaction may enhance PC mobilization. Also, statins are supposed to alter number and function of circulating PCs. We aimed to investigate PC mobilization after acute ischemic stroke as well as its association with inflammatory markers and statin therapy. Sixty-five patients with ischemic stroke were enrolled in the study. The number of CD133+ PCs was analyzed by flow cytometry. Blood samples were drawn within 24 hours after symptom onset and after 5 days. The number of CD133+ PCs increased significantly within 5 days (p<0.001. We found no correlation between CD133+ PCs and the serum levels of IL-8, IL-6, or C-reactive protein (CRP. Multivariate analysis revealed that preexisting statin therapy correlated independently with the increase of CD133+ PCs (p=0.001. This study showed a mobilization of CD133+ PCs in patients with acute cerebral infarction within 5 days after symptom onset. The early systemic inflammatory response did not seem to be a decisive factor in the mobilization of PCs. Preexisting statin therapy was associated with the increase in CD133+ PCs, suggesting a potentially beneficial effect of statin therapy in patients with stroke.

  14. The cell and the corridor: imprisonment as waiting, and waiting as mobile

    OpenAIRE

    Armstrong, Sarah

    2015-01-01

    Imprisonment is the exemplary symbol of waiting, of being stuck in a space and for a time not of our choosing. This concept of waiting is perfectly represented by the image of the prison cell. In this paper, I contrast the cell with the less familiar imagery of the corridor, a space of prison that evokes and involves mobility. Through this juxtaposition, I aim to show that prisons are as much places of movement as stillness with associated implications for penal power and purpose. I argue tha...

  15. Avemar and Echinacea extracts enhance mobilization and homing of CD34+ stem cells in rats with acute myocardial infarction

    OpenAIRE

    Abdelmonem, Maha; Kassem, Samar H.; Gabr, Hala; Shaheen, Amira A.; Aboushousha, Tarek

    2015-01-01

    Introduction Activation of endogenous stem cell mobilization can contribute to myocardial regeneration after ischemic injury. This study aimed to evaluate the possible role of Avemar or Echinacea extracts in inducing mobilization and homing of CD34+ stem cells in relation to the inflammatory and hematopoietic cytokines in rats suffering from acute myocardial infarction (AMI). Methods AMI was developed by two consecutive subcutaneous injections of isoprenaline (85 mg/kg). AMI rats were either ...

  16. Prevention of diabetic microangiopathy by prophylactic transplant of mobilized peripheral blood mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Bin ZHOU; Xiao-cang CAO; Zhi-hong FANG; Cui-lin ZHENG; Zhi-bo HAN; He REN; Man-chiu POON; Zhong-chao HAN

    2007-01-01

    Aim: To investigate whether the prophylactic local delivery of mobilized periph-eral blood mononuclear cells (M-PBMNC) could prevent peripheral microangio-pathy in diabetic nude mice. Methods: Diabetic nude mice were induced with intraperitoneal injections of streptozotocin. With the time course of diabetes, we detected the capillary and arteriole density of mice adductor muscles by immuno-histopathy. In situ apoptosis was detected by using TdT-mediated dUTP nick end labeling (TUNEL) methods. M-PBMNC were labeled and locally delivered to the adductor muscles. Mononuclear cells were also isolated and cultured in vitro for the detection and counting of endothelial progenitor cells(EPC). Results: Rarefication of capillaries and arterioles, enhanced apoptosis in adductor muscles,and reduced circulating EPC in diabetic nude mice. Prophylactic local delivery of M-PBMNC halted the progression of microvascular rarefaction in hind-limb skel-etal muscles by inhibiting apoptosis. We detected the survival, migration and incorporation of transplanted M-PBMNC into the murine vasculature in vivo. In addition, more EPC were available from M-PBMNC than non-mobilized cells.Conclusion: These results suggested that the prophylactic local delivery of M-PBMNC may represent a novel approach for the treatment of microvascular complications in diabetics.

  17. Methods to study differences in cell mobility during skin wound healing in vitro.

    Science.gov (United States)

    Monsuur, Hanneke N; Boink, Mireille A; Weijers, Ester M; Roffel, Sanne; Breetveld, Melanie; Gefen, Amit; van den Broek, Lenie J; Gibbs, Susan

    2016-05-24

    Wound healing events which occur in humans are difficult to study in animals due to differences in skin physiology. Furthermore there are increasing restrictions in Europe for using animals for testing the therapeutic properties of new compounds. Therefore, in line with the 3Rs (reduction, refinement and replacement of test animals), a number of human in vitro models of different levels of complexity have been developed to investigate cell mobility during wound healing. Keratinocyte, melanocyte, fibroblast and endothelial cell mobility are described, since these are the residential cells which are responsible for restoring the main structural features of the skin. A monolayer scratch assay is used to study random fibroblast and endothelial cell migration in response to EGF and bFGF respectively and a chemotactic assay is used to study directional fibroblast migration towards CCL5. In order to study endothelial sprouting in response to bFGF or VEGF, which involves continuous degradation and resynthesis of a 3D matrix, a fibrin gel is used. Human physiologically relevant tissue-engineered skin models are used to investigate expansion of the stratified, differentiated epidermis (keratinocytes and melanocytes) over a fibroblast populated dermis and also to study migration and distribution of fibroblasts into the dermis. Together these skin models provide a platform for testing the mode of action of novel compounds for enhanced and scar free wound healing. PMID:26903411

  18. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    Science.gov (United States)

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-01

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase. PMID:26739109

  19. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 1013 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  20. Mobile-to-mobile wireless channels

    CERN Document Server

    Zajic, Alenka

    2013-01-01

    Present-day mobile communications systems can be classified as fixed-to-mobile because they allow mobility on only one end (e.g. the mobile phone to a fixed mobile operator's cell tower). In answer to the consumer demand for better coverage and quality of service, emerging mobile-to-mobile (M-to-M) communications systems allow mobile users or vehicles to directly communicate with each other. This practical book provides a detailed introduction to state-of-the-art M-to-M wireless propagation. Moreover, the book offers professionals guidance for rapid implementation of these communications syste

  1. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization.

    Science.gov (United States)

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg(-1) day(-1)), amlodipine (2.5 mgkg(-1) day(-1)), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  2. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Jiayin Sun

    2016-01-01

    Full Text Available Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI through improving bone marrow endothelial progenitor cell (EPC mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1, amlodipine (2.5 mgkg−1 day−1, or vehicle by gavage (n=20 per group. Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5. Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this.

  3. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies

  4. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga A. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Anderson, Robin L. [The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Russell, Prudence A. [Department of Anatomical Pathology, St. Vincent Hospital, Fitzroy, VIC (Australia); Ashley Cox, R. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ivashkevich, Alesia [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Laboratory of DNA Repair and Genomics, Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, VIC (Australia); Swierczak, Agnieszka; Doherty, Judy P. [Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Jacobs, Daphne H.M. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Smith, Jai [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Siva, Shankar; Daly, Patricia E. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); and others

    2014-02-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies.

  5. Connectivity in Later Life: The Declining Age Divide in Mobile Cell Phone Ownership

    OpenAIRE

    Chris Gilleard; Ian Jones; Paul Higgs

    2015-01-01

    In recent decades changes in social connectivity have become key features in the changing contexts of later life. Communities of propinquity no longer seem to be as determining of social relationships as they once were. Mobile cell phone technology and the Internet have redefined what it means to ‘keep in touch’. Some authors have argued that these new forms of connectivity have created a ‘digital divide’ between those who have become active adopters of these technologies and those wh...

  6. The smart IV stand design through human tracking mobile robot system by CDS cell

    Science.gov (United States)

    Jo, Seong-Hyeon; Choe, Jong-Hun; Seo, Suk-Hyun; Kim, Won-Hoe; Lee, Hong-Kyu; Park, Se-Ho

    2015-03-01

    Vision-based recognition of the object as a general interface gives us high cost and complicated problem. This research suggests human tracking system by Arduino, and Laser-CdS cell system track wire that pass laser line. In this paper, we review existing literature on application systems of recognition which involves many interdisciplinary studies. We conclude that our method can only reduce cost, but is easy way to trace people's location with the use of wire. Furthermore, we apply several recognition systems including CdS-based mobile robot that is applied IV stand used at the hospital effectively.

  7. Evaluation of the Interference of the Microwave Radiation Emitted from GSM Mobile Phones on the Performance of Cell Counters

    Directory of Open Access Journals (Sweden)

    Bahaedini ,N.

    2009-01-01

    Full Text Available Background and Objectives: Incidents related to electromagneticinterference with medical devices have been reported over the past decades.It has also been indicated that the microwave radiation emitted from mobilephones interferes with the operation of medical devices; therefore, this studyaimed at testing the interference by GSM mobile phones with cell counters.Material and Methods: We did this experimental Study on thirty-twoheparinized blood samples of 32 healthy individuals Selected randomly. TheCell Counting was Carried out in the presence of Electro magnetic fieldproduced by three Cell phones with different levels of SAR (Low,intermediate and High and without being in electromagnetic field.Statistical tests were used to analyze the data (p<0.05.Results: Microwave radiation emitted from cell phones, regardless of theirSAR, interferes with the proper operation of cell Counter. This interferenceleads to false Counting.Conclusion: As mobile phones emit microwave radiation in an isotropicmanner, keeping mobile phones at a safe distance, 15cm, from medicalequipments will be necessary. These observations confirm the need for somerestrictions of mobile phone use in hospitals and medical laboratories.Key words: Interference, Cell Counters, Mobile Phone, MicrowaveRadiation

  8. Eosinophils Modulate CD4+ T Cell Responses via High Mobility Group Box-1 in the Pathogenesis of Asthma

    OpenAIRE

    Shim, Eun-Jin; Chun, Eunyoung; Lee, Hyun-Seung; Bang, Bo-Ram; Cho, Sang-Heon; Min, Kyung-Up; Park, Heung-Woo

    2014-01-01

    Eosinophils have been reported to modulate T cell responses. Previously, we reported that high-mobility group box 1 protein (HMGB1) played a key role in the pathogenesis of asthma. This study was conducted to test our hypothesis that eosinophils could modulate T cell responses via HMGB1 in the pathogenesis of asthma characterized by eosinophilic airway inflammation. We performed in vitro experiments using eosinophils, dendritic cells (DCs), and CD4+ T cells obtained from a murine model of ast...

  9. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  10. VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Sharon Lim

    2014-10-01

    Full Text Available Molecular mechanisms underlying tumor VEGF-induced host anemia and bone marrow cell (BMC mobilization remain unknown. Here, we report that tumor VEGF markedly induced sinusoidal vasculature dilation in bone marrow (BM and BMC mobilization to tumors and peripheral tissues in mouse and human tumor models. Unexpectedly, anti-VEGFR2, but not anti-VEGFR1, treatment completely blocked VEGF-induced anemia and BMC mobilization. Genetic deletion of Vegfr2 in endothelial cells markedly ablated VEGF-stimulated BMC mobilization. Conversely, deletion of the tyrosine kinase domain from Vegfr1 gene (Vegfr1TK−/− did not affect VEGF-induced BMC mobilization. Analysis of VEGFR1+/VEGFR2+ populations in peripheral blood and BM showed no significant ratio difference between VEGF- and control tumor-bearing animals. These findings demonstrate that vascular dilation through the VEGFR2 signaling is the mechanism underlying VEGF-induced BM mobilization and anemia. Thus, our data provide mechanistic insights on VEGF-induced BMC mobilization in tumors and have therapeutic implications by targeting VEGFR2 for cancer therapy.

  11. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma.

    LENUS (Irish Health Repository)

    Laing, A J

    2012-02-03

    Postnatal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells (EPC) migrate, differentiate, and incorporate into the nacent endothelium contributing to physiological and pathological neovascularization, has stimulated much interest. Its contribution to tumor nonvascularization, wound healing, and revascularization associated with skeletal and cardiac muscles ischaemia is established. We evaluated the mobilization of EPCs in response to musculoskeletal trauma. Blood from patients (n = 15) following AO type 42a1 closed diaphyseal tibial fractures was analyzed for CD34 and AC133 cell surface marker expression. Immunomagnetically enriched CD34+ mononuclear cell (MNC(CD34+)) populations were cultured and examined for phenotypic and functional vascular endothelial differentiation. Circulating MNC(CD34+) levels increased sevenfold by day 3 postinjury. Circulating MNC(AC133+) increased 2.5-fold. Enriched MNC(CD34+) populations from day 3 samples in culture exhibited cell cluster formation with sprouting spindles. These cells bound UEA-1 and incorporated fluorescent DiI-Ac-LDL intracellularily. Our findings suggest a systemic provascular response is initiated in response to musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of fracture healing.

  12. Mobilization of hematopoietic progenitor cells from allogeneic healthy donors using a new biosimilar G-CSF (Zarzio®).

    Science.gov (United States)

    Antelo, María Luisa; Zabalza, Amaya; Sánchez Antón, María Piva; Zalba, Saioa; Aznar, Mariví; Mansilla, Cristina; Ramírez, Natalia; Olavarría, Eduardo

    2016-02-01

    Peripheral blood progenitor cells (PBPCs) have become the major source of hematopoietic progenitor cells for allogeneic transplantation. In February 2008, Zarzio® was approved by the European Medicine Agency for PBPCs mobilization, but this authorization was not based in trials analyzing safety and efficacy for PBPCs mobilization. Since August 2011, Zarzio® has been used at our institution for PBPCs mobilization. In total 36 healthy family donors underwent PBPCs mobilization, 18 with Neupogen® and 18 with Zarzio®. Donor characteristics were equivalent between groups, and no severe adverse effects were registered in the Zarzio® group. The number of CD34 cells collected/Kg recipient body weight was 6.7 × 10(6) (3.8-11.1) in the Zarzio® group versus 8.4 × 10(6) (5.6-16.6) in the Neupogen® group (P = 0.04). We collected the minimal target cell dose (2 × 10(6) /kg) in all donors from each group and no significant differences were found in the collection of the optimal cell dose (5 × 10(6) /kg) between groups, although 3/18 (16.6%) donors that received Zarzio® failed to mobilize the optimal cell dose compared with 0% in the Neupogen® group. A total of 35 patients proceeded to transplantation (17 in the Zarzio® and 18 in the Neupogen® groups, respectively). Platelet and neutrophil median time to engraftment was comparable between the two groups. Our retrospective study supports the conclusion that Zarzio® mobilization of PBPCs in healthy donors is safe but perhaps not as effective as the reference Neupogen. However, more prospective trials are required to definitively asses the safety and efficacy of G-CSF biosimilars for PBPCs mobilization in healthy donors. PMID:26011178

  13. Stem Cell Mobilization with G-CSF versus Cyclophosphamide plus G-CSF in Mexican Children

    Directory of Open Access Journals (Sweden)

    José Eugenio Vázquez Meraz

    2016-01-01

    Full Text Available Fifty-six aphaereses were performed in 23 pediatric patients with malignant hematological and solid tumors, following three different protocols for PBPC mobilization and distributed as follows: A: seventeen mobilized with 4 g/m2 of cyclophosphamide (CFA and 10 μg/kg/day of granulocyte colony stimulating factor (G-CSF, B: nineteen with CFA + G-CSF, and C: twenty only with G-CSF when the WBC count exceeded 10 × 109/L. The average number of MNC/kg body weight (BW/aphaeresis was 0.4 × 108 (0.1–1.4, 2.25 × 108 (0.56–6.28, and 1.02 × 108 (0.34–2.5 whereas the average number of CD34+ cells/kg BW/aphaeresis was 0.18 × 106/kg (0.09–0.34, 1.04 × 106 (0.19–9.3, and 0.59 × 106 (0.17–0.87 and the count of CFU/kg BW/aphaeresis was 1.11 × 105 (0.31–2.12, 1.16 × 105 (0.64–2.97, and 1.12 × 105 (0.3–6.63 in groups A, B, and C, respectively. The collection was better in group B versus group A (p=0.007 and p=0.05, resp. and in group C versus group A (p=0.08 and p=0.05, resp.. The collection of PBPCs was more effective in the group mobilized with CFM + G-CSF when the WBC exceeded 10 × 103/μL in terms of MNC and CD34+ cells and there was no toxicity of the chemotherapy.

  14. Infection Mobilizes Hematopoietic Stem Cells through Cooperative NOD-like Receptor and Toll-like Receptor Signaling

    OpenAIRE

    Burberry, Aaron; Zeng, Melody Y.; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J; Núñez, Gabriel

    2014-01-01

    Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilized for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin−/lowScal1+cKit+) was di...

  15. 77 FR 22331 - Submission for OMB Review; Comment Request; Solar Cell: A Mobile UV Manager for Smart Phones...

    Science.gov (United States)

    2012-04-13

    ... published in the Federal Register on January 27, 2012 (77 FR 4334) and allowed 60-days for public comment... phone application, Solar Cell, which uses smart phone technology to aid users in protecting their skin... attributable to vitamin D deficiency. The Solar Cell mobile smart phone application combines personal...

  16. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    Science.gov (United States)

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  17. Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in Drosophila somatic cells.

    Directory of Open Access Journals (Sweden)

    Andrew T Schuster

    2013-10-01

    Full Text Available Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1 higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2 increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin

  18. Embodied Germ Cell at Work: Building an Expansive Concept of Physical Mobility in Home Care

    Science.gov (United States)

    Engestrom, Yrjo; Nummijoki, Jaana; Sannino, Annalisa

    2012-01-01

    This article presents a process of collective formation of a new concept of mobility between home care workers and their elderly clients, who are at risk of losing physical mobility and functional capacity. A new tool called mobility agreement was introduced to facilitate the inclusion of regular mobility exercises in home care visits and in the…

  19. Measuring the complete cross-cell carrier mobility distributions in bulk heterojunction solar cells

    Science.gov (United States)

    Seifter, Jason; Sun, Yanming; Choi, Hyosung; Lee, Byoung Hoon; Heeger, Alan

    2015-03-01

    Carbon nanotube-enabled, vertical, organic field effect transistors (CN-VFETs) based on the small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have demonstrated high current, low-power operation suitable for driving active matix organic light emitting diode (AMOLED) displays. This performance is achieved without the need for costly high-resolution patterning, despite the low mobility of the organic semiconductor, by employing sub-micron channel widths, defined in the vertical devices by the thickness of the semiconducting layer. Replacing the thermally evaporated small molecule semiconductor with a solution-processed polymer would possibly further simplify the fabrication process and reduce manufacturing cost. Here we investigate several polymer systems as wide bandgap semiconducting channel layers for potentially air stable and transparent CN-VFETs. The field effect mobility and optical transparency of the polymer layers are determined, and the performance and air stability of CN-VFET devices are measured. A. S. gratefully acknowledges support from the National Science Foundation under DMR-1156737.

  20. Cell broadcast trials in The Netherlands: Using mobile phone technology for citizens' alarming

    International Nuclear Information System (INIS)

    In emergency situations authorities need to warn the public. The conventionally used method for warning citizens in The Netherlands is the use of a siren. Modern telecommunication technologies, especially the use of text-based features of mobile phones, have great potential for warning the public. In the years 2005-2007 cell broadcast was tested during several large-scale field trials with citizens in The Netherlands. One of the questions was to determine the penetration of cell broadcast for citizens' alarming. This article argues that the definition of penetration in the light of warning citizens in case of emergencies should include the citizens' responses to warning messages. In addition, the approach to determining the penetration, the data and validity issues regarding these data is discussed. The trials have shown cell broadcast has potential to become an effective citizens' alarming technology. This however requires the entire technological and organisational chain of the warning system to function correctly. Attention is required to network management, handset improvements and correct communication to the public about the conditions under which a cell broadcast message can be received. The latter includes managing realistic expectations including circumstances in which cell broadcast will not reach a citizen.

