WorldWideScience

Sample records for cells marks cancer

  1. PSF3 marks malignant colon cancer and has a role in cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Yumi [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Masaya [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 (United States); Haraguchi, Naotsugu; Mori, Masaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871 (Japan); Takakura, Nobuyuki, E-mail: ntakaku@biken.osaka-u.ac.jp [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2010-02-05

    PSF3 (partner of Sld five 3) is a member of the tetrameric complex termed GINS, composed of SLD5, PSF1, PSF2, and PSF3, and well-conserved evolutionarily. Previous studies suggested that some GINS complex members are upregulated in cancer, but PSF3 expression in colon carcinoma has not been investigated. Here, we established a mouse anti-PSF3 antibody, and examined PSF3 expression in human colon carcinoma cell lines and colon carcinoma specimens. We found that PSF3 is expressed in the crypt region in normal colonic mucosa and that many PSF3-positive cells co-expressed Ki-67. This suggests that PSF3-positivity of normal mucosa is associated with cell proliferation. Expression of the PSF3 protein was greater in carcinoma compared with the adjacent normal mucosa, and even stronger in high-grade malignancies, suggesting that it may be associated with colon cancer progression. PSF3 gene knock-down in human colon carcinoma cell lines resulted in growth inhibition characterized by delayed S-phase progression. These results suggest that PSF3 is a potential biomarker for diagnosis of progression in colon cancer and could be a new target for cancer therapy.

  2. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  3. A hypoxic signature marks tumors formed by disseminated tumor cells in the BALB-neuT mammary cancer model.

    Science.gov (United States)

    Msaki, Aichi; Pastò, Anna; Curtarello, Matteo; Arigoni, Maddalena; Barutello, Giuseppina; Calogero, Raffaele Adolfo; Macagno, Marco; Cavallo, Federica; Amadori, Alberto; Indraccolo, Stefano

    2016-05-31

    Metastasis is the final stage of cancer progression. Some evidence indicates that tumor cell dissemination occurs early in the natural history of cancer progression. Disseminated tumor cells (DTC) have been described in the bone marrow (BM) of cancer patients as well as in experimental models, where they correlate with later development of metastasis. However, little is known about the tumorigenic features of DTC obtained at different time points along tumor progression. Here, we found that early DTC isolated from BM of 15-17 week-old Her2/neu transgenic (BALB-neuT) mice were not tumorigenic in immunodeficient mice. In contrast, DTC-derived tumors were easily detectable when late DTC obtained from 19-22 week-old BALB-neuT mice were injected. Angiogenesis, which contributes to regulate tumor dormancy, appeared dispensable to reactivate late DTC, although it accelerated growth of secondary DTC tumors. Compared with parental mammary tumors, gene expression profiling disclosed a distinctive transcriptional signature of late DTC tumors which was enriched for hypoxia-related transcripts and was maintained in ex-vivo cell culture. Altogether, these findings highlight a different tumorigenic potential of early and late DTC in the BALB-neuT model and describe a HIF-1α-related transcriptional signature in DTC tumors, which may render DTC angiogenesis-competent, when placed in a favourable environment.

  4. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients.

    Science.gov (United States)

    Semenova, Ekaterina A; Kwon, Min-Chul; Monkhorst, Kim; Song, Ji-Ying; Bhaskaran, Rajith; Krijgsman, Oscar; Kuilman, Thomas; Peters, Dennis; Buikhuisen, Wieneke A; Smit, Egbert F; Pritchard, Colin; Cozijnsen, Miranda; van der Vliet, Jan; Zevenhoven, John; Lambooij, Jan-Paul; Proost, Natalie; van Montfort, Erwin; Velds, Arno; Huijbers, Ivo J; Berns, Anton

    2016-07-19

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting. PMID:27373156

  5. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Semenova

    2016-07-01

    Full Text Available Small cell lung cancer (SCLC is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.

  6. RGB marking facilitates multicolor clonal cell tracking.

    Science.gov (United States)

    Weber, Kristoffer; Thomaschewski, Michael; Warlich, Michael; Volz, Tassilo; Cornils, Kerstin; Niebuhr, Birte; Täger, Maike; Lütgehetmann, Marc; Pollok, Jörg-Matthias; Stocking, Carol; Dandri, Maura; Benten, Daniel; Fehse, Boris

    2011-04-01

    We simultaneously transduced cells with three lentiviral gene ontology (LeGO) vectors encoding red, green or blue fluorescent proteins. Individual cells were thereby marked by different combinations of inserted vectors, resulting in the generation of numerous mixed colors, a principle we named red-green-blue (RGB) marking. We show that lentiviral vector-mediated RGB marking remained stable after cell division, thus facilitating the analysis of clonal cell fates in vitro and in vivo. Particularly, we provide evidence that RGB marking allows assessment of clonality after regeneration of injured livers by transplanted primary hepatocytes. We also used RGB vectors to mark hematopoietic stem/progenitor cells that generated colored spleen colonies. Finally, based on limiting-dilution and serial transplantation assays with tumor cells, we found that clonal tumor cells retained their specific color-code over extensive periods of time. We conclude that RGB marking represents a useful tool for cell clonality studies in tissue regeneration and pathology. PMID:21441917

  7. Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells.

    Science.gov (United States)

    Chapman-Rothe, N; Curry, E; Zeller, C; Liber, D; Stronach, E; Gabra, H; Ghaem-Maghami, S; Brown, R

    2013-09-19

    In embryonic stem (ES) cells, bivalent chromatin domains containing H3K4me3 and H3K27me3 marks silence developmental genes, while keeping them poised for activation following differentiation. We have identified gene sets associated with H3K27me3 and H3K4me3 marks at transcription start sites in a high-grade ovarian serous tumour and examined their association with epigenetic silencing and malignant progression. This revealed novel silenced bivalent marked genes, not described previously for ES cells, which are significantly enriched for the PI3K (P<10(-7)) and TGF-β signalling pathways (P<10(-5)). We matched histone marked gene sets to gene expression sets of eight normal fallopian tubes and 499 high-grade serous malignant ovarian samples. This revealed a significant decrease in gene expression for the H3K27me3 and bivalent gene sets in malignant tissue. We then correlated H3K27me3 and bivalent gene sets to gene expression data of ovarian tumour 'stem cell-like' sustaining cells versus non-sustaining cells. This showed a significantly lower expression for the H3K27me3 and bivalent gene sets in the tumour-sustaining cells. Similarly, comparison of matched chemo-sensitive and chemo-resistant ovarian cell lines showed a significantly lower expression of H3K27me3/bivalent marked genes in the chemo-resistant compared with the chemo-sensitive cell line. Our analysis supports the hypothesis that bivalent marks are associated with epigenetic silencing in ovarian cancer. However it also suggests that additional tumour specific bivalent marks, to those known in ES cells, are present in tumours and may potentially influence the subsequent development of drug resistance and tumour progression. PMID:23128397

  8. Inhibition of the epidermal growth factor receptor in bladder cancer cells treated with the DNA-damaging drug etoposide markedly increases apoptosis

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Nexo, Ebba;

    2007-01-01

    : The bladder cancer cell lines RT4 and T24, representing low- and high-malignancy grades respectively, were treated with VP16 (10 or 50 microM) and the level of apoptosis determined using a commercial kit. EGFR receptor activity was determined by western blotting using antibodies against phosphorylated EGFR...

  9. Marked heterogeneity of ERG expression in large primary prostate cancers.

    Science.gov (United States)

    Minner, Sarah; Gärtner, Michael; Freudenthaler, Fabian; Bauer, Melanie; Kluth, Martina; Salomon, Georg; Heinzer, Hans; Graefen, Markus; Bokemeyer, Carsten; Simon, Ronald; Sauter, Guido; Schlomm, Thorsten; Wilczak, Waldemar

    2013-01-01

    Approximately 50% of prostate cancers are characterized by TMPRSS2 (transmembrane protease serine 2)-ERG (avian v-ets erythroblastosis virus E26 oncogene homolog) gene fusions resulting in an androgen-regulated overexpression of the transcription factor ERG. Some studies have suggested prognostic or predictive relevance of ERG status in prostate cancer. Such concepts could be impaired by extensive ERG heterogeneity in analyzed tumors. The aim of this study was to analyze the extent of heterogeneity for TMPRSS2-ERG fusion in prostate cancer. To enable large-scale studies on the extent of heterogeneity of biomarkers in prostate cancer, a heterogeneity tissue microarray containing samples from 10 different tumor blocks of 190 large prostate cancers selected from a consecutive series of 480 radical prostatectomies was developed. ERG expression was analyzed by immunohistochemistry. Positive ERG immunostaining was found in arrayed cancer-containing samples from 103 of the 178 analyzable patients (58%). ERG immunostaining was homogeneously positive in 29 prostate cancers (16%), whereas heterogeneous ERG positivity was seen in 74 cancers (42%). ERG heterogeneity was within one tumor focus (intrafocal heterogeneity) in 69 cases (93% of heterogeneous cases) and between different tumor foci (interfocal heterogeneity) in 5 cases (7%). Marked intrafocal heterogeneity challenges the concept of TMPRSS2-ERG fusion always representing an early step in prostate cancer development. Marked heterogeneity also compromises the concept of analyzing ERG status for treatment decisions in diagnostic needle core biopsies. PMID:22899295

  10. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  11. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  12. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  13. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  14. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  15. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  16. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  17. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  18. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  19. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W.; Naylor, Matthew J.

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  20. For Some Skin Cancers, Targeted Drug Hits the Mark

    Science.gov (United States)

    Two studies reported June 7, 2012, in NEJM indicate that the drug vismodegib can elicit responses in people with advanced or metastatic basal cell carcinoma and help shrink or prevent tumors in those with basal cell nevus syndrome.

  1. PD-1 marks dysfunctional regulatory T cells in malignant gliomas

    OpenAIRE

    Lowther, Daniel E.; Goods, Brittany A.; Lucca, Liliana E.; Lerner, Benjamin A.; Raddassi, Khadir; van Dijk, David; Hernandez, Amanda L.; Duan, Xiangguo; Gunel, Murat; Coric, Vlad; Krishnaswamy, Smita; Love, J. Christopher; Hafler, David A.

    2016-01-01

    Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing,...

  2. Nye prognostiske markører ved kolorektal cancer

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Brünner, N A; Thorlacius-Ussing, O;

    1998-01-01

    The majority of patients diagnosed as having colorectal cancer do not survive five years, although 70%-80% undergo curative surgery. Only a minority of the patients receive additional adjuvant chemo-, radio- and/or immunotherapy, which has proven its efficiency in a minor part of patients with...... Dukes C disease. Therefore, adjuvant therapy has only an insignificant impact on overall survival improvement. The present treatment of patients with colorectal cancer is far from sufficient, and this has led to considerations of how to optimize both surgical and adjuvant medical treatment strategy....... Current biotechnological research in tumour biology has led to the development of several new treatment modalities, and within few years some of these will be tested clinically. It cannot be expected that all modalities may prove equally efficient in all patients. Furthermore, half the operated patients...

  3. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  4. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  5. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  6. Anatomical relationship between traditional acupuncture point ST 36 and Omura's ST 36 (True ST 36) with their therapeutic effects: 1) inhibition of cancer cell division by markedly lowering cancer cell telomere while increasing normal cell telomere, 2) improving circulatory disturbances, with reduction of abnormal increase in high triglyceride, L-homocystein, CRP, or cardiac troponin I & T in blood by the stimulation of Omura's ST 36--Part 1.

    Science.gov (United States)

    Omura, Yoshiaki; Chen, Yemeng; Lu, Dominic P; Shimotsura, Yasuhiro; Ohki, Motomu; Duvvi, Harsha

    2007-01-01

    Using Bi-Digital O-Ring Test Resonance Phenomena between 2 identical substances, Omura, Y. succeeded in making the image of the outline of internal organs without use of standard imaging devices since 1982. When he imaged the outline of the stomach on the abdominal wall, a number of the lines came out from upper and lower parts of stomach wall. When the lines were followed, they were very close to the well-known stomach meridians. Subsequently, he found a method of localizing meridians and their corresponding acupuncture points as well as shapes and diameters accurately. At the anatomical location of ST 36 described in traditional textbooks, Omura, Y. found there is no acupuncture point. However, in the close vicinity, there is an acupuncture point which he named as true ST 36 in the mid 1980s, but it is generally known as Omura's ST 36. When the effects of the acupuncture on these 2 locations were compared, Omura's ST 36 (true ST 36) produced very significant well-known acupuncture beneficial effects including improved circulation and blood chemistry, while in the traditional ST 36, the effects were small. In this article, the anatomical relationship between these two acupuncture points, with a short distance of 0.6 approximately 1.5 cm between the centers of these locations, was described. In early 2000, Omura, Y. found Press Needle Stimulation of Omura's ST 36, using "Press-Release" procedure repeated 200 times, 4 times a day to cancer patients reduced high cancer cell telomere of 600-1500ng and high Oncogen C-fos Ab2 and Integrin alpha5beta1 of 100-700ng BDORT units to close to lyg (= 10(-24) g) BDORT units. In addition there was a significant reduction of Asbestos and Hg from cancer cells, while markedly reduced normal cell telomere of lyg was increased to optimally high amounts of 500-530ng BDORTunits. Thus, cancer cells can no longer divide and cancer activity is inhibited. The authors have successfully applied this method for a variety of cancers as well as

  7. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  8. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  9. An evaluation of the accuracy of semi-permanent skin marks for breast cancer irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Probst, H. [Faculty of Health and Wellbeing, Sheffield Hallam University, Collegiate Crescent Campus, Sheffield S10 2BP (United Kingdom)]. E-mail: h.probst@shu.ac.uk; Dodwell, D. [Cookridge Hospital Leeds (United Kingdom); Gray, J.C. [University of Newcastle (United Kingdom); Holmes, M. [Leeds Metropolitan University (United Kingdom)

    2006-08-15

    A randomised trial was designed to investigate the accuracy of semi-permanent ink marks versus permanent tattoos for early stage breast cancer irradiation. No significant difference in random and systematic errors was identified between the two groups. On multivariate analysis no specific patient characteristic had a major influence on the systematic errors identified.

  10. Bicistronic retroviral vectors for combining myeloprotection with cell-surface marking.

    Science.gov (United States)

    Hildinger, M; Schilz, A; Eckert, H G; Bohn, W; Fehse, B; Zander, A; Ostertag, W; Baum, C

    1999-07-01

    We have developed a retroviral vector coexpressing the multidrug-resistance 1 (MDR1) cDNA for inducing cancer drug resistance and the truncated version of the low-affinity nerve growth factor receptor (DeltaLNGFR) for cell-surface marking of transduced cells. The vector is based on the FMEV backbone which mediates high levels of gene expression in hematopoietic cells. To achieve optimal expression levels of both cDNAs, untranslated regions from MDR1 and DeltaLNGFR were removed and three different connections were tested: retroviral splice signals, an internal ribosomal entry site (IRES) from encephalomyocarditis virus, and an internal promoter from the chicken beta-actin gene. As determined by two-color flow cytometry, the best correlation of the expression of both cDNAs was obtained using the vector SF1mSdelta which utilized retroviral splice signals for co-expression. Simultaneous expression of both cDNAs at the single cell level was also shown by confocal laser microscopy. Lymphoid and hematopoietic progenitor cells, including primary human CD34+ cells, transduced with SF1mSdelta acquired dominant multidrug resistance. Transduced primary CD34+ cells could be enriched in vitro based on expression of DeltaLNGFR, avoiding exposure to cytostatic agents. Thus, monitoring the selection of chemotherapy-resistant cells and analyzing their biological properties may be alleviated, both in vitro and in vivo. PMID:10455430

  11. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  12. Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ugur Gezer

    2015-12-01

    Full Text Available Circulating nucleic acids (CNAs are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with a focus on colorectal cancer, one of the leading cancers respective the incidence and mortality. Our previous work included the analysis of trimethylations of lysine 9 on histone 3 (H3K9me3 and of lysine 20 on histone 4 (H4K20me3 by chromatin immuno- precipitation-related PCR in circulating nucleosomes. Here we asked whether global immunologic measurement of histone marks in circulation could be a suitable approach to show their potential as biomarkers. In addition to H3K9me3 and H4K20me3 we also measured H3K27me3 in plasma samples from CRC patients (n = 63 and cancer free individuals (n = 40 by ELISA-based methylation assays. Our results show that of three marks, the amounts of H3K27me3 (p = 0.04 and H4K20me3 (p < 0.001 were significantly lower in CRC patients than in healthy controls. For H3K9me3 similar amounts were measured in both groups. Areas under the curve (AUC in receiver operating characteristic (ROC curves indicating the power of CRC detection were 0.620 for H3K27me3, 0.715 for H4K20me3 and 0.769 for the combination of both markers. In conclusion, findings of this preliminary study reveal the potential of blood-based detection of CRC by quantification of histone methylation marks and the additive effect of the marker combination.

  13. Cancer Stem Cells in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer

  14. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  15. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  16. Cancer Stem Cells in Breast Cancer

    OpenAIRE

    Fumitaka Takeshita; Tomohiro Fujiwara; Takahiro Ochiya; Makiko Ono; Ryou-u Takahashi

    2011-01-01

    The cancer stem cell (CSC) theory is generally acknowledged as an important field of cancer research, not only as an academic matter but also as a crucial aspect of clinical practice. CSCs share a variety of biological properties with normal somatic stem cells in self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cel...

  17. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  18. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  19. Cancer Stem Cells in Pancreatic Cancer

    OpenAIRE

    Karl-Walter Jauch; Hendrik Seeliger; Hanno Niess; Qi Bao; Andrea Renner; Yue Zhao; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC t...

  20. Cancer stem cells in prostate cancer

    OpenAIRE

    Moltzahn, Felix; Thalmann, George N

    2013-01-01

    Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitation...

  1. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    Science.gov (United States)

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  2. MicroRNA 10a marks regulatory T cells

    DEFF Research Database (Denmark)

    Jeker, Lukas T; Zhou, Xuyu; Gershberg, Kseniya;

    2012-01-01

    MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD) ...

  3. Urothelial Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2010-01-01

    Full Text Available There is mounting evidence supporting the idea that tumors, similar to normal adult tissues, arise from a specific stem-like cell population, the cancer stem cells (CSCs, which are considered as the real driving force behind tumor growth, the ability to metastasize, as well as resistance to conventional antitumor therapy. The concept that cancer growth recapitulates normal proliferative and/or regenerative processes, even though in very dysfunctional ways, has tremendous implications for cancer therapy. The rapid development of the CSC field, shoulder to shoulder with powerful genome-wide screening techniques, has provided cause for optimism for the development of more reliable therapies in the future. However, several important issues still lie ahead. Recent identification of a highly tumorigenic stem-like compartment and existence of urothelial differentiation programs in urothelial cell carcinomas (UCCs raised important questions about UCC initiation and development. This review examines the present knowledge on CSCs in UCCs regarding the similarities between CSCs and the adult urothelial stem cells, potential origin of urothelial CSCs, main regulatory pathways, surface markers expression, and the current state of CSC-targeting therapeutic strategies.

  4. Mark the transition: chromatin modifications and cell fate decision

    Institute of Scientific and Technical Information of China (English)

    Qiang Wu; Huck-Hui Ng

    2011-01-01

    With their unique features of selfrenewal and pluripotency,human embryonic stem (hES) cells are considered to be a nearly unlimited resource for research and clinical applications [1].Accordingly,the transcriptional network specifying and governing human ES cell identity has been extensively studied.OCT4,NANOG and SOX2 form a core transcriptional network that regulates itself as well as a number of target genes [2].This transcriptional network acts together with signaling pathways to maintain ES cell identity [3].Moreover,the last decade has seen tremendous advances in understanding the epigenetic mechanisms underlying ES eell self-renewal and pluripotency.

  5. Mechanistic Contribution of Ubiquitous 15-Lipoxygenase-1 Expression Loss in Cancer Cells to Terminal Cell Differentiation Evasion

    OpenAIRE

    Moussalli, Micheline J.; Wu, Yuanqing; Zuo, Xiangsheng; Yang, Xiu L.; Wistuba, Ignacio Ivan; Raso, Maria G.; Morris, Jeffrey S.; Bowser, Jessica L.; Minna, John D.; Lotan, Reuben; SHUREIQI, IMAD

    2011-01-01

    Loss of terminal cell differentiation promotes tumorigenesis. 15-LOX-1 contributes to terminal cell differentiation in normal cells. The mechanistic significance of 15-LOX-1 expression loss in human cancers to terminal cell differentiation suppression is unknown. In a screen of 128 cancer cell lines representing more than 20 types of human cancer, we found that 15-LOX-1 mRNA expression levels were markedly lower than levels in terminally differentiated cells. Relative expression levels of 15-...

  6. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  7. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    OpenAIRE

    Yi-Min Zhu; Li-Hua Yuan; Ke-Feng Pu; Bing Dong; An-Xin Wang; Li-Sha Chen

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell resea...

  8. Patients' perceptions of mortality risk for localized prostate cancer vary markedly depending on their treatment strategy.

    Science.gov (United States)

    Kendel, Friederike; Helbig, Lukas; Neumann, Konrad; Herden, Jan; Stephan, Carsten; Schrader, Mark; Gaissmaier, Wolfgang

    2016-08-15

    Treatment choice for localized prostate cancer (PCa) is a controversial issue, and mortality risk is probably the most decisive factor in this regard. The study aimed to compare prostate-cancer-specific mortality risk estimates for different treatment options assigned by patients managed with active surveillance (AS), radical prostatectomy (RP) and patients who had discontinued AS (DAS). Patients initially managed with AS or RP (N = 370) were matched according to length of therapy. All patients completed mailed questionnaires assessing their mortality risk estimates (in %) and prostate-cancer-specific anxiety. Differences in risk estimates among the three treatment groups were analyzed using ANOVA, relationships of clinical and psychosocial variables with risk estimates using standard multiple regression. In all treatment groups, the prostate- cancer-specific mortality risk was overestimated. This applied whether it was the patient's own treatment or the alternative treatment option. RP patients assigned a mortality risk to AS that was almost three times higher than that assigned to RP (50.9 ± 25.0 vs. 17.8 ± 19.7, d = 1.48; p risk estimates for AS (p = 0.008) and RP (p = 0.001). Compared with clinical data that suggest that the prostate-cancer-specific mortality risk for AS is low and does not significantly differ from that for RP, patients strongly overestimated the mortality risk. This was most markedly so in RP patients, who drastically overestimated the benefits of RP compared to the risk of AS. This overestimation could increase overtreatment and should therefore be corrected by better patient education. PMID:27038059

  9. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  10. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  11. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  12. Ovarian cancer: emerging concept on cancer stem cells

    OpenAIRE

    Ponnusamy Moorthy P; Batra Surinder K

    2008-01-01

    Abstract Emerging evidence suggests that the capacity of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. In fact, cancer cells, like stem cells, can proliferate indefinitely through a dysregulated cellular self-renewal capacity. Cancer stem cells may originate due to the distribution into self-renewal and differentiation pathways occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells and cancer cell...