  1. Evaluation of the Therapeutic Potential of Bone Marrow-Derived Myeloid Suppressor Cell (MDSC) Adoptive Transfer in Mouse Models of Autoimmunity and Allograft Rejection

    OpenAIRE

    Drujont, Lucile; Carretero-Iglesia, Laura; Bouchet-Delbos, Laurence; Beriou, Gaelle; Merieau, Emmanuel; Hill, Marcelo; Delneste, Yves; Cuturi, Maria Cristina; Louvet, Cedric

    2014-01-01

    Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the...

  2. Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy

    OpenAIRE

    Mundy-Bosse, Bethany L.; Young, Gregory S.; Bauer, Todd; Binkley, Elaine; Bloomston, Mark; Bill, Matthew A.; Bekaii-Saab, Tanios; Carson, William E; Lesinski, Gregory B

    2011-01-01

    Interferon-alpha (IFN-α) promotes anti-tumor immunity through its actions on immune cells. We hypothesized that elevated percentages of myeloid-derived suppressor cells (MDSC) and increased pro-inflammatory cytokines in peripheral blood would be associated with impaired response to IFN-α in patients with gastrointestinal (GI) malignancies. This study evaluated relationships between plasma IL-6, IL-10, circulating MDSC subsets, and IFN-α-induced signal transduction in 40 patients with GI malig...

  3. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Clarissa G. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Duke University Medical Center, Durham, North Carolina (United States); Plentz, Rodrigo D.M. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Dipp, Thiago [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Salles, Felipe B. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Giusti, Imarilde I.; Sant' Anna, Roberto T.; Eibel, Bruna; Nesralla, Ivo A.; Markoski, Melissa [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Beyer, Nance N. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Kalil, Renato A. K., E-mail: kalil.pesquisa@gmail.com [Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2013-08-15

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9{sup th} and 27{sup th} was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9{sup th} and 27{sup th}days.

  4. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9th and 27th was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9th and 27thdays

  5. Mobile cell-phones (M-phones in telemicroscopy: increasing connectivity of isolated laboratories

    Directory of Open Access Journals (Sweden)

    Missoni Eduardo

    2009-06-01

    Full Text Available Abstract Background The development of modern information telecommunication (ITC technology and its use in telemedicine plays an increasingly important role in facilitating access to some diagnostic services even to people living in the most remote areas. However, physical and economical constraints in the access to broad band data-transmission network, still represent a considerable obstacle to the transmission of images for the purpose of tele-pathology. Methods Indifferently using m-phones of different brands, and a variety of microscopic preparations, images were taken without the use of any adaptor simply approaching the lens of the mobile cell phone camera to the ocular of common optical microscopes, and subsequently sent via Multimedia Messaging Services (MMS to distant reference centres for tele-diagnosis. Access to MMS service was reviewed with specific reference to the African information communication technology (ICT market. Results Images of any pathologic preparation could be captured and sent over the mobile phone with an MMS, without being limited by appropriate access to the internet for transmission (i.e. access to broad-band services. The quality of the image was not influenced by the brand or model of the mobile-phone used, but only by its digital resolution, with any resolution above 0.8 megapixel resulting in images sufficient for diagnosis. Access to MMS services is increasingly reaching remote disadvantaged areas. Current penetration of the service in Africa was mapped appearing already available in almost every country, with penetration index varying from 1.5% to 92.2%. Conclusion The use of otherwise already widely available technologies, without any need for adaptors or otherwise additional technology, could significantly increase opportunities and quality diagnostics while lowering costs and considerably increasing connectivity between most isolated laboratories and distant reference center.

  6. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    OpenAIRE

    Williams, Brett D.

    2010-01-01

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called “Mobile Electricity” is characterized. Mobile Electricity (Me-) redefines H2FCVs as innovative products able to import and export electricity across the traditional vehicle boundary. Such vehicles could provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. T...

  8. MURINE MOBILIZED PERIPHERAL BLOOD STEM CELLS HAVE A LOWER CAPACITY THAN BONE MARROW TO INDUCE MIXED CHIMERISM AND TOLERANCE

    OpenAIRE

    Koporc, Zvonimir; Pilat, Nina; Nierlich, Patrick; Blaha, Peter; Bigenzahn, Sinda; Pree, Ines; Selzer, Edgar; Sykes, Megan; Muehlbacher, Ferdinand; Wekerle, Thomas

    2008-01-01

    Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T cell depletion. The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus ...

  9. Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells

    DEFF Research Database (Denmark)

    Cheek, T R; Thastrup, Ole

    1989-01-01

    Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3......+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the...... sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from...

  10. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination

    Science.gov (United States)

    Samanta, Jayshree; Grund, Ethan M.; Silva, Hernandez M.; Lafaille, Juan J.; Fishell, Gord; Salzer, James L.

    2016-01-01

    Summary Enhancing repair of myelin is an important, but still elusive therapeutic goal in many neurological disorders1. In Multiple Sclerosis (MS), an inflammatory demyelinating disease, endogenous remyelination does occur but is frequently insufficient to restore function. Both parenchymal oligodendrocyte progenitor cells (OPCs) and endogenous adult neural stem cells (NSCs) resident within the subventricular zone (SVZ) are known sources of remyelinating cells2. Here, we characterize the contribution to remyelination of a subset of adult NSCs, identified by their expression of Gli1, a transcriptional effector of the Sonic Hedgehog (Shh) pathway. We show that these cells are recruited from the SVZ to populate demyelinated lesions in the forebrain but never enter healthy, white matter tracts. Unexpectedly, recruitment of this pool of NSCs, and their differentiation into oligodendrocytes, is significantly enhanced by genetic or pharmacological inhibition of Gli1. Importantly, complete inhibition of canonical hedgehog signaling was ineffective indicating that Gli1’s role in both augmenting hedgehog signaling and retarding myelination is specialized. Indeed, inhibition of Gli1 improves the functional outcome in a relapsing/remitting model of experimental autoimmune encephalomyelitis (RR-EAE) and is neuroprotective. Thus, endogenous NSCs can be mobilized for the repair of demyelinated lesions by inhibiting Gli1, identifying a new therapeutic avenue for the treatment of demyelinating disorders. PMID:26416758

  11. Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Michael Wolf

    2014-01-01

    Full Text Available High mobility group box protein-1 (HMGB1 is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.

  12. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    OpenAIRE

    Lusheng Wang; Yamei Wang; Zhizhong Ding; Xiumin Wang

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. S...

  13. The more, the less: age and chemotherapy load are predictive of poor stem cell mobilization in patients with hematologic malignancies

    Institute of Scientific and Technical Information of China (English)

    YANG Shen-miao; CHEN Huan; CHEN Yu-hong; ZHU Hong-hu; ZHAO Ting; LIU Kai-yan

    2012-01-01

    Background Intensive treatment such as autologous peripheral blood stem cell (PBSC) transplantation is an important therapeutic strategy in many hematologic malignancies.A number of factors have been reported to impact PBSC mobilization,but the predictive factors varied from one study to another.This retrospective study assessed our current mobilization and collection protocols,and explored the factors predictive of PBSC mobilization in patients with hematologic malignancies.Methods Data of 64 consecutive patients with hematologic malignancies (multiple myeloma,n=22; acute leukemia,n=27; lymphoma,n=15) who underwent PBSC mobilization for over 1 year were analyzed.Four patients with response to treatment of near complete remission or better were administered granulocyte colony-stimulating factor (G-CSF) to mobilize PBSCs.Sixty patients received G-CSF followed by chemotherapy mobilizing regimens.Poor mobilization (PM) was defined as when ≤2.0×106 CD34+ cells/kg body weight were collected within three leukapheresis procedures.Results The incidence of PM at the first mobilization attempt was 19% (12/64).The PM group was older than the non-PM group (median age,51 vs.40 years; P=0.013).In univariate analysis,there were no significant differences in gender,diagnosis,and body weight between the PM and non-PM groups.A combination of chemotherapy and G-CSF was more effective than G-CSF alone as a mobilizing regimen (P=0.019).Grade Ⅲ or Ⅳ hematopoietic toxicity of chemotherapy had no significant effect on the mobilization efficacy.Supportive care and the incidence of febrile neutropenia were not significantly different between the two groups.In multivariate analysis,age (odds ratio (OR),9.536;P=-0.002) and number of previous chemotherapy courses (OR 3.132; P=0.024) were two independent negative predictive factors for CD34+ cell yield.PM patients could be managed well by remobilization.Conclusion Older age and a heavy load of previous chemotherapy are the negative

  14. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis

    DEFF Research Database (Denmark)

    Zohlnhofer, D.; Dibra, A.; Koppara, T.;

    2008-01-01

    OBJECTIVES: The objective of this meta-analysis was to evaluate the effect of stem cell mobilization by granulocyte colony-stimulating factor (G-CSF) on myocardial regeneration on the basis of a synthesis of the data generated by randomized, controlled clinical trials of G-CSF after acute...... myocardial infarction (AMI). BACKGROUND: Experimental studies and early-phase clinical trials suggest that stem cell mobilization by G-CSF may have a positive impact on cardiac regeneration after AMI. The role of G-CSF in patients with AMI remains unclear considering the inconsistent results of several...

  15. Propranolol Restricts the Mobility of Single EGF-Receptors on the Cell Surface before Their Internalization

    Science.gov (United States)

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A. T.

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process. PMID:24349439

  16. Effect of staurosporine on the mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study

    International Nuclear Information System (INIS)

    Lung cancer is one of the most malignant tumors, representing a significant threat to human health. Lung cancer patients often exhibit tumor cell invasion and metastasis before diagnosis which often render current treatments ineffective. Here, we investigated the effect of staurosporine, a potent protein kinase C (PKC) inhibitor on the mobility and invasiveness of human lung adenocarcinoma A549 cells. All experiments were conducted using human lung adenocarcinoma A549 cells that were either untreated or treated with 1 nmol/L, 10 nmol/L, or 100 nmol/L staurosporine. Electron microscopy analyses were performed to study ultrastructural differences between untreated A549 cells and A549 cells treated with staurosporine. The effect of staurosporine on the mobility and invasiveness of A549 was tested using Transwell chambers. Western blot analyses were performed to study the effect of staurosporine on the levels of PKC-α, integrin β1, E-cadherin, and LnR. Changes in MMP-9 and uPA levels were identified by fluorescence microscopy. We demonstrated that treatment of A549 cells with staurosporine caused alterations in the cell shape and morphology. Untreated cells were primarily short spindle- and triangle-shaped in contrast to staurosporine treated cells which were retracted and round-shaped. The latter showed signs of apoptosis, including vacuole fragmentation, chromatin degeneration, and a decrease in the number of microvilli at the surface of the cells. The A549 cell adhesion, mobility, and invasiveness significantly decreased with higher staurosporine concentrations. E-cadherin, integrin β1, and LnR levels changed by a factor of 1.5, 0.74, and 0.73, respectively compared to untreated cells. In addition, the levels of MMP-9 and uPA decreased in cells treated with staurosporine. In summary, this study demonstrates that staurosporine inhibits cell adhesion, mobility, and invasion of A549 cells. The staurosporine-mediated inhibition of PKC-α, induction of E

  17. Green heterogeneous small-cell networks: Toward reducing the CO2 emissions of mobile communications industry using uplink power adaptation

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-06-01

    Heterogeneous small cell networks, or Het- SNets, are considered as a standard part of future mobile networks in which multiple lowpower low-cost user deployed base stations complement the existing macrocell infrastructure. This article proposes an energy-efficient deployment of the cells where the small cell base stations are arranged around the edge of the reference macrocell, and the deployment is referred to as cell-on-edge (COE) deployment. The proposed deployment ensures an increase in the network spectral and energy efficiency by facilitating cell edge mobile users with small cells. Moreover, COE deployment guarantees reduction of the carbon footprint of mobile operations by employing adaptive uplink power control. In order to calibrate the reduction in CO2 emissions, this article quantifies the ecological and associated economical impacts of energy savings in the proposed deployment. Simulation results quantify the improvements in CO2 emissions and spectral and energy gains of the proposed COE deployment compared to macro-only networks and typical small cell deployment strategies where small cells are randomly deployed within a given macrocell. © 2013 IEEE.

  18. Protective effects of transplanted and mobilized bone marrow stem cells on mice with severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fei Cui; Zeng-Liang Bai

    2003-01-01

    AIM: To evaluate the protective effects of transplanted and mobilized bone marrow stem cells (BMSCs) on mice with severe acute pancreatitis (SAP) and to probe into their possible mechanisms.METHODS: A mouse model of SAP induced by intraparitoneal injections of L-arginine was employed in the present study.Two hundred female Balb/c mice weighing 18-22 g were randomly assigned into 4 groups. Group A was the stem cell mobilized group treated by injection of granulocytecolony stimulating factor (G-CSF) into mice for 4 days at a dose of 40 μg@kg-1@d-1 before induction of SAP. Group B was the group of BMSCs transplantation, in which the mice were given the isolated BMSCs via the tail vein 4 days prior to induction of SAP. Group C served as the model control and only SAP was induced. The mice without induction of SAP in group D acted as the normal control. At the time of animal sacrifice at 24, 48 and 72 h after induction of SAP, blood samples were obtained and prepared to detect serum amylase, while the abdominal viscera were examined both grossly and microscopically for the observation of pathological changes.RESULTS: The mortality of mice in the model control, groups A and B was 34%, 8% and 10% respectively within 72 h after induction of SAP. The serum level of amylase in the model control was significantly increased at all time points after induction of SAP as compared with that of the normal control (P<0.05-0.01). When the mice were pretreated with BMSCs' transplantation or G-CSF injection, their serum level of amylase was significantly reduced at 48 h and 72 h after induction of SAP in comparison with that of the model control (P<0.05-0.01). In accordance with these observations,both gross and microscopic examinations revealed that the pathological changes of SAP in mice pretreated with BMSCs transplantation or G-CSF injection were considerably attenuated as compared with those in the model control at all observed time points.CONCLUSION: Both transplanted

  19. Mobile Commerce

    OpenAIRE

    Maria Cristina Enache

    2016-01-01

    Mobile commerce, or m-commerce, refers to the use of wireless digital devices to enable transactions on the Web. Described more fully in Chapter 3, m-commerce involves the use of wireless networks to connect cell phones, handheld devices such Blackberries, and personal computers to the Web. Once connected, mobile consumers can conduct transactions, including stock trades, in-store price comparisons, banking, travel reservations, and more.

  20. M-Learning, Mobile Experimentation and Telepresence with Cell Phones and PDAs

    OpenAIRE

    Andreas Bischoff

    2009-01-01

    Mobile devices such as notebooks and PDAs are very interesting tools for web-based teaching and distant teaching today. We have adapted Web-based remote laboratory environments to mobile devices like PDAs and smartphones to remotely control a Pioneer 3 AT mobile robot.

  1. M-Learning, Mobile Experimentation and Telepresence with Cell Phones and PDAs

    Directory of Open Access Journals (Sweden)

    Andreas Bischoff

    2009-01-01

    Full Text Available Mobile devices such as notebooks and PDAs are very interesting tools for web-based teaching and distant teaching today. We have adapted Web-based remote laboratory environments to mobile devices like PDAs and smartphones to remotely control a Pioneer 3 AT mobile robot.

  2. Mobilized progenitor cells as a bridging therapy for radiation casualties: a brief review of tocopherol succinate-based approaches.

    Science.gov (United States)

    Singh, Vijay K; Singh, Pankaj K; Wise, Stephen Y; Seed, Thomas M

    2011-07-01

    Nuclear detonation through either military or terrorist action would most likely lead to a mass-casualty scenario involving victims with varying degrees of exposure to ionizing radiation. As a result of radiation injury to the hematopoietic system, victims would suffer from a lack of red blood cells that deliver oxygen, immune cells that detect and eliminate infectious agents, and blood platelets that promote blood clot formation. In part, these symptoms are generally referred to as acute radiation syndrome (ARS). While some victims of moderate to high levels of radiation will be beyond saving, most will have received enough radiation to injure but not kill their bone marrow cells completely. Such people will recover from their injuries but face a 30-60day period during which they cannot fully fight infections and are prone to uncontrolled bleeding and anemia. To keep them alive until their hematopoietic system recovers, they must receive supportive care. Recently, using experimental animal models of ARS, transfusion of myeloid progenitor cells have been tried as a bridging therapy for radiation-exposed animals. Such cells have been shown to be effective in protecting animals exposed to lethal doses of radiation. These myeloid progenitors (along with of other hematopoietic progenitor cell types) can be mobilized out of the bone marrow into the blood for the reconstitution of hematopoiesis. This review discusses various approaches to the mobilization of progenitors using different mobilizing agents, and their utility as a bridging therapy for radiation casualties. We suggest that α-tocopherol succinate (TS) is an optimal mobilizing agent for progenitors. The extent of progenitor mobilization TS elicits in experimental mice is comparable to clinically used drugs such as recombinant granulocyte-colony stimulating factor rhG-CSF/Neupogen® and the bicyclam AMD3100 (plerixafor/Mozobil); therefore, we propose that TS be considered for further translational development

  3. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.

    Science.gov (United States)

    Zhang, Jin-Sheng; Zhang, Bao-Xia; Du, Mei-Mei; Wang, Xiao-Ya; Li, Wei

    2016-02-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  4. Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants

    OpenAIRE

    Sen, Debasish; Forrest, Luette; Kepler, Thomas B.; Parker, Ian; Cahalan, Michael D.

    2010-01-01

    Dendritic cells (DCs) initiate and polarize adaptive immune responses toward varying functional outcomes. By means of intravital two-photon microscopy, we report that dermal dendritic cells (DDCs) and Langerhans cells (LCs) are differentially mobilized during contact sensitization and by adjuvants such as unmethylated CpG oligonucleotide (CpG) and LPS that induce T helper type 1 (Th1) responses, or papain that induces T helper type 2 (Th2) responses. In ear pinna, contact sensitization, CpG, ...

  5. Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing

    Science.gov (United States)

    Lv, Yajie; He, Tao; An, Yulin; Tang, Zhangui; Deng, Zhihong

    2015-01-01

    Exogenously infused mesenchymal stem cells (MSCs) are thought to migrate to injury site through peripheral blood stream and participate in tissue repair. However, whether and how endogenous bone marrow MSCs mobilized to circulating and targeted to tissue injury has raised some controversy, and related studies were restricted by the difficulty of MSCs identifying in vivo. Nestin, a kind of intermediate filament protein initially identified in neuroepithelial stem cells, was recently reported as a credible criteria for MSCs in bone marrow. In this study, we used a green fluorescent protein (GFP) labeled bone marrow replacement model to trace the nestin positive bone marrow derived cells (BMDCs) of skin defected-mice. We found that after skin injured, numbers of nestin+ cells in peripheral blood and bone marrow both increased. A remarkable concentration of nestin+ BMDCs around skin wound was detected, while few of these cells could be observed in uninjured skin or other organs. This recruitment effect could not be promoted by granulocyte colony-stimulating factor (G-CSF), suggests a different mobilization mechanism from ones G-CSF takes effect on hematopoietic cells. Our results proposed nestin+ BMDCs as mobilized candidates in skin injury repair, which provide a new insight of endogenous MSCs therapy. PMID:26633897

  6. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    OpenAIRE

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G.

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor gr...

  7. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling.

    Science.gov (United States)

    Burberry, Aaron; Zeng, Melody Y; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J; Núñez, Gabriel

    2014-06-11

    Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilize for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin(-/low)Sca1+cKit+) was diminished in TLR4-deficient and RIPK2-deficient mice, implicating TLRs and cytosolic NOD1/NOD2 signaling in the process. Accordingly, dual stimulation of NOD1 and TLR4 in radio-resistant cells alone was sufficient to mobilize HSCs, while TLR4 expression on HSCs was dispensable. Mechanistically, TLR4 and NOD1 synergistically induced granulocyte colony-stimulating factor (G-CSF), which was required for extramedullary HSC accumulation. Mobilized HSCs and progenitor cells gave rise to neutrophils and monocytes and contributed to limiting secondary infection. PMID:24882704

  8. Staging Mobilities / Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2015-01-01

    people are ‘staging themselves’ (from below). Staging mobilities is a dynamic process between ‘being staged’ (for example, being stopped at traffic lights) and the ‘mobile staging’ of interacting individuals (negotiating a passage on the pavement). Staging mobilities is about the fact that mobility is...

  9. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    Science.gov (United States)

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  10. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs in human cells.

    Directory of Open Access Journals (Sweden)

    Annabelle Becker

    Full Text Available Ionizing radiation induces DNA double strand breaks (DSBs which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.

  11. Outcomes and costs of autologous stem cell mobilization with chemotherapy plus G-CSF versus G-CSF alone

    OpenAIRE

    Sung, Anthony D.; Grima, Daniel T; Bernard, Lisa M.; Brown, Stephen; Carrum, George; Holmberg, Leona; Horwitz, Mitchell E.; Liesveld, Jane L.; Kanda, Junya; McClune, Brian; Shaughnessy, Paul; Tricot, Guido J.; Nelson J Chao

    2013-01-01

    Chemotherapy plus granulocyte colony stimulating factor (G-CSF) (C+G) and G-CSF alone are two of the most common methods of mobilizing CD34+ cells for autologous hematopoietic stem cell transplantation (AHSCT). In order to compare and determine real-world outcomes and costs of these strategies, we performed a retrospective study of 226 consecutive patients at 11 medical centers (64 lymphoma, 162 multiple myeloma), of whom 55% and 66% received C+G. Patients with C+G collected more CD34+ cells/...

  12. Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells

    OpenAIRE

    Venkatesan, Nalini; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi; Deepa, Murali; Khetan, Vikas; Reddy, M. Ashwin

    2012-01-01

    Aim To explore the molecular mechanisms deregulated by high mobility group protein A2 (HMGA2) gene silencing in retinoblastoma (RB) cells. Methods Synthetic anti-HMGA2 short interfering RNA (siRNA) was used to silence the HMGA2 gene in cultured Y79 RB cells that were subjected to whole genome microarray analysis. The expression of differentially regulated key genes was confirmed with quantitative reverse-transcriptase polymerase chain reaction (qRT–PCR) in post-silenced RB cell lines (Y79 and...

  13. High electron mobility ZnO film for high-performance inverted polymer solar cells

    International Nuclear Information System (INIS)

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance

  14. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Natalia G. Rocha

    2015-01-01

    Full Text Available Increased levels of adhesion molecules or metalloproteinases (MMPs may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS. We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P≤0.03. After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P0.05. In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  15. High electron mobility ZnO film for high-performance inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng, E-mail: fhuang@fjirsm.ac.cn; Ding, Kai [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian, 350002 (China)

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  16. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Ivana Caputo

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+ homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS: We studied Ca(2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+ from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+ from the endoplasmic reticulum (ER and mitochondria, whereas peptide 57-68 mobilized Ca(2+ only from mitochondria. We also found that gliadin peptide-induced Ca(2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS: By inducing Ca(2+ mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.

  17. Bone Marrow Plasma Cell Assessment before Peripheral Blood Stem Cell Mobilization in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sung-Eun Lee

    2014-01-01

    Full Text Available The current definition of complete response (CR in multiple myeloma (MM includes negative serum and urine immunofixation (IFE tests and <5% bone marrow plasma cells (BMPCs. However, many studies of the prognostic impact of pretransplant response have not included BMPCs. We evaluated the prognostic impact of BMPC assessment before peripheral blood stem cell (PBSC mobilization on subsequent transplant outcomes. BMPCs were assessed by CD138, kappa, and lambda immunostaining in 106 patients. After a median followup of 24.5 months, patients with <5% BMPCs had a significantly better progression-free survival (PFS compared to those with ≥5% BMPCs (P=0.005. Patients with <5% BMPCs + serologic CR showed superior PFS compared to those with <5% BMPCs + serologic non-CR (P=0.050 or ≥5% BMPCs + serologic non-CR (P=0.001. Interestingly, the prognostic impact of BMPCs was more apparent for patients who did not achieve a serologic CR (P=0.042 compared to those with a serologic CR (P=0.647. We concluded that IFE negativity and <5% BMPCs before PBSC mobilization were important factors to predict PFS in patients with MM undergoing ASCT. Particularly, a significant impact of <5% BMPCs was observed in patients who did not achieve IFE negativity.

  18. Evaluation of the Interference of the Microwave Radiation Emitted from GSM Mobile Phones on the Performance of Cell Counters

    OpenAIRE

    Bahaedini ,N.; M Atefi; Mortazavi, S. M. J.

    2009-01-01

    Background and Objectives: Incidents related to electromagneticinterference with medical devices have been reported over the past decades.It has also been indicated that the microwave radiation emitted from mobilephones interferes with the operation of medical devices; therefore, this studyaimed at testing the interference by GSM mobile phones with cell counters.Material and Methods: We did this experimental Study on thirty-twoheparinized blood samples of 32 healthy individuals Selected rando...

  19. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    OpenAIRE

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; SöDerströM, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2011-01-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the...

  20. Cardiac nerve growth factor overexpression induces bone marrow–derived progenitor cells mobilization and homing to the infarcted heart

    OpenAIRE

    Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D.; Beltrami, Antonio P; Emanueli, Costanza

    2015-01-01

    Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we ...

  1. Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects

    OpenAIRE

    Seo, Sang Gyo; Yeo, Ji Hyun; Kim, Ji Hye; Kim, Ji-Beom; Cho, Tae-Joon; Lee, Dong Yeon

    2013-01-01

    Non healing chronic wounds are difficult to treat in patients with diabetes and can result in severe medical problems for these patients and for society. Negative-pressure wound therapy (NPWT) has been adopted to treat intractable chronic wounds and has been reported to be effective. However, the mechanisms underlying the effects of this treatment have not been elucidated. To assess the vasculogenic effect of NPWT, we evaluated the systemic mobilization of endothelial progenitor cells (EPCs) ...

  2. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect cerebral ischemia/reperfusion injury

    OpenAIRE

    Ming-san Miao; Lin Guo; Rui-qi Li; Xiao Ma

    2016-01-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 ...

  3. Analysis of chromosomal aberrations, micronuclei and hematological disorders among workers of wireless communication instruments and cell phone (Mobile) users

    International Nuclear Information System (INIS)

    This study was carried out to investigate the hazardous effect of electromagnetic radiation (EMR) such as chromosomal aberration, disturbed micronucleus formation and hematological disorders that may detected among workers of wireless communication instruments and mobile phone users. Seven individuals ( 3 males and 4 females) of a central workers in the microwave unit of the wireless station and 7 users of Mobil phone (4 males and 3 females ) were volunteered to give blood samples. Chromosomes and micronucleus were prepared for cytogenetic analysis as well as blood film for differential count. The results obtained in the microwave group indicated that, the total summation of all types of aberrations (chromosomes and chromatid aberrations) had a frequency of 6. 14% for the exposed group, whereas, the frequency in the control group amounted to 1.57%. In Mobil phone users, the total summation of all types of aberrations(chromosome and chromatid aberrations) had a frequency of 4.43% for the exposed group and 1.71% for the control group. The incidence of the total number of micronuclei in the exposed microwave group was increased 4.3 folds as compared with those of the control group The incidence of the total number of micronuclei in the exposed mobile phone group was increased 2 fold as compared with those in the control group. On the other hand, normal ranges of total white blood cells counts were determined for mobile phone users but abnormalities in the differential counts of the different types of the white blood cells such as neutropenia, eosinophilia and lymphocytosis were observed in the individuals number 1,2,3,7 in microwave group

  4. Mobilization of human hematopoietic stem/progenitor-enriched CD34+ cells into peripheral blood during stress related to ischemic stroke.

    Directory of Open Access Journals (Sweden)

    M Z Ratajczak

    2006-06-01

    Full Text Available The bone marrow-derived stem/progenitor cells were demonstrated to play an important role in a regeneration of damaged tissue. Based on these observations we asked whether the stroke-related stress triggers mobilization of stem/progenitor cells from the bone marrow into the peripheral blood, which subsequently could contribute to regeneration of damaged organs. To address this issue, the peripheral blood samples were harvested from patients with ischemic stroke during the first 24 hrs as well as after the 48 (2nd day and 144 hrs (6th day since the manifestation of symptoms. In these patients we evaluated the percentage of hematopoietic stem/progenitor-enriched CD34+ cells by employing flow cytometry and the number of hematopoietic progenitor cells for the granulocyto-monocytic (CFU-GM and erythroid (BFU-E-lineages circulating in peripheral blood. We concluded that stress related to ischemic stroke triggers the mobilization of hematopoietic stem/progenitor cells from the bone marrow into peripheral blood. These circulating stem/progenitor cells may play an important role in the process of regeneration of the ischemic tissue.

  5. Hematopoietic Stem Cell Mobilization and Homing after Transplantation: The Role of MMP-2, MMP-9, and MT1-MMP

    Directory of Open Access Journals (Sweden)

    Neeta Shirvaikar

    2012-01-01

    Full Text Available Hematopoietic stem/progenitor cells (HSPCs are used in clinical transplantation to restore hematopoietic function. Here we review the role of the soluble matrix metalloproteinases MMP-2 and MMP-9, and membrane type (MT1-MMP in modulating processes critical to successful transplantation of HSPC, such as mobilization and homing. Growth factors and cytokines which are employed as mobilizing agents upregulate MMP-2 and MMP-9. Recently we demonstrated that MT1-MMP enhances HSPC migration across reconstituted basement membrane, activates proMMP-2, and contributes to a highly proteolytic bone marrow microenvironment that facilitates egress of HSPC. On the other hand, we reported that molecules secreted during HSPC mobilization and collection, such as hyaluronic acid and thrombin, increase MT1-MMP expression in cord blood HSPC and enhance (prime their homing-related responses. We suggest that modulation of MMP-2, MMP-9, and MT1-MMP expression has potential for development of new therapies for more efficient mobilization, homing, and engraftment of HSPC, which could lead to improved transplantation outcomes.

  6. Lenograstim reduces the incidence of febrile episodes, when compared with filgrastim, in multiple myeloma patients undergoing stem cell mobilization.

    Science.gov (United States)

    Orciuolo, Enrico; Buda, Gabriele; Marturano, Emerenziana; Mauro, Elisa; Milone, Giuseppe; Cangialosi, Clotilde; Di Renzo, Nicola; Pastore, Domenico; Specchia, Giorgina; De Paolis, Maria Rosaria; Mazza, Patrizio; Pietrantuono, Giuseppe; Petrini, Mario

    2011-07-01

    The aim of this study was to show a lower incidence of febrile episodes in multiple myeloma patients receiving lenograstim vs. filgrastim after high-dose cyclophosphamide for stem cell mobilization. Patients treated with cyclophosphamide were randomly assigned to receive filgrastim or lenograstim. Primary endpoint was the incidence of febrile episodes. 5.1% patients developed a febrile episode, 9.1% with filgrastim and 1.1% with lenograstim. Lenograstim group presented a significantly higher absolute CD34+ cell number compared with the filgrastim group but no differences were detected for collection efficacy. The study demonstrated a lower incidence of febrile episodes with lenograstim compared to filgrastim. PMID:21134693

  7. Mobile Therapy: Case Study Evaluations of a Cell Phone Application for Emotional Self-Awareness

    OpenAIRE

    Morris, Margaret E.; Kathawala, Qusai; Todd K. Leen; Gorenstein, Ethan E.; Guilak, Farzin; Labhard, Michael; DeLeeuw, William

    2010-01-01

    Background Emotional awareness and self-regulation are important skills for improving mental health and reducing the risk of cardiovascular disease. Cognitive behavioral therapy can teach these skills but is not widely available. Objective This exploratory study examined the potential of mobile phone technologies to broaden access to cognitive behavioral therapy techniques and to provide in-the-moment support. Methods We developed a mobile phone application with touch screen scales for mood r...

  8. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  9. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  10. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  11. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.

    OpenAIRE

    Salford, Leif; Brun, Arne; Eberhardt, Jacob; Malmgren, Lars; Persson, Bertil R

    2003-01-01

    The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile p...

  12. SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era.

    Science.gov (United States)

    Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting

    2014-08-25

    We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems. PMID:25321284

  13. Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver.

    Science.gov (United States)

    Szilvassy, S J; Meyerrose, T E; Ragland, P L; Grimes, B

    2001-10-01

    The rate of reconstitution following hematopoietic stem cell (HSC) transplantation differs widely depending on the tissue source of the cells infused. To test the hypothesis that variability in engraftment kinetics is related to differences in the efficiency with which intravenously transplanted HSCs "home" to the bone marrow (BM), the homing properties of murine fetal liver (FL), adult BM, and mobilized peripheral blood (MPB) cells were compared. Lethally irradiated mice transplanted with 2 x 10(6) FL, BM, or MPB cells exhibited sequentially slower recovery of circulating leukocytes and platelets that correlates with the progressively lower frequency of colony-forming cells (CFCs) in these tissues. However, differences in the rate and degree of early and long-term reconstitution were maintained even after infusing equal numbers of CFCs derived from FL, BM, and MPB. To compare the homing of progenitors from these tissues, cells were labeled with fluorescent PKH26 dye and injected into lethally irradiated hosts. Three hours later, PKH26(+) cells were reisolated from the BM and spleen by fluorescence-activated cell sorting and assayed for in vitro CFCs. Despite the higher level of very late antigen (VLA)-2, VLA-4, and VLA-5 on Sca-1(+)c-kit(+) cells from FL compared to BM, 10-fold fewer FL CFCs homed to hematopoietic organs than those from BM. MPB cells homed slightly better, but still less efficiently than BM cells. Therefore, clonogenic cells from different tissues exhibit striking variations in homing efficiency that does not necessarily correlate with engraftment kinetics. Homing is likely counterbalanced by intrinsic differences in proliferative potential that ultimately determine the rate of hematopoietic reconstitution. PMID:11567997

  14. Micro-scale spatial expansion of microbial cells and mobile genetic elements

    DEFF Research Database (Denmark)

    Smets, Barth F.; Kreft, Jan-Ulrich; Or, Dani;

    Microbes can actively explore their local spatial environment when sufficiently hydrated pathways are present - mobile gene elements can also travel in local environments when cellular density is sufficient. In this presentation, I will present our efforts at predicting the dynamics of these two...

  15. Mobile Multilayer IPsec protocol

    Directory of Open Access Journals (Sweden)

    T.Gayathri

    2009-08-01

    Full Text Available A mobile user moves around and switches between wireless cells, subnets and domains, it needs to maintain the session continuity. At the same time security of signaling and transport media should not be compromised. A multi-layer security framework involving user authentication, packet based encryption and access control mechanism can provide the desired level of security to the mobile users. Supporting streaming traffic in a mobile wireless Internet is faced with several challenges due to continuous handoff experienced by a mobile user. These challenges include dynamic binding, location management, quality of service and end-to-end security for signaling and transport. Mobile users will use heterogeneous radio access networking technologies. Mobile multilayer IPsec protocol (MML IPSec extends ML-IPSec to deal with mobility and make it suitable for wireless networks. MML-IPSec is integration of ML-IPSec and mobile IP.

  16. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  17. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites

    Directory of Open Access Journals (Sweden)

    Hotta C.T.

    2003-01-01

    Full Text Available The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 µM melatonin and 0.1 µM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.

  18. Cyclic AMP suppresses interleukin-5 synthesis by human helper T cells via the downregulation of the calcium mobilization pathway

    OpenAIRE

    Kaminuma, Osamu; Mori, Akio; Ogawa, Koji; Kikkawa, Hideo; Nakata, Aya; Ikezawa, Katsuo; Okudaira, Hirokazu

    1999-01-01

    To delineate the mechanism by which cyclic AMP (cAMP) suppresses interleukin (IL)-5 synthesis, the effects of prostaglandin (PG) E2, forskolin, dibutyryl (db)-cAMP and the Ca2+ ionophore, ionomycin on cytokine synthesis, proliferation and CD25 expression of human T cells were investigated. Further studies were performed by measurement of the intracellular concentrations of cyclic AMP ([cAMP]i) and Ca2+ ([Ca2+]i) and by electrophoretic mobility shift analysis (EMSA).PGE2, forskolin and db-cAMP...

  19. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells.

    Science.gov (United States)

    Ke, Shaobo; Zhou, Fuxiang; Yang, Hui; Wei, Yuehua; Gong, Jun; Mei, Zijie; Wu, Lin; Yu, Haijun; Zhou, Yunfeng

    2015-03-01

    The functions of the high mobility group box 1 (HMGB1) in tumor cells include replenishing telomeric DNA and maintaining cell immortality. There is a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Our aim was to elucidate the relationship among HMGB1, telomere homeostasis and radiosensitivity in MCF-7 cells. In this study, we established stably transfected control (MCF-7-NC) and HMGB1 knockdown (MCF-7-shHMGB1) cell lines. The expression of HMGB1 mRNA and the relative telomere length were examined by real-time PCR. Radiosensitivity was detected by clonogenic assay. The protein expressions were determined by western blot analysis. The telomerase activity was detected by PCR-ELISA. Proliferation ability was examined by CCK-8 assay. Cell cycle and apoptosis were examined by flow cytometry. DNA damage foci were detected by immunofluorescence. ShRNA-mediated downregulation of HMGB1 expression increased the radiosensitivity of MCF-7 cells, and reduced the accumulation of hTERT and cyclin D1. Moreover, knockdown of HMGB1 in MCF-7 cells inhibited telomerase activity and cell proliferation, while increasing the extent of apoptosis. Downregulation of HMGB1 modulated telomere homeostasis by changing the level of telomere-binding proteins, such as TPP1 (PTOP), TRF1 and TRF2. This downregulation also inhibited the ATM and ATR signaling pathways. The current data demonstrate that knockdown of HMGB1 breaks telomere homeostasis, enhances radiosensitivity, and suppresses the repair of DNA damage in human breast cancer cells. These results suggested that HMGB1 might be a potential radiotherapy target in human breast cancer. PMID:25501936

  20. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla;

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and...... ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30...