  13. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  14. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  15. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    Science.gov (United States)

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  16. Small Cell Lung Cancer.

    Science.gov (United States)

    Bernhardt, Erica B; Jalal, Shadia I

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer of neuroendocrine origin, which is strongly associated with cigarette smoking. Patients typically present with a short duration of symptoms and frequently (60-65 %) with metastatic disease. SCLC is a heterogeneous disease including extremely chemosensitive and chemoresistant clones. For this reason, a high percentage of patients respond to first-line chemotherapy but rapidly succumb to the disease. SCLC is generally divided into two stages, limited and extensive. Standard treatment of limited stage disease includes combination chemotherapy with cisplatin and etoposide for four cycles, thoracic radiation initiated early with the first cycle of chemotherapy, and consideration of prophylactic cranial irradiation (PCI) in the subset of patients with good response. Surgery may play a role in TNM stages I and II. In extensive disease, platinum agents and etoposide, used in combination, are again the first-line standard of care in the USA. However, thoracic radiation therapy is used predominately in patients where local control is important and PCI is of uncertain benefit. Despite these treatments, prognosis remains poor and novel therapies are needed to improve survival in this disease. PMID:27535400

  17. Mouse models for cancer stem cell research

    OpenAIRE

    Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.

    2009-01-01

    Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...

  18. Tumor Cell Response to Synchrotron Microbeam Radiation Therapy Differs Markedly From Cells in Normal Tissues

    International Nuclear Information System (INIS)

    Purpose: High-dose synchrotron microbeam radiation therapy (MRT) can be effective at destroying tumors in animal models while causing very little damage to normal tissues. The aim of this study was to investigate the cellular processes behind this observation of potential clinical importance. Methods and Materials: MRT was performed using a lattice of 25 μm-wide, planar, polychromatic, kilovoltage X-ray microbeams, with 200-μm peak separation. Inoculated EMT-6.5 tumor and normal mouse skin tissues were harvested at defined intervals post-MRT. Immunohistochemical detection of γ-H2AX allowed precise localization of irradiated cells, which were also assessed for proliferation and apoptosis. Results: MRT significantly reduced tumor cell proliferation by 24 h post-irradiation (p = 0.002). An unexpected finding was that within 24 h of MRT, peak and valley irradiated zones were indistinguishable in tumors because of extensive cell migration between the zones. This was not seen in MRT-treated normal skin, which appeared to undergo a coordinated repair response. MRT elicited an increase in median survival times of EMT-6.5 and 67NR tumor-inoculated mice similar to that achieved with conventional radiotherapy, while causing markedly less normal tissue damage. Conclusions: This study provides evidence of a differential response at a cellular level between normal and tumor tissues after synchrotron MRT.

  19. Head and Neck Cancer Stem Cells

    OpenAIRE

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signalin...

  20. Cell of origin of lung cancer

    OpenAIRE

    Hanna, Jennifer M.; Onaitis, Mark W.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s) of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell o...

  1. Prostate Cancer Stem Cells: Research Advances

    OpenAIRE

    Dagmara Jaworska; Wojciech Król; Ewelina Szliszka

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve th...

  2. Acute onset paraneoplastic cerebellar degeneration in a patient with small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bhatia R

    2003-04-01

    Full Text Available A patient with small cell lung cancer presented with a rare presentation of an acute onset pancerebellar dysfunction. His clinical condition markedly improved following the surgical removal of the tumor and chemo- and radiotherapy.

  3. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    DEFF Research Database (Denmark)

    Klochendler, Agnes; Weinberg-Corem, Noa; Moran, Maya;

    2012-01-01

    biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to......Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive...... reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of...

  4. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fennell Dean A

    2012-06-01

    Full Text Available Abstract Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.

  5. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  6. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  7. Stem cells in human breast cancer

    OpenAIRE

    Roberto Oliveira, Lucinei; Jeffrey, Stefanie S; Ribeiro Silva, Alfredo

    2010-01-01

    Increasing data support cancer as a stem cell-based disease. Cancer stem cells (CSCs) have beenfound in different human cancers, and recent evidenceindicates that breast cancer originates from and ismaintained by its own CSCs, as well as the normalmammary gland. Mammary stem cells and breast CSCshave been identified and purified in in vitroculturesystems, transplantation assays and/or by cell surfaceantigen identification. Cell surface markers enable thefunctional isolation of stem cells that...

  8. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  9. p40、天门冬氨酸蛋白酶、甲状腺转录因子-1在肺鳞癌与腺癌表达敏感性和特异性%p40、Napsin-A and TTF-1 ---the specific immunohistochemical mark to identify squamous cell carcinoma and adenocarcinoma of non-small cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    仇加高

    2014-01-01

    Objective:To study the significant immunohistochemical mark to identifiy squamous cell carcinoma and adenocarcinoma of non-small cell lung cancer. Methods:The expression of p63, p40, CK5/6, TTF-1, CK7 and Napsin-A was detected in 51 cases with non-small cell lung cancer by using immunohistochemistry of SP. Results:In 51 cases with non-small cell lung cancer, there were 20 cases with squamous cell carcinoma and 31 cases with adenocarcinoma. The positive expression rates of p63,p40 and CK5/6 in lung squamous cell carcinoma was 100%(20/20), 95%(19/20) and 90%(18/20)respectively ; the sensitivity of p63, p40 and CK5/6 was similar (P=0.355),but the specificity of p40 was higher than that of p63 and CK5/6(P=0.040). The positive expression rate of TTF-1, CK7 and Napsin-A in lung adenocarcino-ma was 87.1%(27/31), 80.6%(25/31) and 90.3%(28/31)respectively, the sensitivity of TTF-1,CK7 and Napsin-A was similar, too(P=0.538). The specificity of TTF-1、Napsin-A was higher than that of CK7(P=0.002). Conclusion:The sensi-tivity of p40, Napsin-A and TTF-1 is higher in non-small cell lung cancer, and they are the specific marks to identify squamous cell carcinoma and adenocarcinoma in the lungs. Detection of p40, Napsin-A and TTF-1 together can be more accurate in differential diagnosis of non-small cell lung cancer and provides a theoretical basis for clinical treatment.%目的:探讨肺非小细胞癌组织中鉴别鳞癌和腺癌有意义的免疫组化检测标记。方法:采用免疫组织化学SP法检测非小细胞肺癌51例组织中p63、p40、CK5/6、甲状腺转录因子-1(TTF-1)、CK7、天门冬氨酸蛋白酶(Napsin-A)的表达。结果:(1)p40、p63、CK5/6在非小细胞肺癌中表达:非小细胞肺癌51例中,p40、p63、CK5/6在鳞状细胞癌20例中阳性表达为20例(100.0%),19例(95.0%),18例(90.0%),在腺癌31例组织中阳性表达为0例(0.0%)、6例(19.4%)、3例(9.7%)。p40在31例腺癌中无1

  10. Role of cancer stem cells in hepatocarcinogenesis

    OpenAIRE

    Wang, Bo; Jacob, Samson T.

    2011-01-01

    There has been considerable interest in cancer stem cells (CSCs) among cancer biologists and clinicians, most likely because of their role in the heterogeneity of cancer and their potential application in cancer therapeutics. Recent studies suggest that CSCs play a key role in liver carcinogenesis. A small subpopulation of cancer cells with CSC properties has been identified and characterized from hepatocellular carcinoma (HCC) cell lines, animal models and human primary HCCs. Considering the...

  11. In search of epigenetic marks in testes and sperm cells of differentially fed boars.

    Directory of Open Access Journals (Sweden)

    Rémy Bruggmann

    Full Text Available In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05. Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.

  12. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  13. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes gradu

  14. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    Science.gov (United States)

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  15. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  16. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  17. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  18. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  19. Automated identification and location analysis of marked stem cells colonies in optical microscopy images.

    Directory of Open Access Journals (Sweden)

    Vincenzo Paduano

    Full Text Available Embryonic stem cells (ESCs are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency. Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA, pluripotency (Pou5f1, and pluripotency fluctuation (Nanog. We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the

  20. Lentivirus-Mediated Knockdown of Myosin VI Inhibits Cell Proliferation of Breast Cancer Cell.

    Science.gov (United States)

    Wang, Hong; Wang, Biyun; Zhu, Wei; Yang, Ziang

    2015-10-01

    Myosin VI (MYO6) is a unique member of the myosin superfamily, and almost no experimental studies link MYO6 to tumorigenesis of breast cancer. However, previous microarray data demonstrated that MYO6 was frequently overexpressed in breast cancer tissues. In this study, to further develop its role in breast cancer, endogenous expression of MYO6 was significantly inhibited in breast cancer ZR-75-30 and MDA-MB-231 cells using lentivirus-mediated RNA interference. Quantitative polymerase chain reaction and western blot were applied to detect the expression level of MYO6. Cell viability of both cell lines was measured by methylthiazol tetrazolium and colony formation assays. Besides, cell cycle assay was utilized to acquire the distribution information of cell phase. The results demonstrated that knockdown of MYO6 markedly reduced cell viability and colony formation, as well as suppressed cell cycle progression in breast cancer cells. The results suggested that MYO6 played a vital role in breast cancer cells and might provide useful information for diagnosis and therapy of human breast cancer in future. PMID:26407123

  1. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  2. Targeting the Checkpoint to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jan Benada

    2015-08-01

    Full Text Available Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.

  3. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  4. The relationship of cancer stem cells in urological cancers

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczyńska

    2013-08-01

    Full Text Available Numerous studies are ongoing to identify and isolate cancer stem cells from cancers of genito-urinary tracts. Better understanding of their role in prostate, urothelial and kidney cancer origin, growth and progression opens new pathways in development of more effective treatment methods. However there are still many issues before advances in this field can be introduced for clinical application. This review addresses current achievements in cancer stem cells research in uro-oncology.

  5. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  6. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  7. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  8. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  9. Understanding the cancer stem cell

    OpenAIRE

    Bomken, S; Fišer, K; Heidenreich, O; Vormoor, J

    2010-01-01

    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of fun...

  10. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  11. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  12. Cancer stem cells: the lessons from pre-cancerous stem cells

    OpenAIRE

    Gao, Jian-Xin

    2007-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not con...

  13. Macroamylasemia with a markedly increased amylase clearance ratio in a patient with renal cell carcinoma.

    Science.gov (United States)

    Kazmierczak, S C; Van Lente, F; McHugh, A M; Katzin, W E

    1988-02-01

    We report hyperamylasemia, macroamylasemia, and a markedly increased amylase clearance/creatinine clearance ratio in a patient with renal cell carcinoma. Serum amylase activity was characterized as macroamylase by gel exclusion chromatography. Electrophoretic separation revealed an atypical band of amylase, migrating anodal to the S2 control fraction. Electrophoresis of urine revealed the presence of both S1 and S2 fractions, but not the atypical band found in serum. Quantification of the salivary- and pancreatic-type amylase fractions showed amylase in urine to be 100% salivary. Immunofixation disclosed the macroamylase to consist of an immune complex between amylase and IgA-lambda antibody. Binding-capacity studies showed that the serum immunoglobulin was present in excess and could bind 46% and 49% additional S-type amylase activity derived from saliva and the patient's urine, respectively. The amylase clearance/creatinine clearance ratio was markedly supranormal (0.134), unexpected in a patient with macroamylasemia. A biopsy specimen of the renal cell tumor was found to contain significant salivary-type amylase activity. These results suggest production of amylase by tumor tissue in the renal carcinoma and secretion of S-type amylase into the patient's urine. Evidently, macroamylase should be confirmed by gel exclusion chromatography.

  14. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  15. Extinction Models for Cancer Stem Cell Therapy

    OpenAIRE

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth

    2009-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...

  16. Role of PRMTs in cancer: Could minor isoforms be leaving a mark?

    Institute of Scientific and Technical Information of China (English)

    R; Mitchell; Baldwin; Alan; Morettin; Jocelyn; C?té

    2014-01-01

    Protein arginine methyltransferases(PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of theknown alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.

  17. Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark.

    Science.gov (United States)

    Zaidi, Sayyed K; Boyd, Joseph R; Grandy, Rodrigo A; Medina, Ricardo; Lian, Jane B; Stein, Gary S; Stein, Janet L

    2016-09-01

    Embryonic stem cells (ESCs) exhibit unrestricted and indefinite, but stringently controlled, proliferation, and can differentiate into any lineage in the body. In the current study, we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs, we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines, a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches, we discovered that, RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1, M, and G2 phases of the cell cycle. Interestingly, the rDNA repeats are marked by the activating H3K4me3 only in the M phase, and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc, a known regulator of cell growth and proliferation, occupies both the rRNA genes and RPGs. Functionally, down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together, our results show that expression of rRNA, which is regulated by the Myc pluripotency transcription factor, and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755341

  18. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models......There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...

  19. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    OpenAIRE

    Kasai, T; Chen, L.; Mizutani, AZ; Kudoh, T.; Murakami, H; Fu, L.; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-...

  20. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Park, Sang Jun; Kim, Chun-Ho [Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  1. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  2. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors

    OpenAIRE

    Minn, Andy J.; Kang, Yibin; Serganova, Inna; Gupta, Gaorav P.; Giri, Dilip D.; Doubrovin, Mikhail; Ponomarev, Vladimir; Gerald, William L; Blasberg, Ronald; Massagué, Joan

    2005-01-01

    We used bioluminescence imaging to reveal patterns of metastasis formation by human breast cancer cells in immunodeficient mice. Individual cells from a population established in culture from the pleural effusion of a breast cancer patient showed distinct patterns of organ-specific metastasis. Single-cell progenies derived from this population exhibited markedly different abilities to metastasize to the bone, lung, or adrenal medulla, which suggests that metastases to different organs have di...

  3. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  4. Cancer stem cells, tumor dormancy, and metastasis

    OpenAIRE

    EmilyChen

    2012-01-01

    Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs) in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignanc...

  5. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  6. Head and neck cancer stem cells.

    Science.gov (United States)

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  7. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  8. Study of pool-swell dynamics in a Mark II single-cell model. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kiang, R.L.; Jeuck, P.R. III

    1980-03-01

    The dynamic response of a Mark II pressure-suppression system during the early air discharging phase of a postulated loss-of-coolant accident (LOCA) was studied via scale model experiments. Tests using a 13.3-scale single downcomer model yielded quantitative information on the vent-clearing process, the pool swell, the diaphragm floor differential pressure and many other dynamic responses of interest. Corresponding information for the reference plant from which the model is scaled can be obtained from the test results and the scaling laws which are given in the report. The single downcomer results were compared to multidowncomer results to determine the validity of single cell models. The comparison shows excellent agreement.

  9. Study of pool-swell dynamics in a Mark II single-cell model. Final report

    International Nuclear Information System (INIS)

    The dynamic response of a Mark II pressure-suppression system during the early air discharging phase of a postulated loss-of-coolant accident (LOCA) was studied via scale model experiments. Tests using a 13.3-scale single downcomer model yielded quantitative information on the vent-clearing process, the pool swell, the diaphragm floor differential pressure and many other dynamic responses of interest. Corresponding information for the reference plant from which the model is scaled can be obtained from the test results and the scaling laws which are given in the report. The single downcomer results were compared to multidowncomer results to determine the validity of single cell models. The comparison shows excellent agreement

  10. Pinpoint attack on cancer cell with ions

    International Nuclear Information System (INIS)

    Microbeam technology is indispensable in bio-scientific research, for example the investigation of cell-to-cell communications such as bystander effects, the analysis of cellular spatial sensitivity, the interaction of damage caused by individual irradiation, cellular repair dynamics, and intra-cellular processes such as apoptosis. A single-ion hit technique using the heavy-ion microbeam is being developed at JAEA AVF cyclotron facility for elucidate of biofunctions. A heavy ion microbeam system was developed using a beam collimator with a 5 μm diameter hole. In the new system the microbeam spot was focused to 0.7 μm in diameter using focusing lenses. The PIXE analysis has been widely applied in the fields of biology and medicine. The use of micro-beams allows analyzing trace elements on the cellular level as well. In Air Micro-PIXE images the elemental distribution in the cell by scanning the micro-beams. Biological effects of heavy ion particle beams are markedly more potent, and the dose distribution of heavy ion particle beams is more concentrated than those of X-ray and gamma ray. Therefore, radiotherapy using heavy ion particle beams not only improves the prognosis of cancer patients, but significantly contributes to improvement of their quality of life by conserving the function and morphology of affected organs. A highly precise carbon ion microsurgery system will be developed to treat various small tumours based on the technique of microbeam formation. (author)

  11. Marked Direct Hyperbilirubinemia due to Ceftriaxone in an Adult with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Daniyeh Khurram

    2015-01-01

    Full Text Available Drugs are a significant cause of liver injury. Drug-induced liver injury (DILI can cause acute hepatitis, cholestasis, or a mixed pattern. Ceftriaxone is a commonly used antibiotic and has been associated with reversible biliary sludge, pseudolithiasis, and cholestasis. A 32-year-old male with sickle cell disease was admitted to the hospital for acute sickle cell crisis. On the second day of hospitalization, he developed cough and rhonchi with chest X-ray revealing right middle lobe infiltrates. Ceftriaxone and azithromycin were initiated. Subsequently, he developed conjugated hyperbilirubinemia and mild transaminitis. His total bilirubin trended upwards from 3.3 mg/dL on admission to 17 mg/dL. It was predominantly conjugated bilirubin, with preadmission bilirubin levels of 3-4 mg/dL. His transaminases were mildly elevated as well compared to previous levels. Extensive workup for bilirubin elevation was unremarkable. Ceftriaxone was switched to levofloxacin and the hyperbilirubinemia improved. On ambulatory follow-up, his bilirubin remained below 4 mg/dL. Ceftriaxone may be associated with marked direct hyperbilirubinemia particularly in sickle cell patients with chronic liver chemistry abnormalities. In the case of elevated bilirubin with concomitant ceftriaxone use, elimination of the offending agent should be considered.

  12. Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4.

    Science.gov (United States)

    Tagliaferri, Daniela; De Angelis, Maria Teresa; Russo, Nicola Antonino; Marotta, Maria; Ceccarelli, Michele; Del Vecchio, Luigi; De Felice, Mario; Falco, Geppino

    2016-01-01

    Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation. PMID:26840068

  13. Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4.

    Directory of Open Access Journals (Sweden)

    Daniela Tagliaferri

    Full Text Available Pluripotency confers Embryonic Stem Cells (ESCs the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA, Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma, and it is dependent on phosphoinositide-3-kinase (PI3K signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation.

  14. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  15. Cell of origin of lung cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M Hanna

    2013-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell of origin, and cancer stem cells has been hampered by the heterogeneity of the disease, the lack of good in vivo transplantation models to assess stem cell behavior, and an overall incomplete understanding of the epithelial stem cell hierarchy. As such, a systematic computerized literature search of the MEDLINE database was used to identify articles discussing current knowledge about normal lung and lung cancer stem cells or progenitor cells. In this review, we discuss what is currently known about the role of cancer-initiating cells and normal stem cells in the development of lung tumors.

  16. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  17. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells

    OpenAIRE

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2015-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, che...

  18. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  19. A gene expression and pre-mRNA splicing signature that marks the adenoma-adenocarcinoma progression in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Marine Pesson

    Full Text Available It is widely accepted that most colorectal cancers (CRCs arise from colorectal adenomas (CRAs, but transcriptomic data characterizing the progression from colorectal normal mucosa to adenoma, and then to adenocarcinoma are scarce. These transition steps were investigated using microarrays, both at the level of gene expression and alternative pre-mRNA splicing. Many genes and exons were abnormally expressed in CRAs, even more than in CRCs, as compared to normal mucosae. Known biological pathways involved in CRC were altered in CRA, but several new enriched pathways were also recognized, such as the complement and coagulation cascades. We also identified four intersectional transcriptional signatures that could distinguish CRAs from normal mucosae or CRCs, including a signature of 40 genes differentially deregulated in both CRA and CRC samples. A majority of these genes had been described in different cancers, including FBLN1 or INHBA, but only a few in CRC. Several of these changes were also observed at the protein level. In addition, 20% of these genes (i.e. CFH, CRYAB, DPT, FBLN1, ITIH5, NR3C2, SLIT3 and TIMP1 showed altered pre-mRNA splicing in CRAs. As a global variation occurring since the CRA stage, and maintained in CRC, the expression and splicing changes of this 40-gene set may mark the risk of cancer occurrence from analysis of CRA biopsies.

  20. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    Science.gov (United States)

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  1. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Science.gov (United States)

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  2. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  3. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  4. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  5. Lower digestive hemorrhage study algorithm in elderly patients and red cells mark scintigraphy role

    International Nuclear Information System (INIS)

    Aims: Show the utility of this technique in the detection of Lower Digestive Hemorrhage (LDH) in elderly patients and propose a study algorithm. Materials and Methods: We study 39 patients (20 women and 19 men), between 61 and 92 years (media 76,3 years), in the last three years, that we strongly presume they have a LDH. In all of them we lay aside the upper digestive hemorrhage with endoscopies. In all the cases we perform a video-colonoscopy after the scintigraphy adopting in every case if its necessary surgery, medication or expectant conduct. We use the modified red cells mark 'in vivo' method (mark efficiency of 82%). We obtain anterior images of the abdomen with a planar Gamma Camera. Sequential images of 1 minute duration in the first hour post-injection I.V. of 740 MBq of Tc99- pertechnetate -Stannous Chloride and hen static images with 400 K counts at 60, 120, 180 and 240 minutes and one image at 24 hours were acquired, in two cases repeat the study. We don't do selective angiographies because we consider this a high risk and low cost / benefit study in elderly patients (high association with cardiopathy). Result: Patient with final diagnosis for VCC or Surgery: Angio dysplasia (38%), Diverticulosis (20%), Ischemic colitis (11%), Ulcerous colitis (8%) and Colon adenocarcinoma (2%). In some cases were two pathologies involved (13%). The scintigraphies were positive in 92% and negative in 8% of the cases. All the positives were in massive or recidivated bleeding and the negatives in intermittent low volume bleedings or patients with discreet melena or hidden blood in feces. The diagnostic efficiency of 92% was compare with non-invasive methods (video-colonoscopy 81% and selective angiography) and we comment the possible causes of false negatives. Conclusion: We propose a study algorithm for intermittent and low intensity LDH cases and another for higher magnitude LDH

  6. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  7. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  8. Cancer Stem Cells in Lung Tumorigenesis

    OpenAIRE

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2010-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continue...