  1. Improved hole mobility and suppressed trap density in polymer-polymer dual donor based highly efficient organic solar cells

    Science.gov (United States)

    Bharti, Vishal; Sharma, Abhishek; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh

    2016-02-01

    Here we report, the charge transport properties of polymer-polymer dual donor blended film, viz., polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) and poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'benzothiadiazole) (PCDTBT) in the optimized concentration. Trap density and hole mobility in polymer-polymer (PTB7-PCDTBT) dual donor system have been studied by means of current density-voltage (J-V) characteristics at various temperatures, i.e., 280 K-120 K in hole only device configuration, i.e., indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS)/Polymer film/gold (Au). The J-V curves exhibit the space charge limited conduction behavior. The corresponding hole mobility for PTB7 and PCDTBT are 3.9 × 10-4 cm2 V-1 s-1 and 2.1 × 10-4 cm2 V-1 s-1, respectively, whereas it is 9.1 × 10-4 cm2 V-1 s-1 in the polymer-polymer blend of PTB7:PCDTBT (0.7:0.3). This enhancement in mobility can be attributed to the suppressed trap density in PTB7:PCDTBT (0.7:0.3) of 7.4 × 1016 cm-3, as compared to the trap density of 1.1 × 1017 cm-3 for PTB7 and 1.6 × 1017 cm-3 for PCDTBT. Atomic force microscopy shows an improvement in the morphology of the blend. The J-V characteristic at various light intensities in the bulk heterojunction (BHJ) solar cell reveals that the blending of PCDTBT in PTB7 suppressed the trap-assisted recombination. The corresponding power conversion efficiencies for PTB7:PC71BM, PCDTBT:PC71BM and PTB7:PCDTBT:PC71BM BHJ solar cells are 6.9%, 6.1% and 9.0%, respectively. This work unravels that the enhanced mobility and suppressed trap density play a significant role in the improvement of efficiency in dual donor based organic solar cells.

  2. Study on correlation between circulating endothelial progenitor cells and brain natriuretic peptide in patients with myocardial infarction complicated heart failure after stem cell mobilization

    Directory of Open Access Journals (Sweden)

    Zi-lin ZHAO

    2014-06-01

    Full Text Available Objective: It is to observe the correlation between circulating endothelial progenitor cells (endothelial progenitor cells, EPCs and brain natriuretic peptide (BNP in patients with myocardial infarction and heart failure after stem cell mobilizer granulocyte colony stimulating factor (granulocyte colony stimulating factor, G-CSF.Methods: Patients were divided into the control group(37 and the observation group (38. The observation group took injection of G-CSF, 10μg/kg, for 7d. The Two groups were observed the amount of circulating EPCs , the levels of BNP, TNF- α and other indicators, and make clinical analysis. Results: Compared with control group, the amount of EPCs were significantly increased, the level of BNP, TNF- α were decreased, the difference between the observation group and control group is statistical significant (P < 0.05; the amount of  EPCs had negative correlation with BNP. Conclusion: The application of stem cell mobilization of circulating EPCs can improve the clinical curative effect of myocardial infarction patients and heart failure, cyclic EPCs and BNP detection can effectively evaluate the heart function and prognosis.

  3. Analytical modeling and performance evaluation of cell selection algorithms for mobile networks with backhaul capacity constraints

    OpenAIRE

    Olmos Bonafé, Juan José; Ferrús Ferré, Ramón Antonio; Galeana Zapién, Hiram

    2013-01-01

    Wireless communications technologies play an essential role to support the Public Protection and Disaster Relief (PPDR) operational needs. The current Private/Professional Mobile Radio (PMR) technologies used for PPDR communications offer a rich set of voice-centric services but have very limited data transmission capabilities, which are unable to handle the increasing PPDR community demand for a wider range of data-centric services. Though some efforts have been devoted to upgrade PMR techno...

  4. C³TO: A Scalable Architecture for Mobile Tutoring over Cell Phones

    OpenAIRE

    Butgereit, Laurie; Botha, Reinhardt A.

    2010-01-01

    Quality tutoring can be one of the building blocks in the bridges over many of the various "divides" - digital, economic, social and educational. Appalling recent statistics have shown that only 7% of South Africa's first year university students have sufficient mathematics knowledge and background to cope with university work. C³TO (Chatter Call Centre/Tutoring Online) is an architecture which facilitates mobile tutoring by linking primary and secondary school pupils to volunteer tutors from...

  5. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells.

    Science.gov (United States)

    Mocsár, Gábor; Volkó, Julianna; Rönnlund, Daniel; Widengren, Jerker; Nagy, Péter; Szöllősi, János; Tóth, Katalin; Goldman, Carolyn K; Damjanovich, Sándor; Waldmann, Thomas A; Bodnár, Andrea; Vámosi, György

    2016-07-12

    MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins. PMID:27410738

  6. Submucosal microinfusion of endothelin and adrenaline mobilizes ECL-cell histamine in rat stomach, and causes mucosal damage: a microdialysis study

    OpenAIRE

    Bernsand, M; Ericsson, P; Björkqvist, M; Zhao, C -M; Håkanson, R; Norlén, P

    2003-01-01

    Rat stomach ECL cells release histamine in response to gastrin. Submucosal microinfusion of endothelin or adrenaline, known to cause vasoconstriction and gastric lesions, mobilized striking amounts of histamine. While the histamine response to gastrin is sustainable for hours, that to endothelin and adrenaline was characteristically short-lasting (1–2 h).The aims of this study were to identify the cellular source of histamine mobilized by endothelin and adrenaline, and examine the differences...

  7. NKT cell–dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs

    OpenAIRE

    Morris, Edward S.; MacDonald, Kelli P.A.; Rowe, Vanessa; Banovic, Tatjana; Kuns, Rachel D.; Don, Alistair L. J.; Bofinger, Helen M.; Burman, Angela C.; Olver, Stuart D.; Kienzle, Norbert; Porcelli, Steven A.; Pellicci, Daniel G.; Godfrey, Dale I.; Smyth, Mark J; Hill, Geoffrey R.

    2005-01-01

    NKT cells have pivotal roles in immune regulation and tumor immunosurveillance. We report that the G-CSF and FMS-like tyrosine kinase 3 ligand (Flt-3L) chimeric cytokine, progenipoietin-1, markedly expands the splenic and hepatic NKT cell population and enhances functional responses to α-galactosylceramide. In a murine model of allogeneic stem cell transplantation, donor NKT cells promoted host DC activation and enhanced perforin-restricted CD8+ T cell cytotoxicity against host-type antigens....

  8. Ifosfamide, Cisplatin or Carboplatin, and Etoposide (ICE)-based Chemotherapy for Mobilization of Autologous Peripheral Blood Stem Cells in Patients with Lymphomas

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Peng Liu; Sheng-Yu Zhou; Xiao-Hui He; Xiao-Hong Han; Yan Qin; Sheng Yang

    2015-01-01

    Background:High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is a promising approach for lymphomas.This study aimed to evaluate the effect of ifosfamide,cisplatin or carboplatin,and etoposide (ICE)-based regimen as a mobilization regimen on relapsed,refractory,or high-risk aggressive lymphoma.Methods:From June 2001 to May 2013,patients with lymphomas who mobilized by ICE-based regimen for ASCT were analyzed in this retrospective study.The results of the autologous peripheral blood stem cells collection,toxicity,engraftment after ICE-based mobilization regimen were analyzed in this study.Furthermore,risk factors for overall survival (OS) and progression free survival (PFS) were evaluated by univariate analysis.Results:The stem cells were mobilized using ICE-based regimen plus rituximab or ICE-based regimen alone in 12 patients and 54 patients,respectively.The results of stem cell mobilization were excellent.Ninety-seven percentages of the patients had the stem cell collection of at least 2.0 × 106 CD34+ cells/kg and 68% had at least 5 × 106 CD34+ cells/kg.Fifty-eight percentage of the patients experienced Grade 4 neutropenia,20% developed febrile neutropenia,and only 12% had Grade 4 thrombocytopenia.At a median follow-up of 63.8 months,the 5-year PFS and OS were 64.4% and 75.3%,respectively.Conclusion:ICE is a powerful regimen for stem cell mobilization in patients with lymphomas.

  9. Mobile intervention enclosure allowing the access to an installation inside a hot cell

    International Nuclear Information System (INIS)

    For operations in a hot cell, like cleaning, repairs, part removal, etc. a movable leakproof enclosure is placed on the top of the hot cell facing an opening closed by a door, they are put into communication and the enclosure is provided with a pole, a tool holder, a manipulator, lightning and visualization systems for intervention inside the hot cell

  10. Computer and cell phone access for individuals with mobility impairments: an overview and case studies.

    Science.gov (United States)

    Burgstahler, Sheryl; Comden, Dan; Lee, Sang-Mook; Arnold, Anthony; Brown, Kayla

    2011-01-01

    Computers, telephones, and assistive technology hold promise for increasing the independence, productivity, and participation of individuals with disabilities in academic, employment, recreation, and other activities. However, to reach this goal, technology must be accessible to, available to, and usable by everyone. The authors of this article share computer and telephone access challenges faced by individuals with neurological and other impairments, assistive technology solutions, issues that impact product adoption and use, needs for new technologies, and recommendations for practitioners and researchers. They highlight the stories of three individuals with neurological/mobility impairments, the technology they have found useful to them, and their recommendations for future product development. PMID:21558625

  11. Effects of method of detachment on electrophoretic mobility of mammalian cells grown in monolayer culture

    Science.gov (United States)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    A variety of proteolytic and micolytic enzumes, mechanical procedures, and changes in the ionic environment, especially Ca chelation, are used for dispersal of monolayer grown cells. If either chelating agents or mechanical dispersion are used alone, the cell yield is often low and suspensions of single cells are difficult to obtain. Confluent monolayers treated with EDTA tend to be released from their surfaces in sheets, and clumps of cells remain even after further incubation in EDTA. Crude trypsin is the most popular dispersal agent and is known to contain a variety of contaminating enzymes which contribute to the dispersal of cells. A variety of cell injuries resulting from the activity of proteolytic enzymes are reported. It is shown that crystalline trypsin is least harmful to cell integrity as judged by trypan blue uptake.

  12. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    International Nuclear Information System (INIS)

    High blood levels of ammonium/ammonia (NH4+/NH3) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca2+]i) in astrocytoma (EC50 = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca2+]i was due to an intracellular effect of NH4+/NH3 and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by Gq protein-coupled receptors (H1 and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH3/NH4+ from neuronal cells. Cellular uptake of NH4+/NH3 was mainly by passive diffusion of NH3. Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity†Technologies, Early California Household Markets, and Innovation Management

    OpenAIRE

    Williams, Brett D.

    2007-01-01

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called “Mobile Electricity†is characterized. Mobile Electricity (Me-) redefines H2FCVs as innovative products able to import and export electricity across the traditional vehicle boundary. Such vehicles could provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services...

  14. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling

    OpenAIRE

    Gerner, Christopher; Haudek, Verena; Schandl, Ulla; Bayer, Editha; Gundacker, Nina; Hutter, Hans Peter; Mosgoeller, Wilhelm

    2010-01-01

    Purpose To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Methods Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual pr...

  15. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    International Nuclear Information System (INIS)

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer

  16. Effect of cellular mobility on immune response

    Science.gov (United States)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  17. Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity.

    Science.gov (United States)

    Kim, J

    2016-06-20

    Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonstrated that pharmacological inhibition of PARP by postconditioning dose-dependently prevented tubular injury and renal dysfunction following cisplatin administration in mice. PARP inhibition by postconditioning also attenuated ATP depletion during cisplatin nephrotoxicity. Systemic release of high mobility group box 1 (HMGB1) protein in plasma induced by cisplatin administration was significantly diminished by PARP inhibition by postconditioning. In in vitro kidney proximal tubular cell lines, PARP inhibition by postconditioning also diminished HMGB1 release from cells. These data demonstrate that cisplatin-induced PARP1 activation contributes to HMGB1 release from kidney proximal tubular cells, resulting in the promotion of inflammation during cisplatin nephrotoxicity. PMID:26447520

  18. Mobile Learning Using Mobile Phones

    Science.gov (United States)

    Vicente, Paula

    2013-01-01

    The participation in mobile learning programs is conditioned by having/using mobile communication technology. Those who do not have or use such technology cannot participate in mobile learning programs. This study evaluates who are the most likely participants of mobile learning programs by examining the demographic profile and mobile phone usage…

  19. Polymer electrolyte membrane degradation and mobility in fuel cells : a solid-state NMR investigation

    OpenAIRE

    Ghassemzadeh Khoshkroodi, Lida

    2010-01-01

    It is generally believed that fuel cells will play an important role in energy technology already in the near future. Operating polymer electrolyte membrane fuel cells (PEMFCs) at temperatures higher than 100 °C and reduced humidity is anticipated to avoid most of the shortcomings associated with the low-temperature fuel cell operation, such as CO poisoning of the electrode catalysts, slow electrode kinetics of the oxygen reduction reaction and expensive water/thermal management. To date, the...

  20. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer

    OpenAIRE

    Youn, Je-in; Kumar, Vinit; Collazo, Michelle; Nefedova, Yulia; Condamine, Thomas; Cheng, Pingyan; Villagra, Alejandro; Antonia, Scott; McCaffrey, Judith C.; Fishman, Mayer; Sarnaik, Amod; Horna, Pedro; Sotomayor, Eduardo; Gabrilovich, Dmitry I.

    2013-01-01

    Two major populations of myeloid-derived suppressor cells (MDSC), monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC) regulate immune responses in cancer and other pathologic conditions. Under physiologic conditions, Ly6ChiLy6G− inflammatory monocytes, which are the normal counterpart of M-MDSC, differentiate into macrophages and dendritic cells (DCs). PMN-MDSC is the predominant group of MDSC that accumulates in cancer. Here we show that a large proportion of M-MDSC in tumor-bearin...

  1. Expanding the List of Dysregulated Immunosuppressive Cells in Psoriasis.

    Science.gov (United States)

    Soler, David C; McCormick, Thomas S

    2016-09-01

    Traditionally, myeloid-derived suppressor cells (MDSC) have been studied in regard to their increased numbers of circulating cells in cancer patients. Recent research efforts have also increased awareness of MDSC in non-malignant inflammatory diseases, including asthma, inflammatory bowel disease, and arthritis. Psoriasis can now be added to the growing list of inflammatory disorders with an MDSC component. Cao et al. report increased numbers of monocytic myeloid-derived suppressor cells (Mo-MDSC) in psoriasis patients and examine the implication of dysregulated Mo-MDSC function. Cao et al. describe psoriatic Mo-MDSC that produce increased IL-23, IL-1b, and CCL4 cytokines compared to Mo-MDSC from healthy controls. These results complement previous research demonstrating psoriatic Mo-MDSC are unable to suppress autologous and heterologous CD8 T-cell proliferations, display decreased expression levels of PD-1 as well as PD-L1, and fail to produce effective immuno-competent regulatory T cells (Tregs). Cao et al. also identify the unique expression of the surface protein DC-HIL on psoriatic Mo-MDSC. The expanded population of DC-HIL(+) Mo-MDSC in psoriasis patients, however, display inferior suppressive capabilities compared to DC-HIL(+) Mo-MDSC found in melanoma patients, suggesting contextual signaling as a potential contributing factor to Mo-MDSC function. PMID:27542294

  2. Mobile Lexicography

    DEFF Research Database (Denmark)

    Køhler Simonsen, Henrik

    2015-01-01

    Mobile phones are ubiquitous and have completely transformed the way we live, work, learn and conduct our everyday activities. Mobile phones have also changed the way users access lexicographic data. In fact, it can be argued that mobile phones and lexicography are not yet compatible. Modern users...... are already mobile – but lexicography is not yet fully ready for the mobile challenge, mobile users and mobile user situations. The article is based on empirical data from two surveys comprising 10 medical doctors, who were asked to look up five medical substances with the medical dictionary app...... mobile lexicography....

  3. Transplant of progenitors cells, derived of bony marrow for intracoronary way, mobilized with factor of growth granulocyte-macrophage

    International Nuclear Information System (INIS)

    Studies in animals have demonstrated the ability of bone marrow stem cells to differentiate in cardiomyocites, endothelial cells and smooth muscle cells. By these means it is possible to regenerate myocardial tissue as well as to induce its revascularization. Clinical studies in humans show the feasibility and safety in the use of stem cells for recovering ventricular function in patients with acute myocardial infarct. We report the first experience in Colombia with this type of therapy. Methodology: this is a report of a two months follow-up study in patients with anterior wall myocardial acute infarction to whom we performed an intracoronary transplant of bone marrow stem cells mobilized with granulocyte-macrophage colony growth stimulating factor, after percutaneous. revascularization with angioplasty and stent implantation. Three patients with acute anterior wall myocardial infarction, extensive myocardial necrosis documented by absence of myocardial viability in nuclear medicine studies and an ejection fraction of less than 40% were included. Control echocardiography showed improvement in the ejection fraction and decrease of systolic ventricular volume. Exercise capacity increased in a significant way, evidenced by an increase in the six minutes test, the exercise time and the number of mets achieved. There were no changes in the perfusion defects in early stages, and no complications related to the cellular transplant or to the utilization of granulocyte-macrophage colony growth stimulating factor. This is the first experience in Colombia with bone marrow stem cells intracoronary transplant for myocardial regeneration. Recovery of left ventricular function, improvement in exercise capability without adverse effects or therapy related complications

  4. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. ► Inhibition of PKC-ζ leads to significant reduction of the secreted HMGB1. ► Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. ► Activation of PKC-ζ in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-ζ, λ, and ι) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-ζ by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-ζ in colon cancer tissues. Our findings suggest that PKC-ζ is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  5. Mobility performance of LTE co-channel deployment of macro and pico cells

    DEFF Research Database (Denmark)

    Barbera, Simone; Michaelsen, Per Henrik; Säily, Mikko;

    2012-01-01

    ” (TTT). For this purpose, a system simulator has been utilized to assess the performance. The system must have different settings depending on the user velocity and on which cell-layer user is being serviced. Additionally, we have considered scenarios with a mixture of users moving freely or constrained...... to a hotspot, and different pico cell deployments....

  6. A molecular smart surface for spatio-temporal studies of cell mobility.

    Science.gov (United States)

    Lee, Eun-ju; Luo, Wei; Chan, Eugene W L; Yousaf, Muhammad N

    2015-01-01

    Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. PMID:26030281

  7. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Wang; Qian Li; Wen-Gui Xu; Jian-Yu Xiao; Qing-Song Pang; Qing Yang; Yi-Zuo Zhang

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. Atfer one month, bone marrow biopsy and aspiration conifrmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. hTe patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia.

  8. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    International Nuclear Information System (INIS)

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. After one month, bone marrow biopsy and aspiration confirmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. The patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia

  9. Mobilization of Dendritic Cell Precursors in Patients With Cancer by Flt3 Ligand Allows the Generation of Higher Yields of Cultured Dendritic Cells

    Science.gov (United States)

    Marroquin, Carlos E.; Westwood, Jennifer A.; Lapointe, Rejean; Mixon, Arnold; Wunderlich, John R.; Caron, Dania; Rosenberg, Steven A.; Hwu, Patrick

    2008-01-01

    Summary Flt3 ligand (Flt3L) stimulates the proliferation and differentiation of hematopoietic cells. Subcutaneous Flt3L administration has been shown to effectively manage some murine cancers and in humans, to lead to an increase in peripheral blood monocyte and dendritic cell (DC) counts. In the current study, we determined the effects of Flt3L therapy on patients with melanoma and renal cancer, and in particular, if Flt3L could be used either by enhancing the immunization of patients with melanoma to tumor antigen peptides in vivo, or by mobilizing DC precursors to allow the production of larger numbers of cultured DC. Flt3 ligand administration resulted in a 19-fold increase in DC counts in the peripheral blood of patients. The DC generated in vivo appeared only partially activated, expressing increased levels of CD86, CD33, and major histocompatibility complex class II, but no or low levels of CD80 and CD83. This partial activation may account for the lack of enhanced immune responses to melanoma antigens and absence of clinical responses in the patients even in combination with antigen immunization. Flt3 ligand administration did result, however, in a 7-fold increased yield of monocytes per liter of blood from leukapheresed patients. Dendritic cells were as readily generated from monocytes collected before and after Flt3L therapy, and they stimulated allogeneic T-cell proliferation in a mixed leukocyte reaction to a similar magnitude. Thus, the use of Flt3L may be an important method to mobilize DC precursors to allow patient therapy with larger numbers of cultured DC. PMID:12000870

  10. Dissociation of Ca sup 2+ entry and Ca sup 2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Stauderman, K.A.; Pruss, R.M. (Merrell Dow Research Institute, Cincinnati, OH (USA))

    1989-11-05

    In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium (( Ca2+)i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of (3H)inositol 1,4,5-trisphosphate (( 3H)Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ (( Ca2+)o) was less than 100 nM, AII still rapidly increased (Ca2+)i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When (Ca2+)o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused (Ca2+)i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low (Ca2+)o, ionomycin pretreatment abolished both the (Ca2+)i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of (Ca2+)i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of (3H)Ins(1,4,5)P3. We conclude that AII increased (Ca2+)i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.

  11. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    Science.gov (United States)

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; Söderström, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; Wolf, Stefaan De; Ballif, Christophe

    2011-06-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the cells is improved with respect to indium tin oxide and zinc oxide electrodes. We assess the potential for further current gains by identifying remaining sources of parasitic absorption and evaluate the light trapping capacity of each electrode. We further present a method, based on nonabsorbing insulating silicon nitride electrodes, allowing one to directly relate the optical reflectance to the external quantum efficiency. Our method provides a useful experimental tool to evaluate the light trapping potential of novel photonic nanostructures by a simple optical reflectance measurement, avoiding complications with electrical cell performance.

  12. SUMOylation regulates the nuclear mobility of CREB binding protein and its association with nuclear bodies in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Colm M.; Kindle, Karin B.; Collins, Hilary M. [Gene Regulation Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Heery, David M., E-mail: david.heery@nottingham.ac.uk [Gene Regulation Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2010-01-01

    The lysine acetyltransferase CREB binding protein (CBP) is required for chromatin modification and transcription at many gene promoters. In fixed cells, a large proportion of CBP colocalises to PML or nuclear bodies. Using live cell imaging, we show here that YFP-tagged CBP expressed in HEK293 cells undergoes gradual accumulation in nuclear bodies, some of which are mobile and migrate towards the nuclear envelope. Deletion of a short lysine-rich domain that contains the major SUMO acceptor sites of CBP abrogated its ability to be SUMO modified, and prevented its association with endogenous SUMO-1/PML speckles in vivo. This SUMO-defective CBP showed enhanced ability to co-activate AML1-mediated transcription. Deletion mapping revealed that the SUMO-modified region was not sufficient for targeting CBP to PML bodies, as C-terminally truncated mutants containing this domain showed a strong reduction in accumulation at PML bodies. Fluorescence recovery after photo-bleaching (FRAP) experiments revealed that YFP-CBP{Delta}998-1087 had a retarded recovery time in the nucleus, as compared to YFP-CBP. These results indicate that SUMOylation regulates CBP function by influencing its shuttling between nuclear bodies and chromatin microenvironments.

  13. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism.

    Science.gov (United States)

    Zubair, Haseeb; Azim, Shafquat; Khan, Husain Yar; Ullah, Mohammad Fahad; Wu, Daocheng; Singh, Ajay Pratap; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach. PMID:27331811

  14. SUMOylation regulates the nuclear mobility of CREB binding protein and its association with nuclear bodies in live cells

    International Nuclear Information System (INIS)

    The lysine acetyltransferase CREB binding protein (CBP) is required for chromatin modification and transcription at many gene promoters. In fixed cells, a large proportion of CBP colocalises to PML or nuclear bodies. Using live cell imaging, we show here that YFP-tagged CBP expressed in HEK293 cells undergoes gradual accumulation in nuclear bodies, some of which are mobile and migrate towards the nuclear envelope. Deletion of a short lysine-rich domain that contains the major SUMO acceptor sites of CBP abrogated its ability to be SUMO modified, and prevented its association with endogenous SUMO-1/PML speckles in vivo. This SUMO-defective CBP showed enhanced ability to co-activate AML1-mediated transcription. Deletion mapping revealed that the SUMO-modified region was not sufficient for targeting CBP to PML bodies, as C-terminally truncated mutants containing this domain showed a strong reduction in accumulation at PML bodies. Fluorescence recovery after photo-bleaching (FRAP) experiments revealed that YFP-CBPΔ998-1087 had a retarded recovery time in the nucleus, as compared to YFP-CBP. These results indicate that SUMOylation regulates CBP function by influencing its shuttling between nuclear bodies and chromatin microenvironments.

  15. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  16. Dose-Modified Ifosfamide, Epirubicin, and Etoposide is a Safe and Effective Salvage Therapy with High Peripheral Blood Stem Cell Mobilization Capacity for Poorly Mobilized Hodgkin's Lymphoma and Non-Hodgkin's Lymphoma Patients.

    Science.gov (United States)

    Fukunaga, Akiko; Hyuga, Mizuki; Iwasaki, Makoto; Nakae, Yoshiki; Kishimoto, Wataru; Maesako, Yoshitomo; Arima, Nobuyoshi

    2016-01-01

    A dose modified ifosfamide, epirubicin, and etoposide (IVE) regimen was prospectively assessed for its efficacy in mobilizing peripheral blood stem cells for autologous transplantation. Two patients with Hodgkin's lymphoma and two with non-Hodgkin's lymphoma who were undergoing stem cell therapy were studied. All patients had a history of multiple treatments with insufficient stem cell mobilization. The dose modified IVE regimen consisted of ifosfamide 3 g/m(2) intravenously (IV) administered on days 1-2 in combination with epirubicin 50 mg/m(2) IV on day 1 and etoposide 200 mg/m(2) (100 mg/m(2) in two patients with complete remission) IV on days 1-3. The ifosfamide dosage was reduced to two-thirds of the original protocol. A substantial high yield of CD34(+) cells was achieved when patients were treated with a dose-modified IVE regimen, compared with that during the previous regimen (two with the ifosfamide, carboplatin, and etoposide [ICE] regimen, one with high-dose cyclophosphamide and one with the original IVE regimen). Two patients who had refractory and residual disease received a 200 mg/m(2) dose of etoposide, which resulted in tumor reduction (one patient with complete remission and one with further reduction in tumor size). After the IVE regimen, all four patients had a sufficient yield of CD34(+) cells in total, which was available for stem cell transplantation. Hematological and non-hematological toxicities were comparable in all regimens. This single-center prospective study demonstrated that the dose-modified IVE regimen can be used as a safe treatment with high mobilizing efficacy in heavily pretreated lymphoma patients. PMID:27334858

  17. Immunophenotyping of hematopoietic progenitor cells: Comparison between cord blood and adult mobilized blood grafts

    OpenAIRE

    2011-01-01

    AIM: To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 908) using flow cytometry analysis.

  18. An architecture for mobile computation offloading on cloud-enabled LTE small cells

    OpenAIRE

    Lobillo Vilela, Felicia; Becvar, Zdenek; Puente, Miguel Angel; Mach, Pavel; Lo Presti, Francesco; Gambetti, Fabrizio; Goldhamer, Mariana; Vidal Manzano, José; Widiawan, Anggoro K.; Calvanesse, Emilio

    2014-01-01

    Small cell networks are currently seen as a new way to satisfy the increasing wireless traffic demand. The proximity of base stations to subscribers brings many possibilities for the development of new applications, including new offerings based on cloud computing. Smartphones can directly offload applications to close base stations, provided that these are equipped with additional computational and storage resources. The cloud concept applied in the framework of small cells can also combine ...

  19. Cooperation of β2- and β3-adrenergic receptors in hematopoietic progenitor cell mobilization

    OpenAIRE

    Méndez-Ferrer, Simón; Battista, Michela; Frenette, Paul S.

    2010-01-01

    CXCL12/SDF-1 dynamically regulates hematopoietic stem cell (HSC) attraction in the bone marrow (BM). Circadian regulation of bone formation and HSC traffic is relayed in bone and BM by β-adrenergic receptors (β-AR) expressed on HSCs, osteoblasts and mesenchymal stem / progenitor cells. Circadian HSC release from the BM follows rhythmic secretion of norepinephrine (NE) from nerve terminals, β3-AR activation and Cxcl12 downregulation, possibly due to reduced Sp1 nuclear content. Here, we show t...

  20. Heat shock factor 1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of bone marrow stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Masayuki Kubo

    Full Text Available Bone marrow (BM-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1 is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.

  1. Immunomodulation Induced by Stem Cell Mobilization and Harvesting in Healthy Donors: Increased Systemic Osteopontin Levels after Treatment with Granulocyte Colony-Stimulating Factor

    Science.gov (United States)

    Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein

    2016-01-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610

  2. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: II, Study in Miniature Swine.

    Science.gov (United States)

    Cameron, A M; Wesson, R N; Ahmadi, A R; Singer, A L; Hu, X; Okabayashi, T; Wang, Y; Shigoka, M; Fu, Y; Gao, W; Raccusen, L C; Montgomery, R A; Williams, G M; Sun, Z

    2016-07-01

    Transplantation is now lifesaving therapy for patients with end-stage organ failure but requires lifelong immunosuppression with resultant morbidity. Current immunosuppressive strategies inhibit T cell activation and prevent donor-recipient engagement. Therefore, it is not surprising that few host cells are demonstrated in donor grafts. However, our recent small animal studies found large numbers of recipient stem cells present after transplantation and pharmacological mobilization, resulting in a chimeric, repopulated organ. We now confirm these findings in a well-characterized large animal preclinical model. Here, we show that AMD3100 and FK506 mobilization of endogenous stem cells immediately post kidney transplantation combined with repeat therapy at 1, 2, and 3 months led to drug-free long-term survival in maximally immunologically mismatched swine. Three long-term recipients have stable chimeric transplants, preserved antidonor skin graft responses, and normal serum creatinine levels despite withdrawal of all medication for 3 years. PMID:26748958

  3. Mobilization of endothelial progenitor cells after endovascular interventions in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Marina Sergeevna Michurova

    2014-12-01

    Full Text Available AimTo investigate the mobilisation of endothelial progenitor cells (EPC in patients with type 2 diabetes mellitus (T2DM after endovascular interventions for coronary and peripheral arteries.Materials and MethodsThe levels of EPC in peripheral blood were determined by flow cytometry in 42 patients prior to endovascular intervention and 2–4 days after surgery. EPC were defined as CD34+ VEGFR2+ CD45- and CD34+ CD133+CD45- cells. Twenty-three patients with T2DM were included in group 1, and 19 patients without metabolic disorders were included in group 2.ResultsThe levels of EPC in the peripheral blood of patients with T2DM before and after endovascular interventions were not significantly different. In the subgroup of patients without TDM2, the levels of CD34+VEGFR2 +CD45- cells increased after surgery to 55,5% (p <0,01, and the levels of CD34 + CD133 + CD45- cells increased to 27,7% (p <0,05. After endovascular intervention for the subgroup of patients with T2DM and with the levels of HbA1c ≤7,5%, the levels of CD34+VEGFR2+CD45- cells increased to 46,6% (p=0,01, and the levels of CD34+CD133+CD45- cells increased to 40,3 % (p=0,006 compared with the subgroup of patients with T2DM and with HbA1c levels of ≥7,5%.ConclusionThe patients with T2DM displayed alterations in EPC mobilisation after endovascular interventions. In addition, the EPC level changes were dependent on glycaemic control. Thus, in the subgroup of patients with T2DM and with good glycaemic control (HbA1c ≤7,5%, the EPC levels were significantly higher after endovascular interventions.

  4. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  5. Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    DEFF Research Database (Denmark)

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S;

    2016-01-01

    and at relapse. Regulatory B cells (Bregs) and myeloid-derived suppressor cells (MDSCs), previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was...... identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4......(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T cell increases, elevated antiviral and alloreactive...

  6. Cross-talk between Bone Marrow and Tissue Injury : Novel Regenerative Therapy for Severely Damaged Tissues by Mobilizing Bone Marrow Mesenchymal Stem Cells in Vivo

    OpenAIRE

    Tamai, Katsuto; Kaneda, Yasufumi

    2013-01-01

    group box 1 (HMGB1), which mobilizes a sub-population of non-hematopoietic cells from bone marrow into the circulation to repair skin and restore Col 7 expression. These bone marrow-derived epithelial stem/progenitor cells are derived from a lineage-negative, platelet-derived growth factor alpha-positive mesenchymal stem cell pool in bone marrow, which represents less than 0.3% of the total bone marrow cell population. In addition, systemic administration of HMGB1 to wounded wild-type mice le...

  7. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Morales-Masis, M.; de Nicolas, S.M.; Holovský, Jakub; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 5, č. 5 (2015), s. 1340-1347. ISSN 2156-3381 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : solar cells * amorphous * ITO * TCO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.165, year: 2014

  8. Outcomes of 167 healthy sibling donors after peripheral blood stem cell mobilization with G-CSF 16μg/kg/day: efficacy and safety.

    Science.gov (United States)

    Krejci, M; Janikova, A; Folber, F; Kral, Z; Mayer, J

    2015-01-01

    Mobilization of peripheral blood stem cells (PBSC) using the granulocyte colony-stimulating factor (G-CSF) has enabled the collection even from older donors and those with comorbidities. Several clinical parameters have been reported to predict the success of PBSC mobilization. The aim of our study was to evaluate the safety of PBSC donation in a cohort of 167 sibling donors after mobilization with G-CSF 16 μg/kg/day for 5 days during short- and long term follow-up and to analyse the efficacy, toxicity and factors influencing CD34+ mobilization capacity. All 167 sibling donors completed the established mobilization protocol. The median yield was 7.9x106 CD34 cells/kg per recipient weight. The optimal target dose of CD34 cells ≥ 4.0x106/kg was achieved in 140 donors (84%). Only in 4 donors (2%) was the CD34+ yield toxicities occured.Factors associated with higher PBSC yields included age 51/μL (p 45.5 x 109/L (p = 0.003). Comorbidity score, performance status and donor weight did not significantly influence PBSC yields. Long-term follow-up was possible in 60% (101/167) of the donors. The median length of follow-up from PBSC donation was 11.9 years. Most of these donors reported good or very good general health (91%), and no hematological malignancies were observed.The mobilization of PBSC in sibling donors with G-CSF 16 μg/kg/day is an effective and safe procedure with no significant short- and long-term toxicities. PMID:26278142

  9. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps.

    Directory of Open Access Journals (Sweden)

    Ladislav Bumba

    2010-05-01

    Full Text Available Bordetella adenylate cyclase toxin (CyaA binds the alpha(Mbeta(2 integrin (CD11b/CD18, Mac-1, or CR3 of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin 'translocation intermediate', which can be 'locked' in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the 'intermediate' permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca(2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the 'translocation intermediate' promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol.

  10. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    International Nuclear Information System (INIS)

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration

  11. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  12. [Establishment of stable subline of K562 cells overexpressing high mobility group B1 protein].

    Science.gov (United States)

    Yan, Fan-Zhi; Yan, Jin-Song; Zhao, Jia; Li, Wei-Ping; Chen, Xue-Yu; Yang, Yan; Rao, Shu-Mei; Jin, Jing

    2011-02-01

    This study was aimed to establish a stable subline of K562 cells (K562-HMGB1) overexpressing HMGB1 protein and K562-HMGB1 sublines served as control, so as to provide a basis for exploring the role of hmgb1 gene in occurrence and development of leukemia and their mechanism. Protein-coding gene of hmgb1 was amplified by PCR with cDNA as template, which was synthesized by reverse transcription from total RNA extracted from U937 cells. The PCR-amplified hmgb1 gene was ligated into PMD18-T vector (PMD18-T-HMGB1 vector), and then transformed into E. coli strain DH5α. DH5α containing PMD18-T-HMGB1 vector were grown on LB agar plate supplemented with 100 µg/ml ampicillin overnight. The single ampicillin-selected DH5α clone was picked for culturing overnight and then harvested for plasmid extraction. The extracted plasmid was characterized to contain hmgb1 gene digested with the desired restriction enzymes of KpnI/XhoI. The correctness of hmgb1 sequence was confirmed with DNA sequencing. The insert of hmgb1 gene contained in PMD18-T-HMGB1 vector was cut out with restriction enzymes of KpnI/XhoI and then ligated into eukaryotic expression vector pcDNA3.1 to form pcDNA3.1-HMGB1 vector. 10µg of pcDNA3.1-HMGB1 or pcDNA3.1 plasmid was separately electroporated into K562 cells. At 48 hours after electroporation the cells were cultured with G418 at a final concentration of 800 µg/ml for over 2 weeks. Finally stably transfected sublines of K562 cells containing hmgb1 gene (K562-HMGB1), and of K562 containing pcDNA3.1 vector (K562-pcDNA3.1) served as a control, were obtained. The transcriptional or translational expression of hmgb1 gene was detected with RT-PCR or Western blot, respectively, to testify transfected efficiency and validity of stable subline of K562-HMGB1. The results indicated that the eukaryotic expression vector pcDNA3.1-HMGB1 plasmid was successfully constructed and was electroporated into K562 cells. The transcriptional or translational expression of hmgb1

  13. Mobile Probes in Mobile Learning

    OpenAIRE

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    2011-01-01

    In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Conse...

  14. Use of fuel cells to meet military requirements for mobile power

    International Nuclear Information System (INIS)

    'Full text:' The use of fuel cell technology in military applications will depend on safe, high energy density systems being developed. An important part of using this technology is also the development of alternative hydrogen producing fuels with high energy densities and are easy to transport. Fuel cells are now a very large R and D effort for several military applications around the world. The major reason is because of the high power demands needed requires electrical energy sources that far exceed the capabilities of batteries currently being fielded for portable applications. Fuel cells are regarded as highly efficient, tactical energy converters that can be adapted for wide range of power requirements. They are potentially the lowest weight power source when coupled with batteries or capacitors to form hybrid systems. Generally electrical power is needed to support a number of applications from ultra-high power for electrical pulses (radios, sensors) to reliable, conditioned power for command and control systems. In the future, sustained power for electric drive systems, will also be required. Some of the promising applications in the military and the R and D challenges that remain to reach performance and reliability targets suitable for military requirements will be discussed. (author)

  15. DESIGN OF LOW EPI AND HIGH THROUGHPUT CORDIC CELL TO IMPROVE THE PERFORMANCE OF MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    P. VELRAJKUMAR

    2014-04-01

    Full Text Available This paper mainly focuses on pass logic based design, which gives an low Energy Per Instruction (EPI and high throughput COrdinate Rotation Digital Computer (CORDIC cell for application of robotic exploration. The basic components of CORDIC cell namely register, multiplexer and proposed adder is designed using pass transistor logic (PTL design. The proposed adder is implemented in bit-parallel iterative CORDIC circuit whereas designed using DSCH2 VLSI CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The propagation delay, area and power dissipation are calculated from the simulated results for proposed adder based CORDIC cell. The EPI, throughput and effect of temperature are calculated from generated layout. The output parameter of generated layout is analysed using BSIM4 advanced analyzer. The simulated result of the proposed adder based CORDIC circuit is compared with other adder based CORDIC circuits. From the analysis of these simulated results, it was found that the proposed adder based CORDIC circuit dissipates low power, gives faster response, low EPI and high throughput.