  9. Aiolos Promotes Anchorage Independence by Silencing p66Shc Transcription in Cancer Cells

    OpenAIRE

    Li, Xichuan; Xu, Zhao; Du, Wei; Zhang, Zhenfa; Wei, Yiliang; Wang, Hao; Zhu, Zhiyan; Qin, Litao; Wang, Lin; Niu, Qing; Zhao, Xiulan; Girard, Luc; Gong, Yimei; Ma, Zhenyi; Sun, Baocun

    2014-01-01

    Anchorage of tissue cells to their physical environment is an obligate requirement for survival which is lost in mature hematopoietic and in transformed epithelial cells. Here we find that a lymphocyte lineage-restricted transcription factor, Aiolos, is frequently expressed in lung cancers and predicts markedly reduced patient survival. Aiolos decreases expression of a large set of adhesion-related genes, disrupting cell-cell and cell-matrix interactions. Aiolos also reconfigures chromatin st...

  10. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  11. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation

    Science.gov (United States)

    Kumar, Suresh M.; Liu, Shujing; Lu, Hezhe; Zhang, Hongtao; Zhang, Paul J.; Gimotty, Phyllis A.; Guerra, Matthew; Guo, Wei; Xu, Xiaowei

    2012-01-01

    There is enormous interest to target cancer stem cells (CSCs) for clinical treatment because these cells are highly tumorigenic and resistant to chemotherapy. Oct4 is expressed by CSC-like cells in different types of cancer. However, function of Oct4 in tumor cells is unclear. In this study, we showed that expression of Oct4 gene or transmembrane delivery of Oct4 protein promoted dedifferentiation of melanoma cells to CSC-like cells. The dedifferentiated melanoma cells showed significantly decreased expression of melanocytic markers and acquired the ability to form tumor spheroids. They showed markedly increased resistance to chemotherapeutic agents and hypoxic injury. In the subcutaneous xenograft and tail vein injection assays, these cells had significantly increased tumorigenic capacity. The dedifferentiated melanoma cells acquired features associated with CSCs such as multipotent differentiation capacity and expression of melanoma CSC markers such as ABCB5 and CD271. Mechanistically, Oct4 induced dedifferentiation was associated with increased expression of endogenous Oct4, Nanog and Klf4, and global gene expression changes that enriched for transcription factors. RNAi mediated knockdown of Oct4 in dedifferentiated cells led to diminished CSC phenotypes. Oct4 expression in melanoma was regulated by hypoxia and its expression was detected in a subpopulation of melanoma cells in clinical samples. Our data indicate that Oct4 is a positive regulator of tumor dedifferentiation. The results suggest that CSC phenotype is dynamic and may be acquired through dedifferentiation. Oct4 mediated tumor cell dedifferentiation may play an important role during tumor progression. PMID:22286766

  12. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  13. Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Hiroko Endo

    Full Text Available A hypoxic microenvironment in tumors has been recognized as a cause of malignancy or resistance to various cancer therapies. In contrast to recent progress in understanding the acute response of cancer cells to hypoxia, the characteristics of tumor cells in chronic hypoxia remain elusive. We have identified a pancreatic cancer cell line, AsPC-1, that is exceptionally able to survive for weeks under 1% oxygen conditions while most tested cancer cell lines die after only some days under these conditions. In chronic hypoxia, AsPC-1 cells entered a state of dormancy characterized by no proliferation, no death, and metabolic suppression. They reversibly switched to active status after being placed again in optimal culture conditions. ATP turnover, an indicator of energy demand, was markedly decreased and accompanied by reduced AKT phosphorylation. Forced activation of AKT resulted in increased ATP turnover and massive cell death in vitro and a decreased number of dormant cells in vivo. In contrast to most cancer cell lines, primary-cultured colorectal cancer cells easily entered the dormant status with AKT suppression under hypoxia combined with growth factor-depleted conditions. Primary colorectal cancer cells in dormancy were resistant to chemotherapy. Thus, the ability to survive in a deteriorated microenvironment by entering into dormancy under chronic hypoxia might be a common property among cancer cells. Targeting the regulatory mechanism inducing this dormant status could provide a new strategy for treating cancer.

  14. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  15. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells.

    Science.gov (United States)

    Hirakawa, Satoshi; Kojima, Takashi; Obata, Kazufumi; Okabayashi, Tamaki; Yokota, Shin-Ichi; Nomura, Kazuaki; Obonai, Toshimasa; Fuchimoto, Jun; Himi, Tetsuo; Tsutsumi, Hiroyuki; Sawada, Norimasa

    2013-12-01

    Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.

  16. Allyl Isothiocyanate Induces Cell Toxicity by Multiple Pathways in Human Breast Cancer Cells.

    Science.gov (United States)

    Bo, Peng; Lien, Jin-Cherng; Chen, Ya-Yin; Yu, Fu-Shun; Lu, Hsu-Feng; Yu, Chun-Shu; Chou, Yu-Cheng; Yu, Chien-Chih; Chung, Jing-Gung

    2016-01-01

    Isothiocyanates (ITCs) occur in many cruciferous vegetables. These compounds, which have significant anticancer actions, can induce apoptosis in different human cancer cell lines. In the present study, we investigated if allyl isothiocyanate (AITC) would induce toxicity in human breast cancer MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) cells. We found that AITC stimulated reactive oxygen species and Ca[Formula: see text] production, and decreased the mitochondrial membrane potential. Activity of caspase-8, -9 and -3 was increased by AITC in both cell lines. AITC also induced mitochondrial-mediated apoptosis, as shown by cytochrome c, AIF and Endo G release from mitochondria, activation of caspase-9 and caspase-3, and formation of DAPI-positive cells. There was a significant reduction in the levels of the anti-apoptotic protein Bcl-2 along with a marked increase in the pro-apoptotic protein Bax in both cell lines. AITC induced apoptosis in human breast cancer MCF-7 cells via AIF and Endo G signaling pathways, but in MDA-MB-231 cells apoptosis occurred via the GADD153 pathway. This study has revealed novel anti-cancer mechanisms of AITC, a compound that is ordinarily present in human diets and may have potential therapeutic effects in various cancers. PMID:27080949

  17. Markers of small cell lung cancer

    OpenAIRE

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  18. cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth.

    Science.gov (United States)

    Chen, Zirong; Li, Jian-Liang; Lin, Shuibin; Cao, Chunxia; Gimbrone, Nicholas T; Yang, Rongqiang; Fu, Dongtao A; Carper, Miranda B; Haura, Eric B; Schabath, Matthew B; Lu, Jianrong; Amelio, Antonio L; Cress, W Douglas; Kaye, Frederic J; Wu, Lizi

    2016-06-01

    The LKB1 tumor suppressor gene is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP-responsive element-binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.

  19. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  20. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  1. Targeting prostate cancer stem cells for cancer therapy

    OpenAIRE

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, ...

  2. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  3. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  4. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  5. Determination of telomerase activity in stem cells and non-stem cells of breast cancer

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; HE Yanli; ZHANG Jiahua; ZHANG Jinghui; HUANG Tao

    2007-01-01

    Although all normal tissue cells,including stem cells,are genetically homologous,variation in gene expression patterns has already determined the distinct roles for individual cells in the physiological process due to the occurrence of epigenetic modification.This is of special importance for the existenee of tissue stem cells because they are exclusively immortal within the body,capable of selfreplicating and differentiating by which tissues renew and repair itself and the total tissue cell population maintains a steady-state.Impairment of tissue stem cells is usually accompanied by a reduction in cell number,slows down the repair process and causes hypofunction.For instance,chemotherapy usually leads to depression of bone marrow and hair loss.Cellular aging is closely associated with the continuous erosion of the telomere while activation of telomerase repairs and maintains telomeres,thus slowing the aging process and prolonging cell life.In normal adults,telomerase activation mainly presents in tissue stem cells and progenitor cells giving them unlimited growth potential.Despite the extensive demonstration of telomerase activation in malignancy(>80%),scientists found that heterogeneity also exists among the tumor cells and only minorities of cells,designated as cancer stem cells,andergo processes analogous to the self-renewal and differentiation of normal stem ceils while the rest have limited lifespans.In this study,telomerase activity was measured and compared in breast cancer stem cells and non-stem cells that were phenotypically sorted by examining surface marker expression.The results indicated that cancer stem cells show a higher level of enzyme activity than non-stem cells.In addition,associated with the repair of cancer tissue(or relapse)after chemotherapy,telomerase activity in stem cells was markedly increased.

  6. Tracheal metastasis of small cell lung cancer

    OpenAIRE

    De, Sajal

    2009-01-01

    Endotracheal metastases of primary lung cancer are rare. Only one case of tracheal metastasis from small cell lung cancer has been reported in literature. Here, we report a rare case of a 45-year-old woman who was admitted for sudden-onset breathlessness with respiratory failure and required ventilatory support. Endotracheal growth was identified during bronchoscopy, and biopsy revealed endotracheal metastasis of small cell lung cancer.

  7. Repopulation of Ovarian Cancer Cells After Chemotherapy

    OpenAIRE

    Telleria, Carlos M.

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  8. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  9. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  10. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    International Nuclear Information System (INIS)

    131I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133+ cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133+ cells and higher radioresistance. After γ-irradiation of the cells, the CD133+ population was enriched due to the higher apoptotic rate of CD133- cells. In vivo 131I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133+ cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133+ cells. (orig.)

  11. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  12. Role of cancer stem cells in age-related rise in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Pratima; Nangia-Makker; Yingjie; Yu; Adhip; PN; Majumdar

    2015-01-01

    Colorectal cancer(CRC) that comprises about 50% of estimated gastrointestinal cancers remains a high mortality malignancy. It is estimated that CRC will result in 9% of all cancer related deaths. CRC is the third leading malignancy affecting both males and females equally; with 9% of the estimated new cancer cases and 9% cancer related deaths. Sporadic CRC, whose incidence increases markedly with advancing age, occurs in 80%-85% patients diagnosed with CRC. Little is known about the precise biochemical mechanisms responsible for the rise in CRC with aging. However, many probable reasons for this increase have been suggested; among others they include altered carcinogen metabolism and the cumulative effects of long-term exposure to cancer-causing agents. Herein, we propose a role for self-renewing, cancer stem cells(CSCs) in regulating these cellular events. In this editorial, we have briefly described the recent work on the evolution of CSCs in gastro-intestinal track especially in the colon, and how they are involved in the age-related rise in CRC. Focus of this editorial is to provide a description of(1) CSC;(2) epigenetic and genetic mechanisms giving rise to CSCs;(3) markers of CSC;(4) characteristics; and(5) age-related increase in CSC in the colonic crypt.

  13. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice.

    Science.gov (United States)

    Capel, B; Hawley, R; Covarrubias, L; Hawley, T; Mintz, B

    1989-06-01

    Mice were repopulated with small numbers of retrovirally marked hematopoietic cells operationally definable as totipotent hematopoietic stem cells, without engraftment of cells at later stages of hematopoiesis, in order to facilitate analysis of stem cell clonal histories. This result depended upon the use of unirradiated W/Wv newborn recipients. Before transplantation, viral integration markers were introduced during cocultivation of fetal liver or bone marrow cells with helper cell lines exporting defective recombinant murine retroviruses of the HHAM series. Omission of selection in culture [although the vector contained the bacterial neomycin-resistance (neo) gene] also limited the proportion of stem cells that were virally labeled. Under these conditions, engraftment was restricted to a small population of marked and unmarked normal donor stem cells, due to their competitive advantage over the corresponding defective cells of the mutant hosts. A relatively simple and coherent pattern emerged, of one or a few virally marked clones, in contrast to previous studies. In order to establish the totipotent hematopoietic stem cell identity of the engrafted cells, tissues were sampled for viral and inbred-strain markers for periods close to one year after transplantation. The virally labeled clones were characterized as stem cell clones by their extensive self-renewal and by formation of the wide range of myeloid and lymphoid lineages tested. Results clearly documented concurrent contributions of cohorts of stem cells to hematopoiesis. A given stem cell can increase or decrease its proliferative activity, become completely inactive or lost, or become active after a long latent period. The contribution of a single clone present in a particular lineage was usually between 5% and 20%. PMID:2567516

  14. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse;

    Kinomic and phospho-proteomic analysis of breast cancer stem-like cells Rikke Leth-Larsen1, Anne G Christensen1, Sidse Ehmsen1, Mark Møller1, Giuseppe Palmisano2, Martin R Larsen2, Henrik J Ditzel1,3 1Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark 2Institute...... cell death, while the bulk of a tumor lacks these capacities. The resistance mechanisms may cause these cells to survive and become the source of later tumor recurrence, highlighting the need for therapeutic strategies that specifically target pathways central to these cancer stem cells. The CD44hi....../CD24-/low compartment of human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. From a triple-negative breast cancer cell line we isolated and cloned CD44hi single-cells that exhibited functional heterogeneity...

  15. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  16. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  17. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  18. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    International Nuclear Information System (INIS)

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis

  19. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  20. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  1. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  2. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  3. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells

    Science.gov (United States)

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M.; Ezekiel, Uthayashanker R.

    2016-01-01

    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer. PMID:27390600

  4. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  5. Cancer Stem Cells in the Thyroid

    Science.gov (United States)

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  6. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  7. Targeting cancer stem cells by using the nanoparticles

    Directory of Open Access Journals (Sweden)

    Hong IS

    2015-09-01

    Full Text Available In-Sun Hong,1,2,* Gyu-Beom Jang,1,2,* Hwa-Yong Lee,3 Jeong-Seok Nam1,2 1Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, 2Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 3The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea *These authors contributed equally to this work Abstract: Cancer stem cells (CSCs have been shown to be markedly resistant to conventional cancer treatments such as chemotherapy and radiation therapy. Therefore, therapeutic strategies that selectively target CSCs will ultimately lead to better cancer treatments. Currently, accessible conventional therapeutic agents mainly eliminate the bulk tumor but do not eliminate CSCs. Therefore, the discovery and improvement of CSC-targeting therapeutic agents are necessary. Nanoparticles effectively inhibit multiple types of CSCs by targeting specific signaling pathways (Wnt/ß-catenin, Notch, transforming growth factor-ß, and hedgehog signaling and/or specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133 critically involved in CSC function and maintenance. In this review article, we summarized a number of findings to provide current information about their therapeutic potential of nanoparticles in various cancer cell types and CSCs. Keywords: ALDH, Wnt/ß-catenin, Hedgehog, Notch, TGF-ß signaling, CD44, CD133

  8. Paclitaxel sensitizes gastric cancer cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy as it has unique capacity to selectively trigger apoptosis in cancer cells. We reported here that paclitaxel sensitized gastric cancer cells to TRAIL-induced apoptosis.Methods: After drug exposure, apoptosis rate and caspase activation were examined. Various proteins were detected by western blot. Several interventions, including pharmacological inhibitors and siRNA transfection were used. hTe growth inhibition of tumors was evaluated in SGC-7901-implanted nude mice model.Results:We found gastric cancer cellsshowed a mixed response to TRAIL. Combined treatment with paclitaxel markedly enhanced TARIL-induced apoptosis in vitro and in vivo. The underlying mechanisms involved in synergistical activation of caspase proteins, up-regulation of receptors, down-regulation of antiapoptotic proteins and inactivation of MAPKs.Conclusion:TRAIL-induced cytotoxicity and apoptosis can be synergistically enhanced by paclitaxel, suggesting the therapeutic potential of combining TARIL plus paclitaxel in gastric cancer treatment.

  9. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    OpenAIRE

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is ...

  10. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.;

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  11. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  12. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    International Nuclear Information System (INIS)

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity

  13. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  14. Cancer stem cells in head and neck cancer.

    Science.gov (United States)

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  15. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  16. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  17. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  18. The most promising strategy targeted against cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-xiong; YANG Li-juan; ZHEN Shi-ming

    2011-01-01

    To the Editor:We read with great enthusiasm an interesting and exciting review article Targeting glioma stem cells:enough to terminate gliomagenesis? by Dong and Huang,1 who believed that single targeting therapy against glioma stem cells is unsuccessful and ameliorating the local tumor inducing/promoting microenvironment should be a reasonable strategy.Our group is enduringly engaged in the study of glioma,and we also put much concern upon the research of tumor microecosystem (TMES).In fact,the targeting therapy against cancer stem cells (CSCs) involves two aspects.One is the marked molecular target against CSCs.The other is how to deal with CSCs,by cytotoxic against CSCs,or inducing tumor stem cells to differentiate,or others?

  19. Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib.

    Science.gov (United States)

    Wei, Wei-Jun; Shen, Chen-Tian; Song, Hong-Jun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2016-09-01

    Treatment options for advanced metastatic or progressive thyroid cancers are limited. Although targeted therapy specifically inhibiting intracellular kinase signaling pathways has markedly changed the therapeutic landscape, side-effects and resistance of single agent targeted therapy often leads to termination of the treatment. The objective of the present study was to identify the antitumor property of the non-selective β-adrenergic receptor antagonist propranolol for thyroid cancers. Human thyroid cancer cell lines 8505C, K1, BCPAP and BHP27 were used in the present study. Broad β-blocker propranolol and β2-specific antagonist ICI118551, but not β1-specific antagonist atenolol, inhibited the growth of 8505C and K1 cells. Propranolol treatment inhibited growth and induced apoptosis of 8505C cells in vitro and in vivo, which are closely associated with decreased expressions of cyclin D1 and anti-apoptotic Bcl-2. Expression of hexokinase 2 (HK2) and glucose transporter 1 (GLUT1) also decreased following propranolol intervention. 18F-FDG PET/CT imaging of the 8505C xenografts validated shrinkage of the tumors in the propranolol-treated group when compared to the phosphate‑buffered saline treated group. Finally, we found that propranolol can amplify the cytotoxicity of vemurafenib and sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Our present results suggest that propranolol has potential activity against thyroid cancers and investigation of the combination with targeted molecular therapy for progressive thyroid cancers could be beneficial. PMID:27432558

  20. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Hwa Shin

    2016-02-01

    Full Text Available The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1 complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells.

  1. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  2. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  3. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  4. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  5. Cancer stem cells: progress and challenges in lung cancer.

    Science.gov (United States)

    Templeton, Amanda K; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama; Ramesh, Rajagopal

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  6. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  7. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  8. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    International Nuclear Information System (INIS)

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  9. Treatment Option Overview (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  10. Stages of Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  11. General Information about Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  12. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  13. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  14. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang, E-mail: brilliant212@163.com; Yang, Xinghai, E-mail: cnspineyang@163.com; Xiao, Jianru, E-mail: jianruxiao83@163.com

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  15. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1

  16. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  17. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  18. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme.

    Science.gov (United States)

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T; Peng, Lifeng; Davis, Paul F; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology. PMID:27148537

  19. Learning about Cancer by Studying Stem Cells

    Science.gov (United States)

    ... View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem Cells By Sharon ... culture. Credit: Anne Weston, London Research Institute, CRUK (image available under a Creative Commons Attribution, Non-Commercial, ...

  20. Noncoding RNAs in cancer and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Tianzhi Huang; Angel Alvarez; Bo Hu; Shi-Yuan Cheng

    2013-01-01

    In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potential y useful diagnostic tools.

  1. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  2. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  3. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    Science.gov (United States)

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  4. Vacuolar H+-translocating inorganic pyrophosphatase (Vpp1) marks partial aleurone cell fate in cereal endosperm development.

    Science.gov (United States)

    Wisniewski, Jean-Pierre; Rogowsky, Peter M

    2004-10-01

    Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1 . It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3 , Dap7 , cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1 , the expression of Ltp2 , the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.

  5. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands.

    Science.gov (United States)

    Bullard, Tara; Koek, Laurie; Roztocil, Elisa; Kingsley, Paul D; Mirels, Lily; Ovitt, Catherine E

    2008-08-01

    Ascl3, also know as Sgn1, is a member of the mammalian achaete scute (Mash) gene family of transcription factors, which have been implicated in cell fate specification and differentiation. In the mouse salivary gland, expression of Ascl3 is restricted to a subset of duct cells. Salivary gland function depends on the secretory acinar cells, which are responsible for saliva formation, and duct cells, which modify the saliva and conduct it to the oral cavity. The salivary gland ducts are also the putative site of progenitor cells in the adult gland. Using a Cre recombinase-mediated reporter system, we followed the fate of Ascl3-expressing cells after the introduction of an EGFP-Cre expression cassette into the Ascl3 locus by homologous recombination. Lineage tracing shows that these cells are progenitors of both acinar and ductal cell types in all three major salivary glands. In the differentiated progeny, expression of Ascl3 is down-regulated. These data directly demonstrate a progenitor-progeny relationship between duct cells and the acinar cell compartment, and identify a population of multipotent progenitor cells, marked by expression of Ascl3, which is capable of generating both gland cell types. We conclude that Ascl3-expressing cells contribute to the maintenance of the adult salivary glands.

  6. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  7. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie;

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  8. Markers of small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Sharma SK

    2004-05-01

    Full Text Available Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.

  9. Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase.

    Science.gov (United States)

    Müllers, Erik; Silva Cascales, Helena; Jaiswal, Himjyot; Saurin, Adrian T; Lindqvist, Arne

    2014-01-01

    Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/C(Cdh1). However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/C(Cdh1)-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.

  10. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression.

    Science.gov (United States)

    Long, Jianting; Ou, Caiwen; Xia, Haoming; Zhu, Yifan; Liu, Dayue

    2015-11-01

    Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.

  11. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  12. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  13. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  14. Biomechanical investigation of colorectal cancer cells

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  15. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    Science.gov (United States)

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  16. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  17. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Shin eHamada; Atsushi eMasamune; Tooru eShimosegawa

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also...

  18. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and al...