  16. Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal.

    Science.gov (United States)

    Valbonesi, Paola; Franzellitti, Silvia; Bersani, Ferdinando; Contin, Andrea; Fabbri, Elena

    2016-01-01

    Purpose Due to its role in learning, memory and in many neurodegenerative diseases, acetylcholinesterase (AChE) represents an interesting endpoint to assess possible targets of exposure to radiofrequency electromagnetic fields (RF-EMF) generated by mobile phones. We investigated possible alterations of enzymatic activity, gene and protein expression of AChE in neuronal-like cells exposed to a 1.8 GHz Global System for Mobile Communication (GSM) modulated signal (217-GSM). Materials and methods Rat PC12 cells were exposed for 24 h to 1.8 GHz 217-GSM signal. Specific adsorption rate (SAR) was 2 W/kg. AChE enzyme activity was assessed spectrophotometrically by Ellman's method, mRNA expression level was evaluated by real time polymerase chain reaction, and protein expression was assessed by Western blotting. Results AChE enzymatic activity increased of 1.4-fold in PC12 cells exposed to 217-GSM signal for 24 h, whilst AChE transcriptional or translational pathways were not affected. Conclusion Our results provide the first evidence of effects on AChE activity after in vitro exposure of mammalian cells to the RF-EMF generated by GSM mobile phones, at the SAR value 2 W/kg. The obtained evidence promotes further investigations on AChE as a possible target of RF-EMF and confirm the ability of 1.8 GHz 217-GSM signal to induce biological effects in different mammalian cells. PMID:26630175

  17. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen;

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with...

  18. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil)

    OpenAIRE

    De Clercq, Erik

    2009-01-01

    Abstract AMD3100 was found to inhibit HIV-1 and HIV-2 within the 1?10nM concentration range while not being toxic to the host cells at concentrations up to 500?M, thus achieving a selectivity index of approximately 100,000. The target of action was initially thought to be the viral envelope glycoprotein gp120. It appeared only to be the indirect target. The direct target of action turned out to be the co-receptor CXCR4 used by T-lymphotropic HIV strains (now referred to as X4 strai...

  19. Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles

    Directory of Open Access Journals (Sweden)

    Hanson Maureen R

    2007-02-01

    Full Text Available Abstract Background Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2, which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins. Results We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1, myosin XI-6 (At MYA2, myosin XI-8 (At XI-B, myosin XI-15 (At XI-I, myosin XI-16 (At XI-J and myosin XI-17 (At XI-K were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2, previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria. Conclusion 6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and

  20. The development of human mast cells. An historical reappraisal.

    Science.gov (United States)

    Ribatti, Domenico

    2016-03-15

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34(+)/CD117(+)/CD13(+)multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs. PMID:26997528

  1. Mobile payment

    CERN Document Server

    Lerner, Thomas

    2013-01-01

    Paying with mobile devices such as mobile phones or smart phones will expand worldwide in the coming years. This development provides opportunities for various industries (banking, telecommunications, credit card business, manufacturers, suppliers, retail) and for consumers.

  2. A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation

    Directory of Open Access Journals (Sweden)

    Dong Hai-Tao

    2012-04-01

    Full Text Available Abstract Background Miniature inverted repeat transposable element (MITE is one type of transposable element (TE, which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. Results We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing. This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE were identified only in regenerated plantlets. Conclusions It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.

  3. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation

    OpenAIRE

    Noman, Muhammad Zaeem; Desantis, Giacomo; Janji, Bassam; Hasmim, Meriem; Karray, Saoussen; Dessen, Philippe; Bronte, Vincenzo; Chouaib, Salem

    2014-01-01

    Tumor-infiltrating myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) form an important component of the hypoxic tumor microenvironment. Here, we investigated the influence of hypoxia on immune checkpoint receptors (programmed death [PD]-1 and CTLA-4) and their respective ligands (PD-1 ligand 1 [PD-L1], PD-L2, CD80, and CD86) on MDSCs. We demonstrate that MDSCs at the tumor site show a differential expression of PD-L1 as compared with MDSCs ...

  4. Morphological aspects of starch and cell wall material mobilization in developing lupine cotyledons and the effect of kinetin on these processes

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2015-05-01

    Full Text Available In the cotyledons of dry lupine seeds the presence of starch was not demonstrated. Its formation during seed imbibition in darkness is accompanied by a reduction in the thickness of cell walls containing hemicelluloses. It is believed that the products of hemicellulose hydrolysis, particullarily in isolated cotyledons, arę the main source of materials for the synthesis of starch, In the process of cell wall decomposition the invaginations of plasmalemma appear to be involved. Kinetin enhance the hydrolysis of cell walls and the mobilization of starch in isolated cotyledons.

  5. Mobile marketing

    OpenAIRE

    Švarc, Ondřej

    2010-01-01

    The goal of bachelor's thesis on the theme "Mobile marketing" is to outline its development and why is this new phenomen so important for all modern companies around the world. The work is not about simple description of mobile marketing media but it vividly informs about the latest trends and news from the world of mobile apps and games. It presents the most successful mobile apps which registered more than billion downloads and from their unique characteristics it unveils great potential of...

  6. Mobile marketing

    OpenAIRE

    KLEČKOVÁ, Zuzana

    2013-01-01

    The main aim of this thesis was to provide a comprehensive overview of the mobile marketing and analyze selected campaigns of Czech mobile marketing in comparison to world successful campaigns. The research contained studying of available literature about the theme to gain general knowledge about the issue. The theoretical part of the thesis contains predominantly various definitions of mobile marketing and its tools, advantages of these tools and some information about Mobile Marketing Assoc...

  7. Staging Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    lived as people are “staging themselves” (from below). Staging mobilities is a dynamic process between “being staged” (for example, being stopped at traffic lights) and the “mobile staging” of interacting individuals (negotiating a passage on the pavement). Staging Mobilities is about the fact that...

  8. Lysophosphatidic acid induced nuclear translocation of nuclear factor-κB in Panc-1 cells by mobilizing cytosolic free calcium

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Arita; Tetsuhide Ito; Takamasa Pond; Ken Kawabe; Terumasa Hisano; Ryoichi Takayanagi

    2008-01-01

    AIM: To clarify whether Lysophosphatidic acid (LPA) activates the nuclear translocation of nuclear factor-κB (NF-κB) in pancreatic cancer.METHODS: Panc-1, a human pancreatic cancer cell line, was used throughout the study. The expression of LPA receptors was confirmed by reverse-transcript polymerase chain reaction (RT-PCR). Cytosolic free calcium was measured by fluorescent calcium indicator fura-2, and the localization of NF-κB was visualized by immunofluorescent method with or without various agents, which effect cell signaling.RESULTS: Panc-1 expressed LPA receptors, LPAA1,LPA2 and LPA3. LPA caused the elevation of cytosolic free calcium dose-dependently. LPA also caused the nuclear translocation of NF-κB. Cytosolic free calcium was attenuated by pertussis toxin (PTX) and U73122,an inhibitor of phospholipase C. The translocation of NF-κB was similarly attenuated by PTX and U73122,but phorbol ester, an activator of protein kinase C,alone did not translocate NF-κB. Furthermore, the transtocation of NF-κB was completely blocked by Ca2+ chelator BAPTA-AM. Thapsigargin, an endoplasmic-reticulum Ca2+-ATPase pump inhibitor, also promoted the translocation of NF-κB. Staurosporine, a protein kinase C inhibitor, attenuated translocation of NF-κB induced by LPA.CONCLUSlON: These findings suggest that protein kinase C is activated endogenously in Panc-1, and protein kinase C is essential for activating NF-κB with cytosolic calcium and that LPA induces the nuclear translocation of NF-κB in Panc-1 by mobilizing cytosolic free calcium.

  9. Profibus protocol extensions for enabling inter-cell mobility in bridge-based hybrid wired/wireless networks

    OpenAIRE

    Ferreira, Luis; Tovar, Eduardo; Alves, Mário

    2003-01-01

    Future industrial control/multimedia applications will increasingly impose or benefit from wireless and mobile communications. Therefore, there is an enormous eagerness for extending currently available industrial communications networks with wireless and mobility capabilities. The RFieldbus European project is just one example, where a PROFIBUS-based hybrid (wired/wireless) architecture was specified and implemented. In the RFieldbus architecture, interoperability between wire...

  10. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer

    Science.gov (United States)

    Höhlein, B.; Boe, M.; Bøgild-Hansen, J.; Bröckerhoff, P.; Colsman, G.; Emonts, B.; Menzer, R.; Riedel, E.

    On-board generation of hydrogen from methanol with a reformer in connection with the use of a proton-exchange membrane fuel cell (PEMFC) is an attractive option for a passenger car drive. Special considerations are required to obtain low weight and volume. Furthermore, the PEMFC of today cannot tolerate more than 10 ppm of carbon monoxide in the fuel. Therefore a gas conditioning step is needed after the methanol reformer. Our main research activities focus on the conceptual design of a drive system for a passenger car with methanol reformer and PEMFC: engineering studies with regard to different aspects of this design including reformer, catalytic burner, gas conditioning, balances of the fuel cycles and basic design of a compact methanol reformer. The work described here was carried out within the framework of a JOULE II project of the European Union (1993-1995). Extensive experimental studies have been carried out at the Forschungszentrum Jülich GmbH (KFA) in Germany and at Haldor Topsøe A/S in Denmark.

  11. Mobile Probes in Mobile Learning

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting...... as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Consequently, not only the content of the data but also the ways in which data was delivered and handled......, provided a valuable dimension for investigating mobile use. The data was collected at the same time as design activities took place and the collective data was analysed based on user experience goals and cognitive processes from interaction design and mobile learning. The mobile probe increased the...

  12. G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction - a relevant treatment?

    DEFF Research Database (Denmark)

    Ripa, R.S.; Kastrup, J.

    2008-01-01

    This review of adjunctive therapy with subcutaneous granulocyte-colony stimulating factor (G-CSF) to patients with acute myocardial infarction (AMI) focus on the cardioprotective effects and potential mechanisms of G-CSF and discuss the therapeutic potential of G-CSF. All clinical trials published...... in peer-reviewed journals identified through PubMed are discussed. G-CSF treatment seems to be safe, and initial unblinded trials in patients with AMI were encouraging. However, larger double-blind placebo-controlled trials have not been able to demonstrate improved myocardial recovery after G-CSF...... treatment. Current controversies in interpretation of the results include 1) importance of direct cardiac effect of G-CSF vs indirect through bone marrow stem and progenitor cell mobilization, 2) importance of timing of G-CSF therapy, 3) importance of G-CSF dose, and 4) importance of cell types mobilized...

  13. 手机用于词汇学习研究述评%A Review of Mobile Language Vocabulary Learning with Cell Phone

    Institute of Scientific and Technical Information of China (English)

    林梅

    2014-01-01

    介绍了近年来国外手机用于词汇学习的实证研究的主要成果,总结出手机词汇学习的有效性及其优缺点,并分析了此领域内有待思考的问题及未来研究的趋势。%Studies investigating using cell phones for learning vocabulary have started to appear in the literature. This paper reviews mobile language vocabulary learning with cell phone abroad and illustrates the effectiveness of vocabulary learning via mobile phone ,the advantages and disadvantages of these researches. However, there are still issues that must be considered and remained further investigation.

  14. PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia

    OpenAIRE

    Tamai, Katsuto; Yamazaki, Takehiko; Chino, Takenao; Ishii, Masaru; Otsuru, Satoru; Kikuchi, Yasushi; Iinuma, Shin; Saga, Kotaro; Nimura, Keisuke; Shimbo, Takashi; Umegaki, Noriko; Katayama, Ichiro; Miyazaki, Jun-ichi; Takeda, Junji; McGrath, John A.

    2011-01-01

    The role of bone marrow cells in repairing ectodermal tissue, such as skin epidermis, is not clear. To explore this process further, this study examined a particular form of cutaneous repair, skin grafting. Grafting of full thickness wild-type mouse skin onto mice that had received a green fluorescent protein-bone marrow transplant after whole body irradiation led to an abundance of bone marrow-derived epithelial cells in follicular and interfollicular epidermis that persisted for at least 5 ...

  15. Mobile Phone on Campus

    Institute of Scientific and Technical Information of China (English)

    周成

    2005-01-01

    Communication revolution has brought a great convenience to modem society and people. Especially, the occurrence of mobile phone, in away, has changed the world where we live. Maybe the mobile phone was a luxury for only a decade ago. Now, it is no exaggeration4 to say that the difference between the parts and the present is as vast as that between earth and heaven. With no exception6, campus students also fall into the category called “cell-phone school”.

  16. Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock?

    Science.gov (United States)

    Pasupuleti, Latha V.; Cook, Kristin M.; Sifri, Ziad C.; Alzate, Walter D.; Livingston, David H.; Mohr, Alicia M.

    2016-01-01

    BACKGROUND Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. METHODS Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. RESULTS The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. CONCLUSION Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that

  17. Tuning superior solar cell performance of carrier mobility and absorption in perovskite CH3NH3GeCl3: A density functional calculations

    Science.gov (United States)

    Zhao, Yu-Qing; Wu, Li-Juan; Liu, Biao; Wang, Ling-Zhi; He, Peng-Bin; Cai, Meng-Qiu

    2016-05-01

    The solar cell based on hybrid organic-inorganic halide perovskite has received considerable attention. One of the most important issues in the pursuit of further developments in this area is to obtain both a high carrier mobility and an excellent ability of light adsorption. In this paper, we investigate the electronic structure and electronic effective masses of the new non-toxic material CH3NH3GeCl3 by first-principle calculations. The results show that the absorption efficiency of CH3NH3GeCl3 is more superior to that of CH3NH3PbI3 in short wavelength region. We trace this result to the ferroelectricity caused by the more serious octahedral GeCl6- distortion. We also discover a new relationship between the carrier effective masses anisotropy and the anisotropy of electronic density of states along three principal directions. Moreover, while applied the isotropic compressive pressure, the absorption efficiency and carrier mobility of CH3NH3GeCl3 in orthorhombic phase are improved greatly due to changes of electronic structure. We speculate that these are general results of tuning of the carrier mobility by controlling the band gap and the electronic occupation along different directions, to obtain both a high carrier mobility and an excellent ability of light adsorption.

  18. Mobility Work

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus

    2005-01-01

    coordination necessary in cooperative work, but focuses, we argue, mainly on the temporal aspects of cooperative work. As a supplement, the concept of mobility work focuses on the spatial aspects of cooperative work. Whereas actors seek to diminish the amount of articulation work needed in collaboration by......We posit the concept of Mobility Work to describe efforts of moving about people and things as part of accomplishing tasks. Mobility work can be seen as a spatial parallel to the concept of articulation work proposed by the sociologist Anselm Strauss. Articulation work describes efforts of...... constructing Standard Operation Procedures (SOPs), actors minimise mobility work by constructing Standard Operation Configurations (SOCs). We apply the concept of mobility work to the ethnography of hospital work, and argue that mobility arises because of the need to get access to people, places, knowledge and...

  19. Anisotropic Cell Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes and Phosphorylation at Two Critical Residues on CESA31[OPEN

    Science.gov (United States)

    Liu, Yanmei; Bauer, Stefan

    2016-01-01

    Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion. PMID:26969722

  20. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I.

    Directory of Open Access Journals (Sweden)

    Gisela Lorente

    Full Text Available Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover is a common characteristic of some cancer cells; (ii actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.

  1. Mobile Semiotics

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2013-01-01

    This chapter aims to understand the mobile condition of contemporary life with a particular view to the signifying dimension of the environment and its ‘readability’. The chapter explores the potentials of semiotics and its relationship to the new mobilities literature. What takes place is a...... ‘mobile sense making’ where signs and materially situated meanings connect to the moving human body and thus create particular challenges and complexities of making sense of the world. The chapter includes notions of mobility systems and socio-technical networks in order to show how a ‘semiotic layer’ may...

  2. Mobil marketing

    OpenAIRE

    Engelová, Kateřina

    2006-01-01

    Mobil marketing - reklama a podpora prodeje prostřednictvím mobilních telefonů. Technologické a kulturní předpoklady vzniku tohoto odvětví. Mobil marketing a marketingový mix, možnosti synergie. Nástroje mobil marketingu - reklamní SMS a MMS, lokační služby, soutěže, ankety a hlasování, věrnostní systémy, mobilní obsah. Subjekty mobil marketingu. M-komerce. Využití pro podnikové aplikace.

  3. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    A mobile cloud is a cooperative arrangement of dynamically connected communication nodes sharing opportunistic resources. In this book, authors provide a comprehensive and motivating overview of this rapidly emerging technology. The book explores how distributed resources can be shared by mobile...... examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept of...

  4. Hybridization and control of a mobile direct methanol fuel cell system; Hybridisierung und Regelung eines mobilen Direktmethanol-Brennstoffzellen-Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Joerg Christoph

    2010-07-01

    Direct methanol fuel cells (DMFCs) are characterized by the fact that they directly convert the chemical energy of the liquid fuel methanol into electrical energy. Methanol has a high energy density and can be stored relatively easily. Due to these advantages, direct methanol fuel cell systems are suitable, for example, as a battery replacement for light-traction applications in the kW class. Since refuelling is much faster than recharging a battery, almost interruption-free operation is possible. The aim of this thesis is therefore to develop a direct methanol fuel cell system for light-traction applications. The systems technology development and characterization of a mobile direct methanol fuel cell system is initially examined in general and then applied to the example of a horizontal order picker, a type of forklift truck. A hybridization and control concept is developed for this type of truck. The procedure is structured into the theoretical characterization of the application, the development of theoretical concepts and a concluding systems analysis using data from the test stand and simulations. The characteristic driving cycle of the application results from the characterization. The concept development is based on key data such as maximum peak power during acceleration and braking as well as average power. The two-stage theoretical development of a hybridization concept is based on a pure fuel cell vehicle. A systems analysis of all possible concepts with respect to the criteria of fuel cell power, total system efficiency and dynamic fuel cell loading eventually leads to the preferred concept of indirect coupling. A cascade controller with map control, the control concept developed for this purpose, keeps the energy storage unit at a constant state of charge and provides for the fuel cell aging protection as well as aging detection. The driving cycle, operational states of the vehicle and the efficiencies of the individual components play a decisive role

  5. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Eisenstein S

    2014-11-01

    Full Text Available Samuel Eisenstein,1 Shu-Hsia Chen,2 Ping-Ying Pan21Department of Surgery, 2Department of Oncological Sciences and Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: Oncolytic virotherapy on its own has numerous drawbacks, including an inability of the virus to actively target tumor cells and systemic toxicities at the high doses necessary to effectively treat tumors. Addition of immune cell-based carriers of oncolytic viruses holds promise as a technique in which oncolytic virus can be delivered directly to tumors in smaller and less toxic doses. Interestingly, the cell carriers themselves have also demonstrated antitumor effects, which can be augmented further by tailoring the appropriate oncolytic virus to the appropriate cell type. This review discusses the multiple factors that go into devising an effective, cell-based delivery system for oncolytic viruses.Keywords: oncolytic virus, cell carrier, immune cells, cancer therapy, myeloid-derived suppressor cells

  6. Mobile Semiotics - signs and mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    This paper is about how to comprehend the mobile condition of contemporary life with a particular view to the signifying dimension of the environment and its ‘readability’. The paper explores the potentials of semiotics and its relationship to the new mobilities literature. The theoretical scope is...... therefore an attempt to mobilize semiotics by drawing on a central body of theory within and adjacent to the discipline. For instance the founding works of C. S. Peirce will be related to the contemporary notions of ‘geosemiotics’ by Scollon & Scollon. The paper’s theoretical claim is that semiotics hold a...... potential for mobilities studies if the awareness of seeing the environment as a semiotic layer and system can be sensitized to the insights of the ‘mobilities turn’. Empirically the paper tentatively explores the usefulness of a mobile semiotics approach to cases such as street signage, airport design, and...

  7. Mobile phones and mobile communication

    DEFF Research Database (Denmark)

    Ling, Richard; Donner, Jonathan

    With staggering swiftness, the mobile phone has become a fixture of daily life in almost every society on earth. In 2007, the world had over 3 billion mobile subscriptions. Prosperous nations boast of having more subscriptions than people. In the developing world, hundreds of millions of people who...... could never afford a landline telephone now have a mobile number of their own. With a mobile in our hand many of us feel safer, more productive, and more connected to loved ones, but perhaps also more distracted and less involved with things happening immediately around us. Written by two leading...... researchers in the field, this volume presents an overview of the mobile telephone as a social and cultural phenomenon. Research is summarized and made accessible though detailed descriptions of ten mobile users from around the world. These illustrate popular debates, as well as deeper social forces at work...

  8. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice.

    Science.gov (United States)

    Huston, Marshall W; Riegman, Adriaan R A; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P; Wagemaker, Gerard

    2014-10-01

    Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning. PMID:25222508

  9. Diagnosis of Schistosoma haematobium infection with a mobile phone-mounted Foldscope and a reversed-lens CellScope in Ghana.

    Science.gov (United States)

    Ephraim, Richard K D; Duah, Evans; Cybulski, James S; Prakash, Manu; D'Ambrosio, Michael V; Fletcher, Daniel A; Keiser, Jennifer; Andrews, Jason R; Bogoch, Isaac I

    2015-06-01

    We evaluated two novel, portable microscopes and locally acquired, single-ply, paper towels as filter paper for the diagnosis of Schistosoma haematobium infection. The mobile phone-mounted Foldscope and reversed-lens CellScope had sensitivities of 55.9% and 67.6%, and specificities of 93.3% and 100.0%, respectively, compared with conventional light microscopy for diagnosing S. haematobium infection. With conventional light microscopy, urine filtration using single-ply paper towels as filter paper showed a sensitivity of 67.6% and specificity of 80.0% compared with centrifugation for the diagnosis of S. haematobium infection. With future improvements to diagnostic sensitivity, newer generation handheld and mobile phone microscopes may be valuable tools for global health applications. PMID:25918211

  10. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect against cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Miao, Ming-San; Guo, Lin; Li, Rui-Qi; Ma, Xiao

    2016-02-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 days after injury. Results showed that Radix Ilicis Pubescentis total flavonoids could reduce pathological injury in rats with cerebral ischemia/reperfusion injury. The number of Nissl bodies increased, Bax protein expression decreased, Bcl-2 protein expression increased and the number of CD34-positive cells increased. Therefore, Radix Ilicis Pubescentis total flavonoids can improve the bone marrow stem cell mobilization effect, enhance the anti-apoptotic ability of nerve cells, and have a neuroprotective effect on cerebral ischemia/reperfusion injury in rats. PMID:27073381

  11. Thermal Decomposition of Mobile Phones

    OpenAIRE

    Egea Ruiz, Silvia; Moltó Berenguer, Julia; Conesa Ferrer, Juan Antonio; Font Montesinos, Rafael; Ortuño García, Nuria

    2011-01-01

    Mobile phones are used for a variety of purposes, including keeping in touch with family members, conducting business, and having access to a telephone in the event of an emergency. Some people carry more than one cell phone for different purposes. In 2006 more than one billion mobile phones were shipped worldwide, 22.5 % more than the quantity shipped in 2005. By 2008 the number of mobile phone users around the world was predicted to reach two billion.

  12. Location Privacy in Mobile Networks

    OpenAIRE

    Ergenzinger, Andreas

    2015-01-01

    This master thesis presents a client-server system for protecting the anonymity and location privacy of mobile network users against a passive network-side adversary. The server provides a pool of UICCs – technological successors to SIM cards. Users’ cellphones rely on those UICCs for accessing a mobile network. Through simultaneous, coordinated switching to new UICCs, groups of users in the same mobile radio cell become indistinguishable to the adversary. The system’s performance was evaluat...

  13. Restricted Mobilities

    DEFF Research Database (Denmark)

    Nielsen, Mette; Lassen, Claus

    2012-01-01

    exclusion and stratification mechanisms. In conclusion the article therefore suggests that future urban research and planning also needs a mobile understanding of spaces in the cities and how different mobility systems play an important role to sustain the exclusiveness that often characterises the private......Privatisation of public spaces in the contemporary city has increased during the last decades but only few studies have approached this field from a mobility perspective. Therefore the article seeks to rectify this by exploring two Australian examples of private spaces in the city; gated...... communities and shopping centres through mobility lenses. The article shows how different mobility systems enable and restrict the public access to private-public spaces, and it points out that proprietary communities create an unequal potential for human movement and access in the city. The main argument in...

  14. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix; Wind, Simon

    2016-01-01

    In this paper, we identify the nexus between design (architecture, urban design, service design, etc.) and mobilities as a new and emerging research field. In this paper, we apply a “situational mobilities” perspective and take point of departure in the pragmatist question: “What design decisions...... and interventions affords this particular mobile situation?” The paper presents the contours of an emerging research agenda within mobilities research. The advent of “mobilities design” as an emerging research field points towards a critical interest in the material as well as practical consequences...... well as policy-making. The paper proposes that increased understanding of the material affordances facilitated through design provides important insight to planning and policymaking that at times might be in risk of becoming too detached from the everyday life of the mobile subject within contemporary...

  15. Intensive mobilities:

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory...... with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this...

  16. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    How is the width of the pavement shaping the urban experience? How is the material design of transport infrastructure and mobile technology affording social interaction in everyday life spaces? How do people inhabit these spaces with their bodies and in accordance to social and cultural norms......? These are some of the questions that this book raises in order to explore how the design of mobile sites and situations affect people's everyday life. The book takes point of departure in the author's book 'Staging Mobilities' (Routledge, 2013) in which it is argued that mobility is much more than...... mundane acts of moving in the city. 'Designing Mobilities' is based on more than a decade of academic research by Professor of Urban Theory, Ole B. Jensen and a must-read for students and scholars with an interest in urban studies, urban design, architecture, urban planning, transport planning and...

  17. Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

    International Nuclear Information System (INIS)

    We investigated whether the high mobility group B 1 (HMGB1), an abundant nuclear protein in all mammalian cells, affects HIV-1 transcription. Intracellular expression of human HMGB1 repressed HIV-1 gene expression in epithelial cells. This inhibitory effect of HMGB1 was caused by repression of long terminal repeat (LTR)-mediated transcription. Other viral promoters/enhancers, including simian virus 40 or cytomegalovirus, were not inhibited by HMGB1. In addition, HMGB1 inhibition of HIV-1 subtype C expression was dependent on the number of NFκB sites in the LTR region. The inhibitory effect of HMGB1 on viral gene expression observed in HeLa cells was confirmed by an upregulation of viral replication in the presence of antisense HMGB1 in monocytic cells. In contrast to what was found in HeLa cells and monocytic cells, endogenous HMGB1 expression did not affect HIV-1 replication in unstimulated Jurkat cells. Thus, intracellular HMGB1 affects HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

  18. A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Kakinoki, Sachiro; Seo, Ji-Hun; Inoue, Yuuki; Ishihara, Kazuhiko; Yui, Nobuhiko; Yamaoka, Tetsuji

    2013-01-01

    Adhesion behaviors of human umbilical vein endothelial cells (HUVECs) are interestingly affected by the mobility of hydrophilic chains on the material surfaces. Surfaces with different molecular mobilities were prepared using ABA-type block copolymers consisting polyrotaxane (PRX) or poly(ethylene glycol) (PEG) central block (A block), and amphiphilic anchoring B blocks of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB). Two different molecular mobilities of the PRX chains were designed by using normal α-cyclodextrin (α-CD) or α-CD whose hydroxyl groups were converted to methoxy groups in a given ratio to improve its molecular mobility (PRX-PMB and OMe-PRX-PMB). The surface mobility of these materials was assessed as the mobility factor (Mf), which is measured by quartz crystal microbalance with dissipation monitoring system. HUVECs adhered on OMe-PRX-PMB surface much more than PRX-PMB and PMB-block-PEG-block-PMB (PEG-PMB) surfaces. These different HUVEC adhesions were correlated with the density of cell-binding site of adsorbed fibronectin. In addition, the alignment of the actin cytoskeleton of adhered HUVECs was strongly suppressed on the PEG-PMB, PRX-PMB, and OMe-PRX-PMB in response to the increased Mf value. Remarkably, the HUVECs adhered on the OMe-PRX-PMB surface with much less actin organization. We concluded that not only the cell adhesion but also the cellular function are regulated by the molecular mobility of the outmost material surfaces. PMID:23796033

  19. Going Mobile?

    DEFF Research Database (Denmark)

    Tallon, Loic; Froes, Isabel Cristina G.

    2011-01-01

    If the future is mobile, how is the museum community developing within that future? What are the challenges museums face within it? In which directions should we be seeking to evolve our collective knowledge share? It was to gain observations on questions such as these that the 2011 Museums & Mob...... & Mobile survey was developed: 660 museum professionals responded. In this paper the authors highlight nine survey observations that they believe are important to the museum community’s increased understanding of and continued progress within mobile interpretation....

  20. Mobile museology

    DEFF Research Database (Denmark)

    Baggesen, Rikke Haller

    selection of blog posts from the research project blog with three research articles: ‘Museum metamorphosis à la mode’, proposing a fashion perspective on ongoing museum developments; ‘Augmenting the agora: media and civic engagement in museums’, questioning the idea of social media holding a vital potential...... fashionable, the ephemeral, and towards an (ideal) state of change and changeability. This orientation is characterised with the triplet concepts of mobile, mobility, and mobilisation, as related to mobile media and movability; to ‘trans - museal’ mediation; and to the mobilisation of collections, audiences...

  1. Mobile Lexicography

    DEFF Research Database (Denmark)

    Køhler Simonsen, Henrik

    2014-01-01

    Users are already mobile, but the question is to which extent knowledge-based dictionary apps are designed for the mobile user situation. The objective of this article is to analyse the characteristics of the mobile user situation and to look further into the stationary user situation and the...... looked up the same five medical terms while walking around a hospital bed. The data collected during the two tests include external and internal recordings, think-aloud data and interview data. The data were analysed by means of the information scientific star model, cf. (Simonsen 2011:565), and it was...

  2. The efficacy of prophylactic outpatient antibiotics for the prevention of neutropenic fever associated with high-dose etoposide (VP-16) for stem cell mobilization.

    Science.gov (United States)

    Avery, R K; Pohlman, B L; Mossad, S B; Goormastic, M; Longworth, D L; Kalaycio, M E; Sobecks, R M; Andresen, S W; Kuczkowski, E; Bernhard, L; Ostendorf, H; Wise, K; Bolwell, B J

    2002-09-01

    High-dose etoposide (2 g/m(2)) plus G-CSF is a very effective regimen for peripheral blood progenitor cell (PBPC) mobilization. Unfortunately, neutropenia is common. The infectious complications associated with high-dose etoposide have not been previously described. After noting a high incidence of hospitalizations for neutropenic fever, we began a vigorous prophylactic antibiotic regimen for patients receiving high-dose etoposide plus G-CSF, attempting to reduce infectious complications. Ninety-eight patients underwent etoposide mobilization between December 1997 and June 2000. Three chronological patient groups received: (1) no specific antibiotic prophylaxis (n = 44); (2) vancomycin i.v., cefepime i.v., clarithromycin p.o., and ciprofloxacin p.o. (n = 27); and (3) vancomycin i.v., clarithromycin p.o., and ciprofloxacin p.o. (n = 27). The patients not receiving antibiotic prophylaxis had a 68% incidence of hospitalization for neutropenic fever. In the patients receiving prophylaxis, the incidence was reduced to 26% and 15% respectively, for an overall incidence of 20% (P < 0.001 for comparison between prophylaxed and unprophylaxed groups). We conclude that etoposide mobilization is associated with a significant incidence of neutropenic fever, which can be substantially reduced by a vigorous antimicrobial prophylactic program. PMID:12209353

  3. 自体干细胞移植治疗糖尿病足的干细胞动员和采集%Stem cell mobilization and collection for autologous peripheral blood stem cells transplantation in diabetic foot treatment

    Institute of Scientific and Technical Information of China (English)

    李华; 陈旭艳; 周斌; 冯亮华; 肖萍萍; 吴完婷

    2011-01-01

    背景:在自体干细胞移植治疗下肢缺血性疾病的干细胞动员期间,国内外大多数研究组均常规应用5~10 μg/(kg?d)的粒细胞集落刺激因子动员,5 d后采集干细胞进行移植,这是否为最佳的动员时间和采集时机未见相关报道.目的:分析探讨自体干细胞移植最佳动员方案及采集时机,提高该方法的安全性.方法:对备行干细胞移植的18例糖尿病足患者分别采用粒细胞集落刺激因子5,10 μg/(kg?d)进行造血干细胞动员,分析粒细胞集落刺激因子动员天数、剂量与外周血白细胞、单个核细胞、CD34+细胞数的关系,并检测干细胞动员前后、采集前后患者凝血指标、血小板计数的变化,观察患者动员及采集过程的不良反应.结果与结论:随着动员天数的增加,白细胞和单个核细胞、CD34+细胞数也随之增加,干细胞获得的效率与粒细胞集落刺激因子的剂量、动员时间有关,外周血中CD34+总数与单个核细胞总数呈正相关.患者的凝血指标在动员和采集前后无显著变化.血小板计数在动员前后无变化,但在采集后有显著下降;18例患者中仅有1例在粒细胞集落刺激因子动员中发生轻度骨头酸痛,1例出现发热,其他患者均无不良反应发生.提示,糖尿病足患者干细胞采集的最佳时机不能单凭动员天数和外周血白细胞数决定,而是由外周血单个核细胞数和CD34+的数量来决定.且干细胞动员和采集对患者的不良反应小,安全性高.%BACKGROUND: Autologous stem cell transplantation in the treatment of lower limb ischemia has been developed extensively in domestic and overseas and achieved better clinical curative effect. 5-10 μg/(kg · D) of granulocyte colony-stimulating factor (G-CSF) mobilization is often used, and stem cells are harvested after 5 days for transplantation. Whether the above-mentioned is the optimal mobilization scheme and harvesting opportunity is not reported

  4. Lentivirus-Induced Dendritic Cells (iDC for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Renata Stripecke

    2014-08-01

    Full Text Available Conventional dendritic cells (cDC are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN, where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2, and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65. The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.

  5. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Jørgensen, Erik; Wang, Yongzhong;

    2006-01-01

    BACKGROUND: Phase 1 clinical trials of granulocyte-colony stimulating factor (G-CSF) treatment after myocardial infarction have indicated that G-CSF treatment is safe and may improve left ventricular function. This randomized, double-blind, placebo-controlled trial aimed to assess the efficacy of......: Bone marrow stem cell mobilization with subcutaneous G-CSF is safe but did not lead to further improvement in ventricular function after acute myocardial infarction compared with the recovery observed in the placebo group....

  6. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  7. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca{sup 2+} mobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Meichun [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China); Department of Physiology, Hubei University of Medicine, Shiyan (China); Li, Jianjie [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Lv, Jingzhang [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045 (China); Mo, Xucheng; Yang, Chengbin [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Chen, Xiangdong [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China); Liu, Zhigang [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Liu, Jie, E-mail: ljljz@yahoo.com [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China)

    2012-11-01

    Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca{sup 2+} increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca{sup 2+} increase were largely inhibited by using LaCl{sub 3} to block the Ca{sup 2+} release-activated Ca{sup 2+} channels (CRACs). Furthermore, PD significantly inhibited Ca{sup 2+} entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca{sup 2+} influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca{sup 2+} mobilization mainly through inhibiting Ca{sup 2+} entry via CRACs, thus exerting a protective effect against PCA. -- Highlights: ► Polydatin can prevent the pathogenesis of passive cutaneous anaphylaxis in mice. ► Polydatin stabilizes mast cells by decreasing FcεRI-mediated degranulation. ► Polydatin suppresses Ca{sup 2+} entry through CRAC channels in mast cells.