  19. Anti-Cancer Activity of Solanum nigrum (AESN through Suppression of Mitochondrial Function and Epithelial-Mesenchymal Transition (EMT in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Jang Lai

    2016-04-01

    Full Text Available Chemotherapy is the main approach for treating advanced and recurrent carcinoma, but the clinical performance of chemotherapy is limited by relatively low response rates, drug resistance, and adverse effects that severely affect the quality of life of patients. An association between epithelial-mesenchymal transition (EMT and chemotherapy resistance has been investigated in recent studies. Our recent studies have found that the aqueous extract of Solanum nigrum (AESN is a crucial ingredient in some traditional Chinese medicine formulas for treating various types of cancer patients and exhibits antitumor effects. We evaluated the suppression of EMT in MCF-7 breast cancer cells treated with AESN. The mitochondrial morphology was investigated using Mitotracker Deep-Red FM stain. Our results indicated that AESN markedly inhibited cell viability of MCF-7 breast cancer cells through apoptosis induction and cell cycle arrest mediated by activation of caspase-3 and production of reactive oxygen species. Furthermore, mitochondrial fission was observed in MCF-7 breast cancer cells treated with AESN. In addition to elevation of E-cadherin, downregulations of ZEB1, N-cadherin, and vimentin were found in AESN-treated MCF-7 breast cancer cells. These results suggested that AESN could inhibit EMT of MCF-7 breast cancer cells mediated by attenuation of mitochondrial function. AESN could be potentially beneficial in treating breast cancer cells, and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells.

  20. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  1. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells

    Indian Academy of Sciences (India)

    Zhan Shi; Ding Wu; Run Tang; Xiang Li; Renfu Chen; Song Xue; Chengjing Zhang; Xiaoqing Sun

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers, however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then we examined the cellular biology changes after decreased the expression of HMGA2. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation, this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-β (TGF-β)/Smad signaling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer.

  2. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan;

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  3. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  4. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  5. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N;

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated......Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  6. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  7. Squamous cell cancer of the rectum

    Institute of Scientific and Technical Information of China (English)

    Tara Dyson; Peter V Draganov

    2009-01-01

    Squamous cell carcinoma of the rectum is a rare malignancy. It appears to be associated with chronic inflammatory conditions and infections. The clear association seen between Human Papilloma Virus and various squamous cancers has not been firmly established for the squamous cell cancer of the rectum. The presentation is nonspecific and patients tend to present with advanced stage disease. Diagnosis relies on endoscopic examination with biopsy of the lesion. Distinction from squamous cell cancer of the anus can be difficult, but can be facilitated by immunohistochemical staining for cytokeratins. Staging of the cancer with endoscopic ultrasound and computed tomography provides essential information on prognosis and can guide therapy. At present, surgery remains the main therapeutic option; however recent advances have made chemoradiation a valuable therapeutic addition. Squamous cell carcinoma of the rectum is a distinct entity and it is of crucial importance for the practicing Gastroenterologist to be thoroughly familiar with this disease. Compared to adenocarcinoma of the rectum and squamous cell cancer of the anal canal, squamous cell carcinoma of the rectum has different epidemiology, etiology, pathogenesis, and prognosis but, most importantly, requires a different therapeutic approach. This review will examine and summarize the available information regarding this disease from the perspective of the practicing gastroenterologist.

  8. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  9. Cancer Stem Cells: From Identification To Eradication

    International Nuclear Information System (INIS)

    A fundamental problem in cancer research is identification of the cells within a tumor that sustain the growth of the neoplastic clone. The concept that only a subpopulation of rare cancer stem cells (CSCs) is responsible for maintenance of the neoplasm emerged nearly 50 years ago: however, conclusive proof for the existence of a CSC was obtained only relatively recently. As definition, cancer stem cells (CSCs) are a sub-population of cancer cells (found within solid tumors or hematological malignancies) that possess characteristics normally associated with stem cells as high self-renewal potential. These cells are believed to be tumorige forming) in contrast to the bulk of cancer cells, which are thought to be non-tumorigenic. The first conclusive evidence for CSCs was published in 1997 in Nature Medicine by Bonnet and Dick who isolated a subpopulation of leukemic cells in AML that express a specific surface marker CD34 but lacks the CD38 marker. The authors established that the CD34+/CD38– subpopulation is capable of initiating leukemia in NOD/SCID mice that is histologically similar to the donor [1]. This subpopulation of cells is termed SCID Leukemia-initiating cells (SLIC). A theory suggests that such cells act as a reservoir for disease recurrence, are the origin of metastasis and exert resistance towards classical antitumor regimens. This resistance was attributed to a combination of several factors [2], suggesting that conventional antitumor regimens are targeting the bulk of the tumor not the dormant stubborn CSCs. Purpose Better understanding of the leukemogenic process and the biology of CSCS to define the most applicable procedures for their identification and isolation in order to design specific targeted therapies aiming at reducing disease burden to very low levels .. up to eradication of the tumor

  10. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function.

    Science.gov (United States)

    Shi, Huijuan; Shi, Dongxuan; Wu, Yansong; Shen, Qiang; Li, Jing

    2016-09-28

    Qigesan (QGS), a well-known traditional Chinese medicinal formula, has long been used to treat patients with esophageal cancer. However, the anticancer mechanisms of action of QGS remain unknown. This study aims to determine whether QGS regulates gap junction (GJ) function and affects the invasiveness of esophageal cancer cells. Our results demonstrate that QGS markedly inhibits the migration and invasion of esophageal cancer cells in vitro. We further show that QGS enhances the function of GJ in esophageal cancer cells. We therefore hypothesized that enhanced connexin expression leads to enhanced GJ function and inhibition of metastasis. We found that QGS enhances expression of connexin 26 and connexin 43 in esophageal cancer cells. This study suggests that QGS increases GJ function via enhancing the expression of connexins, resulting in reduced esophageal cancer cell migration and invasion. PMID:27345741

  11. Stem cells marked by the R-spondin receptor LGR5

    NARCIS (Netherlands)

    Koo, Bon-Kyoung; Clevers, Hans

    2014-01-01

    Since the discovery of LGR5 as a marker of intestinal stem cells, the field has developed explosively and led to many new avenues of research. The inner workings of the intestinal crypt stem cell niche are now well understood. The study of stem cell-enriched genes has uncovered some previously unkno

  12. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    Directory of Open Access Journals (Sweden)

    Özel Cem

    2012-04-01

    Full Text Available Abstract Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a

  13. CCR6 marks regulatory T cells as a colon-tropic, interleukin-10-producing phenotype1

    OpenAIRE

    Kitamura, Kazuya; Farber, Joshua M; Kelsall, Brian L.

    2010-01-01

    Expression of CCR6 and its ligand, CCL20, are increased in the colon of humans with inflammatory bowel diseases and mice with experimental colits, however their role in disease pathogenesis remains obscure. Here we demonstrate a role for CCR6 on regulatory T (Treg)3 cells in the T cell-transfer model of colitis. Rag2−/− mice given Ccr6−/− CD4+CD45RBhigh T cells had more severe colitis with increased IFN-γ-producing T cells, compared to the mice given WT cells. While equivalent frequency of in...

  14. Effect of staurosporine on cycle of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Ke-Zuo Hou; Yun-Peng Liu; Yuan Yuan

    2004-01-01

    AIM: To study the effect of staurosporine (ST) on the cell cycle of human gastriccancer cell lines MGC803 and SGC7901.METHODS: Cell proliferation was evaluated by trypan blue dye exclusion method. Apoptotic morphology was observed under a transmission electron microscope. Changes of cell cycle and apoptotic peaks of cells were determined by flow cytometry. Expression of p21WAFI gene was examined using immunohistochemistry and RT-PCR.RESULTS: The growth of MGC803 and SGC7901 cells was inhibited by ST. The inhibitory concentrations against 50% cells (IC50) at 24 h and 48 h were 54 ng/ml and 23 ng/ml for MlGC803, and 61 ng/ml and 37 ng/ml for SGC7901. Typical apoptotic bodies and apoptotic peaks were observed 24 hafter cells were treated wth ST at a concentration of 200ng/ml. The percentage of cells at G0/G1 phase was decreased and that of cells at G2/M was increased significantly in the group treated wth ST at the concentrations of 40ng/ml,60 ng/ml, 100 ng/ml for 24 h, compared with the control group (P<0.01). The expression levels of p21WAFI gene in both MGC803 and SGC7901 cells were markedly up-regulated after treatment with ST.CONCLUSION: ST can cause arrest of gastric cancer cells at G2/M phase, which may be one of the mechanisms that inhibit cell proliferation and cause apoptosis in these cells.Effect of ST on cells at G2/M phase may be attributed to the up-regulattion of p21WAFI gene.

  15. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  16. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  17. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  18. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  19. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  20. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  1. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  2. Targeting cancer stem cells in hepatocellular carcinoma

    OpenAIRE

    MISHRA, LOPA

    2014-01-01

    Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC) is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the fun...

  3. How Taxol/paclitaxel kills cancer cells

    OpenAIRE

    Weaver, Beth A

    2014-01-01

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, r...

  4. Stretch marks

    Science.gov (United States)

    Stretch marks can appear when there is rapid stretching of the skin. They are often seen when ... often disappear after the cause of the skin stretching is gone. Avoiding rapid weight gain helps reduce ...

  5. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  6. Reversibility of apoptosis in cancer cells

    OpenAIRE

    Tang, H. L.; Yuen, K L; Tang, H M; Fung, M C

    2008-01-01

    Apoptosis is a cell suicide programme characterised by unique cellular events such as mitochondrial fragmentation and dysfunction, nuclear condensation, cytoplasmic shrinkage and activation of apoptotic protease caspases, and these serve as the noticeable apoptotic markers for the commitment of cell demise. Here, we show that, however, the characterised apoptotic dying cancer cells can regain their normal morphology and proliferate after removal of apoptotic inducers. In addition, we demonstr...

  7. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  8. Mapping proteolytic cancer cell-extracellular matrix interfaces.

    NARCIS (Netherlands)

    Wolf, K.A.; Friedl, P.H.A.

    2009-01-01

    For cancer progression and metastatic dissemination, cancer cells migrate and penetrate through extracellular tissues. Cancer invasion is frequently facilitated by proteolytic processing of components of the extracellular matrix (ECM). The cellular regions mediating proteolysis are diverse and depen

  9. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  10. Methylanthraquinone from Hedyotis diffusa WILLD induces Ca(2+)-mediated apoptosis in human breast cancer cells.

    Science.gov (United States)

    Liu, Zheng; Liu, Ming; Liu, Miao; Li, Jianchun

    2010-02-01

    Methylanthraquinone from Hedyotis diffusa WILLD exhibited potent anticancer activity in many kinds of cancer cells. However, the exact mechanism and signaling pathway involved in methylanthraquinone-induced apoptosis have not been fully elucidated. Therefore, we explored the mechanisms of methylanthraquinone-mediated apoptosis in MCF-7 human breast cancer cells. When MCF-7 cells were co-incubated with methylanthraquinone, the percentage of apoptotic cell and S phase of cell cycle was markedly increased. In addition, a rise in intracellular calcium levels, phosphorylation of JNK and activation of calpain were found in MCF-7 cells after exposure to methylanthraquinone. With the methylanthraquinone-mediated reduction of mitochondrial membrane potential, cytochrome c was released from mitochondria to cytosol. Moreover, methylanthraquinone strongly induced cleavage of caspase-4, caspase-9 and caspase-7 in MCF-7 cells. These results suggested that methylanthraquinone from Hedyotis diffusa WILLD induced MCF-7 cells apoptosis via Ca(2+)/calpain/caspase-4 pathway. PMID:19686834

  11. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    Science.gov (United States)

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  12. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mathias Streitz

    Full Text Available BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10 based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naïve/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%. Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help

  13. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.

  14. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs. PMID:26337609

  15. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  16. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    International Nuclear Information System (INIS)

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21

  17. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.

  18. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  19. Chronic active Epstein-Barr virus infection with marked pericardial effusion successfully treated with allogeneic peripheral blood stem cell transplantation.

    Science.gov (United States)

    Matsui, Shinichiro; Takeda, Yusuke; Isshiki, Yusuke; Yamazaki, Atsuko; Nakao, Sanshiro; Takaishi, Koji; Nagao, Yuhei; Hasegawa, Nagisa; Togasaki, Emi; Shimizu, Ryoh; Kawajiri, Chika; Sakai, Shio; Mimura, Naoya; Takeuchi, Masahiro; Ohwada, Chikako; Sakaida, Emiko; Iseki, Tohru; Imadome, Ken-Ichi; Nakaseko, Chiaki

    2016-05-01

    A 23-year-old woman presented with a persistent fever and shortness of breath. Computed tomography showed marked pericardial effusion, hepatosplenomegaly, and cervical and mediastinal lymph node swelling. Epstein-Barr virus (EBV) antibody titers were abnormally elevated, and the copy number of EBV-DNA was increased in peripheral blood. Based on these observations, she was diagnosed with chronic active EBV infection (CAEBV). The EBV-infected cells in her peripheral blood were CD4(+)T lymphocytes. Fever and pericardial effusion improved following treatment with a combination of prednisolone, etoposide, and cyclosporine; however, peripheral blood EBV-DNA levels remained high. The patient underwent allogeneic peripheral blood stem cell transplantation from an EBV-seronegative, HLA-matched sibling donor, with fludarabine and melphalan conditioning. The post-transplantation course was uneventful, except for mild skin acute graft-versus-host disease (grade 2). EBV-DNA became undetectable in peripheral blood 98 days post transplantation. She has since been in good health without disease recurrence. CAEBV is a potentially fatal disease caused by persistent EBV infection of T lymphocytes or natural killer cells, thus requiring prompt treatment and allogeneic transplantation. Pericardial effusion is rarely observed in CAEBV and can impede its diagnosis. Therefore, we should be aware that patients may present with marked pericardial effusion as an initial manifestation of CAEBV. PMID:27263789

  20. An update on the biology of cancer stem cells in breast cancer.

    Science.gov (United States)

    García Bueno, José María; Ocaña, Alberto; Castro-García, Paola; Gil Gas, Carmen; Sánchez-Sánchez, Francisco; Poblet, Enrique; Serrano, Rosario; Calero, Raúl; Ramírez-Castillejo, Carmen

    2008-12-01

    Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24- select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.

  1. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  2. A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies.

    Science.gov (United States)

    Schaner, Christine E; Deshpande, Girish; Schedl, Paul D; Kelly, William G

    2003-11-01

    In C. elegans, mRNA production is initially repressed in the embryonic germline by a protein unique to C. elegans germ cells, PIE-1. PIE-1 is degraded upon the birth of the germ cell precursors, Z2 and Z3. We have identified a chromatin-based mechanism that succeeds PIE-1 repression in these cells. A subset of nucleosomal histone modifications, methylated lysine 4 on histone H3 (H3meK4) and acetylated lysine 8 on histone H4 (H4acetylK8), are globally lost and the DNA appears more condensed. This coincides with PIE-1 degradation and requires that germline identity is not disrupted. Drosophila pole cell chromatin also lacks H3meK4, indicating that a unique chromatin architecture is a conserved feature of embryonic germ cells. Regulation of the germline-specific chromatin architecture requires functional nanos activity in both organisms. These results indicate that genome-wide repression via a nanos-regulated, germ cell-specific chromatin organization is a conserved feature of germline maintenance during embryogenesis.

  3. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  4. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer.

  5. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  6. Understanding cancer stem cell heterogeneity and plasticity

    Institute of Scientific and Technical Information of China (English)

    Dean G Tang

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo.It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells.Somatic stem cells in adult organs are also heterogeneous,containing many subpopulations of self-renewing cells with distinct regenerative capacity.The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches.Like normal stem cells,recent data suggest that cancer stem cells(CSCs)similarly display significant phenotypic and functional heterogeneity,and that the CSC progeny can manifest diverse plasticity.Here,I discuss CSC heterogeneity and plasticity in the context of tumor development and progression,and by comparing with normal stem cell development.Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted.By understanding the interrelationship between CSCs and their differentiated progeny,we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.

  7. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  8. Foxp3 expression in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Konstantinos I

    2008-04-01

    Full Text Available Abstract Objective Transcription factor forkhead box protein 3 (Foxp3 specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs. Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively in various tumor types. Materials and methods Twenty five tumor cell lines of different tissue origins (lung cancer, colon cancer, breast cancer, melanoma, erythroid leukemia, acute T-cell leukemia were studied. Detection of Foxp3 mRNA was performed using both conventional RT-PCR and quantitative real-time PCR while protein expression was assessed by immunocytochemistry and flow cytometry, using different antibody clones. Results Foxp3 mRNA as well as Foxp3 protein was detected in all tumor cell lines, albeit in variable levels, not related to the tissue of origin. This expression correlated with the expression levels of IL-10 and TGFb1. Conclusion We offer evidence that Foxp3 expression, characterizes tumor cells of various tissue origins. The biological significance of these findings warrants further investigation in the context of tumor immune escape, and especially under the light of current anti-cancer efforts interfering with Foxp3 expression.

  9. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  10. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain.

    Science.gov (United States)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H; De Boer, Rudolf A; Silljé, Herman H W

    2016-07-01

    Depletion of mitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease G-like-depleted cells, and this is marked by a decrease in mitochondrial reserve capacity. Neurohormonal stimulation with phenylephrine (PE) did not have an additive effect on the hypertrophic response induced by endo/exonuclease G-like depletion. Interestingly, PE-induced atrial natriuretic peptide (ANP) gene expression was completely abolished in endo/exonuclease G-like-depleted cells, suggesting a reverse signaling function of endo/exonuclease G-like. Endo/exonuclease G-like depletion initially resulted in increased mitochondrial OCR, but this declined upon PE stimulation. In particular, the reserve capacity of the mitochondrial respiratory chain and maximal respiration were the first indicators of perturbations in mitochondrial respiration, and these marked the subsequent decline in mitochondrial function. Although pathological stimulation accelerated these processes, prolonged EXOG depletion also resulted in a decline in mitochondrial function. At early stages of endo/exonuclease G-like depletion, mitochondrial ROS production was increased, but this did not affect mitochondrial DNA (mtDNA) integrity. After prolonged depletion, ROS levels returned to control values, despite hyperpolarization of the mitochondrial membrane. The mitochondrial dysfunction finally resulted in cell death, which appears to be mainly a form of necrosis. In conclusion, endo/exonuclease G-like plays an essential role in cardiomyocyte physiology. Loss of endo/exonuclease G-like results in diminished adaptation to pathological stress. The decline in maximal respiration and reserve capacity is the first sign of mitochondrial dysfunction that determines subsequent cell death. PMID:27417117

  11. MiR-525-3p enhances the migration and invasion of liver cancer cells by downregulating ZNF395.

    Directory of Open Access Journals (Sweden)

    Fei Pang

    Full Text Available Liver cancer is one of leading causes of cancer-related deaths. A deeper mechanistic understanding of liver cancer could lead to the development of more effective therapeutic strategies. In our previous work, we screened 646 miRNAs and identified 11 that regulate liver cancer cell migration. The current study shows that miR-525-3p is frequently up-regulated in liver cancer tissues, and enhanced expression of miR-525-3p can promote liver cancer cell migration and invasion. Zinc finger protein 395 (ZNF395 is the direct functional target gene for miR-525-3p, and it is frequently down-regulated in liver cancer tissues. High expression of ZNF395 can significantly inhibit while knockdown of ZNF395 expression can markedly enhance the migration and invasion of liver cancer cells, suggesting that ZNF395 suppresses metastasis in liver cancer. Down-regulation of ZNF395 can mediate miR-525-3p induced liver cancer cell migration and invasion. In conclusion, miR-525-3p promotes liver cancer cell migration and invasion by directly targeting ZNF395, and the fact that miR-525-3p and ZNF395 both play important roles in liver cancer progression makes them potential therapeutic targets.

  12. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.

    Science.gov (United States)

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-08-16

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum. PMID:27506799

  13. Proteomic analysis of cancer stem cells in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Kyung; Cho, Hyungdon [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  14. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  15. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  16. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  17. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  18. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia (Italy)

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  19. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ilaria Chiodi

    2011-03-01

    Full Text Available Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  20. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2.

    Science.gov (United States)

    Zhang, Ping; Luo, He-Sheng; Li, Ming; Tan, Shi-Yun

    2015-01-01

    Artesunate, a derivative of artemisinin isolated from Artemisia annua L., has been traditionally used to treat malaria, and artesunate has demonstrated cytotoxic effects against a variety of cancer cells. However, there is little available information about the antitumor effects of artesunate on human gastric cancer cells. In the present study, we investigated the antitumor effect of artesunate on human gastric cancer cells and whether its antitumor effect is associated with reduction in COX-2 expression. The effects of artesunate on the growth and apoptosis of gastric cancer cells were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis of annexin V-fluorescein isothiocyanate/propidium iodide staining, rhodamine 123 staining, and Western blot analysis. Results indicate that artesunate exhibits antiproliferative effects and apoptosis-inducing activities. Artesunate markedly inhibited gastric cancer cell proliferation in a time- and dose-dependent manner and induced apoptosis in gastric cancer cells a dose-dependent manner, which was associated with a reduction in COX-2 expression. Treatment with the selective COX-2 inhibitor celecoxib, or transient transfection of gastric cancer cells with COX-2 siRNA, also inhibited cell proliferation and induced apoptosis. Furthermore, the treatment with artesunate promoted the expression of proapoptotic factor Bax and suppressed the expression of antiapoptotic factor Bcl-2. In addition, caspase-3 and caspase-9 were activated, and artesunate induced loss of mitochondrial membrane potential, suggesting that the apoptosis is mediated by mitochondrial pathways. These results demonstrate that artesunate has an effect on anti-gastric cancer cells. One of the antitumor mechanisms of artesunate may be that its inhibition of COX-2 led to reduced proliferation and induction of apoptosis, connected with mitochondrial dysfunction. Artesunate might be a potential therapeutic

  1. T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures

    Directory of Open Access Journals (Sweden)

    Marion Kennedy

    2012-12-01

    Full Text Available The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.

  2. Side population cells isolated from KATO Ⅲ human gastric cancer cell line have cancer stem cell-like characteristics

    Institute of Scientific and Technical Information of China (English)

    Jun-Jun She; Peng-Ge Zhang; Xuan Wang; Xiang-Ming Che; Zi-Ming Wang

    2012-01-01

    AIM:To investigate whether the side population (SP)cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer.METHODS:We analyzed the presence of SP cells in different human gastric carcinoma cell lines,and then isolated and identified the SP cells from the KATO Ⅲ human gastric cancer cell line by flow cytometry.The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays.The related genes were determined by reverse transcription polymerase chain reaction.To compare tumorigenic ability,SP and non-side population (NSP) cells from the KATO Ⅲ human gastric cancer cell line were subcutaneously injected into nude mice.RESULTS:SP cells from the total population accounted for 0.57% in KATO Ⅲ,1.04% in Hs-746T,and 0.02% in AGS (CRL-1739).SP cells could grow clonally and have self-renewal capability in conditioned media.The expression of ABCG2,MDRI,Bmi-1 and Oct-4 was different between SP and NSP cells.However,there was no apparent difference between SP and NSP cells when they were injected into nude mice.CONCLUSION:SP cells have some cancer stem celllike characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  3. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    Science.gov (United States)

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  4. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    Science.gov (United States)

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  5. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    JIYUN-JING; XIAOBAI; 等

    2000-01-01

    To study the suppression effect of light rare earth elements(RE) on proliferation of two cancer cell lines.Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar,microtubule structure,calmodulin levels and regulation of smoe gene expressions y Northern blot analysis with and without treatment by RE.The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal.The calmodulin (CaM) levels decreased in human leukemia cells(k562) treated with cerium chloride and neodymium chloride.The Northern blot analysis revealed marked up-regulation of p53,p16(MTS1),p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride,as compared to control PAMC82 cells,The light rare earth elements studied have certain suppression effects on proliferation of cancer cells,This effect might be realted to the decrease of calmodulin and up-regulationg of smoe gene expressions in cancer cells.

  6. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the suppression effect of light rare earth elements (RE) on proliferation of two cancer cell lines. Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar, microtubule structure, calmodulin levels and regulation of some gene expressions by Northern blot analysis with and without treatment by RE. The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal. The calmodulin (CaM) levels decreased in human leukemia cells (K562) treated with cerium chloride and neodymium chloride. The Northern blot analysis revealed marked up-regulation of p53, p16(MTS1), p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride, as compared to control PAMC82 cells. The light rare earth elements studied have certain suppression effects on proliferation of cancer cells. This effect might be related to the decrease of calmodulin and up-regulation of some gene expressions in cancer cells.

  7. Inhibiting effect of antisense hTRT on telomerase activity of human liver cancer cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    牟娇; 李晓冬; 杨庆; 贾凤岐; 卫立辛; 郭亚军; 吴孟超

    2003-01-01

    Objective: To induce changes in biological character of human liver cancer cell line SMMC-7721 by blocking the expression of telomerase genes hTRT and to explore its value in cancer gene therapy. Methods: The vehicle for eukaryotic expression of antisense hTRT was constructed and then transfected into SMMC-7721 cells. The effects of antisense hTRT gene on telomerase activity, cancer cell growth and malignant phenotypes were analyzed. Results: The obtained transfectants that could express antisense hTRT gene stably showed marked decrease in telomerase activity; the shortening of telomere was obvious; cells presented contact growth inhibition; in nude mice transplantation, the rate of tumor induction dramatically decreased. Conclusion: Antisense hTRT gene expression can significantly inhibit telomerase activity of cancer cells and decrease malignant phenotypes in vitro and in vivo. Therefore, as a telomerase inhibitor, antisense hTRT gene may be a new pathway for cancer therapy.

  8. Cell division patterns and chromosomal segregation defects in oral cancer stem cells.

    Science.gov (United States)

    Kaseb, Hatem O; Lewis, Dale W; Saunders, William S; Gollin, Susanne M

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is a serious public health problem caused primarily by smoking and alcohol consumption or human papillomavirus. The cancer stem cell (CSC) theory posits that CSCs show unique characteristics, including self-renewal and therapeutic resistance. Examining biomarkers and other features of CSCs is critical to better understanding their biology. To this end, the results show that cellular SOX2 immunostaining correlates with other CSC biomarkers in OSCC cell lines and marks the rare CSC population. To assess whether CSC division patterns are symmetrical, resulting in two CSC, or asymmetrical, leading to one CSC and one cancer cell, cell size and fluorescence intensity of mitotic cells stained with SOX2 were analyzed. Asymmetrical SOX2 distribution in ≈25% of the mitoses analyzed was detected. Chromosomal instability, some of which is caused by chromosome segregation defects (CSDs), is a feature of cancer cells that leads to altered gene copy numbers. We compare chromosomal instability (as measured by CSDs) between CSCs (SOX2+) and non-CSCs (SOX2-) from the same OSCC cell lines. CSDs were more common in non-CSCs (SOX2-) than CSCs (SOX2+) and in symmetrical CSC (SOX2+) mitotic pairs than asymmetrical CSC (SOX2+/SOX2-) mitotic pairs. CSCs showed fewer and different types of CSDs after ionizing radiation treatment than non-CSCs. Overall, these data are the first to demonstrate both symmetrical and asymmetrical cell divisions with CSDs in OSCC CSC. Further, the results suggest that CSCs may undergo altered behavior, including therapeutic resistance as a result of chromosomal instability due to chromosome segregation defects. © 2016 Wiley Periodicals, Inc. PMID:27123539

  9. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  10. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  11. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  12. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  13. Comparison of virtual and titanium clip marking of tumour resection margins for improved radiation planning in head and neck cancer surgery.

    Science.gov (United States)

    Bittermann, G; Ermer, M; Voss, P; Duttenhoefer, F; Zimmerer, R; Schmelzeisen, R; Metzger, M C

    2015-12-01

    Communication between the surgeon and the radiation oncologist is improved with the use of virtual models of the final tumour resection, combining three-dimensional imaging and conventional clip marking with computer-aided navigation. This investigation was designed to determine the deviation of virtual marking procedures compared to conventional marking by titanium ligature clips in oral cancer with different localizations. Seventeen patients with surgically placed clips and virtual landmarks on the resection margin after complete tumour ablation were evaluated. To determine whether the virtual landmarks remain predictive of the resection margin, the deviation of the virtual points from their corresponding clips was analyzed by measuring the distance between their centres of gravity. In total, 189 clips were evaluated. Metric analyses of the deviation between the virtual points and clips showed a deviation of 2.3 ± 0.6mm for tumours with a maxilla localization, 7.2 ± 2.5mm for tumours with a mandible localization, and 12.6 ± 3.8mm for tumours with a tongue localization. A significant statistical relationship was demonstrated in the virtual point-clip deviation as a function of tumour localization. Virtual marking of maxillary tumour resection margins allows accurate definition of the former tumour bed and could lead to novel adjuvant treatment strategies. PMID:26265065

  14. Orthotopic Injection of Pancreatic Cancer Cells.

    Science.gov (United States)

    Aiello, Nicole M; Rhim, Andrew D; Stanger, Ben Z

    2016-01-01

    Pancreatic ductal adenocarcinoma is an aggressive disease with a 5-yr survival rate of only 5%. The location of the pancreas in the abdomen, where it is obscured by other organs, makes it a difficult tissue to study and manipulate. This protocol describes in detail how to orthotopically inject cancer cells into the pancreas in mice. This technique is particularly useful when the cells must be manipulated in ways that cannot be modeled genetically. PMID:26729902

  15. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  16. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    International Nuclear Information System (INIS)

    Highlights: ► The impact of UCP-2 over expression on mitochondrial function is controversial. ► We tested mitochondrial functions at defined levels of overexpression. ► We find minor increases of fatty acid oxidation and uncoupling. ► Effects were seen only at high level (fourfold) of over expression. ► Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of doxycycline (dox) induced UCP-2 fourfold (424 ± 113%, mean ± SEM) and 0.1 μg/ml twofold (178 ± 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 ± 11%) as well as D-[U-14C]-glucose oxidation (+5 ± 9% at 11 mM glucose). Oxidation of [1-14C]-oleate was increased from 4088 to 5797 fmol/μg prot/2 h at 3.3 mM glucose, p 14C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as

  17. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  18. POSS(Registered TradeMark) Coatings for Solar Cells: An Update

    Science.gov (United States)

    Brandhorst, Henry; Isaacs-Smith, Tamara; Wells, Brian; Lichtenhan, Joseph D.; Fu, Bruce X.

    2007-01-01

    Presently, solar cells are covered with Ce-doped microsheet cover glasses that are attached with Dow Corning DC 93-500 silicone adhesive. Various antireflection coatings are often applied to the cover glass to increase cell performance. This general approach has been used from the beginning of space exploration. However, it is expensive and time consuming. Furthermore, as the voltage of solar arrays increases, significant arcing has occurred in solar arrays, leading to loss of satellite power. The cause has been traced to differential voltages between strings and the close spacing between them with no insulation covering the edges of the solar cells. In addition, this problem could be ameliorated if the cover glass extended over the edges of the cell, but this would impact packing density. An alternative idea that might solve all these issues and be less expensive and more protective is to develop a coating that could be applied over the entire array. Such a coating must be resistant to atomic oxygen for low earth orbits below about 700 km, it must be resistant to ultraviolet radiation for all earth and near-sun orbits and, of course, it must withstand the damaging effects of space radiation. Coating flexibility would be an additional advantage. Based on past experience, one material that has many of the desired attributes of a universal protective coating is the Dow Corning DC 93-500. Of all the potential optical plastics, it appears to be the most suitable for use in space. As noted above, DC 93-500 has been extensively used to attach cover glasses to crystalline solar cells and has worked exceptionally well over the years. It is flexible and generally resistant to electrons, protons and ultraviolet (UV and VUV) radiation; although a VUV-rejection coating or VUV-absorbing ceria-doped cover glass may be required for long mission durations. It can also be applied in a thin coating (cells and destroy the essential clarity needed for a concentrator lens.

  19. Forcing Cancer Cells to Commit Suicide

    NARCIS (Netherlands)

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Peeters, Marc

    2009-01-01

    Apoptosis plays a crucial role in the normal development, homeostasis of multicellular organisms, carcinogenic process, and response of cancer cells to anticancer drugs. It is a genetically strictly regulated process, controlled by the balance between pro-and antiapoptotic proteins. Resistance to st

  20. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  1. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells.

    Directory of Open Access Journals (Sweden)

    Franck Picard

    2014-05-01

    Full Text Available The duplication of mammalian genomes is under the control of a spatiotemporal program that orchestrates the positioning and the timing of firing of replication origins. The molecular mechanisms coordinating the activation of about [Formula: see text] predicted origins remain poorly understood, partly due to the intrinsic rarity of replication bubbles, making it difficult to purify short nascent strands (SNS. The precise identification of origins based on the high-throughput sequencing of SNS constitutes a new methodological challenge. We propose a new statistical method with a controlled resolution, adapted to the detection of replication origins from SNS data. We detected an average of 80,000 replication origins in different cell lines. To evaluate the consistency between different protocols, we compared SNS detections with bubble trapping detections. This comparison demonstrated a good agreement between genome-wide methods, with 65% of SNS-detected origins validated by bubble trapping, and 44% of bubble trapping origins validated by SNS origins, when compared at the same resolution. We investigated the interplay between the spatial and the temporal programs of replication at fine scales. We show that most of the origins detected in regions replicated in early S phase are shared by all the cell lines investigated whereas cell-type-specific origins tend to be replicated in late S phase. We shed a new light on the key role of CpG islands, by showing that 80% of the origins associated with CGIs are constitutive. Our results further show that at least 76% of CGIs are origins of replication. The analysis of associations with chromatin marks at different timing of cell division revealed new potential epigenetic regulators driving the spatiotemporal activity of replication origins. We highlight the potential role of H4K20me1 and H3K27me3, the coupling of which is correlated with increased efficiency of replication origins, clearly identifying those

  2. [Profiles of DNA methylation in normal and cancer cells].

    Science.gov (United States)

    Weber, Michaël

    2008-01-01

    In eukaryotes, the epigenetic mark DNA methylation is found exclusively at cytosine residues in the CpG islands of genes, transposons and intergenic DNA. Among functional roles, DNA methylation is essential for mammalian embryonic development, and is classically thought to function by stably silencing promoter activity. However, until recently, understanding of the distribution of cytosine methylation in the whole genome - and hence, identification of its targets - was very limited. High-throughput methodologies, including methylated DNA immunoprecipitation, have recently revealed genome-wide mapping of DNA methylation, and provided new and unexpected data. Clearly DNA methylation is selectively associated with some key promoters- and is not a prerequisite for promoter inactivation, since strong CpG island promoters are mostly unmethylated, even when inactive. Most germline-specific genes are methylated and permanently silenced in somatic cells, suggesting a role of this mark in maintaining somatic cellular identity. These large scale studies will also help understanding the deregulation of DNA methylation associated with cancer, among which unmethylation of germinal cells genes, and recent observtion of large hypomethylated regions in tumoral specimens. The next challenge will be to understand if these methylation changes occur randomly, or more likely are specified by oncogenes or linked to environmental pressure. PMID:18789220

  3. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  4. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu C

    2015-03-01

    Full Text Available Chenxia Hu,1 Martin Niestroj,2,3 Daniel Yuan,4 Steven Chang,5 Jie Chen5,6 1Faculty of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China; 2Canadian Light Source, Saskatoon, SK, Canada; 3Physics Department, Bonn University, Bonn, Germany; 4Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA; 5Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; 6Canadian National Research Council/National Institute for Nanotechnology, Edmonton, AB, Canada Abstract: Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain. Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs with thio-PEG (polyethylene glycol and thio-glucose, the resulting functionalized GNPs (Glu-GNPs were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption

  5. K12-biotinylated Histone H4 Marks Heterochromatin in Human Lymphoblastoma Cells1

    OpenAIRE

    Camporeale, Gabriela; Oommen, Anna M; Griffin, Jacob B.; Sarath, Gautam; Zempleni, Janos

    2007-01-01

    Covalent modifications of histones play crucial roles in chromatin structure and genomic stability. Recently, we reported a novel modification of histones: biotinylation of lysine residues. Here we provide evidence that K12-biotinylated histone H4 (K12Bio H4) maps specifically to both heterochromatin (alpha satellite repeats in pericentromeric regions) and transcriptionally repressed chromatin (γ-G globin and interleukin-2) in human lymphoblastoma cells. The abundance of K12Bio H4 in these re...

  6. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  7. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  8. The role of microRNA-1274a in the tumorigenesis of gastric cancer: Accelerating cancer cell proliferation and migration via directly targeting FOXO4

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are a series of 18–25 nucleotides length non-coding RNAs, which play critical roles in tumorigenesis. Previous study has shown that microRNA-1274a (miR-1274a) is upregulated in human gastric cancer. However, its role in gastric cancer progression remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-1274a on gastric cancer cells. We found that miR-1274a was overexpressed in gastric cancer tissues or gastric cancer cells including HGC27, MGC803, AGS, and SGC-7901 by qRT-PCR analysis. Transfection of miR-1274a markedly promoted gastric cancer cells proliferation and migration as well as induced epithelial–mesenchymal transition (EMT) of cancer cells. Our further examination identified FOXO4 as a target of miR-1274a, which did not influence FOXO4 mRNA expression but significantly inhibited FOXO4 protein expression. Moreover, miR-1274a overexpression activated PI3K/Akt signaling and upregulated cyclin D1, MMP-2 and MMP-9 expressions. With tumor xenografts in mice models, we also showed that miR-1274a promoted tumorigenesis of gastric cancer in vivo. In all, our study demonstrated that miR-1274a prompted gastric cancer cells growth and migration through dampening FOXO4 expression thus provided a potential target for human gastric cancer therapy. - Highlights: • MiR-1274a expression was augmented in gastric cancer. • MiR-1274a promoted proliferation, migration and induced EMT in cancer cells. • MiR-1274a directly targeted FOXO4 expression. • MiR-1274a triggered PI3K/Akt signaling in cancer cells. • MiR-1274a significantly increased tumor xenografts growth

  9. The role of microRNA-1274a in the tumorigenesis of gastric cancer: Accelerating cancer cell proliferation and migration via directly targeting FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo-Jun, E-mail: wwangguojun@163.com; Liu, Guang-Hui; Ye, Yan-Wei; Fu, Yang; Zhang, Xie-Fu

    2015-04-17

    MicroRNAs (miRNAs) are a series of 18–25 nucleotides length non-coding RNAs, which play critical roles in tumorigenesis. Previous study has shown that microRNA-1274a (miR-1274a) is upregulated in human gastric cancer. However, its role in gastric cancer progression remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-1274a on gastric cancer cells. We found that miR-1274a was overexpressed in gastric cancer tissues or gastric cancer cells including HGC27, MGC803, AGS, and SGC-7901 by qRT-PCR analysis. Transfection of miR-1274a markedly promoted gastric cancer cells proliferation and migration as well as induced epithelial–mesenchymal transition (EMT) of cancer cells. Our further examination identified FOXO4 as a target of miR-1274a, which did not influence FOXO4 mRNA expression but significantly inhibited FOXO4 protein expression. Moreover, miR-1274a overexpression activated PI3K/Akt signaling and upregulated cyclin D1, MMP-2 and MMP-9 expressions. With tumor xenografts in mice models, we also showed that miR-1274a promoted tumorigenesis of gastric cancer in vivo. In all, our study demonstrated that miR-1274a prompted gastric cancer cells growth and migration through dampening FOXO4 expression thus provided a potential target for human gastric cancer therapy. - Highlights: • MiR-1274a expression was augmented in gastric cancer. • MiR-1274a promoted proliferation, migration and induced EMT in cancer cells. • MiR-1274a directly targeted FOXO4 expression. • MiR-1274a triggered PI3K/Akt signaling in cancer cells. • MiR-1274a significantly increased tumor xenografts growth.

  10. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

    Directory of Open Access Journals (Sweden)

    Aleksandra Nowicka

    Full Text Available Adipose tissue contains a population of multipotent adipose stem cells (ASCs that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5 and without (O-ASC1 omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

  11. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  12. Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells.

    Directory of Open Access Journals (Sweden)

    Talitha van der Meulen

    Full Text Available The peptide hormone Urocortin 3 (Ucn 3 is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E 17.5 and, from approximately postnatal day (p 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3(+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3(+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3(+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (reprogramming strategies.

  13. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation.

    Directory of Open Access Journals (Sweden)

    Jia Su

    Full Text Available Constitutive activation of the transcription factor nuclear factor-κB (NF-κB is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found that TCN markedly inhibits the growth of cancer cells with constitutively activated NF-κB. TCN induces G0/G1 cell cycle arrest and apoptosis in cancer cells, activating pro-apoptotic proteins, including caspase-3, -8 and PARP-1, and decreasing the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin. Reporter activity assay and target genes expression analysis illustrated that TCN works as a potent inhibitor of the NF-κB signaling pathway. TCN inhibits the phosphorylation and degradation of IκBα and blocks the nuclear translocation of p65, and thus inhibits the expression of NF-κB target genes XIAP, cyclin D1, and Bcl-xL. Though TCN does not directly interfere with IKKβ kinase, it suppresses the phosphorylation of IKKβ. Overexpression of constitutively activated IKKβ aborted TCN induced cancer cell apoptosis, whereas knockdown of endogenous IKKβ with siRNA sensitized cancer cells toward apoptosis induced by TCN. Moreover, TCN showed a markedly weaker effect on normal cells. These findings suggest that TCN may be a potential therapeutic candidate for cancer treatment, targeting NF-κB signaling.

  14. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer

    OpenAIRE

    Roh, Jong-Lyel; Kim, Eun Hye; Park, Jin Young; Kim, Ji Won; Kwon, Minsu; Lee, Byung-Heon

    2014-01-01

    Adaptation to cellular stress is not a vital function of normal cells but is required of cancer cells, and as such might be a sensible target in cancer therapy. Piperlongumine is a naturally occurring small molecule selectively toxic to cancer cells. This study assesses the cytotoxicity of piperlongumine and its combination with cisplatin in head-and-neck cancer (HNC) cells in vitro and in vivo. The effect of piperlongumine, alone and in combination with cisplatin, was assessed in human HNC c...

  15. BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Christopher G Low

    Full Text Available BACKGROUND: BIRC6 is a member of the Inhibitors of Apoptosis Protein (IAP family which is thought to protect a variety of cancer cells from apoptosis. The main objective of the present study was to investigate whether BIRC6 plays a role in prostate cancer and could be useful as a novel therapeutic target. METHODS: BIRC6 expression in cell lines was assessed using Western blot analysis and in clinical samples using immunohistochemistry of tissue microarrays. The biological significance of BIRC6 was determined by siRNA-induced reduction of BIRC6 expression in LNCaP cells followed by functional assays. RESULTS: Elevated BIRC6 protein expression was found in prostate cancer cell lines and clinical specimens as distinct from their benign counterparts. Increased BIRC6 expression was associated with Gleason 6-8 cancers and castration resistance. Reduction of BIRC6 expression in LNCaP cells led to a marked reduction in cell proliferation which was associated with an increase in apoptosis and a decrease in autophagosome formation. Doxorubicin-induced apoptosis was found to be coupled to a reduction in BIRC6 protein expression. CONCLUSION: The data suggest a role for BIRC6 in prostate cancer progression and treatment resistance, and indicate for the first time that the BIRC6 gene and its product are potentially valuable targets for treatment of prostate cancers.

  16. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  17. New insights into pancreatic cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Chinthalapally V Rao; Altaf Mohammed

    2015-01-01

    Pancreatic cancer (PC) has been one of the deadliest of allcancers, with almost uniform lethality despite aggressivetreatment. Recently, there have been important advancesin the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recentnew targeted agents and the use of multiple therapeuticcombinations, no treatment option is viable in patients withadvanced cancer. Developing novel strategies to targetprogression of PC is of intense interest. A small populationof pancreatic cancer stem cells (CSCs) has been foundto be resistant to chemotherapy and radiation therapy.CSCs are believed to be responsible for tumor initiation,progression and metastasis. The CSC research has recentlyachieved much progress in a variety of solid tumors,including pancreatic cancer to some extent. This leads tofocus on understanding the role of pancreatic CSCs. Thefocus on CSCs may offer new targets for prevention andtreatment of this deadly cancer. We review the most salientdevelopments in important areas of pancreatic CSCs. Here,we provide a review of current updates and new insightson the role of CSCs in pancreatic tumor progression withspecial emphasis on DclK1 and Lgr5, signaling pathwaysaltered by CSCs, and the role of CSCs in prevention andtreatment of PC.

  18. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  19. Epigallocatechin gallate inhibits the proliferation of colorectal cancer cells by regulating Notch signaling

    Directory of Open Access Journals (Sweden)

    Jin H

    2013-03-01

    Full Text Available Heiying Jin,1,* Wei Gong,2,* Chunxia Zhang,1,* Shuiming Wang1 1National Center of Colorectal Surgery, the Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China; 2Department of Surgery, Jiangyin Hospital of Traditional Chinese Medicine, Jiangsu, People's Republic of China*These authors contributed equally to this workAims: To explore the inhibitory effects of epigallocatechin gallate (EGCG on the proliferation of colorectal cancer cells and on the gene expression of Notch signaling.Methods: The colorectal cancer cells and orthotopic colorectal cancer transplant model were treated with EGCG, and MTT assay was used to test the inhibitory role of EGCG in the proliferation of colorectal cancer cells. Results: MTT assay indicated that EGCG inhibited the proliferation of these four cell lines when the time and concentration increased, and EGCG enhanced the apoptotic rate of these four cell lines. The dosage was positively correlated to the apoptotic rate, and EGCG inhibited the proliferation of colorectal cancer cells by influencing cell cycle. In-vivo study suggested that on the seventh day, the volume of tumors reduced after administrating with 5, 10 and 20 mg/kg of EGCG. At the twenty-eighth day, the volume of tumors was significantly different in three EGCG treatment groups as compared to the control group (P < 0.05, and TUNEL assay indicated that the apoptosis of cancer cells in EGCG treated groups was markedly higher than that in the control group (P < 0.05. In these cell lines, the expressions of HES1 and Notch2 in EGCG treated groups were remarkably lower than that in the control group (P < 0.05. The expression of JAG1 decreased in SW480 cells (P = 0.019, HT-29 cells and HCT-8 cells, but increased in LoVo cells at mRNA level. The expression of Notch1 was upregulated in these four cell lines, but its expression was significantly upregulated only in LoVo and SW480 cells (P < 0

  20. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  1. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  2. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  3. FHL2 Antagonizes Id1-Promoted Proliferation and Invasive Capacity of Human MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Ming-zhou Guo; Xiao-bing Fu

    2010-01-01

    Objective:FHL2 was previously identified to be a novel interacting factor of Id family proteins.The aim of this study was to investigate,the effects of FHL2 on Id1-mediated transcriptional regulation activity and its oncogenic activity in human breast cancer cells.Methods:Cell transfection was performed by Superfect reagent.Id1 stably overexpressed MCF-7 cells was cloned by G418 screening.The protein level of Id1 was detected by western blot analysis.Dual relative luciferase assays were used to measure the effect of E47-mediated transcriptional activity in MCF-7 human breast cancer cells.MTT assay was used to measure cell proliferation.Transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results:The basic helix-loop-helix(bHLH)factor E47-mediated transcription activity was markedly repressed by Id1 in MCF-7 cells.This Id1-mediated repression was effectively antagonized by FHL2 transduction.Overexpression of Id1 markedly promoted the proliferation rate and invasive capacity of MCF-7 cells; however,these effects induced by Id1 were significantly suppressed by overexpression of FHL2 in cells.Conclusion:FHL2 can inhibit the proliferation and invasiveness of human breast cancer cells by repressing the functional activity of Id1.These findings provide the basis for further investigating the functional roles of FHL2-Id1 signaling in the carcinogenesis and development of human breast cancer.

  4. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  5. Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation

    Science.gov (United States)

    2011-11-28

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  6. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  7. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  8. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  9. Thyroid stem cells: lessons from normal development and thyroid cancer

    OpenAIRE

    Thomas, Dolly; Friedman, Susan; Lin, Reigh-Yi

    2008-01-01

    Ongoing advances in stem cell research have opened new avenues for therapy for many human disorders. Until recently, however, thyroid stem cells have been relatively understudied. Here, we review what is known about thyroid stem cells and explore their utility as models of normal and malignant biological development. We also discuss the cellular origin of thyroid cancer stem cells and explore the clinical implications of cancer stem cells in the thyroid gland. Since thyroid cancer is the most...

  10. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  11. Selective killing of cancer cells by nanoparticle-assisted ultrasound

    OpenAIRE

    Kosheleva, Olga K.; Lai, Tsung-Ching; Chen, Nelson G.; Hsiao, Michael; Chen, Chung-Hsuan

    2016-01-01

    Background Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells. Results Co-cultures of BEAS-2B normal lung cells and A549 cancerous lung cells labeled with green and red fluorescent proteins, res...

  12. Gastric cancer stem cells: A novel therapeutic target

    OpenAIRE

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, ...

  13. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    2001-01-01

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A sy

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  15. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  16. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer.

    Science.gov (United States)

    Korkmaz, Deniz Taştemir; Demirhan, Osman; Abat, Deniz; Demirberk, Bülent; Tunç, Erdal; Kuleci, Sedat

    2015-09-01

    The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.

  17. Clinical perspectives of cancer stem cell research in radiation oncology

    International Nuclear Information System (INIS)

    Radiotherapy has a proven potential to eradicate cancer stem cells which is reflected by its curative potential in many cancer types. Considerable progress has been made in identification and biological characterisation of cancer stem cells during the past years. Recent biological findings indicate significant inter- and intratumoural and functional heterogeneity of cancer stem cells and lead to more complex models which have potential implications for radiobiology and radiotherapy. Clinical evidence is emerging that biomarkers of cancer stem cells may be prognostic for the outcome of radiotherapy in some tumour entities. Perspectives of cancer stem cell based research for radiotherapy reviewed here include their radioresistance compared to the mass of non-cancer stem cells which form the bulk of all tumour cells, implications for image- and non-image based predictive bio-assays of the outcome of radiotherapy and a combination of novel systemic treatments with radiotherapy

  18. Bax translocation mediated mitochondrial apoptosis and caspase dependent photosensitizing effect of Ficus religiosa on cancer cells.

    Directory of Open Access Journals (Sweden)

    Jazir Haneef

    Full Text Available The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9. Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and

  19. Bax translocation mediated mitochondrial apoptosis and caspase dependent photosensitizing effect of Ficus religiosa on cancer cells.

    Science.gov (United States)

    Haneef, Jazir; Parvathy, Muraleedharan; M, Parvathy; Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja

    2012-01-01

    The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase

  20. [Biology of cancer cell-stroma interaction in carcinogenesis and cancer progression].

    Science.gov (United States)

    Fujita, S; Sugihara, H; Ito, R; Tsuchihashi, Y

    1984-03-01

    Cancer cells are dependent on physical and chemical supports of stroma no less than non-cancerous cells and tissues are. The role of stroma should, therefore, be important in genesis and progression of cancers growing in vivo. But this aspect underlying carcinogenesis and manifestation of human cancers has long been neglected or attracted less attention in the investigations of oncology. Focusing particular attention on parenchyma-stromal interaction in gastrointestinal mucosa, the authors have found that, quite unexpectedly, in normal gastric as well as intestinal mucosa of all the animal species so for studied, vascularity is always poorly developed in the generative cell zones. Cross-sectional area of vascular bed is markedly reduced in this zone. Application of Hagen-Poiseulle law revealed that the reduced total cross-sectional area, resulting in a rapid drop in hydrostatic pressure, creates here a situation particularly favorable for proliferating cell population. Since the transport of water soluble material together with tissue fluid through the capillary wall is driven by the hydrostatic pressure, the generative cell zones are found to be present at the site where the turnover of the material is the most active. Before the zone of the rapid pressure drop, there appears zone of relatively high intravascular hydrostatic pressure, where secretory function seems to be facilitated. This zone, as is well known, corresponds to glandular portion of the mucosa. After the zone of the rapid pressure drop (in surface of the mucosa), zone of a low intravascular hydrostatic pressure appears, where absorptive function is to be facilitated. Within such zones, in gastric mucosa surface epithelium and in intestinal mucosa absorptive villi cells are located. It is likely that architecture of gastrointestinal epithelium and vascular pattern in the stroma is closely correlated and that the former is determined, at least partly, by the latter. When human gastric mucosa shows

  1. Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells.

    Science.gov (United States)

    Medeiros, P S C; Batista de Carvalho, A L M; Ruano, C; Otero, J C; Marques, M P M

    2016-06-15

    Breast cancer is the second most common type of cancer worldwide and the most frequent among women, being the fifth cause of death from neoplastic disease. Since this is an oxidative-stress related neoplasia, it is largely preventable. A dietary isoflavone abundant in soybean - daidzein - is currently being investigated owing to its chemopreventive and/or chemotherapeutic properties towards the human MDA-MB-231 (metastatic, estrogen-unresponsive) and MCF-7 (estrogen-responsive) breast cancer cell lines. Biological assays for evaluation of antitumour and anti-invasive activities were combined with state-of-the-art vibrational microspectroscopy techniques. At 50 and 100 μM concentrations and 48 h incubation time, daidzein was found to induce a marked decrease in cell viability (ca. 50%) for MDA-MB-231 and MCF-7 cells (respectively ca. 50% and 42%) and 40% inhibition of cell migration. MicroRaman analysis of fixed cells upon exposure to this isoflavone unveiled its metabolic impact on both cell lines. Multivariate data analysis (unsupervised PCA) led to a clear discrimination between the control and DAID-exposed cells, with distinctive effects on their biochemical profile, particularly regarding DNA, lipids and protein components, in a cell-dependent way. This is the first reported study on the impact of dietary antioxidants on cancer cells by microRaman techniques. PMID:27227510

  2. Proliferative and apoptotic effects of andrographolide on the BGC-823 human gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    LI Shu-guang; WANG Yuan-yu; YE Zai-yuan; SHAO Qing-shu; TAO Hou-quan; SHU Li-sha; ZHAO Yi-feng

    2013-01-01

    Background Andrographolide has been shown to have anticancer activity on diverse cancer cell lines representing different types of human cancers.The aim of this research was to investigate the anticancer and apoptotic effects of andrographolide on the BGC-823 human gastric cancer cell line.Methods Cell proliferation and IC50 were evaluated using MTT assay,cell-cycle analysis with flow cytometry apoptotic effects with Annexin-V/propidium iodide double-staining assay,and morphologic structure with transmission electron microscopy.Immunohistochemistry and reverse-transcription PCR was used to analyze Bcl-2,Bax,and caspase-3 expressions.Results Andrographolide showed a time-and concentration-dependent inhibitory effects on BGC-823 cell growth.Compared to controls,the number of cells in the G0-G1-phase increased significantly,S and G2-M-phase cells decreased after 48 hours of treatment with andrographolide,and both early and late apoptotic rates increased significantly compared to the controls,all in a concentration-dependent manner.Bax and caspase-3 expressions were markedly increased,and Bcl-2 expression was decreased.Conclusions Andrographolide inhibits BGC-823 cell growth and induces BGC-823 cell apoptosis by up-regulating Bax and caspase-3 expressions and down-regulating Bcl-2 expression.Andrographolide may be useful as a potent and selective agent in the treatment of human gastric cancers.

  3. Differences in integrin expression and signaling within human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Yongqing

    2011-07-01

    more stress fibers and focal adhesions and only exhibited adhesion-induced activation of pMEK and pFAK. All cells expressed the urokinase receptor, but MCF7 cells had markedly higher VEGFR expression. Adhesion induced differential expression of pFAK, pMEK and pERK. Conclusions This study demonstrates that breast cancers vary in their expression of integrins, their capacity to form focal adhesion and to signal through integrins. These differences likely contribute to phenotypic variations between cancer lines and account for some of the heterogeneity of breast cancer.

  4. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  5. Cancer stem cells, metabolism, and therapeutic significance.

    Science.gov (United States)

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  6. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray.

    Directory of Open Access Journals (Sweden)

    Daniel S Chen

    2005-10-01

    Full Text Available BACKGROUND: In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect. METHODS AND FINDINGS: In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-gamma (IFNgamma and tumor necrosis factor-alpha (TNFalpha in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNgamma and TNFalpha did so. CONCLUSION: Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome.

  7. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  8. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  9. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  10. Electrodynamic activity of healthy and cancer cells

    International Nuclear Information System (INIS)

    Microtubules in the cell form a structure capable of generating electrodynamic field and mitochondria form their supporting system for physical processes including energy supply. Mitochondria transfer protons from their matrix space into cytosol, create strong static field around them that causes ordering of water and altering it into quasi-elastic medium with reduced viscous damping. Microtubules are composed of heterodimers that are electric dipoles. Microtubule oscillations generate an electrodynamic field. The greatest energy supply may be provided by liberation of non-utilized energy from mitochondria. Microtubules and mitochondria form a unique cooperating system in the cell. Mitochondria form a boundary element whose function depends on chemical-genetic control but their output is essential for physical processes in the cell. Mitochondrial dysfunction in cancer cells results in diminished intensity of the static electric field, disturbed water ordering, increased damping of microtubule oscillations and their shift towards linear region, and decreased energy supply. Power and coherence of oscillations and generated electrodynamic field is weakened. Malignant properties of cancer cell, in particular local invasion and metastasis, may depend on disturbed electrodynamic field. Nanotechnology is promising for investigation of electrodynamic activity in living cells.

  11. Clinical significance of T cell metabolic reprogramming in cancer.

    Science.gov (United States)

    Herbel, Christoph; Patsoukis, Nikolaos; Bardhan, Kankana; Seth, Pankaj; Weaver, Jessica D; Boussiotis, Vassiliki A

    2016-12-01

    Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy. PMID:27510264

  12. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Science.gov (United States)

    Whitesell, Thomas R; Kennedy, Regan M; Carter, Alyson D; Rollins, Evvi-Lynn; Georgijevic, Sonja; Santoro, Massimo M; Childs, Sarah J

    2014-01-01

    Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  13. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  14. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  15. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  16. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  17. Raman spectra of single cell from gastrointestinal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xun-Ling Yan; Rui-Xin Dong; Lei Zhang; Xue-Jun Zhang; Zong-Wang Zhang

    2005-01-01

    AIM: To explore the difference between cancer cells and normal cells, we investigated the Raman spectra of singlecells from gastrointestinal cancer patients. METHODS: All samples were obtained from 30 diagnosed as gastrointestinal cancer patients. The flesh tumor specimen is located in the center of tumor tissue, while the normal ones were 5 cm away from the outside tumor section. The imprint was put under the microscope and a single cell was chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (British Renishaw) with NIR 780 nm laser.RESULTS: We measured the Raman spectra of several cells from gastrointestinal cancer patients. The result shows that there exists the strong line at 1 002/cm with less half-width assigned to the phenylalanine in several cells. The Raman lines of white cell were lower and less, while those of red cell were not only higher in intensity and more abundant, but also had a parti cular C-N breathing stretching band of pyrrole ring at 1 620-1 540/cm. The line at 1 084/cm assigned to phosphate backbone of DNA became obviously weaker in cancer cell. The Raman spectra of stomach cancer cells were similar to those of normal cells, but the Raman intensity of cancer cells was much lower than that of normal cells, and even some lines disappear. The lines of enteric cancer cells became weaker than spectra above and many lines disappeared, and the cancer cells in different position had different fluorescence intensity.CONCLUSION: The Raman spectra of several cells from cancer patients show that the structural changes of cancer cells happen and many bonds rupture so that the biological function of cells are lost. The results indicate that Raman spectra can offer the experiment basis for the cancer diagnosis and treatment.

  18. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  19. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    Science.gov (United States)

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  20. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells.

    Science.gov (United States)

    Johari-Ahar, Mohammad; Barar, Jaleh; Alizadeh, Ali Mohammad; Davaran, Soodabeh; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2016-01-01

    Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers. PMID:26176269

  1. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  2. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  3. Cancer stem cells in haematological malignancies

    OpenAIRE

    Zagozdzon, Radoslaw; Golab, Jakub

    2015-01-01

    At least several types of human haematological malignancies can now be seen as ‘stem-cell diseases’. The best-studied in this context is acute myeloid leukaemia (AML). It has been shown that these diseases are driven by a pool of ‘leukaemia stem cells (LSC)’, which remain in the quiescent state, have the capacity to survive and self-renew, and are responsible for the recurrence of cancer after classical chemotherapy. It has been understood that LSC must be eliminated in order to cure patients...

  4. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  5. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    Hoffman, Robert M.

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  6. Lack of correlation of stem cell markers in breast cancer stem cells

    OpenAIRE

    Liu, Y; Nenutil, R; Appleyard, M V; Murray, K; Boylan, M; Thompson, A. M.; Coates, P J

    2014-01-01

    Background: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. Methods: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and t...

  7. Can a Cancer Cell Turn into a Normal Cell?

    Directory of Open Access Journals (Sweden)

    Ranan Gülhan Aktas

    2014-09-01

    Full Text Available HepG2 cells, a human liver cancer cell line (hepatocellular carcinoma, are being considered as a future model for bioartificial liver studies. They have the ability to differentiate and demonstrate some features of normal liver cells. Our previous studies focused on examination of the morphological and functional properties of these cells under different extracellular environmental conditions. We have created a culture model that these cells demonstrate remarkable changes after 30 days. These changes include an increase in the cytoplasmic organelles, formation of bile canaliculi, occurrence of junctional complexes between the adjacent cells, existence of microvilli on the apical surfaces, accumulation of glycogen particles in the cytoplasm, an increase at the density of albumin labeled areas and a rise at the Na-K ATPase level on cellular membranes.

  8. Cancer Stem Cells in Brain Tumors and Their Lineage Hierarchy

    OpenAIRE

    Kong, Doo-Sik

    2012-01-01

    Despite recent advances in the development of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. The chemo-resistance of this tumor is attributed to tumor heterogeneity. To explain this unique chemo- resistance, the concept of cancer stem cells has been evoked. Cancer stem cells, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Here, the author reviews and discusses the cancer stem cell concept.

  9. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  10. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet.

    Science.gov (United States)

    Oliva, Laia; Baron, Cristian; Fernández-López, José-Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower

  11. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells

    OpenAIRE

    Ahmed Abdal Dayem; Hye-Yeon Choi; Jung-Hyun Kim; Ssang-Goo Cho

    2010-01-01

    The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive production of reactive oxygen species (ROS) and oxidative stress is one of the most important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of cancer stem cells arose from observations of similarities between the self-renewal mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, they are believed to have no control over the cell number. ROS have bee...

  12. Cavitary lung cancer lined with normal bronchial epithelium and cancer cells.

    Science.gov (United States)

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells. PMID:21980325

  13. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    OpenAIRE

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  14. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Taichiro Goto, Arafumi Maeshima, Yoshitaka Oyamada, Ryoichi Kato

    2011-01-01

    Full Text Available Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  15. Cancer Stem Cells: Foe or Reprogrammable Cells for Efficient Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2015-11-01

    Full Text Available Embryonic development and carcinogenesis share many molecular pathways and regulatory molecules. While the induction of a pluripotent state involves a significant oncogenic risk, as in induced pluripotent stem cells (iPSCs, the embryonic environment in vivo has been shown to suppress tumor development. In this review, we discuss the subtle equilibrium between the nanotopography (niche of the hosting tissue resident stem cells and their biological dynamics, including the transformation in cancer stem cells. We review consistent findings indicating the potential for modulating the biology of human cancer stem cells by the aid of naturally occurring or synthetic molecules, including developmental stage zebrafish embryo extracts, hyaluronan, butyric acid (BA and retinoic acid (RA, hyaluronan mixed esters of BA and RA, melatonin, vitamin D3, and endorphin peptides. Within this context, we dissect the multifaceted mechanisms orchestrated by endorphinergic systems, including paracrine cellto- cell communication, as well as the establishment of autocrine and intracrine (intracellular peptide actions driving transcriptional responses and self-sustaining loops that behave as long-lived signals imparting features characteristic of differentiation, growth regulation and cell memory. Based upon the remarkable action of electromagnetic fields and mechanical vibration on (stem cell signaling, differentiation, and senescence, we also consider the potential for using these physical energies as a tool to afford a fine tuning of cancer stem cell fate. On the whole, we forecast future deployment of the physical and/or chemical approaches described herein aiming at reprogramming, rather than destroying cancer stem cells, eventually placing cancer therapy within the context of Regenerative Medicine.

  16. Assessment of 188Re marked anti MHC class Ⅱ antibody by peripheral blood mononuclear cells stimulated by donor alloantigen

    Institute of Scientific and Technical Information of China (English)

    DING Guo-ping; CAO Li-ping; LIU Jie; LIU Da-ren; QUE Ri-sheng; ZHU Lin-hua; ZHOU Yi-ming; MAO Ke-jie; HU Jun-an

    2011-01-01

    Background Previous studies showed that anti MHC-Ⅱ monoclone antibody (MAb) only had partial inhibiting effect of alloreactive mixed lymphocyte reaction (MLR) in vitro and it was unsteady and non-persistent. The aim of this research was to determine whether radioactive isotope 188Re marked MHC-Ⅱ antibody could benefit the allograft acceptance in transplantation as compared to normal MHC-Ⅱ antibody.Methods 188Re was incorporated to 2E9/13F(ab')2 which is against swine MHC class Ⅱ antigen (MAb-188Re). Porcine peripheral blood mononuclear (PBMC) cells were examined for proliferation and cytokine mRNA expression after stimulation with MHC-Ⅱ MAb or MAb-188Re.Results The proliferative response of recipient PBMCs in mixed lymphocyte reaction (MLR) to donor alloantigen showed that the stimulation index of MAb-188Re group was significantly lower than the MHC-Ⅱ MAb group and control (P<0.05). mRNA expression of interleukin 2, interferon Y and tumor necrosis factor α (type 1 cytokines) was lower in MAb-188Re group than the MHC-Ⅱ MAb group, while interleukin 10 (type 2 cytokines) was higher in MAb-188Re group in the first 24 hours.Conclusion MAb-188Re could help the graft acceptance by inhibiting T cell proliferation, lowering the expression of type 1 cytokines and elevating the type 2 cytokines produced by PBMC.

  17. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  18. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  19. Direct targeting of cancer cells: a multiparameter approach.

    Science.gov (United States)

    Heinrich, Eileen L; Welty, Lily Anne Y; Banner, Lisa R; Oppenheimer, Steven B

    2005-01-01

    Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches. PMID:16181664

  20. Role of cancer stem cells in racial disparity in colorectal cancer.

    Science.gov (United States)

    Farhana, Lulu; Antaki, Fadi; Anees, Mohammad R; Nangia-Makker, Pratima; Judd, Stephanie; Hadden, Timothy; Levi, Edi; Murshed, Farhan; Yu, Yingjie; Van Buren, Eric; Ahmed, Kulsoom; Dyson, Gregory; Majumdar, Adhip P N

    2016-06-01

    Although African-Americans (AAs) have a higher incidence of colorectal cancer (CRC) than White people, the underlying biochemical mechanisms for this increase are poorly understood. The current investigation was undertaken to examine whether differences in self-renewing cancer stem/stem-like cells (CSCs) in the colonic mucosa, whose stemness is regulated by certain microRNAs (miRs), could partly be responsible for the racial disparity in CRC. The study contains 53 AAs and 47 White people. We found the number of adenomas and the proportion of CD44(+) CD166(-  ) CSC phenotype in the colon to be significantly higher in AAs than White people. MicroRNAs profile in CSC-enriched colonic mucosal cells, expressed as ratio of high-risk (≥3 adenomas) to low-risk (no adenoma) CRC patients revealed an 8-fold increase in miR-1207-5p in AAs, compared to a 1.2-fold increase of the same in White people. This increase in AA was associated with a marked rise in lncRNA PVT1 (plasmacytoma variant translocation 1), a host gene of miR-1207-5p. Forced expression of miR-1207-5p in normal human colonic epithelial cells HCoEpiC and CCD841 produced an increase in stemness, as evidenced by morphologically elongated epithelial mesenchymal transition( EMT) phenotype and significant increases in CSC markers (CD44, CD166, and CD133) as well as TGF-β, CTNNB1, MMP2, Slug, Snail, and Vimentin, and reduction in Twist and N-Cadherin. Our findings suggest that an increase in CSCs, specifically the CD44(+) CD166(-) phenotype in the colon could be a predisposing factor for the increased incidence of CRC among AAs. MicroRNA 1207-5p appears to play a crucial role in regulating stemness in colonic epithelial cells in AAs. PMID:26990997

  1. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  2. Murine Lung Cancer Induces Generalized T Cell Exhaustion

    Science.gov (United States)

    Mittal, Rohit; Chen, Ching-Wen; Lyons, John D; Margoles, Lindsay M; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L

    2015-01-01

    Background Cancer is known to modulate tumor-specific immune responses by establishing a micro-environment that leads to the upregulation of T cell inhibitory receptors, resulting in the progressive loss of function and eventual death of tumor-specific T cells. However, the ability of cancer to impact the functionality of the immune system on a systemic level is much less well characterized. Because cancer is known to predispose patients to infectious complications including sepsis, we hypothesized that the presence of cancer alters pathogen-directed immune responses on a systemic level. Materials and Methods We assessed systemic T cell coinhibitory receptor expression, cytokine production, and apoptosis in mice with established subcutaneous lung cancer tumors and in unmanipulated mice without cancer. Results Results indicated that the frequencies of PD-1+, BTLA+, and 2B4+ cells in both the CD4+ and CD8+ T cell compartments were increased in mice with localized cancer relative to non-cancer controls, and the frequencies of both CD4+ and CD8+ T cells expressing multiple different inhibitory receptors was increased in cancer animals relative to non-cancer controls. Additionally, 2B4+CD8+ T cells in cancer mice exhibited reduced IL-2 and IFN-γ, while BTLA+CD8+ T cells in cancer mice exhibited reduced IL-2 and TNF. Conversely, CD4+ T cells in cancer animals demonstrated an increase in the frequency of Annexin V+ apoptotic cells. Conclusion Taken together, these data suggest that the presence of cancer induces systemic T cell exhaustion and generalized immune suppression. PMID:25748104

  3. Identification of genes involved in breast cancer and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Apostolou P

    2015-07-01

    Full Text Available Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs, which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarray

  4. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  5. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    OpenAIRE

    Tiffany M. Phillips; Kwanghee Kim; Erina Vlashi; McBride, William H.; Frank Pajonk

    2007-01-01

    BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs). In breast can...

  6. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples

    OpenAIRE

    Wang, Shunqi; Huang, Shengsong; Zhao, Xin; Zhang, Qimin; Wu, Min; Sun, Feng; Han, Gang; Wu, Denglong

    2013-01-01

    This study was to enrich prostate cancer stem cells (PrCSC) from primary prostate cancer cultures (PPrCC). Primary prostate cancer cells were amplified in keratinocyte serum-free medium with epidermal growth factor (EGF) and bovine pituitary extract (BPE), supplemented with leukemia inhibitory factor (LIF), stem cell factor (SCF) and cholera toxin. After amplification, cells were transferred into ultra-low attachment dishes with serum-free DMEM/F12 medium, supplemented with EGF, basic fibrobl...

  7. Niche construction game cancer cells play*

    Science.gov (United States)

    Bergman, Aviv; Gligorijevic, Bojana

    2016-01-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  8. Niche construction game cancer cells play

    Science.gov (United States)

    Bergman, Aviv; Gligorijevic, Bojana

    2015-10-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  9. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    Science.gov (United States)

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  10. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  11. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  12. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells

    OpenAIRE

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the ef...

  13. Constitutive expression of Wnt/β-catenin target genes promotes proliferation and invasion of liver cancer stem cells

    Science.gov (United States)

    CHEN, WEI; ZHANG, YU-WEI; LI, YANG; ZHANG, JIAN-WEN; ZHANG, TONG; FU, BIN-SHENG; ZHANG, QI; JIANG, NAN

    2016-01-01

    Wnt/β-catenin is an important signaling pathways involved in the tumorgenesis, progression and maintenance of cancer stem cells (CSCs). In the present study, the role of Wnt/β-catenin signaling in CSC-mediated tumorigenesis and invasion in liver CSCs was investigated. A small population of cancer stem-like side population (SP) cells (3.6%) from liver cancer samples were identified. The cells were highly resistant to drug treatment due to the enhanced expression of drug efflux pumps, such as ABC subfamily G member 2, multidrug resistance protein 1 and ATP-binding cassette subfamily B member 5. Furthermore, using TOPflash and reverse transcription-quantitative polymerase chain reaction analysis, Wnt/β-catenin signaling and the transcriptional regulation of Wnt/β-catenin target genes including dickkopf Wnt signaling pathway inhibitor 1, axis inhibition protein 2 and cyclin D1 were observed to be markedly upregulated in liver cancer SP cells. As a consequence, SP cells possessed infinite cell proliferation potential and the ability to generating tumor spheres. In addition, upon reducing Wnt/β-catenin signaling, the rates of proliferation, tumor sphere formation and tumor invasion of SP cells were markedly reduced. Therefore, these data suggest that Wnt/β-catenin signaling is a potential therapeutic target to reduce CSC-mediated tumorigenicity and invasion in liver cancer. PMID:26956539

  14. Effect of TRAF6 Downregulation on Malignant Biological Behavior of
Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gen LIN

    2015-11-01

    Full Text Available Background and objective It has been proven that tumor necrosis factor receptor-associated factor 6 (TRAF6 was a commonly amplified oncogene in lung cancer. However, the precise role of TRAF6 protein in lung cancer has not been extensively investigated. This study analyzed the effects of TRAF6 on the proliferation, apoptosis, cell cycle, migration, and invasion capability of lung cancer cell lines, as well as the potential molecular mechanisms involved. Methods To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, H1650, SPC-A-1 and Calu-3 were assayed to determine the expression of TRAF6 protein by Western blot and TRAF6 mRNA via qRT-PCR. Moreover, siRNA targeting TRAF6 was introduced into SPC-A-1 and Calu-3 cells. Nuclear factor-қB (NF-қB DNA-binding activity, apoptosis rates, cell proliferation, cell cycle, migration, and invasion were determined by electrophoretic mobility shift assay, flow cytometry, MTS assay, flow cytometry, scratch test, and transwell chamber assay, respectively. Western blot analysis was also performed to evaluate the expression of the following proteins through K63-ubiquitination: P65, CD24 and CXCR4. Whole-genome sequencing analysis was conducted using a second-generation sequencer in SPC-A-1 cells. Results TRAF6 was highly up-expressed in SPC-A-1 and Calu-3 cell lines than the other two cells, which also showed K63-ubiquitinization in TRAF6. However, constitutive activation of NF-қB was observed only in SPC-A-1 lung cancer cells. Downregulation of TRAF6 suppressed the NF-κB activation, cell migration, and invasion but promoted the cell apoptosis of SPC-A-1 cells. Markedly decreased expression of CD24 and CXCR4 was observed in SPC-A-1 cells transfected by TRAF6 siRNA. Nevertheless, TRAF6 downregulation did not affect the proliferation and cell cycle of SPC-A-1 cells. Additionally, TRAF6 regulation did not affect the proliferation, apoptosis, cell cycle, migration, and invasion

  15. DUAL ROLES OF CANCER CELL-EXPRESSED IMMUNOGLOBULINS IN CANCER IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Gregory Lee

    2014-01-01

    Full Text Available While the expression of immunoglobulins and T cell receptors on cancer cells has been well-established for decades, the potential roles and mechanisms of action of these cancerous antigen receptors have not been fully elucidated. A monoclonal antibody designated as RP215, which reacts specifically with the carbohydrate-associated epitope located on the heavy chain region of cancerous immunoglobulins and T cell receptors, was used as a unique probe to study the roles of antigen receptors in the immunology of cancer cells. Through extensive cell-based biological and immunological studies, it was found that both anti-antigen receptors and RP215 demonstrated similar actions on the gene regulations involved in the growth/proliferation of cancer cells, as well as on toll-like receptors involved in innate immunity. In addition, RP215-specific cancerous immunoglobulins are believed to capture or neutralize circulating antigen/antibodies which may be harmful to cancer cells within the human body. In contrast to normal B and T cells and their respective receptors in the conventional immune system, cancer cells co-express both immunoglobulins and T cell receptors and immune protection is exercised by unique mechanisms. For example, these cancer cell-expressed antigen receptors display a lack of class switching, limited hyper-mutation, aberrant glycosylations and a strong influence on the toll-like receptors of cancer cells. Therefore, it is hypothesized that both normal and cancerous immune systems may co-exist and operate simultaneously within the human body. The balance of these two immune factors for respective surveillance and protection may be relevant to the outcome of cancer immunotherapy in humans. A potential therapeutic strategy is being developed by using RP215 as a drug candidate to target cancer cells based on these observations.

  16. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    Science.gov (United States)

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  17. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  18. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  19. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  20. Curcumin Promotes Cell Cycle Arrest and Inhibits Survival of Human Renal Cancer Cells by Negative Modulation of the PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Zhang, Hao; Xu, Weili; Li, Baolin; Zhang, Kai; Wu, Yudong; Xu, Haidong; Wang, Junyong; Zhang, Jun; Fan, Rui; Wei, Jinxing

    2015-12-01

    Curcumin possesses anti-cancer effects. In the current study, we tested the effect of curcumin on cell proliferation, viability, apoptosis, cell cycle phases, and activation of the PI3K/Akt pathway in the renal cell carcinoma (RCC) cell line RCC-949. We observed that cell proliferation and viability were markedly inhibited by curcumin, while cell apoptosis was promoted. The latter effect was associated with increased expression of Bcl-2 and diminished expression of Bax (both: mRNA and protein). The cells treated with curcumin increasingly went into cell cycle arrest, which was likely mediated by diminished expression of cyclin B1, as seen in curcumin-treated cells. In addition, curcumin decreased activation of the PI3K/AKT signaling pathway. In conclusion, our results demonstrate that curcumin exerts anti-cancer effects by negative modulation of the PI3K/AKT signaling pathway and may represent a promising new drug to treat RCC. PMID:27259310

  1. Transcription profiles of non-immortalized breast cancer cell lines

    International Nuclear Information System (INIS)

    Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

  2. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    Science.gov (United States)

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  3. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  4. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

    Science.gov (United States)

    Oser, Matthew G; Niederst, Matthew J; Sequist, Lecia V; Engelman, Jeffrey A

    2015-04-01

    Lung cancer is the most common cause of cancer deaths worldwide. The two broad histological subtypes of lung cancer are small-cell lung cancer (SCLC), which is the cause of 15% of cases, and non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Although NSCLC and SCLC are commonly thought to be different diseases owing to their distinct biology and genomic abnormalities, the idea that these malignant disorders might share common cells of origin has been gaining support. This idea has been supported by the unexpected findings that a subset of NSCLCs with mutated EGFR return as SCLC when resistance to EGFR tyrosine kinase inhibitors develops. Additionally, other case reports have described the coexistence of NSCLC and SCLC, further challenging the commonly accepted view of their distinct lineages. Here, we summarise the published clinical observations and biology underlying tumours with combined SCLC and NSCLC histology and cancers that transform from adenocarcinoma to SCLC. We also discuss pre-clinical studies pointing to common potential cells of origin, and speculate how the distinct paths of differentiation are determined by the genomics of each disease.

  5. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  6. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  7. How Taxol/paclitaxel kills cancer cells.

    Science.gov (United States)

    Weaver, Beth A

    2014-09-15

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, recent evidence demonstrates that intratumoral concentrations of paclitaxel are too low to cause mitotic arrest and result in multipolar divisions instead. It is hoped that this insight can now be used to develop a biomarker to identify the ∼50% of patients that will benefit from paclitaxel therapy. Here I discuss the history of paclitaxel and our recently evolved understanding of its mechanism of action.

  8. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  9. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  10. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  11. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-02-08

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Stem cells and lung cancer: future therapeutic targets?

    Science.gov (United States)

    Alison, Malcolm R; Lebrenne, Arielle C; Islam, Shahriar

    2009-09-01

    In both the UK and USA more people die of lung cancer than any other type of cancer. Lung cancer's high mortality rate is also reflected on a global scale, with lung cancer accounting for more than 1 million deaths per year. In tissues with ordered structure such a lung epithelia, it is likely that the cancers have their origins in normal adult stem cells, and then the tumours themselves are maintained by a population of malignant stem cells - so-called cancer stem cells. This review examines both these postulates in animal models and in the clinical setting, noting that stem cell niches appear to foster tumour development, and that drug resistance can often be attributed to malignant cells with stem cell properties. PMID:19653862

  13. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  14. NK cell phenotypic modulation in lung cancer environment.

    Directory of Open Access Journals (Sweden)

    Shi Jin

    Full Text Available Nature killer (NK cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.Our study analyzed the change about NK cells surface markers (NK cells receptors through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.

  15. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    Science.gov (United States)

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  16. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  17. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  18. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  19. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  20. Distinct metabolic responses of an ovarian cancer stem cell line

    OpenAIRE

    Kathleen A Vermeersch; Wang, Lijuan; McDonald, John F; Styczynski, Mark P.

    2014-01-01

    Background Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to b...

  1. Scanning electron microscopy of interaction of peripheral blood lymphocytes from colonic cancer patients with human colonic cancer-derived cells; P-4788.

    Directory of Open Access Journals (Sweden)

    Sugihara,Mutsuto

    1979-12-01

    Full Text Available Peripheral blood lymphocytes and the various lymphocyte fractions from patients with cancer of the colon were cultivated with target cells (P-4788 derived from the colon cancer. Changes in the surface ultrastructure during tumor cell destruction were studied by scanning electron microscopy (SEM. P-4788 cells adhering to the coverslip showed various surface activity. The surfaces of some cells were relatively flat; others were smooth or had fine granules. Still other cells were villous, round or had marked blebs. When host lymphocytes were added to the target cells, adhesion of the two cell groups began by many fine projections. After incubation for 6 h, some lymphocytes had adhered to the target cells. Many lymphocytes had adhered to the target tumor cells by 24--48 h incubation. Ultimately the tumor cells became swollen and disrupted. Most lymphocytes adherent to the target cells had few microvilli. Lymphocytes after elimination of phagocytes by carbonyl iron treatment also adhered readily. Some target cells showed adhesion with lymphocytes passed through nylon-wool columns, although the number of lymphocytes adhering was fewer than in the case of lymphocytes not passed through nylon-wool columns. T cells were collected from lymphocytes that form rosettes with SRBC by isolation with NH4Cl. They had markedly elongated microvilli which in places were sparsely scattered and tended to be localized on the side, a finding which suggests loss of cell activity by the time of SEM. Only a few T cells adhered to target cells and they seemed to be T cells without activity. It was thought that there are cytotoxic cells among T cells and that the co-existence of T cells, non-T cells and monocytes caused target cell destruction.

  2. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death.

    Science.gov (United States)

    Wang, Kai; Zhang, Chao; Bao, Jiaolin; Jia, Xuejing; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Su, Huanxing; Li, Peng; Wan, Jian-Bo; He, Chengwei

    2016-01-01

    Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers. PMID:27263652

  3. Natural Products That Target Cancer Stem Cells.

    Science.gov (United States)

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  4. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  5. HS-4, a highly potent inhibitor of cell proliferation of human cancer cell

    Institute of Scientific and Technical Information of China (English)

    Gui-Lan Xing; Shu-Hong Tian; Xue-Li Xie; Jian Fu

    2015-01-01

    Objective:To investigate the antitumor activity of the compound HS-4 and the action mechanism.Methods:MTT method was used to testin vitroantitumor activity of the compound HS-4. Orthotopic xenotransplantation tumor model of liver cancer was established in nude mice, and,in vivoantitumor activity of compound HS-4 was tested with a small animal in-vivo imaging system. Sequencing of small RNA library and RNA library was performed in HS-4 treated tumor cell group and control group to investigate the anti-cancer mechanism of HS-4 at level of functional genomics, using high-throughput sequencing technology. Results:HS-4 was found to have relatively highin-vitro antitumor activity against liver cancer cells, gastric cancer cells, renal cancer cells, lung cancer cells, breast cancer cells and colon cancer cells. The IC50 values against SMMC-7721 and Bel-7402 of liver cancer cells were 0.14 and 0.13 nmol/L respectively, while the IC50 values against MGC-803 and SGC-7901 of gastric cancer cells were 0.19 and 0.21 nmol/L, respectively. It was demonstrated that HS- 4 possessed a better therapeutic effect in liver cancer.Conclusions: A new reliable orthotopic xenotransplantation tumor model of liver cancer in nude mice is established. The new compounds HS-4 was found to possess relatively highin vivo andin vitroantitumor activity against liver cancer cells.

  6. HS-4,a highly potent inhibitor of cell proliferation of human cancer cell

    Institute of Scientific and Technical Information of China (English)

    Gui-Lan; Xing; Shu-Hong; Tian; Xue-Li; Xie; Jian; Fu

    2015-01-01

    Objective:To investigate the antitumor activity of the compound HS-4 and the action mechanism.Methods:MTT method was used to test in vitro antitumor activity of the compound HS-4.Orthotopic xenotransplantation tumor model of liver cancer was established in nude mice,and.in vivo antitumor activity of compound HS-4 was tested with a small animal in-vivo imaging system.Sequencing of small RNA library and RNA library was performed in HS-4 treated tumor cell group and control group to investigate the anti-cancer mechanism of HS-4 at level of functional genomics,using high-throughput sequencing technology.Results:HS-4 was found to have relatively high in-vitro antitumor activity against liver cancer cells,gastric cancer cells,renal cancer cells,lung cancer cells,breast cancer cells and colon cancer cells.The IC50 values against SMMC-7721 and Bel-7402 of liver cancer cells were 0.14 and 0.13 nmol/L respectively,while the IC50 values against MGC-803 and SGC-7901 of gastric cancer cells were 0.19 and 0.21 nmol/L,respectively.It was demonstrated that HS- 4 possessed a betler therapeutic effect in liver cancer.Conclusions:A new reliable orthotopicxenotransplantation tumor model of liver cancer in nude mice is established.The new compounds HS-4 was found to possess relatively high in vivo and in vitro antitumor activity against liver cancer cells.

  7. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. PMID:25659759

  8. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  9. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    Science.gov (United States)

    2016-08-25

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  10. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui;

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44+ ...

  11. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green;

    2011-01-01

    increase in the number of gamma-H2AX ‘DNA damage foci’, indicating replicative stress, which may lead to genomic instability. As the p53 tumor suppressor is an inducer of G1 arrest after DNA damage and often deregulated in cancer cells, we investigated if the growth reduction due to SSX2 expression was p53...... dependent. The growth reduction was similar in isogenic colon cancer cells with and without p53, indicating that SSX2 is able to inhibit the growth of cancer cells, even in absence of functional p53. Our results show that SSX2 acts as an inhibitor of cancer cell proliferation, possibly through replicative......The SSX family of cancer and germline antigens is mainly expressed in the germ cells of healthy individuals as well as wide range of cancers and is therefore potential targets for immunotherapy. However, little is known about the role of SSX proteins in tumorigenesis and normal cell function. Here...

  12. TRANSCRIPTIONAL LANDSCAPE OF NEURONAL and CANCER STEM CELLS

    OpenAIRE

    Miele, Evelina

    2013-01-01

    Tumor mass is composed by heterogeneous cell population including a subset of “cancer stem cells” (CSC). Oncogenic signals foster CSC by transforming tissue stem cells or by reprogramming progenitor/differentiated cells towards stemness. Thus, CSC share features with cancer and stem cells (e.g. self-renewal, hierarchical developmental program leading to differentiated cells, epithelial/mesenchimal transition) and these latter are maintained by the constitutive activation of stemne...

  13. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  14. Human prostate cancer stem cells: new features unveiled

    Institute of Scientific and Technical Information of China (English)

    Yuting Sun; Wei-Qiang Gao

    2011-01-01

    @@ Cancer stem cells (CSCs) are a rare sub-population of phenotypically distinct cancer cells exhibiting stem cell characteristics.They are tumourigenic, meanwhile capable of self-renewal and forming differentiated progenies.CSCs are believed to be resistant to the standard therapeutics, and provide the cell reservoir for tumour initiation.1 Understanding CSCs or in another word, tumour-initiating cells, is of critical therapeutic importance.

  15. Cancer Stem Cells – Basics, Progress and Future Potential

    OpenAIRE

    Bapat S.A

    2010-01-01

    The primary characteristics of adult stem cells are maintaining prolonged quiescence, ability to self-renew and plasticity to differentiate into multiple cell types. These properties are evolutionarily conserved from fruit fly to humans. Similar to normal tissue repair in organs, the stem cell concept is inherently impregnated in the etiology of cancer. Tumors contain a minor population of tumor-initiating cells, called "cancer stem cells" that maintain some similarities in self-renewal and d...

  16. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  17. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...... with initial versus delayed radiotherapy. No survival differences in the larger study of the two studies were detected, which compared alternating with sequential delivery of radiotherapy (n = 335). The optimal way to deliver radiotherapy still must be defined. Two small, randomized studies on dose intensity...

  18. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  19. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Directory of Open Access Journals (Sweden)

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  20. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  1. Adhesion between peptides/antibodies and breast cancer cells

    Science.gov (United States)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  2. Cancer Stem Cells: Biological Functions and Therapeutically Targeting

    Directory of Open Access Journals (Sweden)

    Marius Eugen Ciurea

    2014-05-01

    Full Text Available Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.

  3. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia;

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  4. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A.; Suranganie F. Dharmawardhane

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  5. Genistein-Inhibited Cancer Stem Cell-Like Properties and Reduced Chemoresistance of Gastric Cancer

    OpenAIRE

    Weifeng Huang; Chunpeng Wan; Qicong Luo; Zhengjie Huang; Qi Luo

    2014-01-01

    Genistein, the predominant isoflavone found in soy products, has exerted its anticarcinogenic effect in many different tumor types in vitro and in vivo. Accumulating evidence in recent years has strongly indicated the existence of cancer stem cells in gastric cancer. Here, we showed that low doses of genistein (15 µM), extracted from Millettia nitida Benth var hirsutissima Z Wei, inhibit tumor cell self-renewal in two types of gastric cancer cells by colony formation assay and tumor sphere f...

  6. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells

    Science.gov (United States)

    Suman, S; Das, T P; Damodaran, C

    2013-01-01

    Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. PMID:24129237

  7. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    Science.gov (United States)

    2016-03-01

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  8. Dominant B-cell epitopes from cancer/stem cell antigen SOX2 recognized by serum samples from cancer patients

    OpenAIRE

    Shih, Julia; Rahman, Munira; Luong, Quang T; Lomeli, Shirley H.; Riss, Joseph; Prins, Robert M.; Gure, Ali O.; Zeng, Gang

    2014-01-01

    Human sex determining region Y-box 2 (SOX2) is an important transcriptional factor involved in the pluripotency and stemness of human embryonic stem cells. SOX2 plays important roles in maintaining cancer stem cell activities of melanoma and cancers of the brain, prostate, breast, and lung. SOX2 is also a lineage survival oncogene for squamous cell carcinoma of the lung and esophagus. Spontaneous cellular and humoral immune responses against SOX2 present in cancer patients classify it as a tu...

  9. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  10. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Directory of Open Access Journals (Sweden)

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  11. Stem cells in radiation and oral cancer research

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are defined as a small sub population of cancer cells that constitute a pool of self sustaining cells with the exclusive ability to cause the heterogeneous lineages of cancer cells that comprise the tumour. There are three main characteristics of CSCs. Initially the cell must show potent tumour initiation in that it can regenerate the tumour which it was derived from a limited number of cells. In addition, the cells should demonstrate self renewal in vivo, which is practically observed via regrowth of phenotypically indistinguishable and heterogeneous tumours following serial transplantation of re-isolated CSCs in secondary and tertiary recipients. Finally, the cells must show a differentiation capacity, allowing them to give rise to a heterogeneous progeny, which represents a phenocopy of the original tumour. This article highlights the radiation therapy resulting in radiation resistance in cancer stem cells. (author)

  12. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  13. Experimental studies on ultralow frequency pulsed gradient magnetic field inducing apoptosis of cancer cell and inhibiting growth of cancer cell

    Institute of Scientific and Technical Information of China (English)

    曾繁清; 郑从义; 张新晨; 李宗山; 李朝阳; 王川婴; 张新松; 黄晓玲; 张沪生

    2002-01-01

    The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums(ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling(TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency(ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indicating that magnetic field can block DNA replication and inhibit mitosis of cancer cells. It was suggested that magnetic field could inhibit the metabolism of cancer cell, lower its malignancy, and restrain its rapid and heteromorphic growth. Since ULF pulsed gradient magnetic field can induce apoptosis of cancer cells and inhibit the growth of malignant tumour, it could be used as a new method to treat cancer.

  14. Pancreatic involvement in small cell lung cancer

    International Nuclear Information System (INIS)

    Few data are available concerning incidence, clinical picture, and prognosis for pancreatic metastases of small cell lung carcinoma. In this paper we review the related literature available in English language. Although pancreatic metastases are generally asymptomatic, they can rarely produce clinical symptoms or functional abnormalities. The widespread use of multi-detector computerised tomography (CT) in contemporary medical practice has led to an increased detection of pancreatic metastases in oncology patients. Tissue diagnosis is imperative because radiological techniques alone are incapable of differentiating them from primary pancreatic tumours. Pancreatic metastases occur in the relative end stage of small cell lung cancer. The main complications of these lesions, although rare, are acute pancreatitis and obstructive jaundice. Early chemotherapy can provide a survival benefit even in patients with mild acute pancreatitis or extrahepatic biliary obstruction

  15. Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers

    Institute of Scientific and Technical Information of China (English)

    Han-Chen Li; Calin Stoicov; Arlin B Rogers; JeanMarie Houghton

    2006-01-01

    Cancer commonly arises at the sites of chronic inflammation and infection. Although this association has long been recognized, the reason has remained unclear. Within the gastrointestinal tract, there are many examples of inflammatory conditions associated with cancer, and these include reflux disease and Barrett's adenocarcinoma of the esophagus, Helicobacter infection and gastric cancer, inflammatory bowel disease and colorectal cancer and viral hepatitis leading to hepatocellular carcinoma.There are several mechanisms by which chronic inflammation has been postulated to lead to cancer which includes enhanced proliferation in an endless attempt to heal damage, the presence of a persistent inflammatory environment creating a pro-carcinogenic environment and more recently a role for engraftment of circulating marrow-derived stem cells which may contribute to the stromal components of the tumor as well as the tumor mass itself. Here we review the recent advances in our understanding of the contributions of circulating bone marrow-derived stem cells to the formation of tumors in animal models as well as in human beings.

  16. Lidamycin induces marked G2 cell cycle arrest in human colon carcinoma HT-29 cells through activation of p38 MAPK pathway.

    Science.gov (United States)

    Liu, Xia; Bian, Chunjing; Ren, Kaihuan; Jin, Haixia; Li, Baowei; Shao, Rong-Guang

    2007-03-01

    Lidamycin (LDM), a member of the enediyne antibiotic family, is presently undergoing phase I clinical trials in P.R. China. In this study, we investigated the mechanisms of LDM-induced cell cycle arrest in order to support its use in clinical cancer therapy. Using human colon carcinoma HT-29 cells, we observed that LDM induced G2 cell cycle arrest in a time- and dose-dependent manner. LDM-induced G2 arrest was associated with increasing phosphorylation of Chk1, Chk2, Cdc25C, Cdc2 and expression of Cdc2 and cyclin B1. In addition, cytoplasmic localization of cyclin B1 was also involved in LDM-induced G2 arrest. Moreover, we found that p38 MAPK pathway contributed to LDM-induced G2 arrest. Inhibition of p38 MAPK by its inhibitor SB203580 not only attenuated LDM-induced G2 arrest but also potentiated LDM-induced apoptosis, which was accompanied by decreasing phosphorylation of Cdc2 and increasing expression of FasL and phosphorylation of JNK. Finally, we demonstrated that cells at G1 phase were more sensitive to LDM. Together, our findings suggest that p38 MAPK signaling pathway is involved in LDM-induced G2 arrest, at least partly, and a combination of LDM with p38 MAPK inhibitor may represent a new strategy for human colon cancer therapy. PMID:17273739

  17. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells.

    Science.gov (United States)

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment. PMID:26609475

  18. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  19. Induced differentiation of cancer cells: second generation potent hybrid polar compounds target cell cycle regulators

    International Nuclear Information System (INIS)

    Hybrid polar compounds are potent inducers of differentiation of a wide variety of cancer transformed cells. Hexamethylene bisacetamide (HMBA) has been used as a prototype of these compounds to investigate their mechanism of action. Employing murine erythroleukemia (MEL) cells as a model, three characteristics of inducer-mediated commitment to terminal differentiation were demonstrated: (I) induced commitment was stochastic, requiring up to 5 cell cycles to recruit essentially all cells to commit to growth arrest in G1; (II) inducers caused a prolongation of the initial G1; and (III) the hybrid polar compounds induced a wide variety of transformed cells to terminal differentiation. These findings suggested that the rate limiting factor or factors for induction by these agents may be at the level of protein(s) regulating G1-to-S progression, which are common to most eukaryotic cells. It was found that HMBA induced a profound suppression of cyclin dependent kinase, cdk4, which reflected a marked decrease in stability of the protein, and is a critical change in the pathway of induced differentiation. HMBA also induced an increase in pRB and in the active, underphosphorylated form of this protein, an increase in the pRB related protein, p107, and an increase in the cyclin dependent kinase inhibitor, p21. Further, the free form of the transcription factor, E2F, was markedly decreased within hours of exposure of transformed cells to HMBA and found to complex with p107 and cdk 2. A phase II clinical trial was conducted using HMBA to treat patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. Of 28 patients, 9 patients achieved a complete or partial remission lasting from 1 to 16 months. These clinical studies also provided direct evidence that HMBA induces differentiation of transformed cells in patients. In four separate courses of treatment with HMBA, a patient with MDS and the monosomy 7 karyotype marking the malignant clone of bone marrow blast

  20. Characterization of normal and cancer stem cells: One experimental paradigm for two kinds of stem cells

    OpenAIRE

    Mayol, Jean-François; Loeuillet, Corinne; Hérodin, Francis; Wion, Didier

    2009-01-01

    The characterization of normal stem cells and cancer stem cells uses the same paradigm. These cells are isolated by a Fluorescent-Activated Cell Sorting step and their stemness is assayed following implantation into animals. However, differences exist between these two kinds of stem cells. Therefore, the translation of the experimental procedures used for normal stem cell isolation into the cancer stem cell research field is a potential source of artefacts. In addition, normal stem cell thera...

  1. Liver Label Retaining Cancer Cells Are Relatively Resistant to the Reported Anti-Cancer Stem Cell Drug Metformin

    OpenAIRE

    Xin, Hong-Wu; Ambe, Chenwi M.; Miller, Tyler C.; Chen, Jin-Qiu; Wiegand, Gordon W.; Anderson, Andrew J.; Ray, Satyajit; Mullinax, John E.; Hari, Danielle M; Koizumi, Tomotake; Godbout, Jessica D.; Goldsmith, Paul K.; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S.

    2016-01-01

    Background & Aims: Recently, we reported that liver Label Retaining Cancer Cells (LRCC) can initiate tumors with only 10 cells and are relatively resistant to the targeted drug Sorafenib, a standard of practice in advanced hepatocellular carcinoma (HCC). LRCC are the only cancer stem cells (CSC) isolated alive according to a stem cell fundamental function, asymmetric cell division. Metformin has been reported to preferentially target many other types of CSC of different organs, including live...

  2. Effect of Melatonin in Epithelial Mesenchymal Transition Markers and Invasive Properties of Breast Cancer Stem Cells of Canine and Human Cell Lines.

    Science.gov (United States)

    Gonçalves, Naiane do Nascimento; Colombo, Jucimara; Lopes, Juliana Ramos; Gelaleti, Gabriela Bottaro; Moschetta, Marina Gobbe; Sonehara, Nathália Martins; Hellmén, Eva; Zanon, Caroline de Freitas; Oliani, Sônia Maria; Zuccari, Debora Aparecida Pires de Campos

    2016-01-01

    Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44(+)/CD24(low/-) marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44(+)/CD24(low/-) positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (Pmelatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (Pmelatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines. PMID:26934679

  3. Enhanced Survival with Implantable Scaffolds That Capture Metastatic Breast Cancer Cells In Vivo.

    Science.gov (United States)

    Rao, Shreyas S; Bushnell, Grace G; Azarin, Samira M; Spicer, Graham; Aguado, Brian A; Stoehr, Jenna R; Jiang, Eric J; Backman, Vadim; Shea, Lonnie D; Jeruss, Jacqueline S

    2016-09-15

    The onset of distant organ metastasis from primary breast cancer marks the transition to a stage IV diagnosis. Standard imaging modalities often detect distant metastasis when the burden of disease is high, underscoring the need for improved methods of detection to allow for interventions that would impede disease progression. Here, microporous poly(ε-caprolactone) scaffolds were developed that capture early metastatic cells and thus serve as a sentinel for early detection. These scaffolds were used to characterize the dynamic immune response to the implant spanning the acute and chronic foreign body response. The immune cell composition had stabilized at the scaffold after approximately 1 month and changed dramatically within days to weeks after tumor inoculation, with CD11b(+)Gr1(hi)Ly6C(-) cells having the greatest increase in abundance. Implanted scaffolds recruited metastatic cancer cells that were inoculated into the mammary fat pad in vivo, which also significantly reduced tumor burden in the liver and brain. Additionally, cancer cells could be detected using a label-free imaging modality termed inverse spectroscopic optical coherence tomography, and we tested the hypothesis that subsequent removal of the primary tumor after early detection would enhance survival. Surgical removal of the primary tumor following cancer cell detection in the scaffold significantly improved disease-specific survival. The enhanced disease-specific survival was associated with a systemic reduction in the CD11b(+)Gr1(hi)Ly6C(-) cells as a consequence of the implant, which was further supported by Gr-1 depletion studies. Implementation of the scaffold may provide diagnostic and therapeutic options for cancer patients in both the high-risk and adjuvant treatment settings. Cancer Res; 76(18); 5209-18. ©2016 AACR. PMID:27635043

  4. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  5. Personalized Therapy of Small Cell Lung Cancer.

    Science.gov (United States)

    Schneider, Bryan J; Kalemkerian, Gregory P

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials. PMID:26703804

  6. ERP44 inhibits human lung cancer cell migration mainly via IP3R2.

    Science.gov (United States)

    Huang, Xue; Jin, Meng; Chen, Ying-Xiao; Wang, Jun; Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-06-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.

  7. Doxorubicin-enriched, ALDHbr mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Zhuang Xiufen

    2012-11-01

    Full Text Available Abstract Background The primary objective of this study was to test whether oncolytic herpes simplex virus type 1 (HSV1 could eradicate chemoresistant cancer stem cells (CSCs. Methods The fluorescent aldefluor reagent-based technique was used to identify and isolate ALDHbr cells as CSCs from the 4T1 murine breast cancer cell line. The presence of ALDHbr 4T1 cells was also examined in 4T1 breast cancer transplanted in immune-competent syngeneic mice. Results Compared with ALDHlo cells, ALDHbr cells had a markedly higher ability to form tumor spheres in vitro and a higher tumorigenic potential in vivo. ALDHbr cells also exhibited increased doxorubicin resistance in vitro, which correlated with a selective increase in the percentage of ALDHbr cells after doxorubicin treatment and an increased expression of P-glycoprotein (P-gp, a known chemoresistance factor. In contrast, oncolytic HSV1 was able to kill ALDHbr cells in vitro and even more markedly in vivo. Furthermore, in in vivo studies, systemic administration of doxorubicin followed by intratumoral injection of oncolytic HSV1 resulted in much more significant suppression of tumor growth with increased median survival period compared with each treatment given alone (p+ T lymphocytes were induced by oncolytic HSV1, no significant specific T cell response against CSCs was detected in vivo. Conclusions These results suggested that the use of oncolytic HSV1 following doxorubicin treatment may help eradicate residual chemoresistant CSCs in vivo.

  8. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  9. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Sumit Arora

    Full Text Available Survival rates for patients with pancreatic cancer are extremely poor due to its asymptomatic progression to advanced and metastatic stage for which current therapies remain largely ineffective. Therefore, novel therapeutic agents and treatment approaches are desired to improve the clinical outcome. In this study, we determined the effects of honokiol, a biologically active constituent of oriental medicinal herb Magnolia officinalis/grandiflora, on two pancreatic cancer cell lines, MiaPaCa and Panc1, alone and in combination with the standard chemotherapeutic drug, gemcitabine. Honokiol exerted growth inhibitory effects on both the pancreatic cancer cell lines by causing cell cycle arrest at G₁ phase and induction of apoptosis. At the molecular level, honokiol markedly decreased the expression of cyclins (D1 and E and cyclin-dependent kinases (Cdk2 and Cdk4, and caused an increase in Cdk inhibitors, p21 and p27. Furthermore, honokiol treatment led to augmentation of Bax/Bcl-2 and Bax/Bcl-xL ratios to favor apoptosis in pancreatic cancer cells. These changes were accompanied by enhanced cytoplasmic accumulation of NF-κB with a concomitant decrease in nuclear fraction and reduced transcriptional activity of NF-κB responsive promoter. This was associated with decreased phosphorylation of inhibitor of kappa B alpha (IκB-α causing its stabilization and thus increased cellular levels. Importantly, honokiol also potentiated the cytotoxic effects of gemcitabine, in part, by restricting the gemcitabine-induced nuclear accumulation of NF-κB in the treated pancreatic cancer cell lines. Altogether, these findings demonstrate, for the first time, the growth inhibitory effects of honokiol in pancreatic cancer and indicate its potential usefulness as a novel natural agent in prevention and therapy.

  10. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  11. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  12. The microcell mediated transfer of human chromosome 8 into highly metastatic rat liver cancer cell line C5F

    Institute of Scientific and Technical Information of China (English)

    Hu Liu; Sheng-Long Ye; Jiong Yang; Zhao-You Tang; Yin-Kun Liu; Lun-Xiu Qin; Shuang-Jian Qiu; Rui-Xia Sun

    2003-01-01

    AIM: Our previous research on the surgical samples of primary liver cancer with CGH showed that the loss of human chromosome 8p had correlation with the metastatic phenotype of liver cancer. In order to seek the functional evidence that there could be a metastatsis suppressor gene (s) for liver cancer on human chromosome 8, we tried to transfer normal human chromosome 8 into rat liver cancer cell line C5F, which had high metastatic potential to lung.METHODS: Human chromosome 8 randomly marked with neo gene was introduced into C5F cell line by MMCT and positive microcell hybrids were screened by double selections of G418 and HAT. Single cell isolation cloning was applied to clone microcell hybrids. Finally, STS-PCR and WCP-FISH were used to confirm the introduction.RESULTS: Microcell hybrids resistant to HAT and G418 were obtained and 15 clones were obtained by single-cell isolation cloning. STS-PCR and WCP-FISH proved that human chromosome 8 had been successfully introduced into rat liver cancer cell line C5F. STS-PCR detected a random loss in the chromosome introduced and WCP-FISH found a consistent recombination of the introduced human chromosome with the rat chromosome.CONCLUSION: The successful introduction of human chromosome 8 into highly metastatic rat liver cancer cell line builds the basis for seeking functional evidence of a metastasis suppressor gene for liver cancer harboring on human chromosome 8 and its subsequent cloning.

  13. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines

    OpenAIRE

    Higuchi, M; Kudo, T; Suzuki, S.; Evans, TT; Sasaki, R.; Wada, Y; Shirakawa, T.; Sawyer, JR; Gotoh, A

    2006-01-01

    Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is verycommon in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstra...

  14. The role of regulatory T cells in cancer immunology

    OpenAIRE

    Whiteside TL

    2015-01-01

    Theresa L Whiteside University of Pittsburgh Cancer Institute, Pittsburgh, PA, US Abstract: Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well und...

  15. Role of Inflammation and Substrate Stiffness in Cancer Cell Transmigration

    Science.gov (United States)

    Hamilla, Susan; Stroka, Kimberly; Aranda-Espinoza, Helim

    2013-03-01

    Cancer metastasis, the ability for cancer cells to break away from the primary tumor site and spread to other organs of the body, is one of the main contributing factors to the deadliness of the disease. One of the rate-limiting steps in cancer metastasis that is not well understood is the adhesion of tumor cells to the endothelium followed by transmigration. Other factors include substrate stiffness and inflammation. To test these parameters, we designed an in vitro model of transendothelial migration. Our results suggest that cancer cell transmigration is a two-step process in which they first incorporate into the endothelium before migrating through. It was observed that the cumulative fraction of cancer cells that incorporate into the endothelium increases over time. Unlike leukocytes, which can directly transmigrate through the endothelium, cancer cells appear to have a two-step process of transmigration. Our results indicate that inflammation does not act as a signal for cancer cells to localize at specific sites and transmigrate similarly to leukocytes. Cancer cell transmigration also does not vary with substrate stiffness indicating that tissue stiffness may not play a role in cancer's propensity to metastasize to certain tissues.

  16. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L;

    1991-01-01

    % of the samples. When the GRP(14-27) peptide was added exogenously to breast cancer and SCLC cell lines under serum-free culture conditions, (3H)-thymidine incorporation was stimulated by GRP(14-27) in the SCLC cell lines. Of the breast cancer cell lines only the T47D cell line responded with an increase in (3H......Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells......(14-27) or GRP(18-27) in Sephadex G-50 chromatography. No immunoreactivity was detected in the fractions containing high molecular weight components. In a total of 41 human breast carcinoma biopsies from different postmenopausal patients, IR-GRP was detected by immunohistological staining in 39...

  17. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  18. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  19. Double Stem Cell Transplant May Help Fight a Childhood Cancer

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159243.html Double Stem Cell Transplant May Help Fight a Childhood Cancer Tandem ... better chance of survival if they receive two stem cell transplants, a new study reports. The double stem ...

  20. Establishment and characterization of a new cell line of canine inflammatory mammary cancer: IPC-366.

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    Full Text Available Canine inflammatory mammary cancer (IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC. The aim of this study was to characterize a new cell line from IMC (IPC-366 for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %. At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the

  1. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death.

    Directory of Open Access Journals (Sweden)

    Miho Akimoto

    Full Text Available The extract of ginger (Zingiber officinale Roscoe and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069 in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01 without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.

  2. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death.

    Science.gov (United States)

    Akimoto, Miho; Iizuka, Mari; Kanematsu, Rie; Yoshida, Masato; Takenaga, Keizo

    2015-01-01

    The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug. PMID:25961833

  3. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation

    Science.gov (United States)

    Cidado, Justin; Wong, Hong Yuen; Rosen, D. Marc; Cimino-Mathews, Ashley; Garay, Joseph P.; Fessler, Abigail G.; Rasheed, Zeshaan A.; Hicks, Jessica; Cochran, Rory L.; Croessmann, Sarah; Zabransky, Daniel J.; Mohseni, Morassa; Beaver, Julia A.; Chu, David; Cravero, Karen; Christenson, Eric S.; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M.; Argani, Pedram; Chawla, Ajay; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2016-01-01

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies. PMID:26823390

  4. Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-pu; LIU Yan; ZHONG Wei; YU Dan; WEN Lian-ji; JIN Chun-shun

    2011-01-01

    Background Mounting evidence suggests that tumors are histologically heterogeneous and are maintained by a small population of tumor cells termed cancer stem cells. CD133 has been identified as a candidate marker of cancer stem cells in laryngeal carcinoma. This study aimed to analyze the chemoresistance of CD133+ cancer stem cells.Methods The response of Hep-2 cells to different chemotherapeutic agents was investigated and the expression of CD133 was studied. Fluorescence-activated cell sorting analysis was used to identify CD133,and the CD133+ subset of cells was separated and analyzed in colony formation assays,cell invasion assays,chemotherapy resistance studies,and analyzed for the expression of the drug resistance gene ABCG2.Results About 1%-2% of Hep-2 cells were CD133+ cells,and the CD133+ proportion was enriched by chemotherapy.CD133+ cancer stem cells exhibited higher potential for clonogenicity and invasion,and were more resistant to chemotherapy. This resistance was correlated with higher expression of ABCG2.Conclusions This study suggested that CD133+ cancer stem cells are more resistant to chemotherapy. The expression of ABCG2 could be partially responsible for this. Targeting this small population of CD133+ cancer stem cells could be a strategy to develop more effective treatments for laryngeal carcinoma.

  5. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phe