  8. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Lu-WenWang; Hui Chen; Zuo-Jiong Gong

    2010-01-01

    BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6±20.1 μg/L vs. 34.2±13.7 μg/L; 4.55±1.34% vs. 9.52± 3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection

  9. Ca2+-mobilizing actions of platelet-derived growth factor differ from those of bombesin and vasopressin in Swiss 3T3 mouse cells

    International Nuclear Information System (INIS)

    Addition of the mitogenic peptides bombesin and vasopressin to quiescent Swiss 3T3 mouse cells increased the cytosolic Ca2+ concentration without any measurable delay. In contrast, there was a significant lag period (16 +/- 1.2 s) before platelet-derived growth factor (PDGF) increased cytosolic Ca2+ concentration. This lag was not diminished at high concentrations of either porcine or human PDGF. Similar results were obtained in 3T3 cells loaded with quin-2 or fura-2. The differences in the effects of bombesin, vasopressin, and PDGF on Ca2+ movements were also substantiated by measurements of 45Ca2+ efflux and of cellular 45Ca2+ content. Activation of protein kinase C by phorbol esters inhibited Ca2+ mobilization induced by either bombesin or vasopressin. In contrast, phorbol esters had no effect on PDGF-induced cytosolic Ca2+ concentration increase or acceleration of 45Ca2+ efflux. Finally, bombesin and vasopressin caused a rapid increase in the production of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate, whereas PDGF, even at a saturating concentration, exerted only a small effect. These results indicate that the signal transduction pathway activated by PDGF that lead to Ca2+ mobilization can be distinguished form those utilized by bombesin and vasopressin

  10. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  11. Percutaneous implantation of peripheral blood mononuclear cells mobilized with granulocyte colony stimulating factor in osteoarthritis of the knee. First case reported in Cuba

    International Nuclear Information System (INIS)

    The degenerative joint disease, also known as osteoarthrosis affects to 10% of elderlies aged 60. It is mainly characterized by pain in the involved joint, crepitation, morning stiff and a progressive limitation of movement of that joint leading to a partial or total wear of articular cartilage. The treatment of the knee osteoarthrosis is a great challenge. The recent advances in use of regenerative medicine suggest that adult stem cells could represent a promisor alternative in the treatment of this entity. In a female patient aged 61 presenting with knee osteoarthrosis authors placed a percutaneous implant of autologous mononuclear cells mobilized to peripheral blood by granulocyte colony-stimulating factor achieving a fast clinical and radiological improvement. This result suggests that the procedure used is a feasible, simple, safe and less expensive method for treatment of articular degenerative lesions

  12. Synthesis of cyclic N 1-pentylinosine phosphate, a new structurally reduced cADPR analogue with calcium-mobilizing activity on PC12 cells

    Science.gov (United States)

    Borbone, Nicola; Pinto, Brunella; Secondo, Agnese; Costantino, Valeria; Tedeschi, Valentina; Piccialli, Vincenzo; Piccialli, Gennaro

    2015-01-01

    Summary Cyclic N 1-pentylinosine monophosphate (cpIMP), a novel simplified inosine derivative of cyclic ADP-ribose (cADPR) in which the N 1-pentyl chain and the monophosphate group replace the northern ribose and the pyrophosphate moieties, respectively, was synthesized. The role played by the position of the phosphate group in the key cyclization step, which consists in the formation of a phosphodiester bond, was thoroughly investigated. We have also examined the influence of the phosphate bridge on the ability of cpIMP to mobilize Ca2+ in PC12 neuronal cells in comparison with the pyrophosphate bridge present in the cyclic N 1-pentylinosine diphosphate analogue (cpIDP) previously synthesized in our laboratories. The preliminary biological tests indicated that cpIMP and cpIDP induce a rapid increase of intracellular Ca2+ concentration in PC12 neuronal cells. PMID:26877790

  13. Influence of Blend Ratio and Processing Additive on Free Carrier Yield and Mobility in PTB7:PC71BM Photovoltaic Solar Cells

    Science.gov (United States)

    2016-01-01

    Charge separation and extraction dynamics were investigated in high-performance bulk heterojunction solar cells made from the polymer PTB7 and the soluble fullerene PC71BM on a broad time scale from subpicosecond to microseconds using ultrafast optical probing of carrier drift and the integral-mode photocurrent measurements. We show that the short circuit current is determined by the separation of charge pairs into free carriers, which is strongly influenced by blend composition. This separation is found to be efficient in fullerene-rich blends where a high electron mobility of >0.1 cm2 V–1 s–1 is observed in the first 10 ps after excitation. Morphology optimization using the solvent additive 1,8-diiodooctane (DIO) doubles the charge pair separation efficiency and the short-circuit current. Carrier extraction at low internal electric field is slightly faster from the cells prepared with DIO, which can reduce recombination losses and enhance a fill factor. PMID:27293495

  14. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    Science.gov (United States)

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin. PMID:26999801

  15. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Labopin, Myriam; Shimoni, Avichai;

    2012-01-01

    Reduced-intensity conditioning (RIC)-alloSCT is increasingly used for acute myelogenous leukemia. Limited data are available for the comparison of peripheral blood stem cells with bone marrow for RIC-alloSCT. We used the European Group for Blood and Marrow Transplantation (EBMT) ALWP data to...... compare the outcome of mobilized peripheral blood stem cells (PBSC) (n = 1430) vs. bone marrow (BM) (n = 107) for acute myelogenous leukemia (AML) patients with complete remission that underwent RIC-alloSCT from compatible sibling donors. The leukemia features, the disease status, and the time from......-IV) and chronic GVHD did not differ between the groups. leukemia-free survival (LFS), relapse, and non-relapsed mortality (NRM) were 51 ± 2%, 32 ± 1%, and 17 ± 1% vs. 50 ± 6%, 38 ± 6%, and 12 ± 3% for the PBSC and BM groups, respectively. Our results indicate faster engraftment, but no difference in GVHD...

  16. Are mobile phones harmful?

    DEFF Research Database (Denmark)

    Blettner, M; Berg, Gabriele

    2000-01-01

    in cells. Implications of these experimental results on public health concerns are yet unclear. Few epidemiological studies are available on the use of mobile phones or on the radiofrequency exposure and the development of cancer. Most of these studies have no or little quantitative exposure data and......There is increasing public interest in health risks of mobile phone use. Although there is a vast body of material on the biological effects of radiofrequency fields, current risk assessment is still limited. The article describes several hypotheses and results of biological effects such as thermal...... effect, genetic and carcinogenic effects and cancer related investigations. Mobile phones transmit and receive waves of frequencies mainly at 800-1800 MHz. Findings on the thermal effect of acute exposure to radiofrequency fields were consistent, resulting in an increase of cellular, tissue or body...

  17. Mobile medical image retrieval

    Science.gov (United States)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  18. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans

    International Nuclear Information System (INIS)

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis

  19. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    practices. Everyday life mobilities take place in complex socio-technical systems where the over-layering of hard infrastructures, with design codes and protocols shapes the ‘mobile biotopes’ of the everyday life. By exploring the very tangible and concrete designs of for example everyday life transit...... spaces, mobilitiy technologies or urban sites of movement we get much closer to understanding the meaning of mobilities to social interaction and culture. The cases are still representing work-in-progress but will be reported in the book ‘Designing Mobilites’ (Jensen 2013b) and will cover the four cases...... of: motorway ecologies, bicycle systems design, urban shopping malls and a train transit hub....

  20. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF.

    Science.gov (United States)

    Kang, Jeehoon; Hur, Jin; Kang, Jin-A; Yun, Ji-Yeon; Choi, Jae-Il; Ko, Seung Bum; Lee, Choon-Soo; Lee, Jaewon; Han, Jung-Kyu; Kim, Hyun Kyung; Kim, Hyo-Soo

    2014-10-01

    Platelets not only play a role in hemostasis, but they also promote angiogenesis and tissue recovery by releasing various cytokines and making an angiogenic milieu. Here, we examined autologous 'activated platelet supernatant (APS)' as a priming agent for stem cells; thereby enhance their pro-angiogenic potential and efficacy of stem cell-based therapy for ischemic diseases. The mobilized peripheral blood stem cells ((mob)PBSCs) were isolated from healthy volunteers after subcutaneous injection of granulocyte-colony stimulating factor. APS was collected separately from the platelet rich plasma after activation by thrombin. (mob)PBSCs were primed for 6h before analysis. Compared to naive platelet supernatants, APS had a higher level of various cytokines, such as IL8, IL17, PDGF and VEGF. APS-priming for 6h induced (mob)PBSCs to express key angiogenic factors, surface markers (i.e. CD34, CD31, and CXCR4) and integrins (integrins α5, β1 and β2). Also (mob)PBSCs were polarized toward CD14(++)/CD16(+) pro-angiogenic monocytes. The priming effect was reproduced by an in vitro reconstruction of APS. Through this phenotype, APS-priming increased cell-cell adhesion and cell-extracellular matrix adhesion. The culture supernatant of APS-primed (mob)PBSCs contained high levels of IL8, IL10, IL17 and TNFα, and augmented proliferation and capillary network formation of human umbilical vein endothelial cells. In vivo transplantation of APS-primed (mob)PBSCs into athymic mice ischemic hindlimbs and Matrigel plugs elicited vessel differentiation and tissue repair. In safety analysis, platelet activity increased after mixing with (mob)PBSCs regardless of priming, which was normalized by aspirin treatment. Collectively, our data identify that APS-priming can enhance the angiogenic potential of (mob)PBSCs, which can be used as an adjunctive strategy to improve the efficacy of cell therapy for ischemic diseases. PMID:25016235

  1. Mobile Marketing

    OpenAIRE

    Monika Březinová; Michael Rost

    2009-01-01

    This article deals with one of the modern trends in marketing communication, which is mobile marketing. Towards the end of 2008, several projects which use mobile phones for target marketing communication were launched. Commercial SMS´s are sent on the base of agreement or registration of the consumers on special websites, for example hellomobil.cz. The benefit for the consumers is the bonus which can have more forms - not only sending money to the account, free SMS´s/MMS´s and minutes but al...

  2. Mobile Applications

    OpenAIRE

    Semerád, David

    2011-01-01

    The mobile app market is one of the fastest growing in the world. The Apple company has become the most valuated company in the world, mainly due to its App Store. Considering the fact, that nearly all the trends from abroad are soon or later adapted in the Czech Republic, there is quite a big potential value for all the projects on mobile apps including the local market specifics. The subject of this thesis is to consider whether such an app could be successful in such an old school environm...

  3. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes

    International Nuclear Information System (INIS)

    Highlights: ► Moderate extracellular acidification regulates intracellular Ca2+ mobilization. ► Moderate acidification activates NF-κB nuclear translocation in synoviocytes. ► Moderate acidification depresses the ROS production induced by capsaicin. ► Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca2+ entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca2+ entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca2+ release from intracellular stores. The nuclear translocation of NF-κB was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-κB. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca2+ mobilization, activating NF-κB nuclear translocation and depressing ROS production.

  4. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  5. Mobility Challenges

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lassen, Claus

    2011-01-01

    This article takes point of departure in the challenges to understand the importance of contemporary mobility. The approach advocated is a cross-disciplinary one drawing on sociology, geography, urban planning and design, and cultural studies. As such the perspective is to be seen as a part of th...

  6. Sustainable Mobility

    DEFF Research Database (Denmark)

    Kjærulff, Aslak Aamot

    This paper combines strands of mobilities theory and planning theory, and develops a qualitative approach to look across emerging planning practices. By actively following 8 Danish urban and transport planners, over the course of 2 years, we learn how their practices have changed, inspired by mob...

  7. Mobil nationalisme

    DEFF Research Database (Denmark)

    Koefoed, Lasse Martin

    2006-01-01

    , varer, mennesker og kapital men derimod en integreret del af disse tendenser. Gennem begrebet mobil nationalisme argumenteres der for en analytisk optik, hvor nationalisme forstås som en proces hvorigennem skiftende relationer og bevægelser mellem forskellige socio-rumlige skalaer som kroppen...

  8. Measuring spatial mobility - towards new perspectives on accessibility

    OpenAIRE

    Mohall, Marcus

    2015-01-01

    In recent years, spatial data derived from cell phones has become increasingly recognized as a valuable data source for urban analysis. Using a sizeable dataset depicting the physical movements of several million Swedish and Danish cell phones during 24 hours, an analysis of aggregated individual mobility levels and mobility patterns is conducted. The analysis covers two measurements of mobility, total diurnal mobility and commuting mobility. Findings indicate that phone data may provide semi...

  9. Gliadin-Specific T-Cells Mobilized in the Peripheral Blood of Coeliac Patients by Short Oral Gluten Challenge: Clinical Applications

    Directory of Open Access Journals (Sweden)

    Stefania Picascia

    2015-12-01

    Full Text Available Celiac disease (CD is a common lifelong food intolerance triggered by dietary gluten affecting 1% of the general population. Gliadin-specific T-cell lines and T-cell clones obtained from intestinal biopsies have provided great support in the investigation of immuno-pathogenesis of CD. In the early 2000 a new in vivo, less invasive, approach was established aimed to evaluate the adaptive gliadin-specific T-cell response in peripheral blood of celiac patients on a gluten free diet. In fact, it has been demonstrated that three days of ingestion of wheat-containing food induces the mobilization of memory T lymphocytes reactive against gliadin from gut-associated lymphoid tissue into peripheral blood of CD patients. Such antigen-specific T-cells releasing interferon-γ can be transiently detected by using the enzyme-linked immunospot (ELISPOT assays or by flow cytometry tetramer technology. This paper discusses the suitability of this in vivo tool to investigate the repertoire of gluten pathogenic peptides, to support CD diagnosis, and to assess the efficacy of novel therapeutic strategies. A systematic review of all potential applications of short oral gluten challenge is provided.

  10. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sungwook; Kim, Jaehong; Son, Hyukjoo; Jang, Kyungsoo; Cho, Jaehyun; Kim, Kyunghae; Choi, Byoungdeog; Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.skku.ac.kr

    2008-09-07

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (V{sub TH}) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N{sub 2}O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as V{sub TH}, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (<{+-}10 V) suitable for mobile FPDs, a threshold voltage window, {delta}V{sub TH}, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial {delta}V{sub TH} over a period of 10{sup 5} P/E operations. (fast track communication)

  11. Adenosine A{sub 2A} receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Aftab, E-mail: Aftab.Ahmad@UCDenver.edu [Pediatric Airway Research Center, Department of Pediatrics, Aurora, CO (United States); Schaack, Jerome B. [Department of Microbiology, University of Colorado Denver, Aurora, CO (United States); White, Carl W.; Ahmad, Shama [Pediatric Airway Research Center, Department of Pediatrics, Aurora, CO (United States)

    2013-05-10

    Highlights: •A{sub 2A} receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A{sub 2A} receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A{sub 2A} receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A{sub 2A} receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A{sub 2A} receptor. A{sub 2A} receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A{sub 2A} receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A{sub 2A} receptor-overexpressing HLMVECs. Adenoviral-mediated A{sub 2A} receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A{sub 2A} receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A{sub 2A} receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A{sub 2A} receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A{sub 2A}-mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A{sub 2A} receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways.

  12. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    Science.gov (United States)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due

  13. Emotional change-associated T cell mobilization at the early stage of a mouse model of multiple sclerosis

    OpenAIRE

    Giuseppa ePiras; Lorenza eRattazzi; Adam eMcDermott; Robert eDeacon; Fulvio eD'acquisto

    2013-01-01

    Autoimmune diseases like multiple sclerosis are known to be associated with debilitating emotional disorders that manifest long before the flaring of motor dysfunctions. Given the emerging role of T cells in controlling both emotions and autoimmunity, in this study we explored possible correlation between T cell activation and changes in emotional behavior in a mouse model of multiple sclerosis. Our results showed a significant increase in blood circulating T cells as soon as at day 4 post-im...

  14. Emotional Change-Associated T Cell Mobilization at the Early Stage of a Mouse Model of Multiple Sclerosis

    OpenAIRE

    Piras, Giuseppa; Rattazzi, Lorenza; McDermott, Adam; Deacon, Robert; D’Acquisto, Fulvio

    2013-01-01

    Autoimmune diseases like multiple sclerosis (MS) are known to be associated with debilitating emotional disorders that manifest long before the flaring of motor dysfunctions. Given the emerging role of T cells in controlling both emotions and autoimmunity, in this study we explored possible correlation between T cell activation and changes in emotional behavior in a mouse model of MS. Our results showed a significant increase in blood circulating T cells as soon as at day 4 post immunization....

  15. Amyloid Deposits in the Bone Marrow of Patients with AL Amyloidosis Do Not Impact Stem Cell Mobilization or Engraftment

    OpenAIRE

    Cowan, Andrew J.; Seldin, David C.; Skinner, Martha; Quillen, Karen; Doros, Gheorghe; Tan, Josenia; O'Hara, Carl; Finn, Kathleen T.; Sanchorawala, Vaishali

    2012-01-01

    Amyloid deposits are often found in the bone marrow in patients with AL amyloidosis; we sought to determine whether this affects stem cell collection or engraftment following high dose melphalan and autologous stem cell transplantation (HDM/SCT). Data on 361 patients with AL amyloidosis who had Congo red staining of the pre-treatment bone marrow biopsy and underwent HDM/SCT from July 1994 to December 2011 were reviewed. Data were analyzed for stem cell yield, number of days of stem cell colle...

  16. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: device physics, photophysics and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jennifer R.; Albert-Seifried, Sebastian; Rao, Akshay; Massip, Sylvain; Friend, Richard H.; McNeill, Christopher R.; Sirringhaus, Henning [Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Watts, Benjamin [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Morgan, David J. [Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom)

    2011-03-18

    A high electron mobility polymer, poly{l_brace}[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)) is investigated for use as an electron acceptor in all-polymer blends. Despite the high bulk electron mobility, near-infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3-hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra-fast transient absorption spectroscopy reveals a two-stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]-phenyl C{sub 61}-butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X-ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD-T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron-hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high-mobility electron accepting polymers to be realized. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2.

    Science.gov (United States)

    Wu, Haijun; Liang, Yu; Shen, Lin; Shen, Liangfang

    2016-01-01

    MicroRNAs (miRNAs) are a conserved class of ∼22 nucleotide RNAs that playing important roles in various biological processes including chemoresistance. Recently, many studies have revealed that miR-204 is significantly attenuated in colorectal cancer (CRC), suggesting that this miRNA may have a function in CRC. However, whether miR-204 modulates chemosensitivity to 5-fluorouracil (5-Fu) in colorectal cancer is still unclear. In our present study, we discuss this possibility and the potential mechanism exerting this effect. We identified high mobility group protein A2 (HMGA2) as a novel direct target of miR-204 and showed that miR-204 expression was decreased while HMGA2 expression was increased in CRC cell lines. Additionally, both MiR-204 overexpression and HMGA2 inhibition attenuated cell proliferation, whereas forced expression of HMGA2 partly restored the inhibitory effect of miR-204 on HCT116 and SW480 cells. Moreover, the miR-204/HMGA2 axis modulated the resistance of tumor cells to 5-Fu in HCT-116 and SW480 colon cancer cells via activation of the PI3K/AKT pathway. These results demonstrate that the miR-204/HMGA2 axis could play a vital role in the 5-Fu resistance of colon cancer cells. Taken together, our present study elucidated that miR-204 upregulated 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provided significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients. More importantly, our present study suggested that miR-204 has potential as a therapeutic strategy for 5-Fu-resistant colorectal cancer. PMID:27095441

  18. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a conserved class of ∼22 nucleotide RNAs that playing important roles in various biological processes including chemoresistance. Recently, many studies have revealed that miR-204 is significantly attenuated in colorectal cancer (CRC, suggesting that this miRNA may have a function in CRC. However, whether miR-204 modulates chemosensitivity to 5-fluorouracil (5-Fu in colorectal cancer is still unclear. In our present study, we discuss this possibility and the potential mechanism exerting this effect. We identified high mobility group protein A2 (HMGA2 as a novel direct target of miR-204 and showed that miR-204 expression was decreased while HMGA2 expression was increased in CRC cell lines. Additionally, both MiR-204 overexpression and HMGA2 inhibition attenuated cell proliferation, whereas forced expression of HMGA2 partly restored the inhibitory effect of miR-204 on HCT116 and SW480 cells. Moreover, the miR-204/HMGA2 axis modulated the resistance of tumor cells to 5-Fu in HCT-116 and SW480 colon cancer cells via activation of the PI3K/AKT pathway. These results demonstrate that the miR-204/HMGA2 axis could play a vital role in the 5-Fu resistance of colon cancer cells. Taken together, our present study elucidated that miR-204 upregulated 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provided significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients. More importantly, our present study suggested that miR-204 has potential as a therapeutic strategy for 5-Fu-resistant colorectal cancer.

  19. Mobile Customer Relationship Management and Mobile Security

    Science.gov (United States)

    Sanayei, Ali; Mirzaei, Abas

    The purpose of this study is twofold. First, in order to guarantee a coherent discussion about mobile customer relationship management (mCRM), this paper presents a conceptualization of mCRM delineating its unique characteristics because of Among the variety of mobile services, considerable attention has been devoted to mobile marketing and in particular to mobile customer relationship management services. Second, the authors discusses the security risks in mobile computing in different level(user, mobile device, wireless network,...) and finally we focus on enterprise mobile security and it's subgroups with a series of suggestion and solution for improve mobile computing security.

  20. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    Science.gov (United States)

    2016-04-19

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular