WorldWideScience

Sample records for cells li li-na

  1. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  2. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    Science.gov (United States)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  3. Synthesis of Li(x)Na(2-x)Mn2S3 and LiNaMnS2 through redox-induced ion exchange reactions

    International Nuclear Information System (INIS)

    Luthy, Joshua A.; Goodman, Phillip L.; Martin, Benjamin R.

    2009-01-01

    Na 2 Mn 2 S 3 was oxidatively deintercalated using iodine in acetonitrile to yield Na 1.3 Mn 2 S 3 , with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li 0.7 Na 1.3 Mn 2 S 3 . When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS 2 , along with MnS and residual Na 2 Mn 2 S 3 . Single crystal X-ray diffraction structural analysis of LiNaMnS 2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) A, c=6.7759(14) A, V=96.15(3) A 3 (Z=1, wR2=0.0367) in the NaLiCdS 2 structure-type. - Graphical abstract: Structure of LiNaMnS 2 . Li and Mn are statistically distributed in edge-shared tetrahedral environments linked into infinite planes. Sodium ions occupy interlayer sites

  4. Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems

    International Nuclear Information System (INIS)

    Dolotko, Oleksandr; Zhang Haiqiao; Ugurlu, Ozan; Wiench, Jerzy W.; Pruski, Marek; Scott Chumbley, L.; Pecharsky, Vitalij

    2007-01-01

    Mechanochemical transformations of tetrahydroaluminates and amides of lithium and sodium have been investigated using gas volumetric analysis, X-ray powder diffraction, solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy. In a transformation of LiAlH 4 and LiNH 2 taken in an 1:1 molar ratio, the amount of released hydrogen (6.6 wt.% after 30 min ball milling) was higher than in any known one pot mechanochemical process involving a hydrogen-containing solid. A total of 4.3 wt.% of hydrogen is released by the NaAlH 4 -NaNH 2 system after 60 min ball milling; and 5.2 wt.% H 2 is released when LiAlH 4 and NaNH 2 or NaAlH 4 and LiNH 2 are ball milled for 90 min and 120 min, respectively. All transformations proceed at room temperature. The mechanism of the overall transformation MAlH 4 (s) + MNH 2 (s) → 2MH(s) + AlN(s) + 2H 2 (g) was identified based on detailed spectroscopic analysis of the intermediate (M 3 AlH 6 ) and final products of the ball milling process

  5. Mechanochemical transformations in Li(Na)AlH{sub 4}-Li(Na)NH{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    Dolotko, Oleksandr [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Zhang Haiqiao [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States); Ugurlu, Ozan [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States); Wiench, Jerzy W. [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Pruski, Marek [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Scott Chumbley, L. [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States); Pecharsky, Vitalij [Ames Laboratory of the U.S. DOE, Iowa State University, Ames, IA 50011-3020 (United States) and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States)]. E-mail: vitkp@ameslab.gov

    2007-05-15

    Mechanochemical transformations of tetrahydroaluminates and amides of lithium and sodium have been investigated using gas volumetric analysis, X-ray powder diffraction, solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy. In a transformation of LiAlH{sub 4} and LiNH{sub 2} taken in an 1:1 molar ratio, the amount of released hydrogen (6.6 wt.% after 30 min ball milling) was higher than in any known one pot mechanochemical process involving a hydrogen-containing solid. A total of 4.3 wt.% of hydrogen is released by the NaAlH{sub 4}-NaNH{sub 2} system after 60 min ball milling; and 5.2 wt.% H{sub 2} is released when LiAlH{sub 4} and NaNH{sub 2} or NaAlH{sub 4} and LiNH{sub 2} are ball milled for 90 min and 120 min, respectively. All transformations proceed at room temperature. The mechanism of the overall transformation MAlH{sub 4}(s) + MNH{sub 2}(s) {sup {yields}} 2MH(s) + AlN(s) + 2H{sub 2}(g) was identified based on detailed spectroscopic analysis of the intermediate (M{sub 3}AlH{sub 6}) and final products of the ball milling process.

  6. Ionic conductivity and Raman spectra of Na--Li, K--Li, and K--Sn β-Al2O3

    International Nuclear Information System (INIS)

    Kaneda, T.; Bates, J.B.; Wang, J.C.; Engstrom, H.

    1979-01-01

    The ionic conductivity and Raman spectra of Na, Na--Li, K, K--Li, and K--Sn β-Al 2 O 3 were measured in order to understand the mechanisms of mixed-ion conduction. It was observed that at 300 0 K, for example, the conductivity of a crystal with composition Na 0 . 82 Li 0 . 18 β-Al 2 O 3 was about one-fifth that of pure Na cyrstals, while the conductivity of K 0 . 80 Li 0 . 20 β-Al 2 O 3 was more than three orders of magnitude lower than that of pure K compounds. The results of a model calculation indicated that the Li + ions are the main carrier species in the Na--Li and K--Li mixed compounds. Features observed in the Raman spectra were attributed to paired- and single-ion vibrations. It is concluded that the K + ions which contribute to a band at 69 cm -1 in K β-Al 2 O 3 are the effective carriers for conduction

  7. Na-Li-[V3O8] insertion electrodes: Structures and diffusion pathways

    International Nuclear Information System (INIS)

    Schindler, Michael; Hawthorne, Frank C.; Alexander, Malcolm A.; Kutluoglu, Rory A.; Mandaliev, Petre; Halden, Norman M.; Mitchell, Roger H.

    2006-01-01

    The potential insertion-electrode compounds Na 1.2 [V 3 O 8 ] (NaV) and Na 0.7 Li 0.7 [V 3 O 8 ] (NaLiV) were synthesized from mixtures of Na 2 CO 3 , Li 2 CO 3 and V 2 O 5 , which were melted at 750 o and subsequently cooled to room temperature. The structures of NaV and LiV contain sheets of polymerized (VO n ) polyhedra, which are topologically identical to the sheet of polymerized polyhedra in Li 1.2 [V 3 O 8 ] (LiV). Vanadium occurs in three different coordination environments: [2+3] V(1), [2+2+2] V(2) and [1+4+1] V(3). Calculated bond-valence sums indicate that V 4+ occurs preferentially at the V(3) site, which agrees with the general observation that [6]-coordinated V 4+ prefers [1+4+1]-rather than [2+2+2]-coordination. The M-cations Na and Li occur at three distinct sites, M(1), M(2) and M(3) between the vanadate sheets. The M(1)-site is fully occupied and has octahedral coordination. The M(2) sites are partly occupied in NaV and NaLiV, in which they occur in [4]- and [6]-coordination, respectively. Li partly occupies the M(3) site in NaLiV, in which it occurs in [3]-coordination. The M(2) and M(3) sites in NaLiV occur closer to the vanadate sheets than the M(2) sites in NaV and LiV. The shift in these cation positions is a result of the larger distance between the vanadate sheets in NaLiV than in LiV, which forces interstitial Li to move toward one of the vanadate sheets to satisfy its coordination requirements. Bond-valence maps for the interstitial cations Na and Li are presented for NaV, NaLiV and LiV. These maps are used to determine other potential cation positions in the interlayer and to map the regions of the structure where the Na and Li have their bond-valence requirements satisfied. These regions are potential pathways for Na and Li diffusion in these structures, and are used to explain chemical diffusion properties of Na and Li in the Na-Li-[V 3 O 8 ] compounds. - Graphical abstract: Bond-valence map for Li in Na 0.7 Li 0.7 [V 3 O 8 ]. Contour

  8. {sup 7}Li and {sup 23}Na NMR measurements on (Na{sub 0.75}Li{sub 0.25}){sub 2}IrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Tusharkanti; Freund, Friedrich; Manni, Soham; Gegenwart, Philipp [EP-VI, Electronic Correlations and Magnetism, University of Augsburg (Germany); Prinz-Zwick, Markus; Schaedler, Martina; Buettgen, Norbert [EP-V, Electronic Correlations and Magnetism, University of Augsburg (Germany); Mahajan, Avinash [EP-V, Electronic Correlations and Magnetism, University of Augsburg (Germany); IIT Bombay (India)

    2016-07-01

    An experimental realization of the proposed Kitaev spin-liquid phase in Na{sub 2}IrO{sub 3} and Li{sub 2}IrO{sub 3} is still a big challenge. Efforts to suppress the magnetic ordering in Na{sub 2}IrO{sub 3} by substituting isoelectronic Li in the Na site was partially successful. An earlier report suggests the optimum doping to be 25% where the magnetic ordering is suppressed to 6 K while the structure remains undisturbed. Interestingly, for the (Na{sub 0.75}Li{sub 0.25}){sub 2}IrO{sub 3} sample Na and Li are crystallographically ordered where the Li ions reside at the centre of the Ir honeycombs. We have studied the material using both {sup 7}Li and {sup 23}Na NMR. Results of our spectra, spin-lattice and spin-spin relaxation measurements will be discussed in the poster.

  9. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  10. Estudio del Sistema Li2SO4 – Na2SO4. Diagrama de fases y caracterización del LiNaSO4

    Directory of Open Access Journals (Sweden)

    Font-Bardia, M.

    2004-08-01

    Full Text Available An exhaustive study of the phase diagram of binary system Li2SO4-Na2SO4 is presented. Phase diagram was determined using thermo-X-ray diffraction in powder samples and calorimetry ATD. A new phase with formula Li2-xNaxSO4 has been obtained, with 1 ≤ x ≤ 1.22. The crystal structure of β-LiNaSO4 was determined from single-crystal X-ray diffraction. This study shows that the crystals usually become twinned when the growth is by solution; which explains the poor spontaneous polarization. The Raman dispersion of Li2SO4, Na2SO4 and LiNaSO4 compounds is explained from the structural data. The measurements have been made at different heating and cooling rate.Se presenta un estudio exhaustivo del diagrama de fase del sistema binario Li2SO4-Na2SO4. El diagrama de fases se determinó mediante termo-difractometría de rayos-X en muestras de polvo y calorimetría ATD. Se obtiene una nueva fase de fórmula Li2-xNaxSO4, con 1 ≤ x ≤ 1.22. La estructura cristalina de β-LiNaSO4 se determinó por difracción de rayos-X sobre un monocristal. Este estudio muestra que los cristales usualmente se maclan cuando el crecimiento es por solución, lo cual explica la baja polarización espontánea. Se explica la dispersión Raman de los compuestos Li2SO4, Na2SO4 y LiNaSO4, a partir de los datos estructurales. Las medidas experimentales se han efectuado a diferentes velocidades de calentamiento y enfriamiento.

  11. LiVO/sub 3/-Li/sub 2/Mo(W)O/sub 4/ and NaVO/sub 3/-Na/sub 2/Cr(Mo)O/sub 4/ systems

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, I N; Lupeiko, T G; Vyalikova, V I [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1975-09-01

    The systems LiVO/sub 3/-Li/sub 2/MoO/sub 4/, LiVO/sub 3/-Li/sub 2/WO/sub 4/, NaNO/sub 3/-Na/sub 2/CrO/sub 4/, NaNO/sub 3/-Na/sub 2/MoO/sub 4/ were studied with thermographic and partially visual polythermal methods of physical and chemical analyses. Except NaVO/sub 3/-Na/sub 2/MoO/sub 4/ all investigated systems are eutectic ones with limited solid solutions on the basis of some component; the eutectics melt at 542, 544, 550/sup 0/C and contain 25, 20 and 26% of Li/sub 2/MoO/sub 4/, Li/sub 2/WO/sub 4/ and Na/sub 2/CrO/sub 4/ respectively. The system NaNO/sub 3/-Na/sub 2/MoO/sub 4/ contains compound 18 NaVO/sub 3/.11Na/sub 2/MoO/sub 4/ congruently melting at 570/sup 0/C. Two eutectics of the system have melting points at 542 and 548/sup 0/C and contain 47 and 67% of Na/sub 2/MoO/sub 4/.

  12. Thermoluminescent properties of LiF:NaF multilayers thin films

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia P.; Mauricio, Marcos H.P.; Nunes, Raul A.

    1996-01-01

    LiF and NaF and LiF:NaF multilayer films were grown by the assisted physical deposition method of beam evaporation. All films were grown by the assisted physical deposition method of e-beam evaporation. All films were made with a deposition rate of 10 A/s on aluminium and stainless steel substrates. Both substrates were kept at room temperature, 150 deg C and 300 deg C. The films were irradiated with 10 Gy in a 60 Co source. The thermoluminescence (TL) glow curves are similar for both substrates, with only a small dislocation in temperature of about 10 deg C. This dislocation in temperature are supposed to be related with its different thermal conductivity. The TL glow curves of films grown on aluminium substrates are more intense. TL of LiF films are similar of the TL of LiF crystals. The TL glow curves of multilayer LiF:NaF films can not be explained as a simple superposition of the glow curves of individual LiF and NaF layers. Thin layers of NaF seems not change very much the glow peaks structure of LiF films. (author)

  13. Li plating as unwanted side reaction in commercial Li-ion cells - A review

    Science.gov (United States)

    Waldmann, Thomas; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2018-04-01

    Deposition of Lithium metal on anodes contributes significantly to ageing of Li-ion cells. Lithium deposition is connected not only to a drastic limitation of life-time, but also to fast-charging capability and safety issues. Lithium deposition in commercial Li-ion cells is not limited to operation conditions at low temperatures. In recent publications various types of commercial cells were investigated using complimentary analysis methods. Five cell types studied in literature (18650, 26650, pouch) serve as a basis for comparison when and why Li deposition happens in commercial Li-ion cells. In the present paper, we reviewed literature on (i) causes, (ii) hints and evidences for Li deposition, (iii) macroscopic morphology of Li deposition/plating, (iv) ageing mechanisms and shapes of capacity fade curves involving Li deposition, and (v) influences of Li deposition on safety. Although often discussed, safety issues regarding Li deposition are not only limited to dendrite growth and internal short circuits, but also to exothermic reactions in the presence of Lithium metal. Furthermore, we tried to connect knowledge from different length scales including the macroscopic level (Li-ion cells, operating conditions, gradients in cells, electrochemical tests, safety tests), the microscopic level (electrodes, particles, microstructure), and the atomic level (atoms, ions, molecules, energy barriers).

  14. Electrochemical behavior of Li/LiV3O8 secondary cells

    Science.gov (United States)

    Bak, Hyo Rim; Lee, Jae Ha; Kim, Bok Ki; Yoon, Woo Young

    2013-03-01

    Li/LiV3O8 secondary cells with Li-foil and Li-powder anodes were fabricated, and their electrical properties were compared. Using the powder anode, a cell with an initial discharge capacity of 260 mAh g-1 that could be operated for over 100 cycles was obtained. The porous Li-powder electrode was safely synthesized by pressing an emulsion droplet onto an SUS mesh. A threefold increase in the electrical conductivity of the LiV3O8 cathode was achieved by the addition of carbon using a vibration pot mill. Using the powder anode resulted in 80% capacity retention at the 100th cycle, while that using the foil electrode was 46%; the 1.0 Crate/ 0.1 C-rate capacity ratio also increased from 44% to 60%. A cell employing the LiV3O8-carbon composite cathode showed better electrical performance, a capacity retention of 90% after 50 cycles, and an increase in rate capacity ratio. The crystal structure and morphology of the LiV3O8-C composite were investigated by x-ray diffraction and scanning electron microscopy.

  15. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  16. A Sensor Based on LiCl/NaA Zeolite Composites for Effective Humidity Sensing.

    Science.gov (United States)

    Zhang, Ying; Xiang, Hongyu; Sun, Liang; Xie, Qiuhong; Liu, Man; Chen, Yu; Ruan, Shengping

    2018-03-01

    LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

  17. Crystals structure of Na3Li(TiF6)2

    International Nuclear Information System (INIS)

    Popov, D.Yu.; Antokhina, T.F.; Gerasimenko, A.V.; Kajdalova, T.A.; Sergienko, V.I.

    2004-01-01

    Crystals of Na 3 Li(TiF 6 ) 2 (1) were synthesized in aqueous solution and characterized by the elementary and X-ray phase analysis methods. According to X-ray diffraction analysis data compound 1 is crystallized in a tetragonal crystal system with the following parameters: a=5.130(1), c=18.046(4) A, Z=2, space group P4-bar2 1 c. Alternating layers on the basis of dimers made up by octahedrons of TiF 6 and Na(1)F 6 constitute the frame of compound 1 crystal structure. The dimer layers are joined in a continuous frame by Na(2) and Li cations. Coordination polyhedron of Li atom is tetrahedron (Li-F 1.898(3) A) [ru

  18. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  19. Electronic structure and molecular dynamics of Na2Li

    Science.gov (United States)

    Malcolm, Nathaniel O. J.; McDouall, Joseph J. W.

    Following the first report (Mile, B., Sillman, P. D., Yacob, A. R. and Howard, J. A., 1996, J. chem. Soc. Dalton Trans , 653) of the EPR spectrum of the mixed alkali-metal trimer Na2Li a detailed study has been made of the electronic structure and structural dynamics of this species. Two isomeric forms have been found: one of the type, Na-Li-Na, of C , symmetry and another, Li-Na-Na, of C symmetry. Also, there are two linear saddle points which correspond to 'inversion' transition structures, and a saddle point of C symmetry which connects the two minima. A molecular dynamics investigation of these species shows that, at the temperature of the reported experiments (170 K), the C minimum is not 'static', but undergoes quite rapid inversion. At higher temperatures the C minimum converts to the C form, but by a mechanism very different from that suggested by minimum energy path considerations. 2 2v s s 2v 2v s

  20. The compressibility mechanism of Li3Na3In2F12 garnet

    DEFF Research Database (Denmark)

    Grzechnik, Andrzej; Balic Zunic, Tonci; Makovicky, Emil

    2006-01-01

    The high pressure behaviour of Li3Na3In2F12 garnet (Ia¯3d, Z = 8) is studied up to 9.2 GPa at room temperature in diamond anvil cells using xray diffraction. Its equation of state to 9.2 GPa and the pressure dependences of the structural parameters to 4.07 GPa are determined from synchrotron angle......-dispersive powder and laboratory single-crystal data, respectively. No indication of any structural phase transition in this material has been found up to 9.2 GPa. The fitting of the Murnaghan equation of state yields B0 = 36.2(5) GPa, B0 = 5.38(18), and V0 = 2051.76(0.69) °A 3. The compressibility mechanism of Li3......Na3In2F12 is attributed to the substantial bending of the In-F-Li angles linking the InF6 octahedra and LiF4 tetrahedra. The most compressible polyhedral units are the NaF8 triangulated dodecahedra. These results are discussed in relation to previous high pressure photoluminescence measurements...

  1. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    Science.gov (United States)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  2. Measurements of the fundamental thermodynamic parameters of Li/BCX and Li/SOCl2 cells

    Science.gov (United States)

    Kalu, E. E.; White, R. E.; Darcy, E. C.

    1992-01-01

    Two experimental techniques - equilibrium or reversible cell discharge and measurement of open circuit potential as a function of temperature - are used to determine the thermodynamic data needed to estimate the heat generation characteristics of Li/BCX and Li/SOCl2 cells. The results obtained showed that the reversible cell potential, the temperature dependence of the reversible cell potential, and the thermoneutral potential of the BCX cell were 3.74 V, -0.857 +/- 0.198 mV/K, and 3.994 +/- 0.0603 V, respectively. The respective values obtained for the Li/SOCl2 cell were 3.67 V, -0.776 +/- 0.255 mV/K, and 3.893 +/- 0.0776 V. The difference between the thermoneutral potential of Li/BCX and Li/SCl2 cells is attributable to the difference in their electroactive components.

  3. Nanoconfined NaAlH4 Conversion Electrodes for Li Batteries

    DEFF Research Database (Denmark)

    Huen, Priscilla; Peru, Filippo; Charalambopoulou, Georgia

    2017-01-01

    -Type anode in Li-ion batteries. Here, NaAlH4 nanoconfined in carbon scaffolds as an anode material for Li-ion batteries is reported for the first time. Nanoconfined NaAlH4 was prepared by melt infiltration into mesoporous carbon scaffolds. In the first cycle, the electrochemical reversibility of nanoconfined...

  4. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    Science.gov (United States)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  5. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Directory of Open Access Journals (Sweden)

    Meng Qin

    2017-06-01

    Full Text Available This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La, Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries.

  6. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Science.gov (United States)

    Qin, Meng; Li, Yueming; Lv, Xiao-Jun

    2017-01-01

    This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La), Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries. PMID:28632167

  7. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  8. Catalyzed Na2LiAlH6 for hydrogen storage

    International Nuclear Information System (INIS)

    Ma, X.Z.; Martinez-Franco, E.; Dornheim, M.; Klassen, T.; Bormann, R.

    2005-01-01

    In the present study, the complex alanate Na 2 LiAlH 6 is synthesized by high-energy milling of powder blends containing NaH and LiAlH 4 . The related thermodynamics are determined. In addition, a comprehensive study was performed to investigate the influence of different oxide and halide catalysts on the kinetics of hydrogen absorption and desorption, as well as their general drawback to decrease storage capacity

  9. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  10. Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-01-01

    Silicene, germanene and stanene likely to graphene are atomic thick material with interesting properties. We employed first-principles density functional theory (DFT) calculations to investigate and compare the interaction of Na or Li ions on these films. We first identified the most stable binding sites and their corresponding binding energies for a single Na or Li adatom on the considered membranes. Then we gradually increased the ions concentration until the full saturation of the surfaces is achieved. Our Bader charge analysis confirmed complete charge transfer between Li or Na ions with the studied 2D sheets. We then utilized nudged elastic band method to analyze and compare the energy barriers for Li or Na ions diffusions along the surface and through the films thicknesses. Our investigation findings can be useful for the potential application of silicene, germanene and stanene for Na or Li ion batteries.

  11. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.

    Science.gov (United States)

    Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian

    2014-03-12

    We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.

  12. In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte

    International Nuclear Information System (INIS)

    Wang, Ning; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-01-01

    Graphical abstract: A facile method is proposed to prepare lithium sulfide@porous carbon composites (Li 2 S@PC) by in-situ reaction of lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. We assembled graphite-Li 2 S@PC full-cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and DOL/DME with LiNO 3 additive as the electrolyte. Display Omitted -- Highlights: •A simple synthesis method was proposed to form Li 2 S@porous carbon composites. •Graphite-Li 2 S full-cells were constructed in DME-based electrolyte. •A novel method was proposed to activate the full cells. -- Abstract: Lithium-sulfur (Li-S) batteries have been recognized as one of the promising next-generation energy storage devices owing to their high energy density, low cost and eco-friendliness. As for cathode’s performance, the main challenges for developing highly-efficient and long-life Li-S batteries are to retard the polysulfides diffusion into electrolyte and the reaction with metallic lithium (Li). Especially, the safety issues, derived from metallic Li in anode, must be overcome. Herein, we fabricated lithium sulfide@porous carbon composites (Li 2 S@PC) by an in-situ reaction between the lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. The nanosized Li 2 S particles were uniformly distributed in the carbon matrix, which not only significantly improve electronic conductivity of the electrode but also effectively trap the dissolved polysulfides. Furthermore, on the basis of the graphite’s electrochemical features in ether-based electrolyte, we assembled graphite-Li 2 S@PC full cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and the DOL/DME with LiNO 3 additive as the electrolyte. A unique strategy was proposed to activate the full-cells in descending order using constant voltage and current to charge the cut-off voltage. This Li-S full cell exhibits stable cycling performance at 0.5 C over

  13. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  14. Thermal Stability of Li-Ion Cells

    International Nuclear Information System (INIS)

    ROTH, EMANUEL P.

    1999-01-01

    The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li(sub x)CoO(sub 2) cathodes (commercial SONY cells) and Li(sub x)Ni(sub 0.8)Co(sub 0.2)O(sub 2) cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li(sub x)CoO(sub 2) cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li(sub x)Ni(sub 0.8)Co(sub 0.2)O(sub 2)cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells

  15. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  16. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature. Une etude parallelle

  17. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature

  18. Vrijeme latencije kao indikator iskrivljavanja odgovora na upitnicima ličnosti

    OpenAIRE

    Parmač, Maja; Galić, Zvonimir; Jerneić, Željko

    2009-01-01

    Cilj istraživanja bio je provjeriti model disimulacije na česticama upitnika ličnosti koji su postavili Holden, Kroner, Fakken i Popham (1992). Model objašnjava procese koji se nalaze u osnovi razlika u vremenima odgovaranja iskrenih ispitanika i ispitanika koji iskrivljavaju svoje odgovore. Temeljna je pretpostavka modela da ispitanici prilikom odgovaranja na upitnik ličnosti uspoređuju čestice upitnika s trenutnom kognitivnom shemom te da postoji interakcija te sheme i socijalne poželjnosti...

  19. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.

    Science.gov (United States)

    Jena, Naresh K; Araujo, Rafael B; Shukla, Vivekanand; Ahuja, Rajeev

    2017-05-17

    Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li + (Na + ) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li 0.445 B 2 H 2 , which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li + . Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na + , respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  20. Fluoro-Carbonate Solvents for Li-Ion Cells

    International Nuclear Information System (INIS)

    NAGASUBRAMANIAN, GANESAN

    1999-01-01

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF(sub 6) was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF(sub 6) electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to and lt;5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature

  1. Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds

    Science.gov (United States)

    Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.

    1994-01-01

    A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.

  2. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  3. Complex phosphates in the Li(Na)3PO4-InPO4 systems

    International Nuclear Information System (INIS)

    Potapova, A.M.; Zimina, G.V.; Smirnova, I.N.; Novoselov, A.V.; Spiridonov, F.M.; Stefanovich, S.Yu.

    2008-01-01

    Subsolidus sections in the systems Li 3 PO 4 -InPO 4 (950 deg C) and Na 3 PO 4 -InPO 4 (800, 900, and 1000 deg C) have been studied by X-ray powder diffraction. The compound Li 3 In(PO 4 ) 2 has been synthesized, and the NASICON-type solid solution Li 3(1-x) In 2+x (PO 4 ) 3 (0.67 ≤ x ≤ 0.80) has been found to exist. In the system Na 3 PO 4 -InPO 4 , the solid solution Na 3(1-x) In x/3 PO 4 (0 ≤ x ≤ 0.2) and two complex phosphates exist: Na 3 In(PO 4 ) 2 and Na 3 In 2 (PO 4 ) 3 . These complex phosphates are dimorphic, with the irreversible-transition temperature equal to 675 and 820 deg C, respectively. Na 3 In(PO 4 ) 2 degrades at 920 deg C. Ionic conductivity has been measured in some phases in the system [ru

  4. Excitation of Li and Na atoms in collisions with He and Ne

    International Nuclear Information System (INIS)

    Olsen, J.Oe.; Andersen, T.; Andersen, N.

    1977-01-01

    Total emission cross sections and polarizations have been measured for the 2 2 S - 2 2 P, 2 2 P - 3 2 D and 2 2 P - 3 2 S LiI multiplets in Li - He,Ne collisions, and the 3 2 S - 3 2 P and 3 2 P - 3 2 D NaI multiplets in Na - He,Ne collisions in the 0.6 - 60 keV energy range. The excitation of the alkali resonance multiplet is found to be the dominant inelastic process for all four collision systems. The behaviour is very similar to the previously investigated Be + - He,Ne and Mg + - He,Ne systems. The results are compared with recent calculations by Manique et al based on a quasi-one electron description using various model potentials. Good agreement is found for Li - He with a simple Hartree-Fock frozen-core potential. The agreement is fair for Li,Na - He calculations with a Baylis type potential but poor for calculations based on Bottcher model potentials. For Ne as target all three potentials by far overestimate the size of the cross section. (Auth.)

  5. Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries

    International Nuclear Information System (INIS)

    Meligrana, Giuseppina; Lueangchaichaweng, Warunee; Colò, Francesca; Destro, Matteo; Fiorilli, Sonia; Pescarmona, Paolo P.; Gerbaldi, Claudio

    2017-01-01

    Highlights: • Gallium oxide nanorods applied for the first time as anode material for Li-/Na-ion batteries. • Durable ambient temperature cycling (400 cycles) was observed in Li-based cells. • Stable reversible cycling (> 200 mAh g"−"1) was achieved for the first time in Na-based cells. - Abstract: Gallium oxide nanorods prepared by template-free synthesis are reported for the first time as safe and durable anode material for lithium- and sodium-ion batteries. The ambient temperature electrochemical response of the nanorods, tested by cyclic voltammetry and constant-current reversible cycling, is highly satisfying in terms of remarkable stability and capacity retention upon long-term operation (400 cycles), even at high current densities. The newly proposed application of gallium oxide nanorods as electrode material is notable also because this material can preserve the electrical pathway without the need of any “buffer matrix” to compensate for the expansion upon lithium or sodium reversible storage. The highly promising electrochemical performance is attributed to the high aspect ratio and high surface area that stem from the nanorod morphology and which can lead to short diffusion path and fast kinetics of both cations (Li"+ or Na"+) and electrons.

  6. Luminescent properties of UV excitable blue emitting phosphors MSr4(BO3)3:Ce3+ (M = Li and Na)

    International Nuclear Information System (INIS)

    Guo Chongfeng; Ding Xu; Seo, Hyo Jin; Ren Zhaoyu; Bai Jintao

    2011-01-01

    Research highlights: → Novel blue emitting phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were prepared first. → Luminescent properties of phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were investigated extensively as candidates of blue emitting phosphor used for UV excited LED. → The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined as 0.05 for Li and x = 0.09 for Na excited by UV light respectively. - Abstract: A series of Ce 3+ doped novel borate phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce 3+ doped phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.

  7. Flame photometric determination of Na, K and Li in uranium compounds

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1985-01-01

    A flame photometric method for the determination of Na, K and Li in uranium compounds is described. The uranium is separated by solvent extraction from hydrochloric acid medium with tri-butyl phosphate. Amounts of uranium in order of 20 μg/ml don't cause any interference in the photometric results. The element Na presents a residual concentration due to the contamination of the reagents. The relative standard deviation is about 10% for the three elements. The relative error varies with the concentration of the element and it is between 1 and 24% for Na, between O and 12% for K and between O and 33% for Li. (Author) [pt

  8. Removal of SO42− from Li2CO3 by Recrystallization in Na2CO3 Solution

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2018-01-01

    Full Text Available Li2CO3 with high purity is an important raw material for the fabrication of lithium rechargeable batteries. This paper reports a facile recrystallization way to produce Li2CO3 with high purity from commercial Li2CO3 containing 0.8 wt % of SO42− by the treatment of the commercial Li2CO3 in Na2CO3 solution. The increase of temperature from 30 °C to 90 °C favored the recrystallization of Li2CO3 in Na2CO3 solution and promoted the removal of SO42− adsorbed or doped on/in the commercial Li2CO3. The content of SO42− in Li2CO3 decreased to 0.08 wt % after the treatment of the commercial Li2CO3 in 1.0 mol·L−1 Na2CO3 solution at 90 °C for 10.0 h.

  9. Quantitative spectrographic analysis of Li, Na and Ca in uranium base materials, using the carrier distillation technique

    International Nuclear Information System (INIS)

    Gomes, R.P.; Brito, J. de.

    1978-01-01

    A spectrographic method for the quantitative determination of Ca, Li and Na in uranium base materials is described. The carrier destillation technique is used and a study is made for the selection of best carrier compounds. In U 3 O 8 matrix, the best results are obtained with 4% In 2 O 3 for the determination of Na and a 15% mixed carrier (3 NaCl + 1 Y 2 O 3 ) for the determination of Ca and Li. The minium determination limit for Ca and Li is 1 ppm while for Na it is 15 ppm. The precision of the method is calculated and the relative standard deviation is found to be 11, 16 and 6,5% for Ca, Li and Na respectively [pt

  10. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    Science.gov (United States)

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  11. Quaternary system LiF-LiCl-LiVO3-Li2MoO4

    International Nuclear Information System (INIS)

    Anipchenko, B.V.; Garkushin, I.K.

    2000-01-01

    Interactions in the LiF-LiCl-LiVO 3 -Li 2 MoO 4 system are studied by differential thermal analysis. Rate of heating/cooling of the samples comprised 15 Grad/min, mass of sample composed 0.2 g. The system was investigated in the 300-650 Deg C range. X-ray diffraction method was used for determination of purity of the reagents. Composition and temperature of quaternary component eutectics are determined: 16.5 mol. % of LiF, 47.0 mol. % of LiCl, 28.8 mol. % of LiVO 3 , 7.6 mol. % of Li 2 MoO 4 ; 387 Deg C. Mean value of melting enthalpy of quaternary eutectics mixture in the LiF-LiCl-LiVO 3 -Li 2 MoO 4 system on the results of the tests was in the range of 222 kJ/kg [ru

  12. Synthesis, crystal structure and electrochemical properties of the manganese-doped LiNaFe[PO{sub 4}]F materials

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@aist.go.jp; Shikano, Masahiro, E-mail: shikano.masahiro@aist.go.jp; Sakaebe, Hikari; Kobayashi, Hironori

    2013-08-15

    The new compounds LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F (x ≤ 1/4) were synthesized by a solid state reaction route. The crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F was determined from single crystal X-ray diffraction data. LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F crystallizes with the Li{sub 2}Ni[PO{sub 4}]F-type structure, space group Pnma, a = 10.9719(13), b = 6.3528(7), c = 11.4532(13) Å, V = 798.31(16) Å{sup 3}, and Z = 8. The structure consists of edge-sharing (Fe{sub 3/4}Mn{sub 1/4})O{sub 4}F{sub 2} octahedra forming (Fe{sub 3/4}Mn{sub 1/4})FO{sub 3} chains running along the b-axis. These chains are interlinked by PO{sub 4} tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The manganese-doped phases show poor electrochemical behavior comparing to the iron pure phase LiNaFe[PO{sub 4}]F. - Highlights: • We investigated the synthesis of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F by solid state reaction. • We demonstrated that a solid solution exist only for x ≤ 1/4. • We solved the crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F using single crystal data. • We studied the electrochemical performances of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F. • The Mn-doped phases have poor electrochemical performances comparing to LiNaFe[PO{sub 4}]F.

  13. The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene

    Science.gov (United States)

    Li, Hai; Qian, Kun; Qin, Xianying; Liu, Dongqing; Shi, Ruiying; Ran, Aihua; Han, Cuiping; He, Yan-Bing; Kang, Feiyu; Li, Baohua

    2018-05-01

    The antimony oxide/reduced graphene oxide (Sb2O3/rGO) nanocomposites are used as anode of Li-ion and Na-ion batteries (LIBs and NIBs). However, it is unclear about Li-ion and Na-ion storage mechanism in Sb2O3/rGO nanocomposites. Herein, the conversion-alloying mechanisms of Sb2O3/rGO anodes for Na-ion and Li-ion storage are comparatively studied with a combined in-situ XRD and quasi in-situ XPS method. The distinct behaviours are monitored during (de)lithiation and (de)sodiation with respect to crystal structure and chemical composition evolution. It is evidenced that the Na-ion can be easily transported to the inner part of the Sb2O3, where the Li-ion almost cannot reach, leading to a fully transformation during sodiation. In addition, the conversion reaction product of amorphous Na2O display their better chemical stability than amorphous Li2O during electrochemical cycles, which contribute to a stable and long cycling life of NIBs. This work gain insight into the high-capacity anodes with conversation-alloying mechanism for NIBs.

  14. Destabilized LiBH4-NaAlH4 Mixtures Doped with Titanium Based Catalysts

    DEFF Research Database (Denmark)

    Shi, Qing; Yu, Xuebin; Feidenhans'l, Robert

    2008-01-01

    We investigate the hydrogen storage properties of the mixed complex hydride LiBH4-NaAlH4 system, both undoped and doped with a TiCl3 additive. The mixed system is found to initiate a transformation to LiBH4-NaAlH4 after ball-milling, and the doped system is found to have a significant lower hydro...

  15. Velocity of sound in, and adiabatic compressibility of, Molten LiF-NaF, LiF-KF, NaF-KF mixtures

    International Nuclear Information System (INIS)

    Minchenko, V.I.; Konovalov, Y.V.; Smirnov, M.V.

    1986-01-01

    The authors measured the velocity of sound as a function of temperature at 1.5 zHM frequency in LiF-NaF, NaF-KF, LiF-KF melts over the entire range of their compositions. The measurements were made by comparison of the phases of a reference pulse signal and a signal reflected from the bottom of the crucible. The specified temperatures were maintained constant within plus or minus 1 degree. The sound conductor consisted of a cylindrical rod of sintered beryllium oxide, which does not interact with test melts. The study shows that the velocity of sound decreases linearly with increase of the temperature. The values of the constants of the empirical equations are presented in a table, with indication of the temperature range. The dependence of the velocity of sound on composition of the melts is shown, where isotherms for 1250 K are given as an example. Variation of the composition by 1-2 mole % leads to increase or decrease of the velocity of sound by 5-10 m

  16. Synthesis of Hydroxysodalite From Paper Sludge Ash Using NaOH-LiOH Mixtures

    Directory of Open Access Journals (Sweden)

    Takaaki Wajima

    2017-06-01

    Full Text Available Hydroxysodalite zeolite was synthesized at 90 oC from paper sludge ash, which is industrial wastes in paper manufacturing, using NaOH-LiOH mixed solution. Paper sludge ash was discharged from paper making plant as industrial wastes, and the amount is increasing annually. The new utilization of paper sludge ash is desired. Hydroxysodalite can be used to remove HCl gas at high temperature, and there are papers for hydroxysodalite synthesis from various ashes, for example, coal fly ash. In my previous study, hydroxysodalite can be synthesized from paper sludge ash. However, little information can be available on the synthesis of hydroxysodalite from paper sludge ash. Therefore, we attempted to examine the synthesis of hydroxysodalite from paper sludge ash using NaOH-LiOH mixtures. Hydroxysodalite [Na6Al6Si6O24‧8H2O] was obtained in the mixed solution with Li / (Li + Na ratios smaller than 0.25, while katoite [Ca3Al2(SiO4(OH8] was formed in the mixed solutions with the other molar ratios, due to the dissolution of gehlenite [Ca2Al2SiO7]. The observed concentrations of Si and Al in the solution during the reaction explain the synthesis of reaction products, which depends on alkali species.

  17. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    International Nuclear Information System (INIS)

    Ignatiev, V.; Merzlyakov, A.; Afonichkin, V.; Khokhlov, V.; Salyulev, A.

    2003-01-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  18. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V; Merzlyakov, A [Kurchatov Institute - KI (Russian Federation); Afonichkin, V; Khokhlov, V; Salyulev, A [Institute of High Temperature Electrochemisty (IHTE), RF Yuri Golovatov, Konstantin Grebenkine, Vladimir Subbotin Institute of Technical Physics (VNIITF) (Russian Federation)

    2003-07-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  19. Effect of divalent impurities on some physical properties of LiF and NaF

    International Nuclear Information System (INIS)

    Laj, C.

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn 2+ doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M ++ □+ → M ++ + □+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of γ-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn 0 isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH - ions, probably of the M(OH) 2 type, with the two OH - ions occupying a single fluorine site. (author) [fr

  20. The effect of positronium formation in e+ -Li and e+ -Na scattering

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Ghosh, A.S.; Ray, H.

    1994-02-01

    The e + -Li and e + -Na scattering are studied, using the close coupling approximation in the static and coupled static expansion schemes. The effect of the positronium formation on the elastic channel is found to be strong in both cases. In the case of the lithium atom the effect is dramatic; the inclusion of the positronium formation channels transforms the purely repulsive effective e + -Li S wave (static) potential to a predominantly attractive (coupled static) potential. In this case, in the static model δ(0) - δ(∞) = π. According to Levinson's theorem this suggests the presence of a S wave bound or continuum bound state in the e + -Li system. (author)

  1. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells

    International Nuclear Information System (INIS)

    Waldmann, Thomas; Wohlfahrt-Mehrens, Margret

    2017-01-01

    During charging at low temperatures, metallic Lithium can be deposited on the surface of graphite anodes of Li-ion cells. This Li plating does not only lead to fast capacity fade, it can also impair the safety behavior. The present study observes the effect of rest periods between Li plating and subsequent accelerated rate calorimetry (ARC) tests. As an example, commercial 3.25 Ah 18650-type cells with graphite anodes and NCA cathodes are cycled at 0 °C to provoke Li plating. It is found that the rest period at 25 °C between Li plating and the ARC tests has a significant influence on the onset temperature of exothermic reactions (T SH ), the onset temperature of thermal runaway (T TR ), the maximum temperature, the self-heating rate, and on damage patterns of 18650 cells. The results are discussed in terms of chemical intercalation of Li plating into adjacent graphite particles during the rest period. The exponential increase of capacity recovery and T SH as a function of time suggests a reaction of 1st order for the relaxation process.

  2. Photoionization of Li and Na in Debye plasma environments

    International Nuclear Information System (INIS)

    Sahoo, Satyabrata; Ho, Y.K.

    2006-01-01

    A calculation of the photoionization cross sections is presented for alkali-metal atoms such as Li and Na in plasma environments. The computational scheme is based on the complex coordinate rotation method. A model potential formalism has been used to simplify the computational complexity of the problems of making quantitative predictions of properties and interactions of many electron systems in Debye plasmas. The plasma environment is found to appreciably influence the photoionization cross sections. In this regard the photoionization cross sections of isolated atoms are also discussed that is found to be in good agreement with the previous theoretical results. It is observed that the strong plasma screening effect remarkably alters the photoionization cross sections near the ionization threshold. The Cooper minimum in the photoionization cross sections of Na shifts toward the higher energy as the plasma screening effect increases. For Li, the Cooper minimum is uncovered in strong plasma environments. This is the first time such structures have been determined

  3. Synthesis, structure and electrochemical properties of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, Stanislav S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); Kuzovchikov, Sergey M.; Khasanova, Nellie R.; Drozhzhin, Oleg A.; Filimonov, Dmitriy S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Karakulina, Olesia M.; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Abakumov, Artem M. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Antipov, Evgeny V. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2016-10-15

    LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by {sup 57}Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F cathode material demonstrated a reversible activity of the Fe{sup 3+}/Fe{sup 2+} redox couple at the electrode potential near 3.4 V and minor activity of the Co{sup 3+}/Co{sup 2+} redox couple over 5 V vs Li/Li{sup +}. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe{sup 3+}/Fe{sup 2+} in the 2.4÷4.6 V vs Li/Li{sup +} potential range. - Graphical abstract: The ball-polyhedral representation of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F crystal structure. The MO{sub 4}F{sub 2} units are depicted as blue octahedra, PO{sub 4} units as orange tetrahedra, sodium atoms are designated as yellow (Na1), lithium – red and brown (Li2, Li3 resp.), fluorine – green, oxygen – violet spheres. - Highlights: • Freeze-drying method was successfully applied to the synthesis of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F. • The crystal structure of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F was refined based on NPD and validated by ED and HRTEM. • LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F demonstrated a reversible Li de/intercalation in the 2.5÷4.6 V vs Li/Li{sup +} range.

  4. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte

    International Nuclear Information System (INIS)

    Zhao Mingshu; Zheng Qingyang; Wang Fei; Dai Weimin; Song Xiaoping

    2011-01-01

    Research highlights: → In this paper, the electrochemical performance of aqueous rechargeable lithium battery with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. → The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. → In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries. - Abstract: The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.

  5. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2013-01-21

    Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

  6. Electrochemical Behavior of LiBr, LiI, and Li2Se in LiCl Molten Salt

    International Nuclear Information System (INIS)

    Choi, In Kyu; Do, Jae Bum; Hong, Sun Seok; Seo, Chung Seok

    2006-03-01

    The effect of fission products on the electrolytic reduction of uranium oxide has been studied. It has been reported that volatile fission products, such as Br, I, and Se, react with Li metal which is a reductant in the process to give LiBr, LiI, and Li 2 Se. These compounds are dissociated as corresponding anions and cations in the LiCl molten salt at 650 .deg. C. In this experiment, oxidation and reduction reaction of 3wt% of each compound in LiCl molten salt were investigated by cyclic voltammetry. For LiBr, redox reactions of cation and anion were reversible, while redox reactions of Li + and I - were irreversible. For Li 2 Se, about half of the produced Li metal was disappeared at the cathode and two anodic current curves were appeared. After the cyclic voltammetric measurements for each compound, chronopotentiometric experiment was carried out for one hour with 100 - 400 mA. After the electrolysis, no compounds gave Li metal in the porous MgO filter in which Li metal was produced at the cathode. However, LiCl salt was covered with Br 2 for LiBr electrolysis. Dark red color of Br 2 was easily removed by water. For LiI electrolysis, salt gave black color and I 2 was deposited on the Pt anode. For Li 2 Se electrolysis, black fine powders were precipitated in the salt. After the separation and dryness of the precipitates, it was analyzed with XRD and it turned out PtSe 2 . From the electrochemical experimental results, it was concluded that these compounds may affect the electrolytic reduction process of uranium oxide in the spent fuel

  7. Thermal expansion and temperature variation of elastic constants of Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Hoque, M.T.

    1994-11-01

    An analysis of thermal expansion of Li(H,D) systems up to melting temperature has been performed using the theory of anharmonic lattice. The study has for the first time been extended to Na(H,D) systems where very little or no data are available. The calculated lattice constants of Li(H,D) systems show quite good agreement with experiment. The success of the present calculation with Li(H,D) and room temperature lattice constant data for Na(H,D) given an indication of the reliability of the computed lattice constants and thermal expansion coefficients for Na(H,D) systems. The study also allows us to predict the hitherto unknown lattice constants of Na(H,D) crystal at 0K. The temperature dependence of elastic constants for Li(H,D) systems has also been evaluated. Comparison with measurements shows the reliability of the present calculations. (author). 45 refs, 4 figs

  8. Electron transfer in keV Li+-Na*(3p) collisions: Pt.2. Molecular basis model

    International Nuclear Information System (INIS)

    Machholm, M.; Courbin, C.

    1996-01-01

    The velocity dependence of state-to-state integral cross sections for electron transfer and excitation in Li + -Na(3s, 3p) collisions is studied in the 0.05-0.3 au velocity range using the impact parameter semi-classical method and a 28-state molecular orbital basis model including a common translation factor. The initial orbital alignment dependence of electron transfer is in fair agreement with recent experiments and with atomic orbital model calculations. The main electron transfer channel from Na*(3p) is to the Li*(2p) states. The integral cross sections from an aligned or oriented Na*(3p) state to an aligned or oriented Li*(2p) state and vice versa and the corresponding alignment and orientation parameters are presented as a function of the impact velocity. (author)

  9. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  10. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    International Nuclear Information System (INIS)

    Tang Xia; Opalka, Susanne M.; Laube, Bruce L.; Wu Fengjung; Strickler, Jamie R.; Anton, Donald L.

    2007-01-01

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH 4 has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH 4 has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments

  11. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  12. Structural and impurity phase transitions of LiNaSO4:RE probed using cathodo-thermoluminescence

    Science.gov (United States)

    Maghrabi, M.; Finch, A. A.; Townsend, P. D.

    2008-11-01

    Spectrally resolved cathodo-thermoluminescence spectra of rare earth (RE) doped LiNaSO4 measured from 20 to 673 K reveal several anomalies in the RE emission lines and intensities. The low (20-300 K) temperature data show a discontinuous change in intensity at ~170 K that is either a marked intensity enhancement or a drop truncating the entire spectrum. Such an effect on the host luminescence has previously been assigned to a transition between cubic and hexagonal polymorphs of ice nanoparticle inclusions. Similar, but less profound anomalies are seen above room temperature (300-673 K) where the changes take the form of either a discontinuity in intensity at ~480 K or reduced intensity in the range 430-530 K. There are changes in the relative intensities of different emission lines of the same dopant in this temperature range. Such high temperature variations are ascribed to structural phase changes within the LiNaSO4 crystals. The behaviours may result from Li-poor surfaces or twin boundaries behaving like Na2SO4. This phase change is suggested in the open literature for LiNaSO4 but not yet fully documented, perhaps because the effects span a wide range of temperatures or due to experimental features inherent in most luminescence facilities.

  13. In Situ Tracking Kinetic Pathways of Li+/Na+ Substitution during Ion-Exchange Synthesis of LixNa1.5-xVOPO4F0.5.

    Science.gov (United States)

    Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng

    2017-09-13

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li + /Na + substitution during solvothermal ion-exchange synthesis of Li x Na 1.5-x VOPO 4 F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li + , leading to peculiar Na + /Li + /vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.

  14. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  15. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    International Nuclear Information System (INIS)

    Sanjuan, B.; Millot, R.

    2009-09-01

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact with

  16. The kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane over Li/Na/MgO catalysts

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Toebes, A.; Toebes, A.; van Ommen, J.G.; Seshan, Kulathuiyer; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    Kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane catalysed by Li/MgO and Li/Na/MgO have been investigated. Initial rate measurements at 600°C; revealed that the Li/MgO catalyst produced C2H4, CO2, CO and H2 by parallel reactions whereas the sodium-promoted catalyst produced

  17. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  18. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells.

    Science.gov (United States)

    Hwa, Yoon; Zhao, Juan; Cairns, Elton J

    2015-05-13

    In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.

  19. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    DEFF Research Database (Denmark)

    He, Wen; Zhang, Xudong; Jin, Chao

    2017-01-01

    reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g...

  20. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method

    International Nuclear Information System (INIS)

    Zhao, Meng-Yao; Ji, Zhi-Yong; Zhang, Yong-Guang; Guo, Zhi-Yuan; Zhao, Ying-Ying; Liu, Jie; Yuan, Jun-Sheng

    2017-01-01

    Highlights: •A recovery system with LiMn 2 O 4 /Li 1-x Mn 2 O 4 as electrodes was used to extract lithium. •The influence sequence of coexisting ions on lithium extraction was Mg 2+ > Na + > Ca 2+ > K + . •The values of α Li-Na , α Li-Mg and α Li-Ca were more than 300, 70 and 110, respectively. •The specific energy consumption was between 18 and 19 W h·mol −1 . -- Abstract: Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn 2 O 4 positive electrode, a Li 1-x Mn 2 O 4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li + reached 34.31 mg· (1 g LiMn 2 O 4 ) −1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li + even in the presence of impurity ions (K + , Na + , Mg 2+ , Ca 2+ ). With simulated brine and concentrated seawater as source solutions, the concentrations of Na + , Mg 2+ and Ca 2+ were reduced more than 300, 70 and 100 times, consuming 18–19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li + and Me n+ (Na + , Mg 2+ , Ca 2+ ) after five cycles although a slight drop was existing.

  1. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.

    2002-01-01

    We measure angle differential cross sections (DCS) in Li+ + Na --> Li + Na+ electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target...... of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  2. Effect of growth in lithium on ouabain binding, Na-K-ATPase and Na and K transport in hela cells.

    Science.gov (United States)

    Boardman, L J; Hume, S P; Lamb, J F; Polson, J

    1975-01-01

    1. HeLa cells were grown for 24 hr in growth medium in which part of the Na was replaced with Li. Ion contents, cell volumes and numbers, Na-K-ATPase and specific ouabain binding were measured. In some experiments the Na efflux and net Na transport was also measured. 2. Growth in Li caused a rise in the specific ouabain binding and membrane Na-K-ATPase of these cells. The Li concentrations in the cells necessary to produce this effect ranged up to 50 mM. 3. It is suggested that Li, like Na, acts on the genetic material of the cells to cause the production of more Na pumps within the membrane. PMID:124350

  3. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Calculation of vibrational spectra of complex hydrides, LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1984-03-01

    The non-empirical Hartree-Fock-Ruthan method with a two-exponent Ros-Zigban basis has been used to calculate the coefficients of harmonic force field, frequency and intensity of normal vibrations of the LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/ complex hydrides. Attribution of vibrational types is conducted. Isotope shifts for different isotope substitutions in the L(MH/sub 3/) are calculated. The effect of the nature of both the outer-spherical cation L/sup +/ and central atom M on the vibrational spectrum is discussed.

  5. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  6. Electronic Properties of LiFePO4 and Li doped LiFePO4

    International Nuclear Information System (INIS)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-01-01

    The potential use of different iron phosphates as cathode materials in lithium-ion batteries has recently been investigated.1 One of the promising candidates is LiFePO4. This compound has several advantages in comparison to the state-of-the-art cathode material in commercial rechargeable lithium batteries. Firstly, it has a high theoretical capacity (170 mAh/g). Secondly, it occurs as mineral triphylite in nature and is inexpensive, thermally stable, non-toxic and non-hygroscopic. However, its low electronic conductivity (∼10-9 S/cm) results in low power capability. There has been intense worldwide research activity to find methods to increase the electronic conductivity of LiFePO4, including supervalent ion doping,2 introducing non-carbonaceous network conduction3 and carbon coating, and the optimization of the carbon coating on LiFePO4 particle surfaces.4 Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL has yield electronic conductivity increase up to 106.5 We studied electronic structure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-ray emission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes the unoccupied partial density of states, while XES the occupied partial density of states. By combining XAS and XES measurements, we obtained information on band gap and orbital character of both LiFePO4 and Li doped LiFePO4. The occupied and unoccupied oxygen partial density of states (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented in Fig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (∼ 4 eV). This value is much larger than what is predicted by DFT calculation. For 5 percent Li doped LiFePO4, a new doping state was created closer to the Fermi level, imparting p-type conductivity, consistent with thermopower measurement. Such observation substantiates the suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 is due to available number of charge carriers in the material

  7. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, B.; Millot, R.

    2009-09-15

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact

  8. Na insertion into nanocrystalline Li4Ti5O12 spinel: An electrochemical study

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Pitňa Lásková, Barbora; Klementová, Mariana; Kavan, Ladislav

    2017-01-01

    Roč. 245, AUG 2017 (2017), s. 505-511 ISSN 0013-4686 R&D Projects: GA ČR GA15-06511S; GA MŠk LM2015087 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Na insertion * Li4Ti5O12 * nanocrystalline Subject RIV: CG - Electrochemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 4.798, year: 2016

  9. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  10. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535 0 C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low ( 0 C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535 0 C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket

  11. Electrokinetic properties of tantalum oxide deposited on model substrate in NaCl and LiCl solutions

    International Nuclear Information System (INIS)

    Sidorova, M.P.; Bogdanova, N.F.; Ermakova, L.Eh.; Bobrov, P.V.

    1997-01-01

    Electrokinetic characteristics of tantalum oxide have been studied using a model system - a plane-parallel capillary in chloride solutions containing monocharge (H + , Na + , Li + ) counterions in a wide range of pH and concentrations. It is shown that position of isoelectric point (IEP) of Ta 2 O 5 depends on concentration and type of counterion, moreover, the dependence is not explained in the framework of classical notions of the influence of counterion specific adsorption on IEP position. Electrokinetic potential of Ta 2 O-5 surface at the background of diluted LiCl solutions is higher in its absolute value, than at the background of NaCl solutions according to direct lyotropic series. The results of measurements of the capillary resistance dependence on pH at the background of NaCl and LiCl solutions 10 -3 -10 -1 M are used for the calculation of efficiency and specific surface conductivity factors

  12. Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

    2012-07-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O H O hydrogen bonds. In contrast, the HCO 3 anions form dimers, .HCO 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  13. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)

  14. Hydrogen retention in Li and Li-C-O films

    Science.gov (United States)

    Buzi, Luxherta; Nelson, Andrew O.; Yang, Yuxin; Kaita, Robert; Koel, Bruce E.

    2017-10-01

    The efficiency of Li in binding H isotopes has led to reduced recycling in magnetic fusion devices and improved plasma performance. Since elemental Li surfaces are challenging to maintain in fusion devices due to the presence of impurities, parameterizing and understanding the mechanisms for H retention in various Li compounds (Li-C-O), in addition to pure Li, is crucial for Li plasma-facing material applications. To determine H retention in Li and Li-C-O films, measurements were done under ultrahigh vacuum conditions using temperature programmed desorption (TPD). Thin Li films (20 monolayers) were deposited on a nickel single crystal substrate and irradiated with 500 eV H2+ions at surface temperatures from 90K to 520K. Initial measurements on Li and Li-O films showed that the retention was comparable and dropped exponentially with surface temperature, from 95% at 90 K to 35% at 520 K. Auger electron spectroscopy and TPD showed that H was retained as lithium hydride (LiH) in pure Li and as lithium hydroxide (LiOH) in Li2O, which decomposed to H2O and Li2O at temperatures higher than 470K. H retention in Li-C and Li-C-O films will be determined over a similar temperature range, and the sputtering rate of these layers with H ions will also be reported. This material is based upon work supported by the U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  15. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  16. LiFePO4/polymer/natural graphite: low cost Li-ion batteries

    International Nuclear Information System (INIS)

    Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M

    2004-01-01

    The aging and performance of natural graphite/PEO-based gel electrolyte/LiFePO 4 cells are reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite anode in gel electrolyte containing LiBF4-EC/GBL exhibited high reversible capacity (345 mAh/g) and high coulombic efficiency (91%). The LiFePO 4 cathode in the same gel-polymer exhibited a reversible capacity of 160 mAh/g and 93% coulombic efficiency. Better performance was obtained at high-rate discharge with 6% carbon additive in the cathode, however the graphite anode performance suffers at high rate. The Li-ion gel polymer battery shows a capacity fade of 13% after 180 cycles and has poor performance at low temperature due to low diffusion of the lithium to the graphite in the GBL system. The LiFePO 4 /gel/Li system has an excellent rate capacity. LiFePO 4 cathode material is suitable for HEV application

  17. Circular magnetic dichroism of the Fa center adsorption in KCl doped with Li and Na

    International Nuclear Information System (INIS)

    Baldacchini, G.; Botti, S.; Grassano, U.M.

    1990-01-01

    The spin-orbit structure of F A in KCl:Li and KCl:Na have been studied by means of the magnetic circular dichroism. Due to their C 4V , symmetry the F A centers have two different spin-orbit parameters, Δ * and Δ * , which only in the KCl:Li case follow the relation: Δ * F A centers have been determined using the method of moment

  18. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    International Nuclear Information System (INIS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-01-01

    Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  19. Hyperenhanced Li - Li Chemonuclear Fusion

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu

    2006-01-01

    A new fusion scheme, the Li - Li chemonuclear fusion is presented, where nuclear fusion reactions are linked to atomic fusion reactions. Lithium ions are implanted on a surface of metallic Li liquid at an energy of nuclear stopping (several keV/amu). The ions collide slowly with liquid Li atoms without electronic excitation and lead to the Li - Li chemonuclear fusion through the formation of united atoms or quasi-C atoms at their turning points. Inside the quasi-atoms twin nuclei are confined within respective sub-pm scale spheres of zero-point oscillation and form themselves into ultradense intermediate nuclear complexes. Their density is million times as large as the solar interior density and close to densities of white dwarfs or white-dwarf progenitors of supernovae. This confinement of nuclear complexes is enormously prolonged towards the pycno-nuclear reactions induced by the zero-point oscillation under the presence of thermodynamic force specified by the Gibbs energy change in the quasi-atom formation in the liquid. Resulted rate enhancement of nuclear fusion by a factor of 10 48 has been anticipated. The enhancement is also argued in connection with the Bose-Einstein condensation

  20. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings

    International Nuclear Information System (INIS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Liang, Zhiyong

    2014-01-01

    By a simple wet ball-milling method, Li 3 VO 4 -coated LiMnPO 4 samples were prepared successfully for the first time. The thin Li 3 VO 4 coating layer with a three-dimensional Li + -ion transport path and high mobility of Li + -ion strongly adhered to the LiMnPO 4 material reduces Mn dissolution and increases the Li + flux through the surface of the LiMnPO 4 itself by preventing formation of phases on the surface that would normally block Li + as well as Li + -ion permeation into the surface of the LiMnPO 4 electrode and therefore improve the rate capability as well as the cycling stability of LiMnPO 4 materials. The electrochemical testing shows that the 5% Li 3 VO 4 -coated LiMnPO 4 sample shows a clear voltage plateau in the charge curves and a much higher reversible capacity at different discharge rates compared with the pristine LiMnPO 4 . EIS results also show that the surface charge transfer resistance and Warburg impedance of the Li 3 VO 4 -coated LiMnPO 4 samples significantly decreased. The surface charge transfer resistance and Warburg impedance for the pristine LiMnPO 4 are 955.1 Ω and 400.3 Ω, respectively. While, for the 5% Li 3 VO 4 -coated LiMnPO 4 , the value are only 400.2 Ω and 283.6 Ω, respectively. The surface charge transfer resistance decreases more than half. All of the improved performance will be favorable for application of the LiMnPO 4 in high-power lithium ion batteries

  1. Sodium storage capability of spinel Li4Mn5O12

    International Nuclear Information System (INIS)

    Zhang, Jiaolong; Wang, Wenhui; Li, Yingshun; Yu, Denis Y.W.

    2015-01-01

    Highlights: • Electrochemical behavior of spinel Li 4 Mn 5 O 12 is examined in Na-ion battery. • A capacity of 120.7 mAh g −1 is obtained during the first sodiation process. • Na storage performance is found to be strongly dependent on particle size. • Ion-exchange between Li ions and Na ions occurs in Li 4 Mn 5 O 12 structure upon cycling. • Loss of crystallinity with cycling, leading to capacity fading. - Abstract: Spinel Li 4 Mn 5 O 12 , a well-known 3 V Li-ion battery (LIB) material with excellent cycling stability and good rate capability, is examined as Na-ion battery (NIB) cathode for the first time. Electrochemical studies clearly show that Na ions can be reversibly inserted into and extracted from the three-dimensional spinel structure. However, unlike in LIB, the available capacity in NIB is strongly dependent on the particle size and current rate due to the sluggish Na-ion transport in solid phase. Cycle performance of Li 4 Mn 5 O 12 in NIB is also inferior to that in LIB. Ex-situ X-ray diffraction study indicates a gradual loss of crystallinity with cycling, and that the crystal lattice undergoes an irreversible expansion during the initial 20 cycles. Inductively coupled plasma spectroscopy shows a decrease of Li/Mn ratio in Li 4 Mn 5 O 12 with cycling. The results suggest that Li ions are removed from the material during the charging process. The charge-discharge mechanism is also discussed in the paper.

  2. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  3. Mechanistic studies related to the safety of Li/SOCl2 cells

    Science.gov (United States)

    Carter, B. J.; Williams, R. M.; Tsay, F. D.; Rodriguez, A.; Kim, S.; Evans, M. M.; Frank, H.

    1985-01-01

    Mechanistic studies of the reactions in Li-SOCl2 cells have been undertaken to improve understanding of the safety problems of these cells. The electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been investigated using gas chromatography, electron spin resonance spectroscopy, and infrared spectroscopy. Cl2 and S2Cl2 have been identified as intermediates in the reduction of SOCl2, along with a radical species (g/xx/ = 2.004, g/yy/ = 2.016, g/zz/ = 2.008) and the proposed triplet ground-state dimer of this radical. SO2 and sulfur have been identified as products. Based upon these findings, a mechanism for the electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been proposed, and its implications for safety of Li-SOCl2 cells during discharge to +0.5V at 25-30 C are discussed.

  4. Electrochemical behavior of boron in LiF-NaF-KF- melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakova, E.G.

    1996-01-01

    The electrochemical reduction of B(III) to B(0) in KBF4-LiF-NaF-KF melts has been studied by voltammetric and chronopotentiometric methods, Glassy carbon, Pt, and Ag were used as working electrode materials. Only in the case of Ag was the reduction not complicated by interaction between boron...

  5. Electrochemical Behaviour of a PPy(DBS)/Polyacrylonitrile (PAN):LITF:EC:PC/ Li Cell

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    The electrochemical behaviour of Li rechargeable cells with Polypyrrole (PPy) as the cathode material was investigated using cyclic voltammetry. The PPy used was doped with the large surfactant anion dodecyl benzenesulphonate (DBS-). The cells were constructed with PAN:LiTF:EC:PC gel electrolyte...... with Li as anode. The results indicate that during the first reduction, cations are inserted into the PPy film forming LiDBS neutral salt. During the next oxidation/reduction cycles, the mechanism then switches to anion movement. Cyclic voltammetry studies also verified that complete electrochemical...

  6. Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jianing Liu

    2016-09-01

    Full Text Available The metanephric mesenchyme (MM cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET, the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM. The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM. However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.

  7. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    Science.gov (United States)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  8. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  9. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-01-01

    Abstract Lithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future. PMID:29051856

  10. Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte

    Directory of Open Access Journals (Sweden)

    Wo Dum Jung

    2018-04-01

    Full Text Available We demonstrate that the Li-ion conductivity can be improved by adding a certain amount of Li (x = 0.25–0.5 as a charge carrier to the composition of glass-ceramic Li7+xP3S11. Structural analysis clarified that the structural changes caused by the ratio of ortho-thiophosphate tetrahedra PS43− and pyro-thiophosphate ditetrahedra P2S74− affect the Li-ion conductivity. The ratio of PS43− and P2S74− varies depending on x and the highest Li-ion conductivity (2.5 × 10−3 S cm−1 at x = 0.25. All-solid-state LiNi0.8Co0.15Al0.05O2/Li7.25P3S11/In-metal cell exhibits the discharge capacity of 106.2 mAh g−1. This ion conduction enhancement from excess Li is expected to contribute to the future design of sulfide-type electrolytes.

  11. A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C

    International Nuclear Information System (INIS)

    Wang, Wenhui; Chen, Zhenyu; Zhang, Jiaolong; Dai, Changsong; Li, Jiajie; Ji, Dalong

    2013-01-01

    In order to synthesize pure derivative of rhombohedral Li 3 V 2 (PO 4 ) 3 (LVP), lithium-ion batteries materials Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C (x = 0.03, 0.06, 0.09) and its control, monoclinic Li 3 V 2 (PO 4 ) 3 /C (LVP/C), were prepared by sol–gel method. The samples were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), Raman spectroscopy, and electrochemical methods. The XRD patterns of Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C are in good agreement with that of rhombohedral LVP, which indicates that the Na + –Ni 2+ composite doping can change the structure of monoclinic LVP. All the composite doping samples displayed a single flat plateau at 3.7 V in the charge/discharge voltage profile, which is caused by transformation of multi-phase mechanism to single-phase mechanism. For Li 2.5 Na 0.5 V 1.98 Ni 0.03 (PO 4 ) 3 /C, a specific discharge capacity of 108 mAh g −1 was achieved at a 0.5 C charge rate and a 1 C discharge rate, and a 99.0% retention rate of the initial capacity was obtained after 50 cycles

  12. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  13. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    Science.gov (United States)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  14. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface

    Directory of Open Access Journals (Sweden)

    Borgo Claudemir Adriano

    2004-01-01

    Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.

  15. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  16. Effects of the co-addition of LiSbO3-LiTaO3 on the densification of (Na1/2K1/2)NbO3 lead free ceramics by atmosphere sintering

    International Nuclear Information System (INIS)

    Jiang Na; Fang Bijun; Wu Jian; Du Qingbo

    2011-01-01

    Research highlights: → This manuscript shows a synthesis method that can easily obtain excellent lead-free samples, which is valuable for industrial production. → Pure phase perovskite 0.94(Na 1/2 K 1/2 )NbO 3 -0.03LiSbO 3 -0.03LiTaO 3 (0.94NKN-0.03LS-0.03LT) lead-free piezoelectric ceramics with high relative density, being 94.73%, and excellent integral electrical properties, piezoelectric constant d 33 being 228 pC/N, were prepared by atmosphere sintering method. Which can be attributed to the co-doping of LiSbO 3 -LiTaO 3 . - Abstract: Pure phase perovskite 0.94(Na 1/2 K 1/2 )NbO 3 -0.03LiSbO 3 -0.03LiTaO 3 (0.94NKN-0.03LS-0.03LT) lead-free piezoelectric ceramics were prepared by the conventional solid-state reaction method. Due to the co-addition of LiSbO 3 -LiTaO 3 , the 0.94NKN-0.03LS-0.03LT ceramics prepared by atmosphere sintering at 1040 deg. C exhibit high relative density, being 94.73%, and rather homogenous microstructure. X-ray diffraction (XRD) measurement confirmed that the sintered ceramics exhibit pure tetragonal perovskite structure. The 0.94NKN-0.03LS-0.03LT ceramics exhibit excellent integral electrical properties, in which the value of piezoelectric constant d 33 is 228 pC/N, the electromechanical coupling factors K p and K t are 0.220 and 0.230, respectively, the mechanical quality factor Q m is 32.19, and the remnant polarization P r is 23.06 μC/cm 2 . Such excellent electrical properties are considered as correlating with the high relative density of the synthesized ceramics induced by the co-doping of LiSbO 3 -LiTaO 3 .

  17. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm(sup 2) using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) system exhibited thermal runaway. Thermal analytical tests showed that the Ag(sub 2)CrO(sub 4) cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications

  18. The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates

    Science.gov (United States)

    Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.

    2008-01-01

    Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.

  19. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  20. Thermal analysis and phase diagrams of the LiF BiF3 e NaF BiF3 systems

    International Nuclear Information System (INIS)

    Nakamura, Gerson Hiroshi de Godoy

    2013-01-01

    Investigations of the binary systems LiF-BiF 3 and NaF-BiF 3 were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF 3 ) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF 3 to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF 3 were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF 4 , decomposes into LiF and a liquid phase. The NaF-BiF 3 system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF 3 ) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF 4 was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF 4 , NaBiF 4 and a solid solution of NaF and BiF 3 called I. The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  1. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Lee, Seungho; Balaji, Nagarajan; Ahn, Shihyun; Hussain, Shahzada Qamar; Han, Sangmyeong; Jung, Junhee; Jang, Juyeon; Lee, Yunjung; Yi, Junsin

    2013-01-01

    Highlights: ► We have employed a LiF dielectric layer as a new back-contact electrode. ► Increasing LiF thickness will decrease barrier for electrons transport, thus yield J sc . ► Increasing LiF thickness will reduced shunt leakage and enhanced internal field, thus yield V oc . ► Employing LiF layer, improvement of performance of HIT solar cells up to 17.13%. -- Abstract: To improve the quantum efficiency (QE) and hence the efficiency of the amorphous/crystalline silicon heterojunction solar cell, we have employed a LiF dielectric layer on the rear side. The high dipole moment of the LiF reduces the aluminum electrode's work–function and then lowers the energy barrier at back contact. This lower energy barrier height helps to enhance both the operating voltage and the QE at longer wavelength region, in turn improves the open-circuit voltage (V oc ), short-circuit current density (J sc ), and then overall cell efficiency. With optimized LiF layer thickness of 20 nm, 1 cm 2 heterojunction with intrinsic thin layer (HIT) solar cells were produced with industry-compatible process, yielding V oc of 690 mV, J sc of 33.62 mA/cm 2 , and cell efficiencies of 17.13%. Therefore LiF/Al electrode on rear side is proposed as an alternate back electrode for high efficiency HIT solar cells

  2. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  3. Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy

    International Nuclear Information System (INIS)

    Pratap, Arun; Lad, Kirit N.; Raval, K.G.

    2004-01-01

    The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born-Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li 0.61 Na 0.39 alloy. Apart from the phonon spectra, the Ashcroft-Langreth structure factors in the alloy are derived in the Percus-Yevick approximation. (author)

  4. On the roles of the dopants in LiF: Mg,Cu,Na,Si thermoluminescent material

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Chang, S. Y.; Chung, K. S.; Choe, H. S.

    2005-01-01

    In this paper, some results of the study on the roles of the dopants in the LiF:Mg,Cu,Na,Si thermoluminescent (TL) material that was developed at the Korea Atomic Energy Research Inst. for radiation protection are presented. Although there have been many studies to investigate the roles of the dopants in LiF:Mg,Cu,P TL material in the TL process, there are some discrepancies in the understanding of the roles of Cu and P between various researchers. In case of LiF:Mg,Cu,Na,Si TL material, there are a few studies on the roles of the dopants. Three kinds of samples in each of which one dopant is excluded, and the optimised sample, were prepared for this study. The measurements and analysis of the three-dimensional TL spectra, based on the temperature, wavelength and intensity, and the glow curves for those samples are used in this study. The results show that Mg plays a role in the trapping of the charge carriers and Cu plays a role in the luminescence recombination process; however, the effect of Na and Si on the glow curve structure and the TL emission spectra is much less than that of Mg and Cu. It is considered that Na and Si each plays a role in the improvement of the luminescence efficiency. (authors)

  5. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.

    Science.gov (United States)

    Walrafen, George E; Douglas, Rudolph T W

    2006-03-21

    High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.

  6. Evaluation of Li3N accumulation in a fused LiCl/Li salt matrix

    International Nuclear Information System (INIS)

    Eberle, C. S.

    1998-01-01

    Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research a pilot scale of the preprocessing stage is being designed by ANL-W to demonstrate the in situ hot cell capability of the chemical reduction stage. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent LWR uranium oxide fuel. A simple analysis was performed in which the sources of impurities in the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hotcell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix and the mass rate for the device was determined

  7. Knight shift of 23Na and 7Li nuclei in liquid sodium-lithium alloys

    International Nuclear Information System (INIS)

    Feitsma, P.D.

    1977-01-01

    The Knight shift of 23 Na and 7 Li nuclei in liquid sodium-lithium alloys has been measured. Some aspects of the theoretical interpretation of the Knight shift within the diffraction model, are clarified

  8. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Lee, Seungho [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Balaji, Nagarajan [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Ahn, Shihyun [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Hussain, Shahzada Qamar [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Han, Sangmyeong [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Jang, Juyeon; Lee, Yunjung [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2013-05-15

    Highlights: ► We have employed a LiF dielectric layer as a new back-contact electrode. ► Increasing LiF thickness will decrease barrier for electrons transport, thus yield J{sub sc}. ► Increasing LiF thickness will reduced shunt leakage and enhanced internal field, thus yield V{sub oc}. ► Employing LiF layer, improvement of performance of HIT solar cells up to 17.13%. -- Abstract: To improve the quantum efficiency (QE) and hence the efficiency of the amorphous/crystalline silicon heterojunction solar cell, we have employed a LiF dielectric layer on the rear side. The high dipole moment of the LiF reduces the aluminum electrode's work–function and then lowers the energy barrier at back contact. This lower energy barrier height helps to enhance both the operating voltage and the QE at longer wavelength region, in turn improves the open-circuit voltage (V{sub oc}), short-circuit current density (J{sub sc}), and then overall cell efficiency. With optimized LiF layer thickness of 20 nm, 1 cm{sup 2} heterojunction with intrinsic thin layer (HIT) solar cells were produced with industry-compatible process, yielding V{sub oc} of 690 mV, J{sub sc} of 33.62 mA/cm{sup 2}, and cell efficiencies of 17.13%. Therefore LiF/Al electrode on rear side is proposed as an alternate back electrode for high efficiency HIT solar cells.

  9. Lithium Insertion in LiCr3O8, NaCr3O8, and KCr3O8 at Room Temperature and at 125°C

    DEFF Research Database (Denmark)

    Koksbang, R.; Fauteux, D.; Norby, P.

    1989-01-01

    Lithium insertion and deinsertion reactions have been carried out with LiCr3O8, NaCr3O8, and KCr3O8 chemically andelectrochemically at room temperature and at 125°C. The electrochemical experiments were performed with a nonaqueousliquid electrolyte at room temperature and with a polymer electroly...... is close to 4Li/NaCr3O8 and 1.3Li/KCr3O8.Lithium ion diffusion coefficients are similar for the two compounds in the comparable composition range.Thermally, the fully lithiated compounds appear to be as stable as the pristine materials.......Lithium insertion and deinsertion reactions have been carried out with LiCr3O8, NaCr3O8, and KCr3O8 chemically andelectrochemically at room temperature and at 125°C. The electrochemical experiments were performed with a nonaqueousliquid electrolyte at room temperature and with a polymer electrolyte....... At elevated temperatures, the isostructural compounds NaCr3O8 and KCr3O8 are able to accommodate morethan 4Li/MCr3O8. During this process, minor structural changes are observed. At room temperature, NaCr3O8 and KCr3O8also accommodate Li topotactically, but the maximum number of Li inserted per formula...

  10. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Role of LiNO3 in rechargeable lithium/sulfur battery

    International Nuclear Information System (INIS)

    Zhang, Sheng S.

    2012-01-01

    Highlights: ► Effect of LiNO 3 on the Li anode and cathode of Li/S battery is studied, respectively. ► LiNO 3 participates in the formation of a stable passivation film on the Li anode surface. ► LiNO 3 may be reduced irreversibly on the cathode, affecting Li/S battery performance. ► Discharge mechanism of Li/S battery is explained from the viewpoint of phase transition. - Abstract: In this work we study the effect of LiNO 3 on the Li anode and sulfur cathode, respectively, of Li/S battery by using a Li/Li symmetric cell and a liquid Li/Li 2 S 9 cell. On the Li anode, LiNO 3 participates in the formation of a stable passivation film, and the resulting passivation film grows infinitely with the consumption of LiNO 3 . The passivation film formed with LiNO 3 is known to effectively suppress the redox shuttle of the dissolved lithium polysulfides on Li anode. On the cathode, LiNO 3 undergoes a large and irreversible reduction starting at 1.6 V in the first discharge, and the irreversible reduction disappears in the subsequent cycles. Moreover, the insoluble reduction products of LiNO 3 on the cathode adversely affect the redox reversibility of sulfur cathode. These results indicate that both the Li anode and sulfur cathode consume LiNO 3 , and that the best benefit of LiNO 3 to Li/S battery occurs at the potentials higher than 1.6 V. By limiting the irreversible reduction of LiNO 3 on the cathode, we have shown that the Li/S cell with a 0.2 m LiNO 3 as the co-salt can provide a stable capacity of ∼500 mAh g −1 .

  12. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    International Nuclear Information System (INIS)

    Mohammadi, Kh.; Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-01-01

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps

  13. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  14. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries

    Science.gov (United States)

    Zaghib, K.; Dubé, J.; Dallaire, A.; Galoustov, K.; Guerfi, A.; Ramanathan, M.; Benmayza, A.; Prakash, J.; Mauger, A.; Julien, C. M.

    2012-12-01

    The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89% of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18,650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3% coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid Pulse Power Characterization (HPPC) test performed on LiFePO4 18,650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an Isothermal Microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage.

  15. Mass of 11Li from the 1H(11Li,9Li)3H reaction

    International Nuclear Information System (INIS)

    Roger, T.; Savajols, H.; Mittig, W.; Caamano, M.; Roussel-Chomaz, P.; Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.

    2009-01-01

    The mass of 11 Li has been determined from Q-value measurements of the 1 H( 11 Li, 9 Li) 3 H reaction. The experiment was performed at TRIUMF laboratory with the GANIL active target MAYA. Energy-energy and angle-angle kinematics reconstruction give a Q value of 8.119(22) MeV for the reaction. The derived 11 Li two-neutron separation energy is S 2n =363(22) keV

  16. Theoretical Study on Cyclopeptides as the Nanocarriers for Li+, Na+, K+ and F−, Cl−, Br−

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2015-01-01

    Full Text Available The interaction process between a series of cyclopeptide compounds cyclo(Glyn  (n=4,6,8 and monovalent ions (Li+, Na+, K+, F−, Cl−, and Br− was studied using theoretical calculation. The mechanism of combination between the cyclo(Glyn and ions was discussed through binding energy, Mulliken electron population, and hydrogen bond. It was found that for the same cyclopeptide the binding energy has the order of cyclo(Glyn–Li+ > cyclo(Glyn–Na+ > cyclo(Glyn–K+ and cyclo(Glyn–F− > cyclo(Glyn–Br− > cyclo(Glyn–Cl−. The binding energy manifests the stable complex of cyclo(Glyn and ions can be formed, and the different energy shows the potential use of cyclo(Glyn as nanocarriers for metal ions or the extractant for ions separation.

  17. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    OpenAIRE

    Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

    2006-01-01

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 oK in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct t...

  18. Functionalized NbS2 as cathode for Li- and Na-ion batteries

    KAUST Repository

    Zhu, Jiajie

    2017-07-27

    Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials (∼600 mW h/g). In addition, low diffusion barriers enable high cycling rates.

  19. Functionalized NbS2 as cathode for Li- and Na-ion batteries

    KAUST Repository

    Zhu, Jiajie; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2017-01-01

    Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials (∼600 mW h/g). In addition, low diffusion barriers enable high cycling rates.

  20. Thermal abuse performance of high-power 18650 Li-ion cells

    Science.gov (United States)

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  1. Pre-main-sequence depletion of Li-6 and Li-7

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Michaud, G.

    1989-01-01

    Depletion of Li-6 and Li-7 during premain-sequence contraction has been calculated for several evolutionary sequences. Slightly greater Li-7 depletion was found than by other recent workers. On the premain sequence, Li-6 is depleted by a factor of at least 10 in the present models for stars with T(eff) lower than 6800 K on the main sequence. Because of the shorter destruction time scale for Li-6 as compared to Li-7, the determination of the abundances of these two isotopes would place strict constraints on the structure of premain-sequence stars. 39 refs

  2. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  3. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  4. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  5. Li-promoted sodium zirconate as a CO{sub 2} absorbent at high temperatures; Zirconato de sodio promovido con Li como absorbente de CO{sub 2} a alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Guzman Velderrain, V.; Barraza Jimenez, D.; Lardizabal Gutierrez, D.; Delgado Vigil, D.; Salinas Gutierrez, J.; Lopez Ortiz, A.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico)]. E-mail: virginia.collins@cimav.edu.mx

    2009-09-15

    In processes to produce hydrogen from fossil fuels, CO{sub 2} capture at high temperatures has played a crucial role in their conversion into energy-efficient processes. One example is steam reformer methane improved with absorption (SER), where CO{sub 2} capture at high temperatures (600 degrees Celsius) provides an energy savings of {approx_equal} 23% over conventional reformer processes (SMR). An important part of this concept is solid CO{sub 2} absorption, which must have adequate absorption capacity and rapid absorption/regeneration kinetics. Recently, synthetic CO{sub 2} absorbents have been developed that consist of mixed Li oxides. Previous studies conducted in our laboratory report that the absorption/regeneration properties of sodium zirconate (Na{sub 2}ZrO{sub 3}) are higher than Li-oxides. The objective of the present work is to increase the absorption capacity of Na{sub 2}ZrO{sub 3} at high temperatures without significantly affecting the kinetics of its absorption and regeneration, with Li promotion. The Na{sub 2}ZrO{sub 3} was synthesized by reaction in a solid state and impregnated with LiNO{sub 3} at different Li/Na ratios: 0, 0.03, 0.05, 0.1 and 0.25 (NZ, NZL3, NZL5, NZL10, NZL25). The characterization consisted of XRD and SEM. The evaluation as an absorbent was performed with TGA at 600 degrees Celsius in 80% CO{sub 2} (absorption) and 800 degrees Celsius in air (regeneration). While XRD shows only the Na{sub 2}ZrO{sub 3} structure in all the samples, the promoted samples present a signal shift with respect to Na{sub 2}ZrO{sub 3}, which is attributed to the substitution of Na atoms with Li. The TGA results indicate that the addition of Li to the Na{sub 2}ZrO{sub 3} structure does not significantly modify the absorption or regeneration kinetics. As the Li contents in the Na{sub 2}ZrO{sub 3} increase, the amount of CO{sub 2} capture increases up to a limit between 10 and 25% mol of Li. This is due to the displaced sodium presumably tending to form

  6. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  7. Crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses; Li2O-SiO2, Na2O-SiO2, Na2O-CaO-SiO2 kei glass no kessho sekishutsu kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Otake, J.; Nagasaka, T.; Hino, M. [Tohoku University, Sendai (Japan)

    1998-06-01

    It has been known that crystallization of mold powder is effective on the disturbance of heat transfer between mold and solidified shell in production of middle carbon steel slabs in continuous casting process. But it has not yet been made clear which composition of mold powder is the most suitable for crystallization. The crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses was observed by differential thermal analysis (DTA) and hot-thermocouple methods with DTA in the present work. As a result, addition of alkaline metal and alkaline earth metal oxides to SiO2 increased the critical cooling rate for glass formation in binary system of Li2O-SiO2 and Na2O-SiO2 and Li2O-SiO2 system crystallized easier than Na2O-SiO2 system. In ternary system of Na2O-CaO-SiO2, addition of Na2O hurried the critical cooling rate at CaO/SiO2=0.93 mass ratio, but the rate was almost constant in the composition range of more than 15 mass% Na2O. The slag of CaO/SiO2=0.93 made the rate faster than the slag of CaO/SiO2=0.47 at constant content of 10mass% Na2O. 17 refs., 10 figs., 3 tabs.

  8. Efeito da adição de Na2O na viscosidade e devitrificação do vidro obtido a partir de cinzas volantes e Li2O Influence of Na2O on the viscosity and devitrification behavior of glasses obtained from fly ashes and Li2O

    Directory of Open Access Journals (Sweden)

    Etney Neves

    1998-07-01

    Full Text Available Glass-ceramic materials can be produced by the addition of LiO2 to fly ashes disposible in Southern Brazil. These glass-ceramics are based on the Al2O3-SiO2-Li 2O system. The high viscosity of the obtained glasses, however, makes forming useful articles with these materials difficult. In this study we investigate the effect of adding low cost Na2CO3 on the melt viscosity and on the nature of the developed crystalline phases. It was intended that the ultimate crystalline phase (LiAlSi3O8 should not be altered. With additions up to 3 wt. % Na2CO3, the viscosity was apparently lowered and no new crystalline phase were detected.

  9. Electrochemical studies on electrospun Li(Li1/3Ti5/3)O4 grains as an anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Yongzhi; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishna, S.

    2012-01-01

    Highlights: ► We report (Li(Li 1/3 Ti 5/3 )O 4 ) (LTO) obtained via electrospinning and followed by heat treatment. ► Electrochemical studies on nano-LTO showed a reversible capacity of 165(±3) mAh g −1 and 78(±3) mAh g −1 at a current rate of 0.2 C and 10 C, respectively. ► Electrode kinetics studies of LTO were carried out the end of 380 cycle using GITT and EIS techniques. - Abstract: Li(Li 1/3 Ti 5/3 )O 4 or (Li 4 Ti 5 O 12 ) (LTO) grains are prepared via electrospinning a solution containing lithium acetate, titanium tetra(IV)-isopropoxide, polyvinyl acetate and acetic acid in N,N-dimethyl-formamide, followed by a subsequent sintering process. The structures and morphology were characterized by X-ray diffraction, scanning and transmission microscopy. Coin-type cells were assembled to test the electrochemical performance was evaluated using galvanostatic cycling at room temperature, in the cycling range, 1.0–2.8 V. The Li-cycling results showed characteristic discharge-charge plateaus at 1.55 and 1.8 V vs. Li/Li + , respectively. Electrospun LTO showed a reversible capacity of 165(±3) mAh g −1 at the end of 10th cycle at a current rate of 0.2 C. The later studies on rate capacities and cycling performance of LTO grains demonstrate good rate performance and long term cycling stability. Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) studied were carried out at end of 381st and 382nd cycle to understand the electrode kinetics.

  10. Enhanced Lithium Ion Transport by Superionic Pathways Formed on the Surface of Two-dimensional Structured Li0.85Na0.15V3O8 for High-Performance Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Lu, Xuena; Shang, Yu; Zhang, Sen; Deng, Chao

    2015-01-01

    Highlights: • Li 0.85 Na 0.15 V 3 O 8 nanosheet with superionic conductive layer was constructed. • Li x V 2 O 5 surface layer provides facile pathways for lithium migration. • Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability. - Abstract: Poor ion transport and rate capability are the main challenges for LiV 3 O 8 as cathode material for lithium ion batteries. Here we report a novel strategy for enhancing lithium ion transport by building superionic pathways on the surface of Li 0.85 Na 0.15 V 3 O 8 nanosheet. The two-dimensional Li 0.85 Na 0.15 V 3 O 8 nanoparticle with an ion conductive layer of Li x V 2 O 5 on its surface is constructed by a modified sol–gel strategy with carefully controlled sodium incorporation and elements stoichiometry. Ultrathin Li x V 2 O 5 surface layer not only provides facile pathways for lithium migration, but also increases the structure stability during cycling. The Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability of 172.3 mAh g −1 at 5C and excellent cycling stability of 98.9% over fifty cycles. This superior electrochemical property is attributed to the occupation of lithium site by Na + in LiV 3 O 8 host crystals and the surface superionic pathways of Li x V 2 O 5 phase. Therefore, the advantages of both high ion transport and the structure stabilization in present study put forward a new strategy for achieving high-performance LiV 3 O 8 electrode material with tailored nanoarchitecture

  11. Kinetic Monte Carlo Study of Li Intercalation in LiFePO4.

    Science.gov (United States)

    Xiao, Penghao; Henkelman, Graeme

    2018-01-23

    Even as a commercial cathode material, LiFePO 4 remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO 4 given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO 4 , include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in Li x FePO 4 without parameters from experiments. Our simulations reveal that an ordered Li 0.5 FePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO 4 and FePO 4 phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO 4 particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.

  12. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    Science.gov (United States)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  13. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    Science.gov (United States)

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  14. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  15. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  16. Ionic ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) stabilized by the covalent Si–N bonding: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijun [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Ren, Jiadong, E-mail: jdren@ysu.edu.cn [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu, Lailei [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Jingwu, E-mail: zjw@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-01-15

    The structural, elastic and electronic properties of LiSi{sub 2}N{sub 3} and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi{sub 2}N{sub 3} from Li, Na, K to Rb is found to be determined by the bond angle of Si–N1–Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. Interestingly, the analysis of electronic structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3} phase. Among ASi{sub 2}N{sub 3} phases, there is a relatively high ionicity in NaSi{sub 2}N{sub 3}; the Si–N bond strength in [Si{sub 2}N{sub 3}]{sup −} net for KSi{sub 2}N{sub 3} and RbSi{sub 2}N{sub 3} is comparable to LiSi{sub 2}N{sub 3}, but stronger than NaSi{sub 2}N{sub 3}. - Graphic abstract: Universal trend of structural and electronic properties in alkaline metal silicon nitrides, ASi{sub 2}N{sub 3}, A=Li, Na, K and Rb. - Highlights: • Trend in structure, electronic and mechanical properties of ASi{sub 2}N{sub 3} (A=Li-Rb) were predicted. • Lattice expansion of ASi{sub 2}N{sub 3} induced by the bond angle of Si–N1–Si was found. • Calculated band gap decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. • Covalent Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3}.

  17. New thermally stable red-emitting phosphors Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K)

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, F.B., E-mail: fbxiong@xmut.edu.cn [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Fujian Provincial Key Laboratory of Optoelectronic Information Materials and Devices, Xiamen University of Technology, Xiamen 361024 (China); Lin, H.F.; Xu, Y.C.; Shen, H.X. [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Zhu, W.Z. [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Fujian Provincial Key Laboratory of Optoelectronic Information Materials and Devices, Xiamen University of Technology, Xiamen 361024 (China)

    2016-09-15

    New red-emitting phosphors Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) in pure phase were synthesized via high-temperature solid-state reaction. Luminescent properties of those phosphors were characterized in detail. Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) can be excited under the range of 430–500 nm excitation, which covers the emission spectra of blue InGaN chip, exhibits pure red emission bands centered at 605 and 662 nm. The alkali-metal Li{sup +}, Na{sup +}, or K{sup +} acting as charge compensators can improve fluorescent emission intensities of Pr{sup 3+} ions, and Pr{sup 3+}, Na{sup +}:SrB{sub 4}O{sub 7} shows the strongest emission intensities among those phosphors. Concentration quenching could be attributed to electric dipole–dipole interaction among Pr{sup 3+} ions. The temperature-dependent luminescence indicated Pr{sup 3+}, Na{sup +}:SrB{sub 4}O{sub 7} shows highly thermal stability. Those work suggests that Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) as thermally stable red-emitting phosphor might be potentially applied in WLED.

  18. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  19. Pressure-composition isotherms and thermodynamic properties of TiF3-enhanced Na2LiAlH6

    International Nuclear Information System (INIS)

    Fossdal, A.; Brinks, H.W.; Fonnelop, J.E.; Hauback, B.C.

    2005-01-01

    The mixed alanate Na 2 LiAlH 6 was prepared by ball-milling and subsequent heat-treatment under H 2 pressure. After the synthesis, 2 mol% TiF 3 was added by ball-milling. Pressure-composition isotherms were measured for the Ti-enhanced material in the temperature range of 170-250 deg C. A van't Hoff plot was constructed using the equilibrium desorption plateau pressures. From this plot, a dissociation enthalpy of 56.4 ± 0.4 kJ/mol H 2 and a corresponding entropy of 137.9 ± 0.7 J/K mol H 2 was found for Na 2 LiAlH 6

  20. EPR experiments in LiTbF4, LiHoF4, and LiErF4 at submillimeter frequencies

    DEFF Research Database (Denmark)

    Magariño, J.; Tuchendler, J.; Beauvillain, P.

    1980-01-01

    Electron-paramagnetic-resonance experiments in LiTbF4, LiHoF4, and LiErF4 have been performed at frequencies between 70 and 600 GHz, in magnetic fields up to 60 kG and in the temperature range 1.4......Electron-paramagnetic-resonance experiments in LiTbF4, LiHoF4, and LiErF4 have been performed at frequencies between 70 and 600 GHz, in magnetic fields up to 60 kG and in the temperature range 1.4...

  1. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  2. Investigations into the fast ionic conductors γ-CuBr, Li2S, Na2S, Ba2NH, NaTaN2 and Li3HoCl6 by means of neutron scattering

    International Nuclear Information System (INIS)

    Altorfer, F.

    1994-01-01

    The main topic of this work was the investigation of ionic diffusion in solids by means of neutron scattering. Experiments were carried out on the antifluorites Li 2 S, Na 2 S and γ-CuBr (zinc-blende type) as well as on Barium-Nitride-Hydride Ba 2 NH, NaTaN 2 and Li 3 HoCl 6 which represent three-and two-dimensional ionic conductors, respectively. In the sulphur based antifluorites Li 2 S and Na 2 S the occupation of the interstitial empty cube site by cations occurs at elevated temperatures. The temperature-dependence of the diffusion process has been investigated by quasielastic, incoherent neutron scattering. The cations hop between their regular lattice sites and the interstitial empty cube site, whereas the sulphur ions vibrate in good approximation harmonically even at high temperatures. The jump vectors define a three-dimensional net of possible cation paths through the crystal. The analysis of quasielastic scattering experiments on a Li 2 S single crystal enabled us to determine the jump vectors and the jump rates 1/τ. The temperature dependence of the anharmonic contributions to the copper structure factor was the main point in our neutron diffraction experiments on γ-CuBr. It could be shown that the copper density function deviates strongly from the isotropic form with increasing temperature. Barium-Nitride-Hydride is one of the few documented H - -ionic conductors. The electronic part of the ds-conductivity is only 1/10000 of the ionic contribution. Since Ba 2 NH is a layer compound, where H - and N 3- layers alternate along the c-axis, the probability of jumps out of the plane is suppressed in favour of in plane jumps. This compound is therefore a model system in which two-dimensional diffusion can be studied and in fact the analysis of the quasielastic data proved that the H-diffusion is caused by jumps between regular H - lattice sites. (author) figs., tabs., refs

  3. Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications

    Directory of Open Access Journals (Sweden)

    Jessica Manzi

    2015-12-01

    Full Text Available Olivine-type lithium metal phosphates (LiMPO4 are promising cathode materials for lithium-ion batteries. LiFePO4 (LFP is commonly used in commercial Li-ion cells but the Fe3+/Fe2+ couple can be usefully substituted with Mn3+/Mn2+, Co3+/Co2+, or Ni3+/Ni2+, in order to obtain higher redox potentials. In this communication we report a systematic analysis of the synthesis condition of LiCoPO4 (LCP using a solvo-thermal route at low temperature, the latter being a valuable candidate to overcome the theoretical performances of LFP. In fact, LCP shows higher working potential (4.8 V vs. 3.6 V compared to LFP and similar theoretical capacity (167 mAh·g−1. Our goal is to show the effect of the synthesis condition of the ability of LCP to reversibly cycle lithium in electrochemical cells. LCP samples have been prepared through a solvo-thermal method in aqueous-non aqueous solvent blends. Different Co2+ salts have been used to study the effect of the anion on the crystal growth as well as the effect of solution acidity, temperature and reaction time. Materials properties have been characterized by Fast-Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopies. The correlation between structure/morphology and electrochemical performances has been investigated by galvanostatic charge-discharge cycles.

  4. Textured and tungsten-bronze-niobate-doped (K,Na,Li)(Nb,Ta)O3 piezoceramic materials

    International Nuclear Information System (INIS)

    Soller, Thomas; Bathelt, Robert; Benkert, Katrin; Bodinger, Hermann; Schuh, Carsten; Schlenkrich, Falko

    2010-01-01

    In this study, the effects of an alkaline-earth niobate doping in tungsten-bronze (TB) stoichiometry on the piezoelectric properties and the phase transition temperatures of lead-free (K,Na,Li)(Nb,Ta)O 3 ceramics were investigated. In particular, the TB compounds barium niobate (BN), barium sodium niobate (BNN) and strontium calcium sodium niobate (SCNN) were investigated. The TB-modified ceramics show promising piezoelectric properties with large-signal piezo coefficients, d 33 * lose to 400 pm/V, planar coupling coefficients, k p , up to 0.45 and Curie temperatures of approximately 310 .deg. C. In addition, the effect of texturing on the undoped (K,Na,Li)(Nb,Ta)O 3 base composition via templated grain growth (TGG) with microcrystalline NaNbO 3 templates was examined. Lotgering factors up to 81% and strain enhancements by a factor 1.5 with large-signal values of d 33 * up to 550 pm/V could be achieved in the textured samples.

  5. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  6. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  7. Ultralong Lifespan and Ultrafast Li Storage: Single-Crystal LiFePO4 Nanomeshes.

    Science.gov (United States)

    Zhang, Yan; Zhang, Hui Juan; Feng, Yang Yang; Fang, Ling; Wang, Yu

    2016-01-27

    A novel LiFePO4 material, in the shape of a nanomesh, has been rationally designed and synthesized based on the low crystal-mismatch strategy. The LiFePO4 nanomesh possesses several advantages in morphology and crystal structure, including a mesoporous structure, its crystal orientation that is along the [010] direction, and a shortened Li-ion diffusion path. These properties are favorable for their application as cathode in Li-ion batteries, as these will accelerate the Li-ion diffusion rate, improve the Li-ion exchange between the LiFePO4 nanomesh and the electrolyte, and reduce the Li-ion capacitive behavior during Li intercalation. So the LiFePO4 nanomesh exhibits a high specific capacity, enhanced rate capability, and strengthened cyclability. The method developed here can also be extended to other similar systems, for instance, LiMnPO4 , LiCoPO4 , and LiNiPO4 , and may find more applications in the designed synthesis of functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and structure of Na-Li-Si-Al-P-O-N glasses prepared by melt nitridation using NH3

    International Nuclear Information System (INIS)

    Kidar, A.; Pomeroy, M.J.; Hampshire, S.; Mercier, C.; Leriche, A.; Revel, B.

    2012-01-01

    Na-Li-Si-Al-P-O-N glasses have been prepared by nitridation of a pre-synthesized Na 2 O-Li 2 O-SiO 2 -P 2 O 5 -Al 2 O 3 glass under anhydrous ammonia. Nitrogen for oxygen substitution increases the network connectivity leading to increases in microhardness and glass transition temperature. Raman and 31 P MAS-NMR spectroscopy indicate sequential nitridation reactions forming PO 3 N and PO 2 N 2 species. The data collected so far show no evidence of N/O substitutions in the silicate sub-network. (authors)

  9. Plasmon response in K, Na and Li clusters: systematics using the separable random-phase approximation with pseudo-Hamiltonians

    International Nuclear Information System (INIS)

    Kleinig, W.; Nesterenko, V.O.; Reinhard, P.-G.; Serra, Ll.

    1998-01-01

    The systematics of the plasmon response in spherical K, Na and Li clusters in a wide size region (8≤N≤440) is studied. We have considered two simplifying approximations whose validity has been established previously. First, a separable approach to the random-phase approximation is used. This involves an expansion of the residual interaction into a sum of separable terms until convergence is reached. Second, the electron-ion interaction is modelled by using the pseudo-Hamiltonian jellium model (MHJM) which includes nonlocal effects by means of realistic atomic pseudo-Hamiltonians. In cases where nonlocal effects are negligible the Structure Averaged Jellium Model (SAJM) has been used. Good agreement with available experimental data is achieved for K, Na (using the SAJM) and small Li clusters (invoking the PHJM). The trends for peak position and width are generally well reproduced, even up to details of the Landau fragmentation in several clusters. Less good agreement, however, is found for large Li clusters. This remains an open question

  10. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    DEFF Research Database (Denmark)

    Viswanathan, V.; Thygesen, Kristian Sommer; Hummelshøj, J.S.

    2011-01-01

    Non-aqueous Li-air or Li-O2 cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden...... death arises from limited charge transport through the growing Li 2O2 film to the Li2O2-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li2O 2-electrolyte interface. We report both electrochemical experiments...... using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li2O2 films produced during Li-O 2 discharge. Both experiment and theory show a sudden death in charge transport when film thickness is ∼5 to 10 nm...

  11. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

    Science.gov (United States)

    Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi

    2015-06-03

    One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

  12. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems.

    Science.gov (United States)

    Meini, Stefano; Elazari, Ran; Rosenman, Ariel; Garsuch, Arnd; Aurbach, Doron

    2014-03-06

    The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

  13. Hydrothermal synthesis of Li4-xNaxTi5O12 and Li4-xNaxTi5O12/graphene composites as anode materials for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhu Jiping

    2016-01-01

    Full Text Available A potential Lithium-ion battery anode material Li4-xNaxTi5O12 (0≤x≤0.15 has been synthesized via a facile hydrothermal method with short processing time and low temperature. The XRD and FE-SEM results indicate that samples with Na-doped are well-crystallized and have more homogeneous particle distributions with smaller overall particle size in the range of 300-600nm. Electrochemical tests reveal that Na-doped samples exhibit impressive specific capacity and cycle stability compared to pristine Li4Ti5O12 at high rate. The Li3.9Na0.1Ti5O12 electrode deliver an initial specific discharge capacity of 169mAh/g at 0.5C and maintained at 150.4mAh/g even after 40 cycles with the reversible retention of 88.99%. Finally, a simple solvothermal reduction method was used to fabricate Li3.9Na0.1Ti5O12/graphene(Li3.9Na0.1Ti5O12/G composite. Galvanostatic charge-discharge tests demonstrate that this sample has remarkable capacities of 197.4mAh/g and 175.5mAh/g at 0.2C and 0.5C rate, respectively. This indicates that the Li3.9Na0.1Ti5O12/G composite is a promising anode material for using in lithium-ion batteries.

  14. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    Science.gov (United States)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  15. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  16. Tug of war between AO-hybridization and aromaticity in dictating structures of Li-doped alkali clusters

    Science.gov (United States)

    Alexandrova, Anastassia N.

    2012-04-01

    Hybridization of atomic orbitals is a widely appreciated phenomenon in organic chemistry. Here, we demonstrate that hybridization also can dramatically impact the shapes of small all-alkali metal clusters, and oppose σ-aromaticity in defining cluster shapes. The valence-iso-electronic LiNa4- and LiK4- clusters adopt different global minimum structures: LiNa4- is a planar C2v (1A1) species distorted from the perfect pentagon, and LiK4- is a planar square D4h (1A1g) species with Li being in the centre. This effect is rooted in the different degrees of the 2s-2p hybridization in Li in response to binding to Na versus K.

  17. Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na

    International Nuclear Information System (INIS)

    Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.

    1998-01-01

    The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants

  18. Crystallization behavior of (1 - x)Li2O.xNa2O.Al2O3.4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Cheng, Chih-Wei; Chang, Kuo-Ming; Hsi, Chi-Shiung

    2010-01-01

    The crystallization behavior of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of β-spodumene. The isothermal crystallization kinetics of β-spodumene from the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of β-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na 2 O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na 2 O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses.

  19. Synthesis and electrochemistry of cubic rocksalt Li-Ni-Ti-O compounds in the phase diagram of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianqi; Noguchi, Hideyuki; Li, Decheng; Muta, Takahisa; Wang, Xiaoqing; Yoshio, Masaki [Department of Applied Chemistry, Saga University, Saga 840-8052 (Japan); Taniguchi, Izumi [Department of Chemical Engineering, Tokyo Institute of Technology, 12-1, Ookayama-2, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-10-15

    On the basis of extreme similarity between the triangle phase diagrams of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} and LiNiO{sub 2}-LiMnO{sub 2}-Li[Li{sub 1/3}Mn{sub 2/3}]O{sub 2}, new Li-Ni-Ti-O series with a nominal composition of Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li-Ni-Ti-O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi{sub 1/2}Ti{sub 1/2}O{sub 2} and Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} (high temperature form). Charge-discharge tests showed that Li-Ni-Ti-O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g{sup -1} for 0.2 {<=} z {<=} 0.27) at room temperature in the voltage range of 4.5-2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g{sup -1} for 0 {<=} z {<=} 0.27), cycleability and rate capability at an elevated temperature of 50 C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li{sup +}. A preliminary electrochemical comparison between Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) and Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2} indicated that charge-discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} while +3 in Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2}. Reduction of Ti{sup 4+} at a plateau of around 2.3 V could be clearly detected in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} with 0.27 {<=} z {<=} 0.5 at 50 C after a deep charge associated with charge compensation from oxygen ion during initial cycle

  20. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    International Nuclear Information System (INIS)

    Poel, M van der; Nielsen, C V; Rybaltover, M; Nielsen, S E; Machholm, M; Andersen, N

    2002-01-01

    We measure angle differential cross sections (DCS) in Li + + NaLi + Na + electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target. This setup yields a momentum resolution of 0.12 au, an order of magnitude better angular resolution than previous measurements on this system. This enables us to clearly resolve Fraunhofer-type diffraction patterns in the angle DCS. In particular, the angular width of the ring structure is given by the ratio of the de Broglie wavelength λ dB = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) → Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum scattering amplitudes are derived by the eikonal method. The resulting angle-differential electron transfer cross sections and their diffraction patterns agree with the experimental level-to-level results over most scattering angles in the energy range

  1. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.

    Science.gov (United States)

    Viswanathan, V; Thygesen, K S; Hummelshøj, J S; Nørskov, J K; Girishkumar, G; McCloskey, B D; Luntz, A C

    2011-12-07

    Non-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li(2)O(2) films produced during Li-O(2) discharge. Both experiment and theory show a "sudden death" in charge transport when film thickness is ~5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li(2)O(2) is a serious challenge if Li-O(2) batteries are ever to reach their potential. © 2011 American Institute of Physics

  2. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  3. Polycrystalline V2O5/Na0.33V2O5 electrode material for Li+ ion redox supercapacitor

    International Nuclear Information System (INIS)

    Manikandan, Ramu; Justin Raj, C.; Rajesh, Murugesan; Kim, Byung Chul; Park, Sang Yeup; Cho, Bo-Bae; Yu, Kook Hyun

    2017-01-01

    Highlights: • Different polycrystalline V 2 O 5 /Na 0.33 V 2 O 5 nanostructures were synthesized via simple co-precipitation technique. • The various molar ratios of NaOH precipitator determine the morphology, structural and electrochemical properties of V/Na. • The equimolar ratio of reactant and precipitator shows the formation of ∼96% of pure crystalline phase of V 2 O 5 . • Li + ions intercalation and deintercalation process enhanced the specific capacitance. - Abstract: This work essentially offers a new kind of V 2 O 5 /Na 0.33 V 2 O 5 as electrochemical active material for the development of Li + ion redox supercapacitors. Here, polycrystalline mixed phase of V 2 O 5 /Na 0.33 V 2 O 5 (V/Na) nanostructures are synthesized via simple co-precipitation technique. The various molar ratio of precipitator (NaOH) in the synthesis process displays different nanostructures of V/Na. The structural and morphological properties of V/Na samples are studied using physico-chemical analysis methods. The electrochemical properties of V/Na nanostructured samples are performed using cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy techniques in 1 M LiClO 4 aqueous electrolyte. The sample V/Na synthesized using equimolar ratio of vanadium salt and precipitator displayed nanopellet morphology, which exhibited the highest capacitance value of 334 Fg −1 at 1 Ag −1 discharge current density. Moreover, these polycrystalline V/Na nanostructured electrodes show excellent electrochemical properties with comparable stability after 1000 charge/discharge cycles.

  4. Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS(sub 2) couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS(sub 2) thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment

  5. Uniform second Li ion intercalation in solid state ϵ-LiVOPO4

    International Nuclear Information System (INIS)

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-01-01

    Full, reversible intercalation of two Li + has not yet been achieved in promising VOPO 4 electrodes. A pronounced Li + gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO 4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li + gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li + intercalation is a prerequisite for the formation of intermediate phases Li 1.50 VOPO 4 and Li 1.75 VOPO 4 . The evolution from LiVOPO 4 to Li 2 VOPO 4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  6. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  7. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    Science.gov (United States)

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS. Copyright © 2015. Published by Elsevier Ltd.

  8. Compaction of LiBH4-LiAlH4 nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling

    DEFF Research Database (Denmark)

    Plerdsranoy, Praohatsorn; Javadian-Deylami, Seyd Payam; Jensen, Nicholai Daugaard

    2017-01-01

    To enhance volumetric hydrogen capacity for on-board fuel cells, compaction of LiAlH4-LiBH4 nanoconfined in activated carbon nanofibers (ACNF) is for the first time proposed. Loose powders of milled and nanoconfined LiAlH4-LiBH4 samples are compacted under 976 MPa to obtain the pellet samples...... with thickness and diameter of ∼1.20–1.30 and 8.0 mm, respectively. Dehydrogenation temperature of milled LiAlH4-LiBH4 increases from 415 to 434 °C due to compaction, while those of both compacted and loose powder samples of nanoconfined LiAlH4-LiBH4 are lower at comparable temperature of 330–335 °C. Hydrogen...

  9. Li-ion batteries from LiFePO{sub 4} cathode and anatase/graphene composite anode for stationary energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vish V.; Wang, Wei; Nie, Zimin; Zhang, Ji-Guang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352 (United States); Bae, In-Tae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Duong, Tien [US Departments of Energy, 1000 Independence Ave., Washington, DC 20858 (United States)

    2010-03-15

    Li-ion batteries made from LiFePO{sub 4} cathode and anatase TiO{sub 2}/graphene composite anode were investigated for potential application in stationary energy storage. Fine-structured LiFePO{sub 4} was synthesized by a novel molten surfactant approach whereas anatase TiO{sub 2}/graphene nanocomposite was prepared via self-assembly method. The full cell that operated at 1.6 V demonstrated negligible fade even after more than 700 cycles at measured 1 C rate. While with relative lower energy density than traditional Li-ion chemistries interested for vehicle applications, the Li-ion batteries based on LiFePO{sub 4}/TiO{sub 2} combination potentially offers long life and low cost, along with safety, all which are critical to the stationary applications. (author)

  10. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes.

    Science.gov (United States)

    Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.

  11. Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell

    Science.gov (United States)

    Tong, Bo; Wang, Jiawei; Liu, Zhenjie; Ma, Lipo; Zhou, Zhibin; Peng, Zhangquan

    2018-04-01

    The electrochemical performance of lithium-ion batteries is dominated by the interphase electrochemistry between the electrolyte and electrode materials. A multitude of efforts have been dedicated to the solid electrolyte interphase (SEI) formed on the anode. However, the interphase on the cathode, namely the cathode electrolyte interphase (CEI), is left aside, partially due to the fact that it is hard to single out the CEI considering the complicated anode-cathode inter-talk. Herein, a partially delithiated lithium iron phosphate (Li0.25FePO4) electrode is used as the anode. Owing to a high voltage plateau (≈3.45 V vs. Li/Li+), negligible reduction reactions of electrolyte occur on the L0.25FePO4 anode. Therefore, the CEI can be investigated exclusively. Using a LiFePO4|Li0.25FePO4 symmetric cell configuration, we scrutinize the compatibility of the electrolytes containing a wide spectrum of lithium salts, Li[(FSO2)(Cm F2m+1SO2)N] (m = 0, 1, 2, 4), with the LiFePO4, in both cycling and calendar tests. It is found that the Li[(FSO2)(n-C4F9SO2)N] (LiFNFSI)-based electrolyte exhibits the highest compatibility with LiFePO4.

  12. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  13. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...... to expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen lattice after a deep discharge. This isotropic Mn distribution can...

  14. Compatibility and performance of separators in Li/SOCl(sub 2) cells

    Science.gov (United States)

    Cieslak, Wendy R.

    1988-05-01

    Degradation of many common separator materials, such as polyethylene, excludes their uses in SOCl2 electrolytes. Degradation of the binder in an otherwise chemically-resistant separator may also eliminate it for use in this aggressive environment. We are interested in a separator that does not degrade during more than 10-year storage in either active or reserve cells. Even in reserve configurations, degradation may occur by reaction with Li. Additionally, the separator must be flexible and strong enough for a spiral-wound cell, and it must have the proper thickness and porosity for optimum performance. The properties of three categories of separator materials have been investigated: polymers, glasses and ceramics. We have performed compatibility tests in LiAlCl4/SOCl2 electrolyte and in contact with Li (no electrolyte), and we have assessed electrochemical performance in laboratory cells. The purpose of these tests was to screen a wide variety of materials to identify several candidate separators so that a specific product might readily be chosen on the basis of application requirements.

  15. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  16. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  17. Characteristics of new LiF preparations and sensitised LiF

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, C M.H.; O' Hagan, J B; Mundy, S J; Todd, C D; McWhan, A F; Dodson, J

    1986-01-01

    The patent governing the preparation and production of lithium fluoride (LiF) awarded to the Harshaw Chemical Co. has expired. Other companies have become interested in developing additional preparations of this material. Two of these preparations include LiF:Mg,Ti manufactured by Vinten Instruments plc and high sensitivity LiF:Mg, Cu,P distributed by them. The properties of these materials, including sensitivity, dose threshold, photon energy response, reusability and storage characteristics, are presented in this paper and compared with those of Harshaw TLD-100 and with those of sensitised LiF.

  18. Experimental investigation of highly excited states of the 5,6He and 5,6Li nuclei in the (6Li, 7Be) and (6Li, 7Li) one-nucleon-pick-up reactions

    International Nuclear Information System (INIS)

    Sakuta, S.B.; Novatskij, B.G.; Stepanov, D.N.; Aleksandrov, D.V.; Glukhov, Yu.A.; Nikol'skij, E.Yu.

    2002-01-01

    ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions on the 6 Li, 7 Li nuclei have been investigated in the angular range of 0-20 deg in laboratory system at the 93-MeV 6 Li energy. Besides low-lying states of 5,6 He and 5,6 Li nuclei, broad structures have been observed in the measured spectra close to the t( 3 He) + d and t( 3 He) + t threshold at excitation energies of 16.75 (3/2 + ) and ∼ 20 MeV ( 5 He), 16.66 (3/2 + ) and ∼ 20 MeV ( 5 Li), 14.0 and 25 MeV ( 6 He), and ∼ 20 MeV ( 6 Li). Angular distributions, which have been measured for transitions to the ground (0 + ) and exited states at E x =1.8 MeV (2 + ) and 14.0 MeV of the 6 He nucleus in the 7 Li( 6 Li, 7 Be) 6 He reaction, have been analyzed in the framework of the finite-range distorted-waves method assuming the 1p- and 1s-proton pick-up mechanism. It has been shown that ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions predominately proceed by one-step pick-up mechanism and broad structures which are observed at high excitation energies should be considered as quasimolecular states of the t( 3 He) + d and t( 3 He) + t type [ru

  19. The Interstellar 7Li/6Li Ratio in the Diffuse Gas Near IC 443

    Science.gov (United States)

    Ritchey, A. M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2010-11-01

    Supernova remnants are believed to be the primary acceleration sites of Galactic cosmic rays (GCR), which are essential to gas-phase interstellar chemistry since they are a major source of ionization in both diffuse and dense environments. The interaction of accelerated particles with interstellar gas will also synthesize isotopes of the light elements Li, Be, and B through the spallation of CNO nuclei (producing all stable LiBeB isotopes) and through α+α fusion (yielding 6Li and 7Li, only). Type II supernovae may provide an additional source of 7Li and 11B during core collapse through neutrino-induced spallation in the He and C shells of the progenitor star (the ν-process). However, direct observational evidence for light element synthesis resulting from cosmic-ray or neutrino-induced spallation is rare. Here, we examine 7Li/6Li isotope ratios along four lines of sight through the supernova remnant IC 443 using observations of the Li I λ6707 doublet made with the Hobby-Eberly Telescope (HET) at McDonald Observatory. The 7Li/6Li ratio in the general interstellar medium is expected to be similar to the ratio of ~12 that characterizes solar system material. A local enhancement in the cosmic-ray flux will act to lower 7Li/6Li, yielding a ratio of ~2 when cosmic rays dominate Li synthesis. Gamma-ray emission from IC 443 provides strong evidence for the interaction of cosmic rays accelerated by the remnant with the ambient atomic and molecular gas. Yet this material has also been contaminated by the ejecta of a Type II supernova, which should be enriched in 7Li. We are seeking 7Li/6Li ratios that are either higher than the solar system ratio as a result of the ν-process or lower due to cosmic-ray spallation. Since the fine structure separation of the Li I doublet is comparable to the isotope shift (~7 km s-1) and each fine structure line is further split into hyperfine components, the velocity structure along the line of sight must be carefully constrained if

  20. Magnetoplastic effect in irradiated NaCl and LiF crystals

    International Nuclear Information System (INIS)

    Al'shitz, V.I.; Darinskaya, E.V.; Kazakova, O.L.

    1997-01-01

    The effect of low x-ray irradiation doses (≅10 2 rad) on the magnetoplastic effect - the detachment of dislocations from paramagnetic centers under the action of an external magnetic field B - in alkali-halide crystals has been investigated. The measurements were performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The dependence of the mean free path l of the dislocations on the rotational frequency ν of a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated crystals this dependence is a single-step dependence and is characterized by a critical frequency ν c ∝B 2 above which the magnetoplastic effect is not observed. The frequency ν c depends only on the type of paramagnetic centers, and not on their density. Even the lowest irradiation dose employed ( c2 , that is insensitive to the irradiation dose, and that corresponds to the appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical frequency ν c1 , as a rule, also varies with the dose, reflecting the change in state of the impurity complexes (Ca in NaCl and Mg in LiF). Specifically, it is shown for NaCl(Ca) crystals that as the irradiation dose increases, the frequency ν c1 increases, gradually approaching the value ν c2 , so that by the time the dose is ≅300 rad, the dependence l(ν) once again becomes a single-step dependence, dropping sharply only for ν≥ν c2 . It is shown that the addition of a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the critical frequency ν c1 corresponding to them initially equals ν c2 for crystals with no Ni. The recombination kinetics of radiation defects in the case in which the samples are irradiated under a tungsten lamp was investigated. A possible physical model of the observed dependences is discussed

  1. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y.H.; Selman, J.R.

    2007-01-01

    Li metal was galvanostatically electrodeposited on a horizontally positioned, downward-facing Li metal cathode in 0.5 M LiClO 4 -PC electrolyte. The refractive index profile corresponding to the transient Li + ion concentration profile formed in the electrolyte solution upon applying a current step was measured in-situ by holographic interferometry. The configuration of the electrolytic cell was such that mass transfer was governed only by transient diffusion and migration, in the absence of convection. Between the moment of closing the current circuit and the time at which the interference fringes started to shift, an incubation period was observed. Such an incubation period had earlier been observed in lithium electrodeposition at a vertical planar Li metal cathode. The incubation period for the horizontal Li cathode was roughly half that for a vertical one. To study the effect of the electrode material on the incubation period, interferometry measurements were also made at an electrodeposited Ni-Sn alloy electrode. The concentration profile formed near the Ni-Sn alloy electrode during lithiation (alloying or intercalation of Li + into the electrode) agrees well with predictions made by means of the one-dimensional diffusion equation. Only very short incubation period was detected, but the magnitude was negligibly smaller than that of Li metal electrodeposition. The incubation period therefore appears to be characteristic for Li metal electrode only

  3. Raman and NMR studies of aged LiFePO4 cathode

    International Nuclear Information System (INIS)

    Nagpure, Shrikant C.; Bhushan, Bharat; Babu, S.S.

    2012-01-01

    Highlights: ► Raman spectroscopy used to characterize the quality of carbon coating in LiFePO 4 commercial cells aged with C-rate. ► Structural change in the carbon coating leading to low electrical conductivity is observed for the cells aged at higher C-rate. ► Nuclear magnetic spectroscopy used to characterize LiFePO 4 nanoparticles for the presence of Li. ► 7 Li peak is observed in an unaged cell, while the similar peak is absent in the aged cells. - Abstract: The carbon coated LiFePO 4 nanoparticles are used in advanced lithium-ion batteries due to low cost, high energy and power density. In this paper Raman spectroscopy is used to analyze the degradation of carbon coating around these nanoparticles in several commercial cells aged with different C-rate. Magic angle spinning 7 Li Nuclear magnetic resonance (NMR) spectroscopy is used to characterize these nanoparticles for the presence of Li. In Raman spectroscopy data, structural change in the carbon leading to low electrical conductivity is observed for the cells aged at higher C-rate. In NMR spectroscopy data, isotropic 7 Li peak is observed in an unaged cell, while the similar peak is absent in the aged cells.

  4. Li-ion conduction in the LiBH4:LiI system from Density Functional Theory calculations and Quasi-Elastic Neutron Scattering

    DEFF Research Database (Denmark)

    Myrdal, Jon Steinar Gardarsson; Blanchard, Didier; Sveinbjörnsson, Dadi Þorsteinn

    2013-01-01

    The hexagonal high-temperature polymorph of LiBH4 is stabilized by solid solution with LiI to exhibit superionic Li+ ionic conductivity at room temperature. Herein, the mechanisms for the Li+ diffusion are investigated for the first time by density functional theory (DFT) calculations coupled...

  5. Phase transition and piezoelectric properties of K0.48Na0.52NbO3-LiTa0.5Nb0.5O3-NaNbO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Gao Feng; Liu Liangliang; Xu Bei; Cao Xiao; Deng Zhenqi; Tian Changsheng

    2011-01-01

    Highlights: → The evolution of the crystal structure for the new phase K 3 Li 2 Nb 5 O 15 was described. → The dielectric relaxor behavior would be strengthened by increasing plate-like NN. → k p and d 33 decrease with increasing amount of plate-like NN. → 0.01-0.03 mol of plate-like NN is a proper content for texturing ceramics by RTGG. - Abstract: Plate-like NaNbO 3 (NN) particles were used as the raw material to fabricate (1 - x)[0.93 K 0.48 Na 0.52 Nb O 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K 3 Li 2 Nb 5 O 15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K 3 Li 2 Nb 5 O 15 phase. The Curie temperature (T C ) is shifted to lower temperature with increasing NN content. (1 - x)[0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (k p ) and the piezoelectric constant (d 33 ) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO 3 in 0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 gives the optimum content for preparing textured ceramics by the RTGG method.

  6. High-precision calculation of loosely bound states of LiPs+ and NaPs+

    International Nuclear Information System (INIS)

    Yamashita, Takuma; Kino, Yasushi

    2015-01-01

    A positronic alkali atom would be the first step to investigate behavior of a positronium(Ps) in an external field from atoms/molecules because the system can be regarded as a simple three-body system using model potentials reflecting electron orbitals of the ion core. In order to precisely determine binding energies and structures of positronic alkali atoms (LiPs + and NaPs + ), we improve the model potential so as to reproduce highly excited atomic energy levels of alkali atoms (Li and Na). The polarization potential included by the model potential is expanded in terms of Gaussian functions to finely determine a short range part of the potential which has been assumed to be a simple form. We find better reproducibility not only of atomic levels of the alkali atoms but also of the dipole polarizability of the core ion than previous works. We construct a model potential between a positron and an ion core based on the model potential between the valence electron and ion core. Binding energies associated with a dissociation of the alkali ion core and positronium, and interparticle distances are recalculated. Our results show slightly deeper bound than other previous studies. (paper)

  7. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  8. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability

    Science.gov (United States)

    Li, Faqiang; Gong, Yan; Jia, Guofeng; Wang, Qinglei; Peng, Zhengjun; Fan, Wei; Bai, Bing

    2015-11-01

    The strong corrosion behavior at the Al current collector restricts the application range of lithium bis (trifluoromethanesulfonylimide) (LiTFSI), despite its high stability against water and thermal. SEM, LSV and Tafel curves proved that adding LiODFB into LiTFSI-based electrolytes could suppress aluminum corrosion caused by LiTFSI-based electrolytes. The cycling stability and rate capability of LiFePO4-based batteries using LiTFSI0.6-LiODFB0.4-based electrolytes is excellent as compared to LiFePO4-based batteries using LiPF6-based electrolytes.

  9. Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution

    Directory of Open Access Journals (Sweden)

    Hiroki Nara

    2016-04-01

    Full Text Available Static degradation of LiCoO2 cathodes is a problem that hinders accurate analysis using our developed separable symmetric cell. Therefore, in this study we investigate the static degradation of LiCoO2 cathodes in separable symmetric cells by electrochemical impedance spectroscopy (EIS and inductively coupled plasma analyses. EIS measurements of LiCoO2 cathodes are conducted in various electrolytes, with different anions and with or without HF and/or H2O. This allows us to determine the static degradation of LiCoO2 cathodes relative to their increase of charge transfer resistance. The increase of the charge transfer resistance of the LiCoO2 cathodes is attributed to cobalt dissolution from the active material of LiCoO2. Cobalt dissolution from LiCoO2 is revealed to occur even at low potential in the presence of HF, which is generated from LiPF6 and H2O. The results indicate that avoidance of HF generation is important for the analysis of lithium-ion battery electrodes by using the separable cell. These findings reveal the condition to achieve accurate analysis by EIS using the separable cell.

  10. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  11. Searching for “LiCrIIPO4”

    International Nuclear Information System (INIS)

    Mosymow, E.; Glaum, R.; Kremer, R.K.

    2014-01-01

    The two new phosphates LiCr II 4 (PO 4 ) 3 and Li 5 Cr II 2 Cr III (PO 4 ) 4 are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data (LiCr II 4 (PO 4 ) 3 : violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R 1 =0.028, wR 2 =0.08, 2060 unique reflections with F o >4σ(F o ); Li 5 Cr II 2 Cr III (PO 4 ) 4 : greyish-green, P1 ¯ (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R 1 =0.022, wR 2 =0.067, 1594 unique reflections with F o >4σ(F o )). Li 5 Cr II 2 Cr III (PO 4 ) 4 adopts an hitherto unknown structure type. The crystal structure of LiCr II 4 (PO 4 ) 3 is isotypic to that of NaCd II 4 (PO 4 ) 3 and related to that of the mineral silicocarnotite Ca 5 (PO 4 ) 2 (SiO 4 ). Significant disorder between Li + and Cr 2+ is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCr II PO 4 ” mixtures of LiCr II 4 (PO 4 ) 3 , Li 5 Cr II 2 Cr III (PO 4 ) 4 , Cr 2 O 3 , and CrP are observed at equilibrium. Instead of “Li 2 Cr II P 2 O 7 ” four-phase mixtures consisting of Li 9 Cr III 3 (P 2 O 7 ) 3 (PO 4 ) 2 , Li 3 Cr III 2 (PO 4 ) 3 , LiCrP 2 O 7 , and CrP were obtained. - Graphical abstract: Investigations on the equilibrium relations in the system Li/Cr/P/O revealed the two hitherto unknown phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 . They form instead of “LiCr II PO 4 ”. The crystal structures, magnetic behavior and optical spectra of these phosphates are reported. - Highlights: • The two new phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 have been characterized. • Optical spectra and paramagnetism of

  12. Hydrothermal preparation of zeolite Li-A and ion exchange properties of Cs and Sr in salt waste

    International Nuclear Information System (INIS)

    Lee, S. H.; Kim, J. G.; Lee, J. H.; Kim, J. H.

    2005-01-01

    An advanced spent fuel management process that were based on Li reduction of the oxide spent fuel to a metallic form will generate a LiCl waste. Zeolite A has been reported as a promising immobilization medium for waste salt with CsCl and SrCl 2 . However, Sodium is accumulated as an ionic form (Na + -ion) in molten salt during ion exchange step between Na + -ion in zeolite A and Li + -ion in the molten salt. Therefore, zeolite Na-A need to be replaced by the Li-type zeolite for recycling the salt waste by removing the Cs and Sr ions. In this study, the hydrothermal preparation of zeolite Li-A was performed in 350ml pressure vessel by P. Norby method. The preparation characteristics of zeolite Li-A was investigated. And the ion exchange properties of Cs and Sr in molten LiCl salt were investigated under the condition of 923K using zeolite 4A and prepared zeolite Li-A

  13. Degradation reactions in SONY-type Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.P.; Nagasubramanian, G.

    2000-07-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 C involving the solid electrolyte interface (SEI) layer and the LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/LiPF{sub 6}). These reactions could account for the thermal runaway observed in these cells beginning at 100 C. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  14. Large-scale production of paper-based Li-ion cells

    CERN Document Server

    Zolin, Lorenzo

    2017-01-01

    This book describes in detail the use of natural cellulose fibers for the production of innovative, low-cost, and easily recyclable lithium-ion (Li-ion) cells by means of fast and reliable papermaking procedures that employ water as a solvent. In addition, it proposes specific methods to optimize the safety features of these paper-based cells and to improve the electronic conductivity of the electrodes by means of a carbonization process– an interesting novel technology that enables higher current rate capabilities to be achieved. The in-depth descriptions of materials, methods, and techniques are complemented by the inclusion of a general overview of electrochemical devices and, in particular, of different Li-ion battery configurations. Presenting the outcomes of this important research, the work is of wide interest to electrochemical engineers in both research institutions and industry.

  15. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    Science.gov (United States)

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  16. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    synthesized for this investigation: dilithium 1,2,5-thiadiazolidine-3,4-dione-1,1-dioxide (Li2TDD), lithium ethyl N-trifluoroacetylcarbamate (LiETAC), lithium hexafluoroisopropoxide (LiHFI), lithium pentafluorophenolate (LiPFPO), and lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI). Using crystalline solvate structure analysis and electrolyte solvation numbers, each of these lithium salts were compared to more well-characterized lithium salts, such as LiPF6 and LiBF4. From this study, links between anion structural characteristics and the anion...Li+ cation interactions (i.e., ionic association strength) were made. From the screening of the five lithium salts that were synthesized, LiTDI was determined to be a promising candidate for Li-ion battery electrolytes. Further characterization of carbonate- and mixed carbonate-LiTDI electrolytes (e.g., ionic conductivity) confirmed this to be the case. Coin cells containing LiTDI or LiPF6 electrolytes showed that cells with either electrolyte could deliver nearly identical power density at 25 °C. Additionally, thermogravimetric analysis (TGA) and NMR suggested that the LiTDI salt and carbonate-LiTDI electrolytes are thermally stable up to at least 60 °C. Further supporting this finding, coin cells cycled at 60 °C with LiPF6 lost significantly more capacity than those with LiTDI. Therefore, LiTDI is a prime candidate for the complete replacement of LiPF6 to significantly increase Li-ion battery tolerance to heat, improving the safety characteristics. In addition to searching for new lithium salts, the effect of lithium salt concentration on electrolyte physicochemical properties was investigated. This radically different approach to modifying electrolyte properties determined that amorphous, highly concentrated carbonate-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolytes have drastically different behavior than more dilute electrolytes. For example, the thermal stability and anodic stability vs. a Pt

  17. Thermal stability of LiNaR2F8 compounds (R=Ho-Lu, Y)

    International Nuclear Information System (INIS)

    Fedorov, P.P.; Medvedeva, L.V.; Bondareva, O.S.; Sobolev, B.P.

    1990-01-01

    Monoclinic pseudorhombic compound mentioned in the title are investigated. It is determined, that the compounds are stable within temperature narrow range: Ho - 575-693 degC, Er - 566-712deg C, Tm - 560-710 deg C, Yb - less than 685 deg C, Y - 580-712 deg C. Triangulation of LiF-NaF-YF 3 system is carried out

  18. Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries

    Science.gov (United States)

    Karegeya, Claude; Mahmoud, Abdelfattah; Hatert, Frédéric; Vertruyen, Bénédicte; Cloots, Rudi; Lippens, Pierre-Emmanuel; Boschini, Frédéric

    2018-06-01

    A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were determined by 57Fe Mössbauer spectroscopy and powder X-ray diffraction Rietveld refinements and confirmed by magnetic measurements. The structural formula □0.75Na1.25Ni1.25Fe1.75(PO4)3 was obtained showing a significant amount of Na vacancies, which enhances Li diffusion. Na1.25Ni1.25Fe1.75(PO4)3 was used as negative and positive electrode material and shows excellent electrochemical performances. As negative electrode in the voltage range 0.03-3.5 V vs. Li+/Li, the first discharge at current density of 40 mA g-1 delivers a specific capacity of 1186 mAh g-1, which is almost three times its theoretical capacity (428 mAh g-1). Then, reversible capacity of 550 mAh g-1 was obtained at 50 mA g-1 with high rate capability (150 mAh g-1 at 500 mA g-1) and capacity retention of 350 cycles. As positive electrode material, specific capacities of about 145 and 99 mAh g-1 were delivered at current densities of 5 and 50 mA g-1, respectively, in the voltage range of 1.5-4.5 V vs. Li+/Li. In addition, we show that the use of solvothermal synthesis contributes to the synthesis of small sized particles leading to good electrochemical performances.

  19. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  20. Spectroscopic analysis of LiHoF4 and LiErF4

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1979-01-01

    The polarized absorption spectra for Ho3+ and Er3+ in LiHoF4 and LiErF4, respectively, have been recorded in the spectral interval 4000-26 000 cm-1 at 2 K. Parts of the spectra were examined at higher temperatures. The experimental levels for Ho3+ and Er3+ in LiRF4 were close to those found in Li...

  1. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the T g and T m are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO 4 /15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g -1 @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g -1 @0.2 C at 30 °C after 150 cycles).

  2. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    Science.gov (United States)

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  3. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    Science.gov (United States)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  4. Revision of the Li13Si4 structure.

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F

    2013-11-06

    Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca-lithium tetra-silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.

  5. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, Linda W.; Quackenbush, Nicholas F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Sallis, Shawn [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lin, Yuh-Chieh; Ong, Shyue Ping [Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093 (United States); Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley [NECCES, Binghamton University, Binghamton, New York 13902 (United States); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lee, Tien-Lin; Schlueter, Christoph [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Piper, Louis F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  6. Ab initio identification of the Li-rich phase in LiFePO4.

    Science.gov (United States)

    Zeng, Hua; Gu, Yue; Teng, Gaofeng; Liu, Yimeng; Zheng, Jiaxin; Pan, Feng

    2018-06-27

    A recent discovery of anionic redox activity in Li-rich layered compounds opens a new direction for the design of high-capacity cathode materials for lithium-ion batteries. Here using extensive ab initio calculations, the thermodynamic existence of the Li-rich phase in LiFePO4 to form Li1+xFe1-xPO4 with x not exceeding 12.5% has been proved. Anionic redox activity and structural stability during delithiation are further investigated. Interestingly, it is found that Li1+xFe1-xPO4 cannot be delithiated completely and thus cannot achieve extra capacity by anionic redox activity, because the local oxygen-ion redox will cause the fracture of the rigid framework formed by phosphate tetrahedral polyanions. Although an extra capacity cannot be realized, the excess Li-ions at Fe sites can enhance the Li-ion diffusivity along the adjacent [010] channel and contribute to the shift from 1D to 2D/3D diffusion. This study provides a fresh perspective on olivine-type LiFePO4 and offers some important clues on designing Li-rich cathode materials with high energy density.

  7. Li vaporization property of two-phase material of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Masuko, Yuki; Kato, Hirokazu; Yuyama, Hayato; Sakai, Yutaro [Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Mukai, Keisuke [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656 (Japan); Hosino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Course of Mechanical Engineering and Aeronautics and Astronautics, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-10-15

    Highlights: • We synthesized two phase materials based on Li{sub 2}SiO{sub 3} and Li{sub 2}TiO{sub 3}. • We investigated the Li vaporization property of the two-phase materials. • Li vaporization occurs significantly from only Li{sub 2}SiO{sub 3} grains in the vicinity of the surface of the pellets. • The Li vaporization is remarkable only for an early short time for the vaporization from Li{sub 2}SiO{sub 3} grains at the vicinity of the surface. • The second stable phase added functions effectively for inhibition of the Li vaporization. - Abstract: Li vaporization property of two-phase materials of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} in a working condition for the solid tritium breeder used in the demonstration power plant of fusion reactor was investigated, and the suppression mechanism of the vaporization was considered. The Li vaporization rate from the specimen pellet was measured by gravimetric method, and the change of Li concentration distribution in the pellet was analyzed by time-of-flight secondary ion mass spectrometer. Li was vaporized only from the Li{sub 2}SiO{sub 3} at the vicinity of the surface of the pellet. The remarkable vaporization of Li arose only in an early short time. The inhibition of the vaporization from the Li{sub 2}SiO{sub 3} was successful by adding the small amount of the stable secondary phase of Li{sub 2}TiO{sub 3}.

  8. Influence of Li10GeP2S12-type solid electrolyte on cell thermodynamics

    Directory of Open Access Journals (Sweden)

    Jishnu Bhattacharya

    2016-06-01

    Full Text Available We elucidate few critical facts about the lithium superionic conductor (Li10GeP2S12 and few other compounds of the same family as the electrolyte in Li-ion cells. The dimensionality of diffusion process and existence of ‘structural’ lithiums are not well understood in this material. From the ab-initio MD simulations, we find that the material transport Li-ions predominantly in the crystallographic c-direction. Nevertheless, the cross-channel diffusion is significant as well. We explored the mobility of individual Li-ions and do not find evidence that supports the proposition of structural Li-ions in LGPS. We find nominal effect of local Ge-P ordering and of Li-concentration change on diffusivity, which not only provides information about the invariance of diffusivity at different conditions of operation, but also ensures that identification of the ground state structure in LGPS having partially occupied Li and Ge/P sublattices should have minimal effect on the diffusion analysis. We computed the dilute Li insertion and extraction voltages for LGPS from ab-initio total energy calculation. The dilute voltages indicate that the material is prone to react by exchanging Li-ions with the electrodes at typical operating range of voltages indicating formation of some interphase at the electrode-electrolyte interface, which necessitates further experimental investigation

  9. Acid leaching of mixed spent Li-ion batteries

    Directory of Open Access Journals (Sweden)

    A.A. Nayl

    2017-05-01

    Full Text Available Acid leaching for different types of mixed spent Li-ion mobile batteries is carried out after alkali decomposition using NH4OH followed by H2SO4 + H2O2 leaching. In the alkali decomposition step, the effects of reaction time, NH4OH concentration, liquid/solid mass ratio and reaction temperature on the decomposition process are investigated to remove Al, Cu, Mn, Ni, Co, and Li. After alkaline treatment, the alkali paste is treated to leach the remaining metals using H2SO4 + H2O2. The significant effects of reaction time, acid concentration, H2O2 concentration, liquid/solid mass ratios and reaction temperature on the leaching rate are studied. More than 97% of Al, Mn, Ni, Co, and Li and about 65% Cu are leached in two stages. Kinetic analysis shows that, the data fit with chemical reaction control mechanism and the activation energies for the investigated metals using the Arrhenius equation ranged from 30.1 to 41.4 kJ/mol. Recovered metals are precipitated from the leaching liquor at varying pH values using NaOH solution and Na2CO3. Firstly, Mn is precipitated as MnCO3 at pH = 7.5. Secondly, at pH = 9.0, nickel is precipitated as NiCO3. Thirdly, as the pH of the leaching liquor reaches 11–12, Co(OH2 is precipitated and the remaining Li is readily precipitated as Li2CO3 using a saturated Na2CO3 solution. Based on the experimental data, a flow sheet is developed and tested for the recovery process.

  10. Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials

    Science.gov (United States)

    Al-Qawasmeh, Ahmad; Holzwarth, N. A. W.

    2017-10-01

    Two lithium oxonitridophosphate materials are computationally examined and found to be promising solid electrolytes for possible use in all solid-state batteries having metallic Li anodes - Li14P2O3N6 and Li7PN4. The first principles simulations are in good agreement with the structural analyses reported in the literature for these materials and the computed total energies indicate that both materials are stable with respect to decomposition into binary and ternary products. The computational results suggest that both materials are likely to form metastable interfaces with Li metal. The simulations also find both materials to have Li ion migration activation energies comparable or smaller than those of related Li ion electrolyte materials. Specifically, for Li7PN4, the experimentally measured activation energy can be explained by the migration of a Li ion vacancy stabilized by a small number of O2- ions substituting for N3- ions. For Li14P2O3N6, the activation energy for Li ion migration has not yet been experimentally measured, but simulations predict it to be smaller than that measured for Li7PN4.

  11. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  12. Annihilation of antiferromagnetic order in LiCoO2 by excess Li

    International Nuclear Information System (INIS)

    Sugiyama, Jun; Ikedo, Yutaka; Nozaki, Hiroshi; Mukai, Kazuhiko; Andreica, Daniel; Amato, Alex; Menetrier, Michel; Carlier, Dany; Delmas, Claude

    2009-01-01

    In order to elucidate the origin of antiferromagnetic (AF) order below 30 K in LiCoO 2 , in which all the Co 3+ ions are in a low-spin state with S=0, the magnetic nature of the Li-excess sample Li 1.04 Co 0.96 O 1.96 was studied by muon-spin spectroscopy in the temperature range between 1.8 and 100 K. Although disordered localized moments appeared below 25 K, static AF order was not detected even at 1.8 K. Moreover, a small amount of excess Li ions (4%) and oxygen vacancies (2%) was found to change ∼50% of the sample into a magnetically disordered phase at 1.8 K. The stoichiometric LiCoO 2 , which was prepared from the same starting materials to those for the Li-excess sample, showed an AF transition at 30 K, while the volume fraction of the AF phase was 10% even at 1.8 K. This therefore excludes the possible role of the excess Li + on the formation of static AF order.

  13. Solvothermal coating LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 microspheres with nanoscale Li_2TiO_3 shell for long lifespan Li-ion battery cathode materials

    International Nuclear Information System (INIS)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun

    2016-01-01

    LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) microspheres covered by a nanoscale Li_2TiO_3-based shell were synthesized by a facile strategy based on a solvothermal pre-coating treatment combined with a post-sintering lithiation process. The morphology, structure and composition of the Li_2TiO_3-coated NCA samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning scanning electron microscope (SEM) with an energy-dispersive X-ray spectroscope (EDS), and transmission electron microscopy (TEM). Owing to the complete, uniform and nanoscale Li_2TiO_3 coating shell, the resultant surface-modified NCA microspheres used as Li-ion battery cathode materials manifest remarkably enhanced cycling performances, attaining 94% and 84% capacity retention after 200 and 400 cycles at 0.5 C, respectively, which is much better than the pristine NCA counterpart (60% retention, 200 cycles). More impressively, the surface-modified NCA also shows an intriguing storage stability. After being stored at 30 °C for 50 days, the coated NCA-based cells are subjected to be cycled both at room and elevated temperatures, in which the aged cells can still remain 84% capacity retention after 200 cycles at 25 °C and 77% capacity retention after 200 cycles at 55 °C, respectively. All these results demonstrate that the Li_2TiO_3-coated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 microsphere is a promising cathode material for Li-ion batteries with long lifespan. - Graphical abstract: Nanoscale Li_2TiO_3-based shell encapsulated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) microspheres are fabricated through a solvothermal pre-coating treatment combined with post-lithiation process. The surface-coated NCA as cathode materials shows a remarkably enhanced cycling performance and storage stability for long lifespan Li-ion batteries. - Highlights: • Li_2TiO_3 is used as coating materials for layer structured LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 cathode. • Solvothermal coating

  14. Distillation of LiCl from the LiCl-Li2O molten salt of the electrolytic reduction process

    International Nuclear Information System (INIS)

    Kim, I.S.; Oh, S.C.; Im, H.S.; Hur, J.M.; Lee, H.S.

    2013-01-01

    Electrolytic reduction of the uranium oxide in LiCl-Li 2 O molten salt for the treatment of spent nuclear fuel requires the separation of the residual salt from the reduced metal product, which contains about 20 wt% salt. In order to separate the residual salt and reuse it in the electrolytic reduction, a vacuum distillation process was developed. Lab-scale distillation equipment was designed and installed in an argon atmosphere glove box. The equipment consisted of an evaporator in which the reduced metal product was contained and exposed to a high temperature and reduced pressure; a receiver; and a vertically oriented condenser that operated at a temperature below the melting point of lithium chloride. We performed experiments with LiCl-Li 2 O salt to evaluate the evaporation rate of LiCl salt and varied the operating temperature to discern its effect on the behavior of salt evaporation. Complete removal of the LiCl salt from the evaporator was accomplished by reducing the internal pressure to <100 mTorr and heating to 900 deg C. We achieved evaporation efficiency as high as 100 %. (author)

  15. Processing of Vietnamese lithium ores to produce LiCl

    International Nuclear Information System (INIS)

    Dinh, Thi Thu Hien

    2015-01-01

    A potential lithium deposit has been discovered in the La Vi mining district, located in Quang Ngai Province, Central Vietnam. The Li-rich rocks (average contents: 1.3±0.9 wt.% Li 2 O) are highly fractionated, peraluminous granites, which are further characterized by high contents of Al 2 O 3 , Na 2 O, K 2 O, F, and P 2 O 5 , but very low concentrations of all other main components (MgO, CaO, Fe 2 O 3 tot, TiO 2 ). The granites exhibit a light pink color and contain mainly albite, quartz, muscovite, lithian muscovite, and lepidolite, with minor amounts of amblygonite-montebrasite, herderite, fluorapatite, topaz, and cassiterite, and accessory beryl and goyazite. Lepidolite from La Vi deposit was extracted to produce lithium chloride by using iron II sulphide (FeS)-CaO roasting and water leaching. The HSC program was applied for the simulation of the behavior of lepidolite and the additives during roasting, confirming the important role of SO 2 /SO 3 gas for extracting lithium from lepidolite. At optimum conditions roasting at 750 C using FeS/Li and Ca/F molar ratios of 5:1 and 1:1, respectively, followed by leaching at 50 C using water/calcine mass ratios of >5:1 could yield a maximum of ∝85% Li recovery (at <1 g/L Li concentration). Addition of CaO led to a decrease in the liberation of HF gas and insoluble LiF formation. NaOH and BaCl 2 were used for removing the metal and sulphate impurities from the leach liquor by precipitation at ambient temperature. The efficiency of lithium extraction reached ∝100 % with washing of the precipitates after filtering. Alkali salts were separated from the LiCl solution via solar evaporation and isopropanol leaching. 96.3 wt.% LiCl could be produced using an isopropanol/salt mass ratio of 5:1 at ambient temperature in 3 h.

  16. Processing of Vietnamese lithium ores to produce LiCl

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thi Thu Hien

    2015-11-16

    A potential lithium deposit has been discovered in the La Vi mining district, located in Quang Ngai Province, Central Vietnam. The Li-rich rocks (average contents: 1.3±0.9 wt.% Li{sub 2}O) are highly fractionated, peraluminous granites, which are further characterized by high contents of Al{sub 2}O{sub 3}, Na{sub 2}O, K{sub 2}O, F, and P{sub 2}O{sub 5}, but very low concentrations of all other main components (MgO, CaO, Fe{sub 2}O{sub 3}tot, TiO{sub 2}). The granites exhibit a light pink color and contain mainly albite, quartz, muscovite, lithian muscovite, and lepidolite, with minor amounts of amblygonite-montebrasite, herderite, fluorapatite, topaz, and cassiterite, and accessory beryl and goyazite. Lepidolite from La Vi deposit was extracted to produce lithium chloride by using iron II sulphide (FeS)-CaO roasting and water leaching. The HSC program was applied for the simulation of the behavior of lepidolite and the additives during roasting, confirming the important role of SO{sub 2}/SO{sub 3} gas for extracting lithium from lepidolite. At optimum conditions roasting at 750 C using FeS/Li and Ca/F molar ratios of 5:1 and 1:1, respectively, followed by leaching at 50 C using water/calcine mass ratios of >5:1 could yield a maximum of ∝85% Li recovery (at <1 g/L Li concentration). Addition of CaO led to a decrease in the liberation of HF gas and insoluble LiF formation. NaOH and BaCl{sub 2} were used for removing the metal and sulphate impurities from the leach liquor by precipitation at ambient temperature. The efficiency of lithium extraction reached ∝100 % with washing of the precipitates after filtering. Alkali salts were separated from the LiCl solution via solar evaporation and isopropanol leaching. 96.3 wt.% LiCl could be produced using an isopropanol/salt mass ratio of 5:1 at ambient temperature in 3 h.

  17. Superconducting instabilities and quasipartical interference in the LiFeAs and Co-doped NaFeAs iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin; Ahn, Felix; Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Borisenko, Sergey [Leibniz-Institute for Solid State Research, IFW-Dresden, D-01171 Dresden (Germany)

    2015-07-01

    We analyze and compare the structure of the pairing interaction and superconducting gaps in LiFeAs and Co-doped NaFeAs by using the ten-orbital tight-binding model, derived from ab initio LDA calculations with hopping parameters extracted from the fit to ARPES experiments. We discuss the phase diagram and experimental probes to determine the structure of the superconducting gap in these systems with special emphasis on the quasiparticle interference, computed using the T-matrix approximation. In particular, we analyze how the superconducting state with opposite sign of the gaps on the two inner hole pockets in LiFeAs evolve upon changing the parameters towards NaFeAs compound.

  18. Vacancy formation energy of Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.

    1993-06-01

    Vacancy defect formation energy (Schottky defect) of lighter hydrides and deuterides of alkali metals are discussed with reference to conductivity measurements and the recent computer simulation calculations. An empirical relation with Debye temperature is found to yield values of Schottky defect formation energies of Li(H,D) systems in agreement with experiments. The relationship is also utilized to obtain the formation energies for Na(H,D) systems for which experimental values are available in the literature. (author). 37 refs, 1 fig., 1 tab

  19. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  20. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

    Science.gov (United States)

    Lauf, Peter K; Chimote, Ameet A; Adragna, Norma C

    2008-01-01

    During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly. (c) 2008 S. Karger AG, Basel.

  1. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  2. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Science.gov (United States)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  3. Orientation and alignment of the first excited p state in Li+He and Na+He scattering

    International Nuclear Information System (INIS)

    Archer, B.J.; Lane, N.F.; Kimura, M.

    1990-01-01

    Orientation and alignment parameters for the first excited p state of Li and Na in collisions with He through direct excitation from the ground state are studied theoretically in the energy region up to E c.m. =100 keV by using a quasi-one-electron theory. Scattering states are expanded in terms of molecular orbitals, which are calculated by using the pseudopotential method and include electron translation factors. The approach appears to work well for Li+He, giving good agreement for the 2p excitation probability and orientation. For alignment, the situation is less clear because of difficulty in experimental measurement. Two-electron effects and cascades from more highly excited states cause our description of Na+He collisions to be less satisfactory. However, agreement with the experimental 3p excitation probability and orientation parameters where all data are available is fairly good at lower energies (E c.m. 1.25 a.u.)

  4. The chemistry of Li/SOCl2 cells - An ESR study of carbon electrodes

    Science.gov (United States)

    Kim, S. S.; Carter, B. J.; Tsay, F. D.

    1985-01-01

    Carbon electrodes from Li/SOCl2 cells were studied by electron spin resonance after various stages of discharge. Different behavior was observed in the temperature-dependent part of the ESR linewidth, defined as 'intrinsic linewidth', Delta H(int), when two different electrolytes were used. With one electrolyte, 1.5M LiAlCl4/SoCl2, the Delta H(int) value stayed constant or slightly decreased whereas with another electrolyte, 1.0M LiAlCl4/14 percent BrClin SOCl2, the value increased as discharge progressed. The carbon electrodes are modified differently during discharge with these two electrolytes, and it is speculated that this may be due to changes in the carbon matrix functional groups. This difference in the carbon electrodes may explain the claimed differences in safety performance of the cells.

  5. Electrochemical Characteristics of a Diamond-Like-Carbon-Coated LiV3O8 Cathode When Used in a Li-Metal Battery with a Li-Powder Anode

    Science.gov (United States)

    Lee, Jae Ha; Lee, Jun Kyu; Yoon, Woo Young

    2013-10-01

    A diamond-like-carbon (DLC)-coated LiV3O8 cathode was synthesized for use in a rechargeable 2032-coin-type cell with a Li-powder electrode (LPE) as the anode. The LPE anode was produced using the droplet emulsion technique and was compacted by pressing. The initial discharge capacity of the LPE/DLC-coated LiV3O8 (LVO) cell was 238 mAh g-1 at a C-rate of 0.5, while that of a LPE/bare-LVO cell was 236 mAh g-1. After 50 cycles, the capacity retention rate of the DLC-coated-electrode-containing cell (92%) was higher than that of the uncoated-electrode-containing cell (77%). Results of electron probe microanalysis and Raman spectroscopy confirmed that the electrode had been coated with DLC. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to determine the sequence of formation of byproducts on the electrode after charging/discharging and to determine its surface composition. The voltage profile and impedance of the DLC-coated-electrode-containing cell were analyzed to determine the electrochemical characteristics of the DLC-coated cathode.

  6. Peculiar Li-storage mechanism at graphene edges in turbostratic carbon black and their application in high energy Li-ion capacitor

    Science.gov (United States)

    Anothumakkool, Bihag; Dupré, Nicolas; Moreau, Philippe; Guyomard, Dominique; Brousse, Thierry; Gaubicher, Joel

    2018-02-01

    We report experimental evidence for the specific Li-storage at turbostratic graphene edges of a well-known and cheap Super P® carbon black (Csp) material, which is usually used as a conductive additive in composite electrodes. Indeed, operando XRD and HR-TEM consistently demonstrate Li insertion occurs with zero expansion of graphene layer up to a composition of Li0.4C6 (150 mA h/g) that is reached at 0.01 V vs. Li+/Li. 7Li NMR substantiates these results and suggests that the weak electronic transfer from the carbon host to the intercalant could help local reorganization of the layer order as suggested by the unexpected reversible changes of the (002) Bragg peak intensity during the charge-discharge process. Our observations also indicate this insertion mechanism is kinetically favored resulting in remarkable cycling stability over 1000 cycles and power capability allowing to sustain 110 mA h/g at 8 A/g (21 C) in half cell. The capability of Csp as an efficient anode is ultimately demonstrated in a lithium hybrid capacitor against a positive electrode of activated carbon. The full cell delivers a maximum energy of 120 Wh/kg (4.3-2 V) and remarkable capacity retention over 1800 cycles.

  7. Density of Na2O-Li2O-SiO2-B2O3 Molten Slag at 1 803-1 873 K

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The density of three kinds of molten slags was measured by modified sessile drop method at 1 803-1 873 K. The density of molten slag is found to decrease with increasing temperature. The temperature coefficients of Na2O-Li2O-SiO2 and Li2O-SiO2-B2O3 slag are smaller than that of Na2O-B2O3 slag. The molar volume of slags increases with increasing temperature.

  8. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    Science.gov (United States)

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  9. As Lições Aprendidas nas Forças Armadas

    OpenAIRE

    Lopes, Henrique

    2012-01-01

    Este trabalho tem por objetivo geral identificar contributos para a criação de um sistema genérico conjunto de Lições Aprendidas para as Forças Armadas, visando o desenvolvimento do conhecimento e melhoria de capacidades. Projetamos o estabelecimento de uma capacidade de Lições Aprendidas no Estado-Maior General das Forças Armadas, cujo sistema na sua base seja transversal às Forças Armadas. Um sistema de Lições Aprendidas engloba um processo que procura aprender com a experiência, proporc...

  10. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  11. Dielectric properties of Li doped Li-Nb-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Perentzis, G.; Horopanitis, E.E.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Durman, V.; Saly, V.; Packa, J. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2007-03-15

    Lithium niobate LiNbO{sub 3} was prepared as a thin film layered structure deposited on stainless steel substrate using e-gun evaporation. The Li doping was provided for by the formation of Li-Nb-O/Li/LiNb-O sandwich structure and annealing at about 250 C. AC impedance spectroscopy measurements were performed on the samples at temperatures from the interval between 28 and 165 C and in a frequency range of 10{sup -3} to 10{sup 6} Hz. Using the values Z' and Z'' at different frequencies, the dielectric parameters - parts of the complex permittivity {epsilon}' and {epsilon}'' and loss tangent tan {delta} were calculated. The results prove validity of the proposed equivalent circuit containing parallel RC elements connected in series where the first RC element represents the bulk of material and the second RC element belongs to the double layer at the metal interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Improvement on LiFePO4 Cell Balancing Algorithm

    OpenAIRE

    Vencislav C. Valchev; Plamen V. Yankov; Dimo D. Stefanov

    2018-01-01

    The paper presents improvement on operation time of cell balancing algorithm compared to conventional multiple cell LiFePO4 charge methodology. A flowchart is synthesised to explain the main steps of the software design, which afterwards is implemented in a microcontroller. Experimental results are provided to clarify the transition between charge and balance process. Graphical data for a voltage equalization of eight cells is presented to verify the proposed improvement.

  13. Depth profiling Li in electrode materials of lithium ion battery by {sup 7}Li(p,γ){sup 8}Be and {sup 7}Li(p,α){sup 4}He nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, Y., E-mail: sunibarc@gmail.com; Kumar, Sanjiv

    2017-06-01

    A proton induced γ-ray emission method based on {sup 7}Li(p,γ){sup 8}Be proton capture reaction and a nuclear reaction analysis method involving {sup 7}Li(p,α){sup 4}He reaction are described for depth profiling Li in the electrode materials, graphite and lithium cobalt oxide for example, of a Li-ion battery. Depth profiling by {sup 7}Li(p,γ){sup 8}Be reaction is accomplished by the resonance at 441 keV and involves the measurement of 14.6 and 17.6 MeV γ-rays, characteristic of the reaction, by a NaI(Tl) detector. The method has a detection sensitivity of ∼0.2 at% and enables profiling up to a depth ≥20 µm with a resolution of ≥150 nm. The profiling to a fairly large depth is facilitated by the absence of any other resonance up to 1800 keV proton energy. The reaction has substantial off-resonance cross-sections. A procedure is outlined for evaluating the off-resonance yields. Interferences from fluorine and aluminium are major limitation of this depth profiling methodology. The depth profile measurement by {sup 7}Li(p,α){sup 4}He reaction, on the other hand, utilises 2–3 MeV protons and entails the detection of α-particles at 90° or 150° angles. The reaction exhibits inverse kinematics at 150°. This method, too, suffers interference from fluorine due to the simultaneous occurrence of {sup 19}F(p,α){sup 16}O reaction. Kinematical considerations show that the interference is minimal at 90° and thus is the recommended angle of detection. The method is endowed with a detection sensitivity of ∼0.1 at%, a depth resolution of ∼100 nm and a probing depth of about 30 µm in the absence and 5–8 µm in the presence of fluorine in the material. Both methods yielded comparable depth profiles of Li in the cathode (lithium cobalt oxide) and the anode (graphite) of a Li-ion battery.

  14. Weixue Li

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Weixue Li. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 313-316 Composites. Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocomposites · Weixue Li Qing Wang Jianfeng Dai · More Details Abstract Fulltext ...

  15. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.

    Science.gov (United States)

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, Sander; Guo, Hui; Zheng, Yufeng; Zhou, Jie

    2017-10-15

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials showed higher ultimate tensile strength than previously reported binary Mg-Li alloys and ternary Mg-Li-X (X=Al, Y, Ce, Sc, Mn and Ag) alloys. Among the alloys studied, the Mg-3.5Li-2Zn and Mg-6.5Li-2Zn alloys exhibited comparable corrosion resistance in Hank's solution to pure magnesium and better corrosion resistance in a cell culture medium than pure magnesium. Corrosion products observed on the corroded surface were composed of Mg(OH) 2 , MgCO 3 and Ca-free Mg/P inorganics and Ca/P inorganics. In vitro cytotoxicity assay revealed different behaviors of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Aorta Vascular Smooth Muscle Cells (VSMCs) to material extracts. HUVECs showed increasing nitric oxide (NO) release and tolerable toxicity, whereas VSMCs exhibited limited decreasing viability with time. Platelet adhesion, hemolysis and coagulation tests of these Mg-Li-Zn alloys showed different degrees of activation behavior, in which the hemolysis of the Mg-3.5Li-2Zn alloy was lower than 5%. These results indicated the potential of the Mg-Li-Zn alloys as good candidate materials for cardiovascular stent applications. Mg-Li alloys are promising as absorbable metallic biomaterials, which however have not received significant attention since the low strength, controversial corrosion performance and the doubts in Li toxicity. The Mg-Li-Zn alloy in the present study revealed much improved mechanical properties higher than most reported binary Mg-Li and ternary Mg-Li-X alloys, with superior corrosion resistance in cell culture media. Surprisingly, the addition of Li and Zn showed increased nitric oxide release. The present study indicates good potential of Mg-Li-Zn alloy as

  16. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  17. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  18. Band gap modification and ferroelectric properties of Bi{sub 0.5}(Na,K){sub 0.5}TiO{sub 3}-based by Li substitution

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ngo Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam); International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Hung, Vu Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Quyet, Nguyen Van [Hanautech Co., Ltd., 832, Tamnip-dong, Yuseong-gu, Daejeon (Korea, Republic of); Chung, Hoang Vu [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Hanoi (Viet Nam); Dung, Dang Duc, E-mail: dung.dangduc@hust.edu.vn [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam)

    2014-01-15

    We report on the reduction of band gap in Bi{sub 0.5}(Na{sub 0.82-x}Li{sub x}K{sub 0.18}){sub 0.5}(Ti{sub 0.95}Sn{sub 0.05})O{sub 3} from 2.99 eV to 2.84 eV due to the substitutions of Li{sup +} ions to Na{sup +} sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 μC/cm{sup 2}. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  19. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    Science.gov (United States)

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Observation of superconductivity at 30∼46K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu)

    OpenAIRE

    Ying, T. P.; Chen, X. L.; Wang, G.; Jin, S. F.; Zhou, T. T.; Lai, X. F.; Zhang, H.; Wang, W. Y.

    2012-01-01

    New iron selenide superconductors by intercalating smaller-sized alkali metals (Li, Na) and alkaline earths using high-temperature routes have been pursued ever since the discovery of superconductivity at about 30 K in KFe2Se2, but all have failed so far. Here we demonstrate that a series of superconductors with enhanced Tc=30~46 K can be obtained by intercalating metals, Li, Na, Ba, Sr, Ca, Yb, and Eu in between FeSe layers by the ammonothermal method at room temperature. Analysis on their p...

  1. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  2. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  3. Spin response in LiFeAs and NaFeAs iron-pnictides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Felix; Ahn, Felix; Eremin, Ilya [Ruhr-Universitaet Bochum, Bochum (Germany)

    2016-07-01

    We analyze the spin susceptibility in LiFeAs and NaFeAs by using the ten-orbital tight-binding model that we fitted to the electronic band structure measured by recent ARPES experiments. We identify an effective five-band model for a weak k{sub z}-dependence. Besides we present the bare and RPA-susceptibility and its q{sub z} dependencies to study the magnetic instabilities and estimate the strength of intra-orbital and inter-orbital nesting.

  4. Pressure-composition isotherms and thermodynamic properties of TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Fossdal, A. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)]. E-mail: anita.fossdal@ife.no; Brinks, H.W. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Fonnelop, J.E. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, B.C. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2005-07-19

    The mixed alanate Na{sub 2}LiAlH{sub 6} was prepared by ball-milling and subsequent heat-treatment under H{sub 2} pressure. After the synthesis, 2 mol% TiF{sub 3} was added by ball-milling. Pressure-composition isotherms were measured for the Ti-enhanced material in the temperature range of 170-250 deg C. A van't Hoff plot was constructed using the equilibrium desorption plateau pressures. From this plot, a dissociation enthalpy of 56.4 {+-} 0.4 kJ/mol H{sub 2} and a corresponding entropy of 137.9 {+-} 0.7 J/K mol H{sub 2} was found for Na{sub 2}LiAlH{sub 6}.

  5. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst

    Science.gov (United States)

    Ding, Ning; Zhou, Lan; Zhou, Changwei; Geng, Dongsheng; Yang, Jin; Chien, Sheau Wei; Liu, Zhaolin; Ng, Man-Fai; Yu, Aishui; Hor, T. S. Andy; Sullivan, Michael B.; Zong, Yun

    2016-09-01

    Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.

  6. Improvement on LiFePO4 Cell Balancing Algorithm

    Directory of Open Access Journals (Sweden)

    Vencislav C. Valchev

    2018-02-01

    Full Text Available The paper presents improvement on operation time of cell balancing algorithm compared to conventional multiple cell LiFePO4 charge methodology. A flowchart is synthesised to explain the main steps of the software design, which afterwards is implemented in a microcontroller. Experimental results are provided to clarify the transition between charge and balance process. Graphical data for a voltage equalization of eight cells is presented to verify the proposed improvement.

  7. Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry

    Science.gov (United States)

    Holycross, M.; Watson, E. B.

    2017-12-01

    In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact

  8. Introducing a Hydrogen-Bond Donor into a Weakly Nucleophilic Brønsted Base: Alkali Metal Hexamethyldisilazides (MHMDS, M=Li, Na, K, Rb and Cs) with Ammonia.

    Science.gov (United States)

    Neufeld, Roman; Michel, Reent; Herbst-Irmer, Regine; Schöne, Ralf; Stalke, Dietmar

    2016-08-22

    Alkali metal 1,1,1,3,3,3-hexamethyldisilazide (MHMDSs) are one of the most utilised weakly nucleophilic Brønsted bases in synthetic chemistry and especially in natural product synthesis. Like lithium organics, they aggregate depending on the employed donor solvents. Thus, they show different reactivity and selectivity as a function of their aggregation and solvation state. To date, monomeric LiHMDS with monodentate donor bases was only characterised in solution. Since the first preparation of LiHMDS in 1959 by Wannagat and Niederprüm, all efforts to crystallise monomeric LiHMDS in the absence of chelating ligands failed. Herein, we present ammonia adducts of LiHMDS, NaHMDS, KHMDS, RbHMDS and CsHMDS with unprecedented aggregation motifs: 1) The hitherto missing monomeric key compound in the LiHMDS aggregation architectures. Monomeric crystal structures of trisolvated LiHMDS (1) and NaHMDS (2), showing unique intermolecular hydrogen bonds, 2) the unprecedented tetrasolvated KHMDS (3) and RbHMDS (4) dimers and 3) the disolvated CsHMDS (5) dimer with very close intermolecular Si-CH3 ⋅⋅⋅Cs s-block "agostic" interactions have been prepared and characterised by single-crystal X-ray structure analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Study for electrochemical behavior of uranium oxide in a molten LiCl-Li2O system

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Interest in the electrolytic reduction of uranium oxide is increasing in the treatment of spent fuel oxides. With complicated and expensive procedures many reactive metals can be prepared in a pure metal form, the electrochemical reduction of a metal oxide has been recently proposed in metallurgy. The electrochemical reduction process is simple and rapid when compared to the conventional processes. The process can reduce the production costs and be applicable to a wide range of metal oxides. Chen et al. proposed the direct electrochemical reduction of titanium dioxide to titanium in a molten calcium chloride. Argonne National Laboratory (ANL) has reported the experimental results of an electrochemical reduction of the uranium oxide fuel in a bench-scale apparatus with a cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. Gourishankar et al. classified the mechanisms of the electrolytic reduction of the metal oxides in a LiCl-Li 2 O molten salt system into two types; the simultaneous reduction and the direct electrochemical reduction. The uranium oxide in LiCl-Li 2 O molten salt was converted to uranium metal according to two mechanisms. Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology in handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. In this work, cyclic voltammograms for a LiCl-3 wt% Li 2 O system and an U 3 O 8 -LiCl-3 wt% Li 2 O system with the integrated cathode assembly have been obtained. From the cyclic

  10. Partial exchange of the Li+, Na+ and K+ alkaline cations in the HNi(PO4).H2O layered compound

    International Nuclear Information System (INIS)

    Escobal, Jaione; Mesa, Jose; Pizarro, Jose; Bazan, Begona; Arriortua, Maria; Rojo, Teofilo

    2006-01-01

    The exchange of the Li + (1), Na + (2) and K + (3) alkaline cations in the layered HNi(PO 4 ).H 2 O was carried out starting from a methanolic solution containing the Li(OH).H 2 O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O phases for (2) and (3). The compounds are stable until, approximately, 280 o C for (1) and 400 deg. C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO 4 ) 3- oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d 8 , cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and C=3895cm -1 , respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li + cation in the lamellar HNi(PO 4 ).H 2 O phase is the minor rapid reaction, whereas the exchange of the Na + and K + cations needs the presence of the intermediate (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5μm. The Li + exchanged compound exhibits small ionic conductivity (Ωcm -1 is in the 10 -8 -10 -9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures

  11. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.; Wu, Jinsong; Dravid, Vinayak P.; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R.; Thackeray, Michael M.

    2016-10-19

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li0) relative to manganese oxide spinels (~2.9 V vs. Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0x0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  12. Production of LiF films for dosimetric thermoluminescence application; Producao de filmes de LiF para aplicacao em dosimetria termoluminescente

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia Lucia de Pinho

    2000-12-01

    This work studies the LiF monolayer and multilayer polycrystalline film's dosimetric properties. The films were produced by electron beam evaporation technique in aluminium and stainless steel substrates maintained at several temperatures. As dosimetric variable, the intensity of the thermoluminescent (TL) glow curve of the films was used. effects of the substrate type and temperature; of the addition of layers of Mg F{sub 2} NaF and Cu F{sub 2} to the LiF films; and of thermal treatments in the TL response of the produced films were studied. The microstructural characterization of the films was accomplished through measures of scanning electronic microscopy and grazing incidence X-rays diffraction analysis. The dosimetric characterization was made of gamma radiation exposure in a {sup 60} Co source, with kerma from 0,1 to 500 Gy. Studies of reproducibility, homogeneity, stability and other environmental effects were also made. LiF and Cu F{sub 2}: LiF; Mg F{sub 2} films were the only ones that presented mechanical stability and reproducibility of the TL emission. There is a strong indication of some correlation between the residual tension fields inside the films and the intensity of its TL emission peaks. LiF monolayer films present supralinear behaviour from 0,2 to 100 Gy. These films present a main TL glow peak around 150 deg C, whose half-time is about 30 days. Its volumetric sensitivity can reach about 60 times that of LiF powder and about 0,25 that of TLD100 (LiF:Mg, Ti commercial dosimeter from Harshaw Chemical Co.) The homogeneity and reproducibility inside a same film batch is better than 12% for 95% confidence level. Cu F{sub 2} : LiF: Mg F{sub 2} films present linear behaviour from 3 to 500 Gy and its main TL glow peak around 200 deg C did not present any fading for a a period of 30 days, in laboratory conditions. This glow peak is characteristic of the Mg doping of LiF, which confirms the diffusion of Mg ions from the Mg F{sub 2} layer to the Li

  13. THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    International Nuclear Information System (INIS)

    Kawanomoto, S.; Kajino, T.; Aoki, W.; Ando, H.; Noguchi, K.; Tanaka, W.; Bessell, M.; Suzuki, T. K.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Watanabe, E.; Yoshida, M.; Sadakane, K.; Sato, B.; Tajitsu, A.; Takada-Hidai, M.

    2009-01-01

    We have determined the isotopic abundance ratio of 7 Li/ 6 Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed ζ Oph for comparison with previous data. The observed abundance ratios were 7 Li/ 6 Li = 8.1 +3.6 -1.8 and 6.3 +3.0 -1.7 for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within ±2σ error bars and are also consistent with our measurement of 7 Li/ 6 Li = 7.1 +2.9 -1.6 for a cloud along the line of sight to ζ Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of 7 Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  14. Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Nacher-Alejos, Ana; Gomez-Romero, Pedro; Orinakova, Renata; Kaniansky, Dusan

    2010-01-01

    A simple chemical oxidative polymerization of pyrrole (Py) directly onto the surface of LiFePO 4 particles was applied to the synthesis of polypyrrole-LiFePO 4 (PPy-LiFePO 4 ) powder. The LiFePO 4 sample without carbon coating was synthesized by a solvothermal method. The polyethylene glycol (PEG) was used as additive during Py polymerization for increasing the PPy-LiFePO 4 conductivity. Properties of resulting LiFePO 4 , PPy-LiFePO 4 and PPy/PEG-LiFePO 4 samples were characterized by XRD, SEM, TGA and galvanostatic charge-discharge measurements. These methods confirmed the presence of polypyrrole on LiFePO 4 particles and its homogeneous distribution in the resulting powder material. The PPy/PEG-LiFePO 4 composites show higher discharge capacity than pure LiFePO 4 , as PPy/PEG network improves the electron conductivity. It presents specific discharge capacity of 153 mAh/g at C/5 rate.

  15. Residual salt separation from simulated spent nuclear fuel reduced in a LiCl-Li2O salt

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Hong, Sun-Seok; Seo, Chung-Seok

    2006-01-01

    The electrochemical reduction of spent nuclear fuel in LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel Atomic Energy Society of Japan, Tokyo, Japan, All rights reservedopyriprocess. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of the LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below the temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950degC were measured as follows: LiCl-8 wt% Li 2 O>LiCl>LiCl-8 wt% SrCl 2 >SrCl 2 . (author)

  16. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-01

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li 2 O > LiCl > LiCl-8 wt% SrCl 2 > SrCl 2

  17. Li ion batteries for electric-powered vehicles. Demands and status; Li-Ionen Batterien fuer elektrifizierte Fahrzeuge. Anforderungen und Status

    Energy Technology Data Exchange (ETDEWEB)

    Lamp, Peter [BMW AG, Muenchen (Germany). ' ' Speichertechnologie und -konzepte' '

    2011-07-01

    The idea of a rechargeable battery powered pure electrical vehicle exists for more than a century. In the course of the different oil crisis and the increasing efforts for emission and CO{sub 2} reduction there have been several attempts in the last 30 years to revive the idea of battery powered electric vehicles. Although new battery technologies like NaS or NaNiCl were used there was no real success as these technologies provided an improvement compared to lead-acid but still did not meet the automotive requirement. Compared to the other presently available battery technologies, Li-Ion batteries have outstanding performance regarding energy and power density. After being successfully introduced in the consumer market since more than a decade and in the meantime also penetrating the power-tool market, this technology now carries the hope of all political and industrial players, envisaging the future of increasing electrification of vehicles. In this paper the present status of the Li-Ion technology will be compared with the automotive requirements. Most of the relevant design features from electric performance as well as different cell technologies and geometries to cycle and calendar life will be addressed. Moreover necessary future development needs will be addressed. (orig.)

  18. Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S battery

    International Nuclear Information System (INIS)

    Barghamadi, Marzieh; Best, Adam S.; Hollenkamp, Anthony F.; Mahon, Peter; Musameh, Mustafa; Rüther, Thomas

    2016-01-01

    In the context of lithium-sulfur (Li-S) battery technology, LiNO 3 is known to improve performance by protecting the lithium anode via the formation of an optimized solid electrolyte interphase (SEI) as well as suppressing the associated lithium polysulfides shuttle effect during cycling. Herein, the concentration of added LiNO 3 (0.05–0.4 mol kg −1 ) in a C 4 mpyr-TFSI- organic mixed electrolyte has been varied, with any changes in cell performance monitored against the physical (viscosity) and ion-transport (NMR-based ion diffusion and conductivity) properties of each variant. We find that an electrolyte with 0.1 mol kg −1 LiNO 3 shows the best performance and that this is because this electrolyte has the highest conductivity, lowest viscosity and shows the lowest glass transition temperature (T g ), measured with differential scanning calorimetry (DSC). While the long-term benefits of adding lithium nitrate to the electrolyte of Li-S cells are known to be related to effects centred on the lithium anode, the short-term influence of this additive on capacity performance is clearly related to promoting better access to the porous cathode. The range of concentration over which this effect is operative (0.05–0.20 mol kg −1 ) overlaps with the range recommended for optimum performance of the lithium anode.

  19. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    Science.gov (United States)

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  20. Li3-xNaxV2(PO4)3 (0≤x≤3): Possible anode materials for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Pengfei; Shao, Lianyi; Qian, Shangshu; Yi, Ting-Feng; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) series are firstly evaluated as anode materials. • Li 3-x Na x V 2 (PO 4 ) 3 anodes show lithium storage activity in 1.0–3.0 V. • The lithium storage capability of different Li 3-x Na x V 2 (PO 4 ) 3 is compared. • Structural reversibility of Li 3-x Na x V 2 (PO 4 ) 3 is studied by in-situ XRD. - Abstract: In this paper, a series of Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) are prepared by a solid state reaction and systematically evaluated as anode materials for lithium-ion batteries. Structural analysis shows that the phase structure of Li 3-x Na x V 2 (PO 4 ) 3 changes along with the evolution of Na content. Charge-discharge tests exhibit that Li 3 V 2 (PO 4 ) 3 shows the highest initial charge specific capacity as high as 88.3 mAh g −1 among all the seven samples, and the reversible capacity is kept at 68.3 mAh g −1 after 45 cycles, corresponding to 77.3% of the initial charge capacity. With increasing of Na content in Li 3-x Na x V 2 (PO 4 ) 3 , the as-obtained sample show poorer lithium storage capability than Li 3 V 2 (PO 4 ) 3 . As a result, Na 3 V 2 (PO 4 ) 3 shows the inferior cycling performance than other Li 3-x Na x V 2 (PO 4 ) 3 . It can only deliver a reversible capacity of 20.9 mAh g −1 after 45 cycles, corresponding to 45.9% of the initial charge capacity. In-situ X-ray diffraction observations demonstrate that the poor electrochemical property of Na 3 V 2 (PO 4 ) 3 anode is due to the irreversible structural evolution during charge-discharge process. Therefore, reducing the Na 3 V 2 (PO 4 ) 3 phase in as-obtained sample is a feasible route to improve the lithium storage capability of Li 3-x Na x V 2 (PO 4 ) 3 .

  1. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  2. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  3. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O

    Science.gov (United States)

    Bi, Kun; Zhao, Shi-Xi; Huang, Chao; Nan, Ce-Wen

    2018-06-01

    Octahedral cathode materials LiNi0.5Mn1.5O4 (LNMO), with primary particles size of 300-600 nm are prepared through one-step co-precipitation. Then solid-state electrolyte Li2O-Al2O3-TiO2-P2O5 (LATP) was coated on LNMO to form continuous surface-modification layer. There is no obviously difference of structure, morphology between coated LATP LiNi0.5Mn1.5O4 (LATP-LNMO) and pristine LiNi0.5Mn1.5O4 (P-LNMO). Low-temperature electrochemical performance of P-LNMO and LATP-LNMO electrodes, including charge-discharge capacity, cycle performance, middle discharge voltage and electrochemical impedance spectra (EIS), were measured systematically with three electrode. The results reveal that LATP-LNMO electrode presents superior electrochemical performance at low temperature, compared to P-LNMO electrode. At -20 °C, the capacity retention of LATP-LNMO (61%) is much higher than that of P-LNMO (39%). According to EIS, the enhancement of performance of LATP-LNMO cathode at low temperature can be attribute to LATP coating, which not only promotes lithium-ion diffusion at electrode/electrolyte interface but also decreases the charge transfer resistance. Finally, the electrochemical performances of full cell of LATP-LNMO or P-LNMO cathode vs Li4Ti5O12 anode are investigated. The energy density can be achieved to 270 Wh·Kg-1 at -20 °C if using LATP-LNMO, which is much better than that of P-LNMO.

  4. A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode

    International Nuclear Information System (INIS)

    Liu, Xiaoyu; Huang, Tao; Yu, Aishui

    2015-01-01

    Through elaborate design, a new rechargeable lithium ion battery has been developed by comprising a surface-treated Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode and a nano-structured Li 4 Ti 5 O 12 anode. After precondition Na 2 S 2 O 8 treatment, the initial coulombic efficiency of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode has been significantly increased and can be compatible with that of the nano-structured Li 4 Ti 5 O 12 anode. The optimization of structure and morphology for both active electrode materials result in their remarkable electrochemical performances in respective lithium half-cells. Ultimately, the rechargeable lithium ion full battery consisting of both electrodes delivers a specific capacity of 99.0 mAh g −1 and a practical energy density of 201 Wh kg −1 , based on the total weight of both active electrode materials. Furthermore, as a promising candidate in the lithium ion battery field, this full battery also achieves highly attractive electrochemical performance with high coulombic efficiency, excellent cycling stability and outstanding rate capability. Thus the proposed battery displays broad practical application prospects for next generation of high-energy lithium ion battery. - Highlights: • The Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode is surface-treated by Na 2 S 2 O 8 . • The nano-sized Li 4 Ti 5 O 12 anode is obtained by a solid-state method. • A new Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 /Li 4 Ti 5 O 12 lithium ion battery is developed. • The battery shows high coulombic efficiency, specific capacity and energy density. • The battery shows high capacity retention rate and good high-rate capability

  5. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  6. Thermoluminescence of LiNaSo4: TI after exposure to radiation doses from electrons of different energies

    International Nuclear Information System (INIS)

    El-Kolaly, M.A.

    2002-01-01

    Lithium sodium sulphate doped by rare impurities (LiNaSO 4 : TI) has been locally prepared. Its Thermoluminescence properties (TL) have been performed from room temperature up to 300 degree C. The used heating rate was 5 degree C/sec. The samples were irradiated by electrons of different energies (5, 7, 9 and 13 MeV.). These samples were exposed to different duration to attain different radiation doses. It has been observed that the glow curves are consisted of four glow peaks at 75, 125, 225 and 250 degree C respectively. The first peak showed a linear dependence with electron radiation doses and can be used in radiation measurement. The irradiated impurities LiNaSO 4 : TI with energies higher than 5 MeV showed no appreciable change in the TL peak height. The obtained results will explore the probability of using such system (double sulphates doped by rare earth impurities) in the field of radiation measurements

  7. Ionic debye screening in dense liquid plasmas observed for Li+p, d reactions with liquid Li target

    International Nuclear Information System (INIS)

    Kasagi, J.; Yonemura, H.; Toriyabe, Y.; Nakagawa, A.; Sugawara, T.; Wang Tieshan

    2009-01-01

    Thick target yields of α particles emitted in the 6 Li(d,α) 4 He and 7 Li(p,α) 4 He reactions were measured for Li target in the solid and liquid phase. Observed reaction rates for the liquid Li are always larger than those for the solid. This suggests that the stopping power of hydrogen ion in the liquid Li metal might be smaller than in the solid. Using the empirically obtained stopping power for the liquid Li, we have deduced the screening potentials of the Li+p and Li+d reactions in both phases. The deduced screening potential for the liquid Li is about 500 eV larger than for the solid. This difference is attributed to the effect of liquefied Li + ions. It is concluded that the ionic screening is much stronger than the electronic screening in a low-temperature dense plasmas. (authors)

  8. Ionic Debye Screening in Dense Liquid Plasmas Observed for Li+p,d Reactions with Liquid Li Target

    Institute of Scientific and Technical Information of China (English)

    J.Kasagi; H.Yonemura; Y.Toriyabe; A.Nakagawa; T.Sugawara; WANG Tie-shan

    2009-01-01

    Thick target yields of a particles emitted in the ~6Li(d,a)~4 He and ~7Li(p,a)~4 He reactions were measured for Li target in the solid and liquid phase.Observed reaction rates for the liquid Li are always larger than those for the solid.This suggests that the stopping power of hydrogen ion in the liquid Li metal might be smaller than in the solid.Using the empirically obtained stopping power for the liquid Li,we have deduced the screening potentials of the Li+p and Li+d reactions in both phases.The deduced screening potential for the liquid Li is about 500 eV larger than for the solid.This difference is attributed to the effect of liquefied Li~+ ions.It is concluded that the ionic screening is much stronger than the electronic screening in a low-temperature dense plasmas.

  9. Properties of large Li ion cells using a nickel based mixed oxide

    Science.gov (United States)

    Broussely, M.; Blanchard, Ph; Biensan, Ph; Planchat, J. P.; Nechev, K.; Staniewicz, R. J.

    The possible use of LiNiO 2 similar to LiCoO 2, as a positive material in rechargeable lithium batteries was recognized 20 years ago and starting 10 years later, many research studies led to material improvement through substitution of some of the nickel ions by other metallic ions. These modifications improve the thermal stability at high charge level or overcharge, as well as cycling and storage properties. Commercial material is now available at large industrial scale, which allows its use in big "industrial" Li ion batteries. Using low cost raw material (Ni), it is expected to be cost competitive with the manganese based systems usually mentioned as low cost on the total cell $/Wh basis. Providing higher energy density, and demonstrating excellent behavior on storage and extended cycle life, LiNiO 2 has definite advantages over the manganese system. Thanks to their properties, these batteries have demonstrated their ability to be used in lot of applications, either for transportation or standby. Their light weight makes them attractive for powering satellites. Although safety improvements are always desirable for all non-aqueous batteries using flammable organic electrolytes, suitable battery designs allow the systems to reach the acceptable level of safety required by many users. Beside the largely distributed lead acid and nickel cadmium batteries, Li ion will found its place in the "industrial batteries" market, in a proportion directly linked to its future cost reduction.

  10. Lithium amide (LiNH2) under pressure.

    Science.gov (United States)

    Prasad, Dasari L V K; Ashcroft, N W; Hoffmann, Roald

    2012-10-11

    Static high pressure lithium amide (LiNH(2)) crystal structures are predicted using evolutionary structure search methodologies and intuitive approaches. In the process, we explore the relationship of the structure and properties of solid LiNH(2) to its molecular monomer and dimer, as well as its valence-isoelectronic crystalline phases of methane, water, and ammonia all under pressure. A NaNH(2) (Fddd) structure type is found to be competitive for the ground state of LiNH(2) above 6 GPa with the P = 1 atm I4[overline] phase. Three novel phases emerge at 11 (P4[overline]2(1)m), 13 (P4(2)/ncm), and 46 GPa (P2(1)2(1)2(1)), still containing molecular amide anions, which begin to form N-H···N hydrogen bonds. The P2(1)2(1)2(1) phase remains stable over a wide pressure range. This phase and another Pmc2(1) structure found at 280 GPa have infinite ···(H)N···H···N(H)···H polymeric zigzag chains comprising symmetric N···H···N hydrogen bonds with one NH bond kept out of the chain, an interesting general feature found in many of our high pressure (>280 GPa) LiNH(2) structures, with analogies in high pressure H(2)O-ices. All the predicted low enthalpy LiNH(2) phases are calculated to be enthalpically stable with respect to their elements but resist metallization with increasing pressure up to several TPa. The possibility of Li sublattice melting in the intermediate pressure range structures is raised.

  11. Investigation of the $^{8}$Li($^{2}$H,p)$^{9}$Li Reaction at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to investigate the $^{8}$Li($^{2}$H,p )$^{9}$Li reaction at REX-ISOLDE. The main aim is to test a recently found discrepancy in extracted spectroscopic factors for this reaction. As a byproduct we will obtain improved data relevant for predictions of the $^{8}$Li(n,$\\gamma$)$^{9}$Li rate in inhomogeneous nucleosynthesis. For the full experiment including beam tuning and background measurements we ask for 13 shifts.

  12. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    Science.gov (United States)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  13. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    International Nuclear Information System (INIS)

    Adamczak, Jens; Lambert, David L.

    2013-01-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12 C/ 13 C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  14. Concentration dependence of physical properties of liquid NaF–LiF–NdF{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bulavin, L. [Kyiv National Taras Shevchenko University, Faculty of Physics, 2 Glushkova Ave., 03022 Kyiv (Ukraine); Plevachuk, Yu., E-mail: plevachuk@mail.lviv.ua [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Sklyarchuk, V. [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Omelchuk, A.; Faidiuk, N.; Savchuk, R. [V.I. Vernadsky Institute of General and Inorganic Chemistry, 32/34 prosp. Akad. Palladina, 03680 Kyiv (Ukraine); Shtablavyy, I.; Vus, V. [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Yakymovych, A. [Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, Währinger Str. 42, A-1090 Vienna (Austria)

    2014-04-01

    Highlights: • Molten NaF–LiF–NdF{sub 3} eutectic and peritectic alloys can be used in liquid salt reactors. • A stepped dissociation exists well above melting in the both alloys. • Anomalous properties behaviour proves that a short-range order persists after melting. • Transformation of structure spread to a wide temperature range in the liquid phase. - Abstract: Experimental studies of viscosity, thermoelectric power and electrical conductivity of the ionic liquid alloys NaF–LiF–NdF{sub 3} were carried out in the wide temperature intervals above the melting points. Similar temperature dependences of these properties for different melt compositions have been revealed. The alloy composition has a significant influence on the interval of melt homogeneity and behaviour of the thermoelectric power temperature coefficient. It was found that a small shift from the peritectic to eutectic composition increases considerable the viscosity. A correlation between the structure and thermophysical properties has been analyzed. The results can be used in modelling a blanket for the liquid salt reactor.

  15. Synthesis and characterisation of copper doped Ca–Li hydroxyapatite

    International Nuclear Information System (INIS)

    Pogosova, M.A.; Kazin, P.E.; Tretyakov, Y.D.

    2012-01-01

    Hydroxyapapites M 10 (PO 4 ) 6 (OH) 2 (MHAP), where M is an alkaline earth metal, colored by incorporation of copper ions substituting protons, were discovered recently . Now this kind of apatite-type materials can be used as inorganic pigments. Until now blue (BaHAP), violet (SrHAP) and wine-red (CaHAP) colors were achieved by the copper ions introduction . The task of the present work was to study possibility of further M-ion substitution to affect the color and shift it toward the red–orange tint. Polycrystalline hydroxyapatites Ca 10−x Li x+y Cu z (PO 4 ) 6 O 2 H 2−y−z−σ (Ca–LiHAP) were synthesized by solid state reaction at 1150 °C (ceramic method) and studied by X-ray powder diffraction (XRD), infrared absorption and diffuse-reflectance spectroscopy. Refinement of the X-ray diffraction patterns by the Rietveld method shows that CaHAP unit cell parameters are a little bigger, than Ca–LiHAP ones. Small difference between unit cell parameters could be caused by two ways of the Li + ions introduction: (1) at the Ca 2+ sites (Ca–Li substitution); (2) into hexagonal channels (H–Li substitution). The Li ions doping changes the color of the copper doped CaHAP from wine-red to pink and red.

  16. Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.

    Science.gov (United States)

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  17. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    Science.gov (United States)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  18. Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rushanah Mohamed

    2011-01-01

    Full Text Available Li-ion battery cathode materials were synthesised via a mechanical activation and thermal treatment process and systematically studied. LiFePO4/CNT composite cathode materials were successfully prepared from LiFePO4 material. The synthesis technique involved growth of carbon nanotubes onto the LiFePO4 using a novel spray pyrolysis-modified CVD technique. The technique yielded LiFePO4/CNT composite cathode material displaying good electrochemical activity. The composite cathode exhibited excellent electrochemical performances with 163 mAh/g discharge capacity with 94% cycle efficiency at a 0.1 C discharge rate in the first cycle, with a capacity fade of approximately 10% after 30 cycles. The results indicate that carbon nanotube addition can enable LiFePO4 to display a higher discharge capacity at a fast rate with high efficiency. The research is of potential interest for the application of carbon nanotubes as a new conducting additive in cathode preparation and for the development of high-power Li-ion batteries for hybrid electric vehicles.

  19. Solid state opto-impedance of LiNiVO4 and LiMn2O4

    International Nuclear Information System (INIS)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R

    2005-01-01

    Spinel type LiMn 2 O 4 and inverse spinel LiNiVO 4 systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy ∼5 eV, the LiNiVO 4 system shows significant modification in the solid state impedance pattern while the LiMn 2 O 4 system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO 4 with respect to LiMn 2 O 4 , which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint

  20. Synthesis, crystal structure, and vibrational spectra of the anhydrous lithium dicyanamide Li[N(CN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); DiSalvo, Francis J. [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Blaschkowski, Bjoern; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Jagiella, Stefan [Institut fuer Physikalische und Theoretische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-04-15

    Crystals of Li[N(CN){sub 2}] were synthesized from a metathesis reaction of stoichiometric amounts of aqueous solutions of Na[N(CN){sub 2}] and Li{sub 2}[SO{sub 4}] followed by subsequent treatment with ethanol and evaporation of the filtered-off solution at 80 C under normal atmospheric conditions. The single crystals of the title compound are transparent, colorless, and extremly hygroscopic. X-ray structure analysis showed that Li[N(CN){sub 2}] crystallizes in the monoclinic space group P2/c with the cell parameters a = 530.79(8) pm, b = 524.89(9) pm, c = 1149.77(17) pm, β = 101.551(7) , and Z = 4. The crystal structure contains Li{sup +} cations in both tetrahedral and octahedral nitrogen coordination of the boomerang-shaped [N≡C-N-C≡N]{sup -} anions. The vibrational spectra of Li[N(CN){sub 2}] are reported as well, together with ab initio calculations for geometry and harmonic frequencies of the free dicyanamide anion. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.).

    Science.gov (United States)

    Olsen, K M; Sutherland, B L; Small, L L

    2007-10-01

    White clover (Trifolium repens) is naturally polymorphic for cyanogenesis (hydrogen cyanide release following tissue damage). The ecological factors favouring cyanogenic and acyanogenic plants have been examined in numerous studies over the last half century, making this one of the best-documented examples of an adaptive polymorphism in plants. White clover cyanogenesis is controlled by two, independently segregating Mendelian genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolysing enzyme, linamarase. In this study, we examine the molecular evolution and population genetics of Li as it relates to the cyanogenesis polymorphism. We report here that Li exists as a single-copy gene in plants possessing linamarase activity, and that the absence of enzyme activity in li/li plants is correlated with the absence of much or all of the gene from the white clover genome. Consistent with this finding, we confirm by reverse transcription-polymerase chain reaction that Li gene expression is absent in plants lacking enzyme activity. In a molecular population genetic analysis of Li and three unlinked genes using a worldwide sample of clover plants, we find an absence of nucleotide variation and statistically significant deviations from neutrality at Li; these findings are consistent with recent positive directional selection at this cyanogenesis locus.

  2. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    Science.gov (United States)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  3. Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal.

    Science.gov (United States)

    Aguesse, Frederic; Manalastas, William; Buannic, Lucienne; Lopez Del Amo, Juan Miguel; Singh, Gurpreet; Llordés, Anna; Kilner, John

    2017-02-01

    All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO 4 cathode, and garnet ceramic electrolyte. The addition of a liquid interfacial layer between the cathode and the ceramic electrolyte is found to be a prerequisite to achieve low interfacial resistance and to enable full use of the active material contained in the porous electrode. Reproducible and constant discharge capacities are extracted from the cathode active material during the first 20 cycles, revealing high efficiency of the garnet as electrolyte and the interfaces, but prolonged cycling leads to abrupt cell failure. By using a combination of structural and chemical characterization techniques, such as SEM and solid-state NMR, as well as electrochemical and impedance spectroscopy, it is demonstrated that a sudden impedance drop occurs in the cell due to the formation of metallic Li and its propagation within the ceramic electrolyte. This degradation process is originated at the interface between the Li-metal anode and the ceramic electrolyte layer and leads to electromechanical failure and cell short-circuit. Improvement of the performances is observed when cycling the full cell at 55 °C, as the Li-metal softening favors the interfacial contact. Various degradation mechanisms are proposed to explain this behavior.

  4. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  5. Thermodynamic assessment of EuBr2 unary and LiBr-EuBr2 and NaBr-EuBr2 binary systems

    International Nuclear Information System (INIS)

    Gong, Weiping; Gaune-Escard, Marcelle

    2009-01-01

    As a basis for the design and development of molten salt mixtures, thermodynamic calculations of the phase diagrams and thermodynamic properties were carried out on the EuBr 2 unary and LiBr-EuBr 2 and NaBr-EuBr 2 binary systems over a wide temperature and composition range, respectively. The Gibbs energy of EuBr 2 was evaluated using an independent polynomial to fit the experimental heat capacity, the thermodynamic parameters for each phase in the LiBr-EuBr 2 and NaBr-EuBr 2 systems were optimized by using available experimental information on phase diagrams. A regular substitutional solution model for the liquid phase and Neumann-Kopp rule for the stoichiometric compound LiEu 2 Br 5 were adopted to reproduce the experimental data with reasonable excess Gibbs energy. Comparisons between the calculated phase diagrams and thermodynamic quantities show that all reliable experimental information is satisfactorily accounted for by the present thermodynamic description. Some thermodynamic properties were predicted to check the suitability of the present calculation.

  6. In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteries

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    In commercial Fe-based batteries the Fe2+/Fe3+ oxidation states are used, however by also utilizing the Fe4+ oxidation state, intercalation of up to two Li ions per Fe ion could be possible. In this study, we investigate whether Fe4+ can be formed and stabilized in β-Li3Fe2(PO4)3. The work includes...... of Fe4+ formation. Oxidation of the organic electrolyte is inevitable at 4.5 V but this alone cannot explain the volume change. Instead, a reversible oxygen redox process (O2− → O−) could possibly explain and charge compensate for the reversible extraction of lithium ions from β-Li3Fe2(PO4)3....... in situ synchrotron X-ray powder diffraction studies (XRPD) during charging of β-Li3Fe2(PO4)3 up to 5.0 V vs. Li/Li+. A novel capillary-based micro battery cell for in situ XRPD has been designed for this. During charge, a plateau at 4.5 V was found and a small contraction in volume was observed...

  7. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  8. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Entiat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the...

  9. Enhanced Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Natasha Ross

    2015-01-01

    Full Text Available Au with Pd nanoparticles were synthesized and coated onto the spinel LiMn2O4 via a coprecipitation calcination method with the objective to improve the microstructure, conductivity, and electrochemical activities of pristine LiMn2O4. The novel LiPdAuxMn2-xO4 composite cathode had high phase purity, well crystallized particles, and more regular morphological structures with narrow size distributions. At enlarged cycling potential ranges the LiPdAuxMn2-xO4 sample delivered 90 mAh g−1 discharge capacity compared to LiMn2O4 (45 mAh g−1. It was concluded that even a small amount of the Pd and Au enhanced both the lithium diffusivity and electrochemical conductivity of the host sample due to the beneficial properties of their synergy.

  10. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  11. Band gap modification and ferroelectric properties of Bi0.5(Na,K0.5TiO3-based by Li substitution

    Directory of Open Access Journals (Sweden)

    Ngo Duc Quan

    2014-01-01

    Full Text Available We report on the reduction of band gap in Bi0.5(Na0.82-xLixK0.180.5(Ti0.95Sn0.05O3 from 2.99 eV to 2.84 eV due to the substitutions of Li+ ions to Na+ sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 μC/cm2. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  12. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  13. Lithiotantite, ideally LiTa3O8

    Directory of Open Access Journals (Sweden)

    Aba C. Persiano

    2012-05-01

    Full Text Available Lithiotantite (lithium tritantalum octaoxide and lithiowodginite are natural dimorphs of LiTa3O8, corresponding to the laboratory-synthesized L-LiTa3O8 (low-temperature form and M-LiTa3O8 (intermediate-temperature form phases, respectively. Based on single-crystal X-ray diffraction data, this study presents the first structure determination of lithiotantite from a new locality, the Murundu mine, Jenipapo District, Itinga, Minas Gerais, Brazil. Lithiotantite is isotypic with LiNb3O8 and its structure is composed of a slightly distorted hexagonal close-packed array of O atoms stacked in the [-101] direction, with the metal atoms occupying half of the octahedral sites. There are four symmetrically non-equivalent cation sites, with three of them occupied mainly by (Ta5+ + Nb5+ and one by Li+. The four distinct octahedra share edges, forming two types of zigzag chains (A and B extending along the b axis. The A chains are built exclusively of (Ta,NbO6 octahedra (M1 and M2, whereas the B chains consist of alternating (Ta,NbO6 and LiO6 octahedra (M3 and M4, respectively. The average M1—O, M2—O, M3—O and M4—O bond lengths are 2.011, 2.004, 1.984, and 2.188 Å, respectively. Among the four octahedra, M3 is the least distorted and M4 the most. The refined Ta contents at the M1, M2 and M3 sites are 0.641 (2, 0.665 (2, and 0.874 (2, respectively, indicating a strong preference of Ta5+ for M3 in the B chain. The refined composition of the crystal investigated is Li0.96Mn0.03Na0.01Nb0.82Ta2.18O8.

  14. Evaluation of lithium alloy anode materials for Li-TiS2 cells

    Science.gov (United States)

    Huang, C.-K.; Subbarao, S.; Shen, D. H.; Deligiannis, F.; Attia, A.; Halpert, G.

    1991-01-01

    A study was performed to select candidate lithium alloy anode materials and establish selection criteria. Some of the selected alloy materials were evaluated for their electrochemical properties and performance. This paper describes the criteria for the selection of alloys and the findings of the studies. Li-Si and Li-Cd alloys have been found to be unstable in the EC+2-MeTHF-based electrolyte. The Li-Al alloy system was found to be promising among the alloy systems studied in view of its stability and reversibility. Unfortunately, the large volume changes of LiAl alloys during charge/discharge cycling cause considerable 'exfoliation' of its active mass. This paper also describes ways how to address this problem. The rate of disintegration of this anode would probably be surpressed by the presence of an inert solid solution or a uniform distribution of precipitates within the grains of the active mass. It was discovered that the addition of a small quantity of Mn may improve the mechanical properties of LiAl. In an attempt to reduce the Li-Al alloy vs. Li voltage, it was observed that LiAlPb(0.1)Cd(0.3) material can be cycled at 1.5 mA/sq cm without exfoliation of the active mass.

  15. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  16. Adiponitrile-Lithium Bis(trimethylsulfonyl)imide Solutions as Alkyl Carbonate-free Electrolytes for Li4 Ti5 O12 (LTO)/LiNi1/3 Co1/3 Mn1/3 O2 (NMC) Li-Ion Batteries.

    Science.gov (United States)

    Farhat, Douaa; Ghamouss, Fouad; Maibach, Julia; Edström, Kristina; Lemordant, Daniel

    2017-05-19

    Recently, dinitriles (NC(CH 2 ) n CN) and especially adiponitrile (ADN, n=4) have attracted attention as safe electrolyte solvents owing to their chemical stability, high boiling points, high flash points, and low vapor pressure. The good solvation properties of ADN toward lithium salts and its high electrochemical stability (≈6 V vs. Li/Li + ) make it suitable for safer Li-ions cells without performance loss. In this study, ADN is used as a single electrolyte solvent with lithium bis(trimethylsulfonyl)imide (LiTFSI). This electrolyte allows the use of aluminium collectors as almost no corrosion occurs at voltages up to 4.2 V. The physicochemical properties of the ADN-LiTFSI electrolyte, such as salt dissolution, conductivity, and viscosity, were determined. The cycling performances of batteries using Li 4 Ti 5 O 12 (LTO) as the anode and LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) as the cathode were determined. The results indicate that LTO/NMC batteries exhibit excellent rate capabilities with a columbic efficiency close to 100 %. As an example, cells were able to reach a capacity of 165 mAh g -1 at 0.1 C and a capacity retention of more than 98 % after 200 cycles at 0.5 C. In addition, electrodes analyses by SEM, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy after cycling confirming minimal surface changes of the electrodes in the studied battery system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and operation of thermal-convection loops for corrosion measurements in LiF--LiCl--LiBr

    International Nuclear Information System (INIS)

    Keiser, J.R.; DeVan, J.H.

    1979-01-01

    Using a most sophisticated design of a thermal-convection loop to study the corrosion behavior of type 316 stainless steel and the salt mixture LiF--LiCl--LiBr is reported. The corrosion rate is being determined as a function of time and temperature through weight change measurements. The maximum corrosion rate measured is about 20 μm/year on removable corrosion specimens. Controlled potential voltammetry has been found to be satisfactory and is being used to monitor the oxidation potential of the salt. Measurements demonstrate the effect on the oxidation potential of impurities introduced during specimen insertion, and techniques should show the effect of a lithium addition on the oxidation potential

  18. Scintillation properties of LiF–SrF{sub 2} and LiF–CaF{sub 2} eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira [Quantum Science and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-12-15

    Dopant free eutectic scintillators {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF{sub 2} was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF{sub 2} layers. When the samples were irradiated with {sup 252}Cf neutrons, {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF{sub 2} and LiF–SrF{sub 2} eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF{sub 2} sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF{sub 2} and LiF–SrF{sub 2} were 250 and 90 ns, respectively.

  19. Solvothermal coating LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} microspheres with nanoscale Li{sub 2}TiO{sub 3} shell for long lifespan Li-ion battery cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun, E-mail: y_zhang@scu.edu.cn

    2016-04-25

    LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (NCA) microspheres covered by a nanoscale Li{sub 2}TiO{sub 3}-based shell were synthesized by a facile strategy based on a solvothermal pre-coating treatment combined with a post-sintering lithiation process. The morphology, structure and composition of the Li{sub 2}TiO{sub 3}-coated NCA samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning scanning electron microscope (SEM) with an energy-dispersive X-ray spectroscope (EDS), and transmission electron microscopy (TEM). Owing to the complete, uniform and nanoscale Li{sub 2}TiO{sub 3} coating shell, the resultant surface-modified NCA microspheres used as Li-ion battery cathode materials manifest remarkably enhanced cycling performances, attaining 94% and 84% capacity retention after 200 and 400 cycles at 0.5 C, respectively, which is much better than the pristine NCA counterpart (60% retention, 200 cycles). More impressively, the surface-modified NCA also shows an intriguing storage stability. After being stored at 30 °C for 50 days, the coated NCA-based cells are subjected to be cycled both at room and elevated temperatures, in which the aged cells can still remain 84% capacity retention after 200 cycles at 25 °C and 77% capacity retention after 200 cycles at 55 °C, respectively. All these results demonstrate that the Li{sub 2}TiO{sub 3}-coated LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} microsphere is a promising cathode material for Li-ion batteries with long lifespan. - Graphical abstract: Nanoscale Li{sub 2}TiO{sub 3}-based shell encapsulated LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (NCA) microspheres are fabricated through a solvothermal pre-coating treatment combined with post-lithiation process. The surface-coated NCA as cathode materials shows a remarkably enhanced cycling performance and storage stability for long lifespan Li-ion batteries. - Highlights: • Li{sub 2}TiO{sub 3} is used as coating

  20. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    Science.gov (United States)

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  1. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  2. Intermetallic and metal-rich phases in the system Li-Ba-In-N

    International Nuclear Information System (INIS)

    Smetana, Volodymyr; Vajenine, Grigori V.; Kienle, Lorenz; Duppel, Viola; Simon, Arndt

    2010-01-01

    Three new intermetallic phases, BaLi 2.1 In 1.9 , BaLi 1.12 In 0.98 , and BaLi 1.06 In 1.16 and two subnitrides Li 35 In 45 Ba 39 N 9 and LiIn 2 Ba 3 N 0.83 have been synthesized and their crystal structures have been determined. According to single crystal X-ray diffraction data BaLi 2.1 In 1.9 and BaLi 1.12 In 0.98 crystallize with hexagonal symmetry (BaLi 2.1 In 1.9 : P6 3 /mmc, a=10.410(2), c=8.364(2) A, Z=6, V=785.0(2) A 3 ) and BaLi 1.12 In 0.98 : P6/mmm, a=17.469(1), c=10.6409(7) A, Z=30, V=2813.5(8) A 3 ), while BaLi 1.06 In 1.16 has a rhombohedral structure (R-3c, a=18.894(3), c=85.289(17) A, Z=276, V=26368(8) A 3 ). BaLi 2.1 In 1.9 is isostructural with the known phase BaLi 4 . The phase BaLi 1.12 In 0.98 is structurally related to Na 8 K 23 Cd 12 In 48 , while BaLi 1.06 In 1.16 is isostructural with Li 33.3 Ba 13.1 Ca 3 . A sample containing structurally similar BaLi 1.12 In 0.98 and BaLi 1.02 In 1.16 was also investigated by transmission electron microscopy. Li 35 In 45 Ba 39 N 9 and LiIn 2 Ba 3 N 0.83 crystallize with tetragonal (I-42m, a=15.299(2), c=30.682(6) A, Z=2, V=7182(2) A 3 ) and cubic (Fd-3m, a=14.913(2) A, Z=8, V=3316.7(7) A 3 ) symmetry, respectively. While the first-mentioned subnitride belongs to the Li 80 Ba 39 N 9 structure type, the second extends the structural family of Ba 6 In 4.78 N 2.72 . The structural features of the new compounds are discussed in comparison to the known phases and the results of total energy calculations. - Graphical abstract: One-dimensional chain of face-sharing centered icosahedra in BaLi 2.1 In 1.9

  3. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    Science.gov (United States)

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  4. Reaction chemistry in rechargeable Li-O2 batteries.

    Science.gov (United States)

    Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk

    2017-05-22

    The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.

  5. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  6. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S; Anjum, Dalaver H.; Ullah, Shafiq; Ahmed, Bilal; Habib, Amir; Karim, Altaf; Hasanain, Syed Khurshid

    2016-01-01

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  7. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  8. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions

    International Nuclear Information System (INIS)

    Liu, X.H.; Yi, X.Q.; Jiang, Y.

    2011-01-01

    Mass transfer performance of two commonly used liquid desiccants, LiBr aqueous solution and LiCl aqueous solution, is compared in this paper on the basis of the same solution temperature and surface vapor pressure. According to the analysis of the analytical solutions of heat and mass transfer processes, the key performance influencing factors are heat capacity ratio of air to desiccant m * and mass transfer unit NTU m . The heat capacities of the two liquid desiccants are about the same at same volumetric flow rate, and LiBr solution has higher density and smaller specific heat capacity. The variance of mass transfer unit with different operating conditions and liquid desiccants are derived based on the experimental results. In the condition of the same desiccant mass flow rate, the dehumidification performance of LiCl solution is better, and the regeneration performance of LiBr solution is a little better or almost the same as that of LiCl solution. In the condition of the same desiccant volumetric flow rate, the dehumidification performance of LiCl solution is a little better or about the same compared with LiBr solution, and the regeneration performance of LiBr solution is better. The COPs of the liquid desiccant systems using these two desiccants are similar; while LiCl solution costs 18% lower than LiBr solution at current Chinese price.

  9. Features and applications of the large capacity Li-MnO/sub 2/ cell

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Koichi; Takeuchi, Ken' ichi

    1987-04-10

    Recently, Litium cells are used for power source of wristwatches, pocket-computors and cameras. The large capacity Li-MnO/sub 2/ primary cell developed by Yuasa Battery Company features its prismatic shape with a completely-sealed construction and a large capacity up to 1300Ah in addition to its high energy density and small self-discharge inherent to this type of cell, and is used in various application where a maintenance-free property is required for a long period of time. This paper deals with characteristecs, structure, safety and application examples of this Li-MnO/sub 2/ cell. As application examples, power supplies for head lamps for mountaineering, buoys for oceanographic survey, back-up for computor-memories and back-up for emergency alarm, are mentioned. (10 figs, 1 tab, 3 photos)

  10. [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode.

    Science.gov (United States)

    Li, Zhaojin; Peng, Zhenzhen; Zhang, Hui; Hu, Tao; Hu, Minmin; Zhu, Kongjun; Wang, Xiaohui

    2016-01-13

    [100] is believed to be a tough diffusion direction for Li(+) in LiFePO4, leading to the belief that the rate performance of [100]-oriented LiFePO4 is poor. Here we report the fabrication of 12 nm-thick [100]-oriented LiFePO4 nanoflakes by a simple one-pot solvothermal method. The nanoflakes exhibit unexpectedly excellent electrochemical performance, in stark contrast to what was previously believed. Such an exceptional result is attributed to a decreased thermodynamic transformation barrier height (Δμb) associated with increased active population.

  11. Study of the 6Li+16O light heavy-ion system around the Coulomb barrier

    International Nuclear Information System (INIS)

    Glasner, K.; Ricken, L.; Kuhlmann, E.

    1986-01-01

    Total cross sections of the light heavy-ion reactions 16 O( 6 Li,p) 21 Ne, i=0-10, have been measured for beam energies Esub(Li)=4.5-8.0 MeV in steps of 100 keV. Additional excitation functions of the inclusive reactions 16 O( 6 Li,xy), x=p, n and α, were taken for Esub(li)=4.1-12.5 MeV. The 6 Li+ 16 O reaction can be understood as a predominant compound-nucleus process as extensive Hauser-Feshbach calculations show. A comprehensive statistical analysis yields a coherence width GAMMA=130+-20 keV for Esub(x)( 22 Na)approx.=19 MeV. Statistically significant deviations from pure fluctuation phenomena are found in most excitation functions at Esub(x)( 22 Na)=17.9, 18.4, 19.2 and 20.2 MeV. Interpreting these structures with widths 400<=GAMMAsub(tot)<=800 keV as intermediate-width resonances in terms of rotational band, tentative spin assignments can be given. (orig.)

  12. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  13. Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li2O Molten Salts with an Integrated Cathode Assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    The electrolytic reduction of uranium oxide in a LiCl-Li 2 O molten salt system has been studied in a 10 g U 3 O 3 /batch-scale experimental apparatus with an integrated cathode assembly at 650 .deg. C. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt% Li 3 O system and the U 3 O 3 -LiCl-3 wt% Li 2 O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  14. Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12−x

    Directory of Open Access Journals (Sweden)

    Yigang Yan

    2018-03-01

    Full Text Available Li2B12H12 is commonly considered as a boron sink hindering the reversible hydrogen sorption of LiBH4. Recently, in the dehydrogenation process of LiBH4 an amorphous H-deficient Li2B12H12−x phase was observed. In the present study, we investigate the rehydrogenation properties of Li2B12H12−x to form LiBH4. With addition of nanostructured cobalt boride in a 1:1 mass ratio, the rehydrogenation properties of Li2B12H12−x are improved, where LiBH4 forms under milder conditions (e.g., 400 °C, 100 bar H2 with a yield of 68%. The active catalytic species in the reversible sorption reaction is suggested to be nonmetallic CoxB (x = 1 based on 11B MAS NMR experiments and its role has been discussed.

  15. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  16. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    Science.gov (United States)

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.

  17. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  18. Formation and reduction behaviors of zirconium oxide compounds in LiCl–Li{sub 2}O melt at 923 K

    Energy Technology Data Exchange (ETDEWEB)

    Sakamura, Yoshiharu, E-mail: sakamura@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511 (Japan); Iizuka, Masatoshi [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511 (Japan); Kitawaki, Shinichi; Nakayoshi, Akira; Kofuji, Hirohide [International Research Institute for Nuclear Decommissioning (IRID), 2-23-1 Nishi-shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Japan Atomic Energy Agency (JAEA), 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2015-11-15

    The reduction behaviors of ZrO{sub 2}, Li{sub 2}ZrO{sub 3} and (U,Pu,Zr)O{sub 2} in a LiCl–Li{sub 2}O salt bath at 923 K were investigated. This study was conducted as part of a feasibility study on the pyrochemical treatment of damaged fuel debris generated by severe accidents at light water reactors. It was demonstrated in electrolytic reduction tests that the uranium in synthetic corium specimens of (U,Pu,Zr)O{sub 2} with various ZrO{sub 2} contents could be reduced to the metallic form and that part of the zirconium was converted to Li{sub 2}ZrO{sub 3}. Zirconium metal and Li{sub 2}ZrO{sub 3} were obtained by the reduction of ZrO{sub 2}. The reduction of Li{sub 2}ZrO{sub 3} did not proceed even in LiCl containing no Li{sub 2}O. Moreover, the stable chemical forms of the ZrO{sub 2}–Li{sub 2}O complex oxide were investigated as a function of the Li{sub 2}O concentration in LiCl. ZrO{sub 2} was converted to Li{sub 2}ZrO{sub 3} at a Li{sub 2}O concentration of 0.018 wt%. As the Li{sub 2}O concentration was increased, Li{sub 2}ZrO{sub 3} was converted to Li{sub 6}Zr{sub 2}O{sub 7} and then to Li{sub 8}ZrO{sub 6}. It is suggested that the removal of Li{sub 2}ZrO{sub 3} from the reduction product is a key point in the pyrochemical treatment of corium. - Highlights: • The uranium in (U,Pu,Zr)O{sub 2} could be reduced to the metallic form in LiCl–Li{sub 2}O. • Part of the zirconium was converted to Li{sub 2}ZrO{sub 3} during electrolytic reduction. • Li{sub 6}Zr{sub 2}O{sub 7} and Li{sub 8}ZrO{sub 6} formed at high Li{sub 2}O concentrations in LiCl.

  19. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  20. 7Li(d,p)8Li transfer reaction in the NCSM/RGM approach

    Science.gov (United States)

    Raimondi, F.; Hupin, G.; Navrátil, P.; Quaglioni, S.

    2018-03-01

    Recently, we applied an ab initio method, the no-core shell model combined with the resonating group method, to the transfer reactions with light p-shell nuclei as targets and deuteron as the projectile. In particular, we studied the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction starting from a realistic two-nucleon interaction. In this contribution, we review of our main results on the 7Li(d,p)8Li transfer reaction, and we extend the study of the relevant reaction channels, by showing the dominant resonant phase shifts of the scattering matrix. We assess also the impact of the polarization effects of the deuteron below the breakup on the positive-parity resonant states in the reaction. For this purpose, we perform an analysis of the convergence trend of the phase and eigenphase shifts, with respect to the number of deuteron pseudostates included in the model space.

  1. Thermodynamic properties and behaviour of A2[(UO2)(MoO4)2] compounds with A = Li, Na, K, Rb, and Cs

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Depmeier, Wulf; Bosbach, Dirk; Alekseev, Evgeny V.

    2014-01-01

    Highlights: • Low temperature heat capacity of A 2 [(UO 2 )(MoO 4 ) 2 ] (A = Li, Na, K, Rb, and Cs) series was determined. • Enthalpy of formation of Li 2 [(UO 2 )(MoO 4 ) 2 ] was determined by HF solution calorimetry. • Δ f G° (T = 298 K) of all phases from studied series were calculated. - Abstract: A thermodynamic investigation of five alkali-metal uranyl molybdates of the general formula A 2 [(UO 2 )(MoO 4 ) 2 ], where A = Li, Na, K, Rb, and Cs, was undertaken. The various phases were synthesized by solid-state reaction of ANO 3, with A = Li, Na, K, Rb, or Cs, MoO 3 and γ-UO 3 . The synthetic products were characterized by X-ray powder diffraction and X-ray fluorescence methods. The low-temperature heat capacity, S r °, was measured using adiabatic calorimetry from T = (6 to 335) K. Based on these data, the third law entropy at T = 298.15 K, S°, is (345 ± 1) J · K −1 · mol −1 for Li 2 [(UO 2 )(MoO 4 ) 2 ], (373 ± 1) J · K −1 · mol −1 for Na 2 [(UO 2 )(MoO 4 ) 2 ], (390 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 )(MoO 4 ) 2 ], (377 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 )(MoO 4 ) 2 ] and (394 ± 1) J · K −1 · mol −1 for Cs 2 [(UO 2 )(MoO 4 ) 2 ]. The enthalpy of formation of Li 2 [(UO 2 )(MoO 4 ) 2 ] was determined using HF solution calorimetry giving Δ f H°(T = 298 K, Li 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3456 ± 9) kJ · mol −1 . Using these new experimental results, together with literature data, the Gibbs free energy of formation of each compound was calculated, giving: Δ f G°(T = 298 K, Li 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3204 ± 9) kJ · mol −1 , Δ f G°(T = 298 K, Na 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3243 ± 2) kJ · mol −1 , Δ f G°(T = 298 K, K 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3269 ± 3) kJ · mol −1 , Δ f G°(T = 298 K, Rb 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3262 ± 3) kJ · mol −1 , and Δ f G°(T = 298 K, Cs 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3259 ± 3) kJ · mol −1 . Smoothed S r °(T) values

  2. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    Science.gov (United States)

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  3. Li-atoms-induced structure changes of Guinier–Preston–Bagaryatsky zones in AlCuLiMg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Duan, S.Y.; Le, Z.; Chen, Z.K.; Gao, Z. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, J.H., E-mail: jhchen123@hnu.edu.cn [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Advanced Research Center, Central South University, Changsha 410083 (China); Ming, W.Q.; Li, S.Y.; Wu, C.L. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Yan, N. [Advanced Research Center, Central South University, Changsha 410083 (China)

    2016-11-15

    Guinier–Preston–Bagaryatsky (GPB) zones are the well-known strengthening precipitates of AlCuMg alloys formed upon thermal ageing. Here we report that when formed in AlCuLiMg alloys the GPB zones can change significantly in morphology and structure. It is shown that though they do still consist of Al, Cu and Mg elements fundamentally, the GPB zones in AlCuLiMg alloys have a rather different structure due to a featured Li-segregation at their interfaces with the matrix and possible Li-replacement of partial Mg atoms in the structure. As such the Li-containing GPB zones often develop from one-dimensional to quasi-two-dimensional precipitates. - Highlights: • We observe Guinier–Preston–Bagaryatsky zone variants in AlCuLiMg alloys. • We obtain atomic-resolution images of the precipitates and model their structures. • Li-atoms play a key role in modifying the structure of these precipitate variants.

  4. Activated graphene as a cathode material for Li-ion hybrid supercapacitors.

    Science.gov (United States)

    Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S

    2012-03-14

    Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).

  5. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  6. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  7. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  8. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  9. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  10. Production of LiF films for dosimetric thermoluminescence application

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia de Pinho

    2000-12-01

    This work studies the LiF monolayer and multilayer polycrystalline film's dosimetric properties. The films were produced by electron beam evaporation technique in aluminium and stainless steel substrates maintained at several temperatures. As dosimetric variable, the intensity of the thermoluminescent (TL) glow curve of the films was used. effects of the substrate type and temperature; of the addition of layers of Mg F 2 NaF and Cu F 2 to the LiF films; and of thermal treatments in the TL response of the produced films were studied. The microstructural characterization of the films was accomplished through measures of scanning electronic microscopy and grazing incidence X-rays diffraction analysis. The dosimetric characterization was made of gamma radiation exposure in a 60 Co source, with kerma from 0,1 to 500 Gy. Studies of reproducibility, homogeneity, stability and other environmental effects were also made. LiF and Cu F 2 : LiF; Mg F 2 films were the only ones that presented mechanical stability and reproducibility of the TL emission. There is a strong indication of some correlation between the residual tension fields inside the films and the intensity of its TL emission peaks. LiF monolayer films present supralinear behaviour from 0,2 to 100 Gy. These films present a main TL glow peak around 150 deg C, whose half-time is about 30 days. Its volumetric sensitivity can reach about 60 times that of LiF powder and about 0,25 that of TLD100 (LiF:Mg, Ti commercial dosimeter from Harshaw Chemical Co.) The homogeneity and reproducibility inside a same film batch is better than 12% for 95% confidence level. Cu F 2 : LiF: Mg F 2 films present linear behaviour from 3 to 500 Gy and its main TL glow peak around 200 deg C did not present any fading for a a period of 30 days, in laboratory conditions. This glow peak is characteristic of the Mg doping of LiF, which confirms the diffusion of Mg ions from the Mg F 2 layer to the LiF layer. The TL volumetric sensitivity of these

  11. Reduction behavior of UO22+ in molten LiCl–RbCl and LiCl–KCl eutectics by using tungsten

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu

    2013-01-01

    The reduction of uranium from UO 2 2+ to UO 2 + or U 4+ in molten LiCl–RbCl and LiCl–KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl–RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO 2 2+ was reduced to the pentavalent of UO 2 + . Under purging chlorine gas into the melt, 96% of UO 2 2+ was reduced to the tetravalent of U 4+ . Tungsten oxy-chloride of WOCl 4 was produced via the reductions of UO 2 2+ , which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO 2 2+ in the LiCl–KCl eutectic melt at 500 °C was reduced to U 4+ by using tungsten and chlorine gas

  12. Reduction behavior of UO22+ in molten LiCl-RbCl and LiCl-KCl eutectics by using tungsten

    Science.gov (United States)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu

    2013-08-01

    The reduction of uranium from UO22+ to UO2+ or U4+ in molten LiCl-RbCl and LiCl-KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl-RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO22+ was reduced to the pentavalent of UO2+. Under purging chlorine gas into the melt, 96% of UO22+ was reduced to the tetravalent of U4+. Tungsten oxy-chloride of WOCl4 was produced via the reductions of UO22+, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO22+ in the LiCl-KCl eutectic melt at 500 °C was reduced to U4+ by using tungsten and chlorine gas.

  13. HNbO3 and HTaO3: new cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange

    International Nuclear Information System (INIS)

    Rice, C.E.; Jackel, J.L.

    1982-01-01

    The synthesis of HNbO 3 and HTaO 3 from LiNbO 3 via ion exchange in hot aqueous acid solutions is reported. This reaction is accompanied by a topotactic structural transformation from the rhombohedral LiNbO 3 structure to the cubic perovskite structure; cell constants are a = 3.822(1) angstrom for HNbO 3 and 3.810(2) angstrom for HTaO 3 . These new compounds have been characterized by powder X-ray diffraction, thermogravimetric analysis, and solid-state NMR. They are electronic insulators and have low ionic conductivity. Evidence of partially proton-exchange phases Li/sub 1-x/H/sub x/MO 3 was also seen. The possible significance of this ion exchange reaction for devices using LiNbO 3 or LiTaO 3 is discussed

  14. Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals

    Science.gov (United States)

    Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng

    2018-04-01

    Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.

  15. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  16. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    Science.gov (United States)

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Nanosized {alpha}-LiFeO{sub 2} as electrochemical supercapacitor electrode in neutral sulfate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Pena, J., E-mail: iq2sanpe@uco.e [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Crosnier, O.; Brousse, T. [Laboratoire de Genie des Materiaux et Procedes Associes, Ecole Polytechnique de l' Universite de Nantes, Site de la Chantrerie, rue Christian Pauc s/n, 44376 Nantes Cedex 3 (France)

    2010-10-30

    In this work we have explored the electrochemical properties of two lithiated iron oxide powders for supercapacitor purposes. These samples mainly consisted of {alpha}-LiFeO{sub 2} in nanosized or micrometric form. Electrolyte was an aqueous 0.5 M Li{sub 2}SO{sub 4} solution and voltage range studied was between 0 and -0.7 V vs. a Ag/AgCl reference electrode. As expected, electrochemical performance was dependent on the particle size. When electrolyte was deaerated a stable capacitance of {approx}50 F g{sup -1} is provided by the nanosized sample for several hundred cycles. Other sulfate based salts (Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Cs{sub 2}SO{sub 4}) were investigated as electrolytes but only Li{sub 2}SO{sub 4} leads to a stable capacitance upon cycling, probably due to lithium intercalation. An hybrid cell consisting of this sample and MnO{sub 2} as negative and positive electrodes, respectively, delivered 0.3 F cm{sup -2} (10 F g{sup -1}). Although these values are lower than reported for other aqueous hybrid cell, {alpha}-LiFeO{sub 2}/MnO{sub 2} asymmetric capacitor is interesting from both, an economic and an environmental point of view.

  18. Nuclear charge radius of 11Li

    International Nuclear Information System (INIS)

    Sanchez, Rodolfo; Noertershaeuser, Wilfried; Dax, Andreas; Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas; Wojtaszek, Agnieszka; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan Zongchao; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D.

    2006-01-01

    We have determined the nuclear charge radius of 11 Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7 Li- 11 Li isotope shift (IS) was measured in the 2s → 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 -5 . The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6 Li to 9 Li, and then increase with 11 Li about 11% larger than 9 Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11 Li; thus, the results are compared with a number of nuclear structure models.

  19. Characterization of LT-LiXO1-YNIYO2 electrodes for rechargeable lithium cells

    CSIR Research Space (South Africa)

    Gummow, RJ

    1993-12-01

    Full Text Available -spinel in character and that LT- Li0.4Co0.sNi0.102 is a defect spinel with spinel notation {Li0.s\\[:\\]0.2}sa \\[Co, 6Nio.2D0.2104. Electrochemical data.--The charge and discharge pro- files for the first four cycles of Li/LT-LiCoO2, Li... on the B sites of an A\\[B2104 spinel structure. The spinel phase is significantly more stable to lithium insertion/extraction reactions than the quasi-spinel phase. It is believed that by optimizing the processing conditions...

  20. Crystallization behavior of (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Cheng, Chih-Wei; Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.t [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2010-07-02

    The crystallization behavior of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of {beta}-spodumene. The isothermal crystallization kinetics of {beta}-spodumene from the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of {beta}-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na{sub 2}O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses.

  1. Mixed alkali neodymium orthoborates: K_9Li_3Nd_3(BO_3)_7 and A_2LiNd(BO_3)_2 (A = Rb, Cs)

    International Nuclear Information System (INIS)

    Chen, Pengyun; Xia, Mingjun; Li, Rukang

    2016-01-01

    Crystals of mixed alkali neodymium orthoborates, K_9Li_3Nd_3(BO_3)_7 and A_2LiNd(BO_3)_2 (A = Rb, Cs) were obtained by spontaneous crystallization. K_9Li_3Nd_3(BO_3)_7 crystallizes in space group P2/c with cell parameters of a = 11.4524(7) Aa, b = 10.1266(6) Aa, c = 12.3116 (10) Aa, β = 122.0090(10) . In the structure, NdO_8 polyhedra share corners and connect with planer BO_3 groups to form infinite [Nd_3B_3O_2_1]_n chains. These chains are linked by additional BO_3 groups to produce a double layer of [Nd_6B_6O_3_8]_n blocks in the ac plane with K and Li ions filled into the cavities. A_2LiNd(BO_3)_2 (A = Rb, Cs) crystallizes in space group Pbcm, with cell parameters of a = 7.113(2) Aa, b = 9.691(3) Aa and c = 10.135(3) Aa for Rb_2LiNd(BO_3)_2, and a = 7.2113(3) Aa, b = 9.9621(4) Aa, and c = 10.3347(4) Aa for Cs_2LiNd(BO_3)_2. In the structure, NdO_8 polyhedra are corner-sharing with each other and further interlinked by BO_3 groups to comprise the infinite [Nd_4B_4O_2_4] sheets in the bc plane, with Rb/Cs and Li ions occupying the interlayered space. The compounds show effective near-IR emission and their associated lifetimes are obtained by fluorescence spectra. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Magnetic signature of charge ordering in Li[Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 and Li sub 0 sub . sub 2 [Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4

    CERN Document Server

    Verhoeven, V W J; Mulder, F M

    2002-01-01

    The stoichiometric compound LiMn sub 2 O sub 4 is known to show charge ordering with well-defined Mn sup 3 sup + and Mn sup 4 sup + sites just below room temperature (RT). Above RT the electrons are hopping rapidly between sites. For lithium-ion batteries the material Li[Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 is technologically relevant. Due to the small amount of Li on the Mn site, the low-T regular ordering of the Mn charge appears to be destroyed completely, as is evidenced by neutron diffraction in the magnetically ordered state. However, the charges are still fixed in an irregular fashion, as can also be deduced from sup 7 Li nuclear magnetic resonance measurements. In the lithium-extracted compound Li sub 0 sub . sub 2 [Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 , predominantly Mn sup 4 sup + is present. Neutron diffraction in the magnetically ordered state shows a well-defined antiferromagnetic ordering, with doubling of the unit cell in three directions. Clear...

  3. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    Science.gov (United States)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  4. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  5. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  6. Voc enhancement of a solar cell with doped Li+-PbS as the active layer

    Science.gov (United States)

    Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.

    2018-06-01

    In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.

  7. Sol–gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhong Shengkui; Wu Ling; Liu Jiequn

    2012-01-01

    Highlights: ► Nano-sized 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C powders are prepared by a sol–gel method. ► Mutual doping in 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C can improve its electronic conductivity. ► The addition of Li 3 V 2 (PO 4 ) 3 can improve the ionic diffusivity of LiFePO 4 . ► LiFePO 4 , Li 3 V 2 (PO 4 ) 3 and LiFePO 4 –Li 3 V 2 (PO 4 ) 3 unit cells coexist in the composite. - Abstract: 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C composite cathode material is prepared by a sol–gel method, using ferric citrate, V 2 O 5 , Li 2 CO 3 , NH 4 H 2 PO 4 and citric acid as raw materials. The composite material is composed of the olivine LiFePO 4 and monoclinic Li 3 V 2 (PO 4 ) 3 phases. XRD results indicate that most of the iron and vanadium in the raw materials tend to form the LiFePO 4 and Li 3 V 2 (PO 4 ) 3 phases, and only small amounts of Fe and V as the dopants enter into the lattice of Li 3 V 2 (PO 4 ) 3 and LiFePO 4 , respectively. The electronic conductivity and Li + diffusion coefficient of 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C are 6.615 × 10 −3 S cm −1 and ∼10 −10 cm 2 s −1 , which are three orders of magnitude and one order of magnitude larger than those of the LiFePO 4 /C, respectively. The composite material shows a first discharge specific capacity of 131.3 mAh g −1 and capacity retention of 95.1% after 200 cycles at 10 C rate. Compared with the LiFePO 4 /C, its rate capability and cycle performance are both remarkably improved.

  8. Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes

    Science.gov (United States)

    Nilsson, Viktor; Younesi, Reza; Brandell, Daniel; Edström, Kristina; Johansson, Patrik

    2018-04-01

    Highly concentrated LiTFSI - acetonitrile electrolytes have recently been shown to stabilize graphite electrodes in lithium-ion batteries (LIBs) much better than comparable more dilute systems. Here we revisit this system in order to optimise the salt concentration vs. both graphite and lithium metal electrodes with respect to electrochemical stability. However, we observe an instability regardless of concentration, making lithium metal unsuitable as a counter electrode, and this also affects evaluation of e.g. graphite electrodes. While the highly concentrated electrolytes have much improved electrochemical stabilities, their reductive decomposition below ca. 1.2 V vs. Li+/Li° still makes them less practical vs. graphite electrodes, and the oxidative reaction with Al at ca. 4.1 V vs. Li+/Li° makes them problematic for high voltage LIB cells. The former originates in an insufficiently stable solid electrolyte interphase (SEI) dissolving and continuously reforming - causing self-discharge, as observed by paused galvanostatic cycling, while the latter is likely caused by aluminium current collector corrosion. Yet, we show that medium voltage LiFePO4 positive electrodes can successfully be used as counter and reference electrodes.

  9. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  10. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  11. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  12. High-energy lithium-ion battery using substituted LiCoPO4: From coin type to 1 Ah cell

    Science.gov (United States)

    Liu, D.; Zhu, W.; Kim, C.; Cho, M.; Guerfi, A.; Delp, S. A.; Allen, J. L.; Jow, T. R.; Zaghib, K.

    2018-06-01

    Cr, Fe and Si were added to improve the performance of olivine LiCoPO4 in cathodes for lithium-ion batteries. A substituted-LiCoPO4 in a half cell delivered a reversible capacity of 125 mAh/g at C/3 rate, with no capacity loss after over 100 cycles at 25 °C. The well-known capacity fade of LiCoPO4-based cathodes was almost completely eliminated by substituting Cr, Fe and Si.

  13. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    Science.gov (United States)

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Xiao Qing Li

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. Xiao Qing Li. Articles written in Pramana – Journal of Physics. Volume 78 Issue 3 March 2012 pp 439-449 Research Articles. Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma · San Qiu Liu Wei Tang Xiao Qing Li · More Details ...

  15. Ab initio study of isomerism of Li2AB2 molecules and Li2AB2+ ions with 16 valent electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.

    2000-01-01

    In the framework of MP2(6-31*//HF/6-31G + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations ab initio calculations of surfaces of potential energy of molecules of lithium salts of Li 2 AB 2 (Li 2 BeO 2 , L 2 MgO 2 , Li 2 BeS 2 , Li 2 MgS 2 , Li 2 CN 2 , Li 2 SiN 2 , Li 2 CP 2 ) type and ions of Li 2 AB 2 + (Li 2 BO 2 + , Li 2 AlO 2 + , Li 2 BS 2 + , Li 2 AlS 2 + , Li 2 N 3 + , Li 2 PN 2 + , Li 2 P 3 + ) type with 16 valent electrons are done. For oxide and nitride systems global minimum corresponds to symmetric linear structure D ∞h and for their sulfide and phosphorus analogues curved plane or unplane (C 2 ) structure with bond angle φ(LBA)=90-110 Deg are preferable. Equilibrium geometric parameters, relative energies and energies of isomer decomposition, frequencies and IR-intensities of normal vibrations are determined [ru

  16. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    Science.gov (United States)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  17. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    International Nuclear Information System (INIS)

    Arifin, M; Iskandar, F; Aimon, A H; Munir, M M; Nuryadin, B W

    2016-01-01

    LiFePO 4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO 4 /Li 2 SiO 3 /rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO 4 /Li 2 SiO 3 . Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO 4 /Li 2 SiO 3 structure. (paper)

  18. Improvement of solar cells performances by surface passivation using porous silicon chemically treated with LiBr solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel; Dimassi, Wissem; Bousbih, Rabaa; Hajji, Massoud; Kanzari, M. Ali; Ezzaouia, Hatem [Laboratoire de Photovoltaique, Centre de Recherche et des Technologies de l' Energie, Hammam Lif (Tunisia)

    2011-03-15

    Solar cells need efficient light absorption to achieve high efficiencies. In this paper, we present a study on the immersion effect of porous silicon (PS) in a Lithium Bromide (LiBr) aqueous solution, followed by thermal annealing at 100 C for 30 min under nitrogen atmosphere on solar cells performances. The surface morphology was studied by Atomic Force Microscopy (AFM). All samples were analyzed by Fourier transmission infrared spectroscopy (FTIR) before and after LiBr immersion. Good electrical properties were observed after thermal annealing at 100 C for 30 min under nitrogen atmosphere. The reflection spectra of PS, before and after LiBr treatment, performed in the 300-1200 nm wavelength range, showed an important decrease of the reflectivity by this new treatment. A significant increase of the photoluminescence (PL) intensity was obtained after LiBr treatment. An enhancement of the light beam induced current (LBIC) as well as the internal quantum efficiency (IQE) were shown after LiBr treatment. I-V characteristics, under AM1.5 illumination, were improved owing to the increase of the minority carrier diffusion length (L) and an excellent enhancement of the surface recombination velocity (V{sub s}) (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  20. Preparation of cathode materials for Li-ion cells by acid dissolution

    International Nuclear Information System (INIS)

    Oh, Si Hyoung; Jeong, Woon Tae; Cho, Won Il; Cho, Byung Won; Woo, Kyoungja

    2005-01-01

    New synthesis route called acid dissolution method, preparing the high-performance cathode materials for the lithium-ion cells, was successfully developed. In this method, insoluble starting materials such as metal carbonates or metal hydroxides are dissolved in strong organic acidic solution which contains a chelating agent. And then, the solvent of the solution containing starting materials is eliminated to obtain the xerogel of the initial solution whose chemical form is expressed as Li[MA 3 ], where M is a transition metal atom and A is the anion of the organic acid. The xerogel is then calcined at the high temperature to obtain polycrystalline cathode materials. In this work, the applicability of this method was demonstrated synthesizing a polycrystalline single-phase LiCoO 2 using lithium carbonate, cobalt hydroxide as the insoluble starting materials and the acrylic acid as a chelating agent. The synthesized powders calcined at 800 deg. C showed a good electrochemical performance in the half-cell test

  1. Unique reduced graphene oxide as efficient anode material in Li ion ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... as an electrode material in dye-sensitized solar cell [1], super- capacitor [2] and Li ion battery ... Ar-filled glove box. In each of the coin cell, ... Li reacts with suitable materials' defects at low potential and as they charge, bonds ...

  2. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone

    Science.gov (United States)

    Lu, Jian; Qin, Yingying; Zhang, Qi; Wu, Yilin; Cui, Jiuyun; Li, Chunxiang; Wang, Liang; Yan, Yongsheng

    2018-01-01

    High-selective multilayered Li+-imprinted membranes (Li-IIMs) with enhanced hydrophilicity and stability were developed based on polyether sulfone substrate membranes. The multilayered structure was prepared with polydopamine (pDA) as the interfacial adhesion layer, SiO2 nanoparticles as the hydrophilic layer and Li+-imprinted polymers as the imprinted layer. The selective ;Li+-recognition sites; were formed using 12-crown-4 (12C4) as the adsorbing units. The optimal relative selectivity coefficients (α) of Li+/Na+ and Li+/K+ reached up to 1.85 and 2.07 with the imprinting factor (β) of 2.51, and the high permselectivity factors (γ) of Na+/Li+ (7.39) and K+/Li+ (9.86) were achieved on Li-IIMs. The Langmuir isotherm model and the pseudo-second-order kinetics model best fitted the rebinding data of Li-IIMs, as well as the rebinding capacities reached up to 90.3% of initial binding after 5 cycles of adsorption/desorption and just declined to 88.1% after another 5 cycles a month later. Therefore, the as-prepared Li-IIMs would have potential applications for the separation of lithium ions from salt lake brines.

  3. The interstellar lithium abundance and the 7Li/6Li ratio

    International Nuclear Information System (INIS)

    Ferlet, R.; Dennefeld, M.

    1985-01-01

    The λ 6708 doublet of interstellar Li I has been observed at high spectral resolution (3.km s -1 ) and very good signal to noise ratio (∼ 4000) towards δ Sco and ζ Oph. Using a profile fitting method, we derive for the first time outside the solar system a 7 Li/ 6 Li ratio of 38 for a diffuse cloud in front of ζ Oph. Even the lower limit of the error bar is incompatible with the ratio measured in meteorites and is not explained by recent models of galactic evolution. The existence of a local inhomogeneity is suggested. Finally, as for other alkalis, lithium is depleted on to dust grains in the diffuse interstellar medium [fr

  4. XPS study of Li/Nb ratio in LiNbO{sub 3} crystals. Effect of polarity and mechanical processing on LiNbO{sub 3} surface chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Skryleva, E.A., E-mail: easkryleva@gmail.com; Kubasov, I.V., E-mail: kubasov.ilya@gmail.com; Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru; Senatulin, B.R., E-mail: borisrs@yandex.ru; Zhukov, R.N., E-mail: rom_zhuk@mail.ru; Zakutailov, K.V., E-mail: zakkonst@gmail.com; Malinkovich, M.D., E-mail: malinkovich@yandex.ru; Parkhomenko, Yu.N., E-mail: parkh@rambler.ru

    2016-12-15

    Highlights: • XPS Li/Nb ratio measurement uncertainty in LNbO3 specimens was obtained. • The effect of polarization on surface chemistry was observed only on cleaves. • Li/Nb ratio on positive cleave surface is higher than on negative one. • The positive cleave surface adsorbs fluorine more efficiently than negative one. • Mechanical processing of crystals reduces surface Li/Nb. - Abstract: Different sections of congruent lithium niobate (CLN) crystals have been studied using X-ray photoelectron spectroscopy (XPS). We have developed a method for measuring the lithium-to-niobium atomic ratio Li/Nb from the ratio of the Li1s and Nb4s spectral integral intensities with an overall error of within 8 %. Polarity and mechanical processing affect the Li/Nb ratio on CLN crystal surfaces. The Li/Nb ratio is within the tolerance (0.946 ± 0.074) on the negative cleave surface Z, and there is excess lithium (Li/Nb = 1.25 ± 0.10) on the positive surface. The positive surfaces of the 128° Y cut plates after long exposure to air exhibit LiOH formation indications (obvious lithium excess, higher Li1s spectral binding energy and a wide additional peak in the O1s spectrum produced by nonstructural oxygen). XPS and glow discharge optical electron spectroscopy showed that mechanical processing of differently oriented crystals (X, Z and 128° Y) and different polarities dramatically reduces the Li/Nb ratio. In situ fluorine adsorption experiments revealed the following regularities: fluorine adsorption only occurred on crystal cleaves and was not observed for mechanically processed specimens. Positive cleave surfaces have substantially higher fluorine adsorption capacity compared to negative ones.

  5. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  6. Density functional theory study of lithium diffusion at the interface between olivine-type LiFePO4 and LiMnPO4

    Science.gov (United States)

    Shi, Jianjian; Wang, Zhiguo; Qing Fu, Yong

    2016-12-01

    Coating LiMnPO4 with a thin layer of LiFePO4 shows a better electrochemical performance than the pure LiFePO4 and LiMnPO4, thus it is critical to understand Li diffusion at their interfaces to improve the performance of electrode materials. Li diffusion at the (1 0 0)\\text{LiFeP{{\\text{O}}4}} //(1 0 0)\\text{LiMnP{{\\text{O}}4}} , (0 1 0)\\text{LiFeP{{\\text{O}}4}} //(0 1 0)\\text{LiMnP{{\\text{O}}4}} , and (0 0 1)\\text{LiFeP{{\\text{O}}4}} //(0 0 1)\\text{LiMnP{{\\text{O}}4}} interfaces between LiFePO4 and LiMnPO4 was investigated using density functional theory. The calculated diffusion energy barriers are 0.55 eV for Li to diffuse along the (0 0 1) interface, 0.44 and 0.49 eV for the Li diffusion inside the LiMnPO4 and along the (1 0 0) interface, respectively. When Li diffuses from the LiFePO4 to LiMnPO4 by passing through the (0 1 0) interfaces, the diffusion barriers are 0.45 and 0.60 eV for the Li diffusions in both sides. The diffusion barriers for Li to diffuse in LiMnPO4 near the interfaces decrease compared with those in the pure LiMnPO4. The calculated diffusion coefficient of Li along the (1 0 0) interface is in the range of 3.65  ×  10-11-5.28  ×  10-12 cm2 s-1, which is larger than that in the pure LiMnPO4 with a value of 7.5  ×  10-14 cm2 s-1. Therefore, the charging/discharging rate performance of the LiMnPO4 can be improved by surface coating with the LiFePO4.

  7. Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: Charge capability vs surface area

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Fabián, M.; Klusáčková, Monika; Klementová, Mariana; Pitňa Lásková, Barbora; Danková, Z.; Senna, M.; Kavan, Ladislav

    2018-01-01

    Roč. 265 (2018), s. 480-487 ISSN 0013-4686 R&D Projects: GA ČR GA15-06511S; GA MŠk LM2015087; GA MŠk 8F15003 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Li4Ti5O12 * Charge capacity * Solid state * Li insertion * Surface area Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  8. Effect of LiNO3 on corrosion prevention of aluminum wastes after their land disposal

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Matsuda, Masami; Hironaga, Michihiko; Horikawa, Yoshihiko.

    1996-01-01

    After their land disposal, LiNO 3 added to cement solidified miscellaneous wastes inhibits hydrogen gas generation due to alkaline corrosion of aluminum contained in the wastes. We considered the presence of an Li-Al preservation film prevents hydrogen gas generation, and then, we assumed a scenario in which the amount of LiNO 3 included in the waste packages is lowered by underground water penetration, resulting in dissolution of the Li-Al preservation film. This dissolution allows the alkaline underground water to reach and corrode the aluminum materials. The loss of Na 2 O and K 2 O in cement by underground water penetration lowers the pH, so that the aluminum corrosion in the waste packages with LiNO 3 , expected when the Li-Al preservation film dissolves, is less than that without LiNO 3 . To test this scenario, we measured solubility of the Li-Al preservation film, Li + ion concentration, pH variation by underground water penetration, and aluminum corrosion when the Li-Al preservation film had dissolved. The measured solubility of the Li-Al preservation film was 3x10 -4 M at 283 K. At that time, pH was lowered from 12.9-13.0 to 12.2-12.3. As a result, with LiNO 3 addition the aluminum corrosion amount was reduced to 10% of that without LiNO 3 addition, because of the pH decrease. (author)

  9. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  10. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  11. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations

    Science.gov (United States)

    Hansen, Christian T.; Meixner, Anette; Kasemann, Simone A.; Bach, Wolfgang

    2017-11-01

    Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization. We reacted fresh olivine (5 g; Fo90; [B] = anti-correlated with temperature, we argue for an overall attenuation of the isotopic effect through changes in B speciation in saline solutions (NaB(OH)4(aq) and B(OH)3Cl-) as well as variable B fixation and fractionation for different serpentinization product minerals (brucite, chrysotile). Breakdown of the Li-rich olivine and limited Li incorporation into product mineral phases resulted in an overall lower Li content of the final solid phase assemblage at 200 °C ([Li]final_200 °C = 0.77 μg/g; DS/FLi200 °C = 1.58). First order changes in Li isotopic compositions were defined by mixing of two isotopically distinct sources i.e. the fresh olivine and the fluid rather than by equilibrium isotope fraction. At 200 °C primary olivine is dissolved, releasing its Li budget into the fluid which shifts towards a lower δ7LiF of +38.62‰. Newly formed serpentine minerals (δ7LiS = +30.58‰) incorporate fluid derived Li with a minor preference of the 6Li isotope. At 100 °C Li enrichment of secondary phases exceeded Li release by olivine breakdown ([Li]final_100 °C = 2.10 μg/g; DS/FLi100 °C = 11.3) and it was accompanied by preferential incorporation of heavier 7Li isotope that might be due to incorporation of a 7Li enriched fluid fraction into chrysotile nanotubes.

  12. Acidity of cations and the solubility of oxides in the eutectic KCl-LiCl melt at 700 Deg C

    International Nuclear Information System (INIS)

    Cherginets, V.L.; Rebrova, T.P.

    1999-01-01

    Products of MgO, NiO and CoO solubility in KCl-LiCl melt at 700 Deg C were determined by the method of potentiometric titration using Pt(O 2 )IZrO 2 (Y 2 O 3 ) membrane oxygen electrode. It was ascertained that acid properties of Cd 2+ and Pb'2 + cations are levelled to Li + properties, a break in E-pO graduation dependence in KCl-LiCl melt was observed at pO ∼ 2. Increase in oxides solubility in the melt studied compared with KCl-NaCl and CsCl-KCl-NaCl melts stems from the presence of Li + cations in the melt studied, which possess stronger acid properties than those of Na + or K + [ru

  13. Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries

    International Nuclear Information System (INIS)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-01-01

    LiFePO 4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO 4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO 4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO 4 cathode for high-energy and high-power rechargeable battery for electric transportation

  14. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  15. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  16. Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties

    Science.gov (United States)

    Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.

    2017-03-01

    LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.

  17. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

    Science.gov (United States)

    Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi

    2011-03-30

    Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.

  18. In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune; Norby, Poul

    2014-01-01

    of a electrolyte filled capillary with anode and cathode in each end suspended on stainless steel wires, the oxygen in-let is placed on the cathode side of the capillary with a flushing system for oxygen in-let. In this study we present a flexible design of a capillary based Li-O2 battery with discharge and charge...... a stainless steel wire where the cathode is attached. The in situ XRD measurements show how the Li2O2 growth depend on current discharge rate and how the FWHM changes dependent on reflection and charge/discharge.Several cells were tested both ex situ and in situ, and in situ XRD for 1st discharge/charge and 2...

  19. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  20. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project element is to increase the specific energy of Li-ion battery cells to 265 Wh/kg and the energy density to 500 Wh/L at 10oC while maintaining...

  1. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  2. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  3. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part II: Pebble properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • The mechanical strength of Li{sub 4}SiO{sub 4}-based breeder pebbles can be improved by adding either LMT, LAO or LLTO as second phase. • The increase in strength is closely linked to a reduction of the open porosity of the pebbles. • All fabricated pebbles show a highly homogenous microstructure with mostly low closed porosity. • Adding LLTO, although it decomposes during sintering, greatly improves the strength of the pebbles. - Abstract: The pebble properties of novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3} are evaluated in this work as a function of the second phase concentration and the microstructure of the pebbles. The characterization focused on the mechanical strength, microstructure and open as well as closed porosity. Therefore crush load tests, SEM analyses as well as helium pycnometry and optical image analysis were performed, respectively. This work shows that generally additions of a second phase to Li{sub 4}SiO{sub 4} considerably improve the mechanical strength. It also shows that the fabrication processes have to be well-controlled to achieve high mechanical strengths. When Li{sub 2}TiO{sub 3} is added in different concentrations, the determinant for the crush load seems to be the open porosity of the pebbles. The strengthening effect of LiAlO{sub 2} compared to Li{sub 2}TiO{sub 3} is similar, while additions of Li{sub x}La{sub y}TiO{sub 3} increase the mechanical strength much more. Yet, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases upon sintering. In general the pebble properties of all samples are favorable for use within a fusion breeder blanket.

  4. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  5. Microstructure Analysis of Synthesized LiBOB

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2015-11-01

    Full Text Available Lithium bis (oxalate borate or LiBOB is an active material used as the electrolyte for lithium battery application. LiBOB (LiB(C2O42 powder was prepared from LiOH, H2C2O4 and H3BO3. The employed method was solid state reaction. LiBOB powder produced from the reaction was then observed using SEM and TEM. Surface area was analyzed using Quantachrome Nova 4200e. From the analysis analyzed using XRD to identify the resulting phases, crystal structure, and crystallite size. The functional groups were analyzed using FT-IR. The particle morphology was result, it was seen that the resulted phases were C4LiBO8 and LiB(C2O42.H2O, the crystal structure was orthorhombic with space group Pbca and Pnma. From the particle morphology observation it was shown that micro pores were created irregularly. When the observation was deepened, nanopores with elongated round shape were seen within the micropores. The pore size was approximately 50–100 nm. The surface area, total pore volume, and average pore diameter of LiBOB powder was 88.556 m2/g, 0.4252 cm3/g, and 19.2 nm respectively.

  6. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    Science.gov (United States)

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  7. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Shi, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Beijing Jiaotong University (China). School of Electrical Engineering, National Active Distribution Network Technology Research Center; Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Zhang, Ji-guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Wang, Chongmin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  8. Effects of additives on thermal stability of Li ion cells

    Science.gov (United States)

    Doughty, Daniel H.; Roth, E. Peter; Crafts, Chris C.; Nagasubramanian, G.; Henriksen, Gary; Amine, Khalil

    Li ion cells are being developed for high-power applications in hybrid electric vehicles, because these cells offer superior combination of power and energy density over current cell chemistries. Cells using this chemistry are proposed for battery systems in both internal combustion engine and fuel cell-powered hybrid electric vehicles. However, the safety of these cells needs to be understood and improved for eventual widespread commercial applications. The thermal-abuse response of Li ion cells has been improved by the incorporation of more stable anode carbons and electrolyte additives. Electrolyte solutions containing vinyl ethylene carbonate (VEC), triphenyl phosphate (TPP), tris(trifluoroethyl)phosphate (TFP) as well as some proprietary flame-retardant additives were evaluated. Test cells in the 18,650 configuration were built at Sandia National Laboratories using new stable electrode materials and electrolyte additives. A special test fixture was designed to allow determination of self-generated cell heating during a thermal ramp profile. The flammability of vented gas and expelled electrolyte was studied using a novel arrangement of a spark generator placed near the cell to ignite vent gas if a flammable gas mixture was present. Flammability of vent gas was somewhat reduced by the presence of certain additives. Accelerating rate calorimetry (ARC) was also used to characterize 18,650-size test cell heat and gas generation. Gas composition was analyzed by gas chromatography (GC) and was found to consist of CO 2, H 2, CO, methane, ethane, ethylene and small amounts of C1-C4 organic molecules.

  9. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology

    OpenAIRE

    Brand, Martin; Gläser, Simon; Geder, Jan; Menacher, Stefan; Obpacher, Sebastian; Jossen, Andreas; Quinger, Daniel

    2013-01-01

    Since a laptop caught fire in 2006 at the latest, Li-ion cells were considered as more dangerous than other accumulators [1]. Recent incidents, such as the one involving a BYD e6 electric taxi [2] or the Boeing Dreamliner [3], give rise to questions concerning the safety of L#i-ion cells. This is a crucial point, since Li-ion cells are increasingly integrated in all kinds of (electric) vehicles. Therefore the economic success of hybrid electric vehicles (HEV) and battery electric vehicles (BE...

  10. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  11. Electrochemical studies on the redox behavior of zirconium in the LiF-NaF eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Xiao, Yanping [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Qian, E-mail: qianxu@shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Sandwijk, Anthonie van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Zhao, Zhuo [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Song, Qiushi; Cai, Yanqing [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Yongxiang [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

    2017-05-15

    In the present paper, a detailed study of the redox behavior of zirconium in the eutectic LiF-NaF system was carried out on an inert molybdenum electrode at 750 °C. Several transient electrochemical methods were used such as cyclic voltammetry, square wave voltammetry, chronopotentiometry, and open circuit voltammetry. The reduction of Zr (IV) was found to follow a two-step mechanism of Zr (IV)/Zr (II) and Zr (II)/Zr at the potentials of about −1.10 and −1.50 V versus Pt, respectively. The theoretical evaluations of the number of transferred electrons according to both cyclic voltammetry and square wave voltammetry further confirmed the Zr reduction mechanism. The estimations of Zr (IV) diffusion coefficient in the LiF-NaF eutectic melt at 750 °C through cyclic voltammetry and chronopotentiometry are in fair agreement, as to be approximately 1.13E-5 and 2.42E-5 cm{sup 2}/s, respectively. - Highlights: •The redox mechanism of zirconium in a fluoride salt system was investigated. •A multi-step redox process of Zr was found with various electrochemical methods. •Perspectives on zirconium electro-refining process were proposed.

  12. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    Science.gov (United States)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  13. Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} Li-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Chen, Zonghai; Busking, Sara; Belharouak, Ilias; Amine, Khalil [Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439 (United States)

    2007-12-06

    Lithium-rich layered metal oxide Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} was investigated as a potential positive electrode material for high-power batteries for hybrid electric vehicle (HEV) applications. In order to evaluate the power and life characteristics of the graphite/Li{sub 1.1}[Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}]{sub 0.9}O{sub 2} cell chemistry, hybrid pulse power characterization (HPPC) and accelerated calendar life tests were conducted on several pouch cells containing electrolytes with and without additives. The data show that the cells containing 0.5 wt% lithium bis(oxalate)borate (LiBOB) or vinyl ethyl carbonate (VEC) additives, or the novel lithium difluoro(oxalato)borate (LiDFOB) additive, have much improved cycle and calendar life performance. (author)

  14. Thermal and electrochemical behaviour of C/Li xCoO 2 cell during safety test

    Science.gov (United States)

    Doh, Chil-Hoon; Kim, Dong-Hun; Kim, Hyo-Suck; Shin, Hye-Min; Jeong, Young-Dong; Moon, Seong-In; Jin, Bong-Soo; Eom, Seung Wook; Kim, Hyun-Soo; Kim, Ki-Won; Oh, Dae-Hee; Veluchamy, Angathevar

    Thermal and electrochemical processes in a 1000 mAh lithium-ion pouch cell with a graphite anode and a Li xCoO 2 cathode during a safety test are examined. In overcharge tests, the forced current shifts the cell voltage to above 4.2 V. This causes a cell charged at the 1 C rate to lose cycleability and a cell charged at the 3 C rate to undergo explosion. In nail penetration and impact tests, a high discharge current passing through the cells gives rise to thermal runaway. These overcharge and high discharge currents promote joule heat within the cells and leads to decomposition and release of oxygen from the de-lithiated Li xCoO 2 and combustion of carbonaceous materials. X-ray diffraction analysis reveals the presence of Co 3O 4 in the cathode material of a 4.5 V cell heated to 400 °C. The major cathode product formed after the combustion process cells abused by forced current is Co 3O 4 and by discharge current the products are LiCoO 2 and Co 3O 4. The formation of a trace quantity of CoO through the reduction of Co 3O 4 by virtue of the reducing power of the organic solvent is also discussed.

  15. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part I: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Mukai, K.; Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • This study shows that the emulsion method can easily be adapted to add different phases into Li4SiO4 breeder pebbles. • Slurries with various compositions to form LOS + LMT, LOS + LAO and LOS + LLTO were processed.The calculated activation behavior shows that samples with added LAO or LLTO qualify as low activation material. • Yet, the long-term activation of the LAO containing samples is problematic as hands-on level activity is not reached quickly. - Abstract: Wet-chemical fabrication processes are highly adaptable to a wide range of raw materials and are therefore well suited for evaluating new material compositions. Here the established emulsion method was modified to fabricate novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3}. As the lithium density of the latter two compounds is relatively low, only moderate contents were added. The Li{sub 2}TiO{sub 3} additions, however, cover the full compositional range. The fabrication process was characterized with regard to its constancy and aptness for the anticipated pebble compositions by optical pebble size measurements. Also the phase content and the elemental composition of the fabricated pebbles were analyzed by XRD and ICP-OES combined with XRF, respectively. This work shows that the emulsion method is an appropriate method to produce pebbles with the anticipated Li{sub 2}TiO{sub 3} and LiAlO{sub 2} concentrations in a Li{sub 4}SiO{sub 4} matrix. However, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases. To evaluate the activation properties of the pebbles, FISPACT calculations with a DEMO relevant neutron source are applied as well. The addition of aluminum seems to be unfavorable for a fusion application, but moderate concentrations of lanthanum can be tolerated.

  16. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline

    International Nuclear Information System (INIS)

    Shao Yawei; Huang Hui; Zhang Tao; Meng Guozhe; Wang Fuhui

    2009-01-01

    The protective ability of epoxy coating containing polyaniline (PANI coating) on Mg-5Li alloy in 3.5% NaCl aqueous solution has been studied by means of EIS and electrochemical noise measurements (EN). The results of EN and EIS revealed that the PANI coating protected Mg-5Li alloy from corrosion perfectly. XPS results indicated that the presence of polyaniline changed the chemical structure of the corrosion film on the alloy surface. An analysis of the electrochemical noise data based on stochastic analysis indicated that the corrosion growth probability of Mg-5Li alloy beneath the coating was decreased by the addition of polyaniline.

  17. Comparison of phase composition, morphology and electrochemical property for Li3−xNaxV2(PO4)3 (x=0.5, 1.5 and 2.0) as lithium storage cathode materials

    International Nuclear Information System (INIS)

    Mao, Jinli; Shao, Lianyi; Li, Peng; Lin, Xiaoting; Shui, Miao; Long, Nengbing; Shu, Jie

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Li 3−x Na x V 2 (PO 4 ) 3 is prepared by a solid-state reaction method. •Li 2.5 Na 0.5 V 2 (PO 4 ) 3 is a three-phase mixture. •Both Li 1.5 Na 1.5 V 2 (PO 4 ) 3 and LiNa 2 V 2 (PO 4 ) 3 are two-phase composite. •Lithium ion diffusion coefficient is detected by cyclic voltammetry. •Structural change of LiNa 2 V 2 (PO 4 ) 3 is observed by in-situ XRD. -- Abstract: Three Li 3-x Na x V 2 (PO 4 ) 3 (x=0.5, 1.5 and 2.0) samples are synthesized by a traditional solid-state reaction method in this work. Their phase composition, surface morphology and electrochemical property are described and compared by using various physical/chemical methods. Phase analysis results reveal that Li 2.5 Na 0.5 V 2 (PO 4 ) 3 consists of monoclinic Li 3 V 2 (PO 4 ) 3 , rhombohedral Li 3 V 2 (PO 4 ) 3 and rhombohedral Na 3 V 2 (PO 4 ) 3. While, both Li 1.5 Na 1.5 V 2 (PO 4 ) 3 and LiNa 2 V 2 (PO 4 ) 3 are the two-phase mixture consisted of rhombohedral Li 3 V 2 (PO 4 ) 3 and rhombohedral Na 3 V 2 (PO 4 ) 3 . Electrochemical testing results reveal that LiNa 2 V 2 (PO 4 ) 3 and Li 1.5 Na 1.5 V 2 (PO 4 ) 3 can deliver the initial discharge capacities of 101.4 mAh g −1 and 108.6 mAh g −1 with a long potential plateau at 3.69 V, respectively. In contrast, Li 2.5 Na 0.5 V 2 (PO 4 ) 3 presents an initial discharge capacity of 111.7 mAh g −1 with four potential plateaus. High lithium ion diffusion coefficient in Li 2.5 Na 0.5 V 2 (PO 4 ) 3 indicates that the existence of monoclinic Li 3 V 2 (PO 4 ) 3 phase can improve the ionic conductivity and then be responsible for good electrochemical performance. Besides, in-situ X-ray diffraction observation of LiNa 2 V 2 (PO 4 ) 3 demonstrates that the phase transition is not fully reversible but quasi-reversible during the lithiation-delithiation process. The partial irreversibility of structural evolution for LiNa 2 V 2 (PO 4 ) 3 induces the capacity loss upon repeated cycles

  18. Li{sub 2}MnSiO{sub 4} as a potential Li-battery cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, P.O.B. 660, SI-1001 Ljubljana (Slovenia); Kokalj, A. [Institute Jozef Stefan, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2007-12-06

    Recently we synthesized and preliminary characterized a new material for potential use in Li-battery cathodes: Li{sub 2}MnSiO{sub 4}. Although its theoretical capacity is about 330 mAh g{sup -1}, the actual measurements showed a much smaller value (about 120 mAh g{sup -1}). One of the reasons for the poor performance could be the poor electronic conductivity (<10{sup -14} S cm{sup -1} at RT) causing a huge polarization during charge-discharge. However, in the present paper we show that reducing the particle size down to the range of 20-50 nm and additional particle embedment into a carbon phase does not significantly improve the electrochemistry of Li{sub 2}MnSiO{sub 4}. Observations of structural changes during the first charge shows a complete loss of peaks when reaching the nominal composition of ca. Li{sub 1}MnSiO{sub 4}. The peaks are not recovered during subsequent cycling. It is supposed that extraction of Li causes significant structural changes so that the resulting material is only able to reversibly exchange a limited amount of Li. (author)

  19. Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Akitoshi, E-mail: hayashi@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Sakuda, Atsushi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Department of Energy and Environment, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan)

    2016-07-15

    All-solid-state batteries with inorganic solid electrolytes (SEs) are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry, and good cycle life. Compared with thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–solid interfaces between the electrode and electrolyte particles are limited. Sulfide SEs have several advantages of high conductivity, wide electrochemical window, and appropriate mechanical properties, such as formability, processability, and elastic modulus. Sulfide electrolyte with Li{sub 7}P{sub 3}S{sub 11} crystal has a high Li{sup +} ion conductivity of 1.7 × 10{sup −2} S cm{sup −1} at 25°C. It is far beyond the Li{sup +} ion conductivity of conventional organic liquid electrolytes. The Na{sup +} ion conductivity of 7.4 × 10{sup −4} S cm{sup −1} is achieved for Na{sub 3.06}P{sub 0.94}Si{sub 0.06}S{sub 4} with cubic structure. Moreover, formation of favorable solid–solid interfaces between electrode and electrolyte is important for realizing solid-state batteries. Sulfide electrolytes have better formability than oxide electrolytes. Consequently, a dense electrolyte separator and closely attached interfaces with active material particles are achieved via “room-temperature sintering” of sulfides merely by cold pressing without heat treatment. Elastic moduli for sulfide electrolytes are smaller than that of oxide electrolytes, and Na{sub 2}S–P{sub 2}S{sub 5} glass electrolytes have smaller Young’s modulus than Li{sub 2}S–P{sub 2}S{sub 5} electrolytes. Cross-sectional SEM observations for a positive electrode layer reveal that sulfide electrolyte coating on active material particles increases interface areas even with a minimum volume of electrolyte, indicating that the energy density of bulk-type solid-state batteries is enhanced. Both surface coating

  20. In Situ Encapsulating α-MnS into N,S-Codoped Nanotube-Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na-Storage Performance in Half/Full Cells.

    Science.gov (United States)

    Liu, Dai-Huo; Li, Wen-Hao; Zheng, Yan-Ping; Cui, Zheng; Yan, Xin; Liu, Dao-Sheng; Wang, Jiawei; Zhang, Yu; Lü, Hong-Yan; Bai, Feng-Yang; Guo, Jin-Zhi; Wu, Xing-Long

    2018-04-02

    Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g -1 at 50 mA g -1 ), excellent rate capability (430 mA h g -1 at 10 A g -1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g -1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g -1 at 50 mA g -1 ) without the occurrence of such α → β phase transition and excellent full-cell performances as coupling with commercial LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in LIBs as well as Na 3 V 2 (PO 4 ) 2 O 2 F cathode in SIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes

    International Nuclear Information System (INIS)

    Kitaura, Hirokazu; Hayashi, Akitoshi; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2010-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 was applied as a promising material to the all-solid-state lithium cells using the 80Li 2 S.19P 2 S 5 .1P 2 O 5 (mol%) solid electrolyte. The cell showed the first discharge capacity of 115 mAh g -1 at the current density of 0.064 mA cm -2 and retained the reversible capacity of 110 mAh g -1 after 10 cycles. The interfacial resistance was observed in the impedance spectrum of the all-solid-state cell charged to 4.4 V (vs. Li) and the transition metal elements were detected on the solid electrolyte in the vicinity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 by the TEM observations with EDX analyses. The electrochemical performance was improved by the coating of LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles with Li 4 Ti 5 O 12 film. The interfacial resistance was decreased and the discharge capacity was increased from 63 to 83 mAh g -1 at 1.3 mA cm -2 by the coating. The electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 was compared with that of LiCoO 2 , LiMn 2 O 4 and LiNiO 2 in the all-solid-state cells. The rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 was lower than that of LiCoO 2 . However, the reversible capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 at 0.064 mA cm -2 was larger than that of LiCoO 2 , LiMn 2 O 4 and LiNiO 2 .

  2. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1996-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by means of 6 Li- 7 Li pair glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  3. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1998-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by mans of 6 Li- 7 Li dual glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  4. Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities

    Science.gov (United States)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin

    2001-01-01

    In order to meet the applications for Space Shuttle in the future, Samsung 18650 cylindrical Li-ion cells with two different capacities have been evaluated. The capacities are 1800 mAh, and 2000 mAh. The studies focused on the performance and safety tests of the cells.

  5. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    Science.gov (United States)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  6. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains

    Science.gov (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  7. Effects of Li and Na intercalation on electronic, bonding and thermoelectric transport properties of MX{sub 2} (M = Ta; X = S or Se) dichalcogenides – Ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Meziane, Souheyr; Feraoun, Houda [Unité de Recherche Matériaux et Energies Renouvelables – URMER, Université de Tlemcen (Algeria); Ouahrani, Tarik [Laboratoire de Physique Théorique, Ecole Préparatoire en Sciences et Techniques, B.P. 230, 13000 Tlemcen (Algeria); Esling, Claude, E-mail: claude.esling@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, LEM3 UMR CNRS 7239, Université de Lorraine UL, Metz 57045 (France); Laboratoire d’Excellence “DAMAS”: Design of Metal Alloys for low-mAss Structures, Université de Lorraine – Metz, Ile du Saulcy, 57045 Metz Cedex 01 (France)

    2013-12-25

    Highlights: •Topological method is used to analyze the chemical bonding in Li(Na)TaX{sub 2} dichalcogenide compounds. •For the first time, Seebeck coefficient, electrical resistivity and thermal conductivity were estimated. •The best figure of merit is established for 2H-LiTaS{sub 2}. •Some new thermoelectric compounds are found. -- Abstract: Using the pseudo-potential method and semi-classical Boltzmann theory, electronic, chemical bonding and thermoelectric transport properties of sample and Li or Na intercalated Ta(S, Se){sub 2} dichalcogenides have been reported. The chemical bonding is studied using the Quantum Theory of Atoms in Molecules (QTAIM). Then, the Seebeck coefficient, electrical resistivity, electrical conductivity, thermal conductivity and figure of merit have been calculated in the temperature range 100–700 K. It was shown that the thermoelectric transport properties strongly depend on the Alkali metals doping and the two main structures 1T- or 2H- as well as the temperature. 2H-LiTaS{sub 2} have been selected as the best candidate for thermoelectrical applications with zT = 1.1.

  8. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering...... was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  9. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  10. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  11. A study on the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Su, J. S.; Hu, J. M.; Hong, S. S.; Jang, D. S.; Park, S. W.

    2003-01-01

    New electrolytic reduction technology was proposed that is based on the integration of metallization of uranium oxide and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  12. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics

    International Nuclear Information System (INIS)

    Rubio-Marcos, F.; Marchet, P.; Vendrell, X.; Romero, J.J.; Remondiere, F.; Mestres, L.; Fernandez, J.F.

    2011-01-01

    Highlights: · MnO doping effects on structure and properties of (K,Na,Li)(Nb,Ta,Sb)O 3 piezoceramics. · The structure changes towards an orthorhombic symmetry for higher MnO concentrations. · High doping levels induce a tetragonal tungsten-bronze secondary phase. · Mn 2+ doping modifies the phase transition temperature and the piezoelectric properties. · Manganese doping increases the mechanical quality factor Q m . - Abstract: Mn 2+ -doped (K,Na,Li)(Nb,Ta,Sb)O 3 lead-free piezoelectric ceramics have been prepared by a conventional sintering technique. The effects of Mn 2+ doping on the phase structure, microstructure and ferro-piezoelectric properties of the ceramics have been evaluated. MnO doping modifies the (K,Na,Li)(Nb,Ta,Sb)O 3 structure, giving rise to the appearance of a TTB-like secondary phase and to changes on the orthorhombic to tetragonal phase transition temperature. The modification of this temperature induces a reduction of the piezoelectric constants, which is accompanied by an increase on the mechanical quality factor. Mn 2+ ions incorporate into the perovskite structure in different off ways depending on their concentration.

  13. Selectivity of crystalline Ce(IV)-phosphate-sulphate hydrates for Li+, Na+, K+, Rb+, Cs+, and NH4+ in aqueous medium

    International Nuclear Information System (INIS)

    Koenig, K.H.; Psotta, L.

    1978-01-01

    The sequence of exchange-capacities of Cerium(IV)-phosphate-sulphate hydrate (CePO 4 ) 2 (HPO 4 )sub(0.74)(SO 4 )sub(0.26) . 4.74 H 2 O concerning the alkaline ions and the ammonium ion in water at 25 0 C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by Na + > K + > Rb + > NH 4 + > Cs + > Li + . The simple relation A const/r was found between the exchange-capacity A of these cations and their ionic radii r (given by Ladd); only for Li + the radius of the inner hydration-shell must be considered. The observations are consistent with Eisenmann's theory. (author)

  14. The importance of the tensor interaction in the (7Li, 7Be) reaction

    International Nuclear Information System (INIS)

    Dodd, A.C.; Clarke, N.M.; Coopersmith, J.; Griffiths, R.J.; Pearce, K.I.; Stanley, B.; Cook, J.

    1985-01-01

    Data for the 28 Si( 7 Li, 7 Be) 28 Al reaction at 72 MeV and for the 26 Mg( 7 Li, 7 Be) 26 Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions. (author)

  15. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy stora......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  16. NMR study of the paramagnetic state of low-dimensional magnets LiCu{sub 2}O{sub 2} and NaCu{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Piskunov, Yu. V.; Gerashchenko, A. P.; Ogloblichev, V. V.; Smol’nikov, A. G.; Verkhovskii, S. V.; Arapova, I. Yu.; Volkova, Z. N.; Mikhalev, K. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Bush, A. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2017-02-15

    A comprehensive NMR study of the magnetic properties of single crystal LiCu{sub 2}O{sub 2} (LCO) and NaCu{sub 2}O{sub 2} (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for {sup 63,65}Cu, {sup 7}Li, and {sup 23}Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.

  17. Laponite Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]–0.7

    Indian Academy of Sciences (India)

    Si8Mg5.5Li0.3)O20(OH)4]–0.7. Negative charges are counterbalanced by Na+ ions present in the interlayer. Electrostatic screening length at pH 10 ≈30 nm. Effective maximum volume increases by a factor of 60. Thus, for less than 1 volume ...

  18. Electrochemistry and safety of Li 4Ti 5O 12 and graphite anodes paired with LiMn 2O 4 for hybrid electric vehicle Li-ion battery applications

    Science.gov (United States)

    Belharouak, Ilias; Koenig, Gary M.; Amine, K.

    A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.

  19. A study for an electrolytic reduction of tantalum oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology for handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in a molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. The ER process can be applicable to the reduction of other metal oxides. Metal tantalum powder has attracted attention for a variety of applications. A tantalum capacitor made from superfine and pliable tantalum powders is very small in size and it has a higher-capacitance part, therefore it is useful for microelectronic devices. By the ER process the metal tantalum can be obtained from tantalum pentoxide. In this work, a 40 g Ta 2 O 5 /batch electrochemical reactor was used for the synthesis of the metal tantalum. From the results of the cyclic voltammograms for the Ta 2 O 5 -LiCl-Li 2 O system, the mechanism of the tantalum reduction in a molten LiCl-Li 2 O salt system was investigated. Tantalum pentoxide is chemically reduced to tantalum metal by the lithium metal which is electrochemically deposited into an integrated cathode assembly in the LiCl-Li 2 O molten salt. The experiments for the tantalum reduction were performed with a chronopotentiometry in the reactor cell, the reduced products were analyzed from an analysis of the X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM-EDX). From the results, the electrolytic reduction process is applicable to the synthesis of metal tantalum

  20. Na{sub 2}EDTA-assisted hydrothermal synthesis and electrochemical performance of LiFePO{sub 4} powders with rod-like and block-like morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan, E-mail: juanwang168@gmail.com [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zheng, Siqi; Yan, Hao; Zhang, Haipeng [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Hojamberdiev, Mirabbos [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); Ren, Bing; Xu, Yunhua [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2015-06-15

    Nano and micro-sized LiFePO{sub 4} were synthesized by disodium ethylenediamine tetraacetate (Na{sub 2}EDTA) – assisted hydrothermal synthesis method with the pH of synthesizing solution in the range from 2 to 8. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and electrochemical performance experiments. The obtained results showed that the pH of synthesizing solution played a key role in the formation of the final products with different morphologies, including rod-like and block-like structures and so on. The formation mechanism and the influence of Na{sub 2}EDTA on the morphology of LiFePO{sub 4} micro- and nanocrystals were investigated as a function of pH value. The results of electrochemical performance measurement revealed that the charge/discharge cycling characteristics of the samples were varied by tailoring their morphologies. Particularly, the block-like LiFePO{sub 4} particles with the average size of 200–600 nm present the highest initial discharge capacity of 141 mAh/g at 0.1C rate, and cycling stability of this sample is optimal among all the obtained products owing to its good diffusion properties. It also exhibits an excellent rate capability with high discharge capacities of more than 93.2 mAh/g at 5C after 80 cycles. The present study offers a simple way to synthesize and design high performance cathode materials for lithium-ion batteries by the methods of morphology control without carbon coating or doping with supervalent cations. - Highlights: • Nano and micro-sized LiFePO{sub 4} were synthesized by a hydrothermal synthesis method. • Effect of the pH of synthesizing solution on the formation of LiFePO{sub 4} was studied. • The block-like LiFePO{sub 4} particles present the highest initial discharge capacity. • The rate capability of the block-like LiFePO{sub 4} is more than 93.2 m

  1. The sup 8 Li(n,. gamma. ) sup 9 Li reaction and primordial nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Z Q; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics

    1991-01-01

    Shell-model calculations, using both p-shell and spd-shell interactions, have been used to predict the spectroscopic properties of low-lying states in {sup 9}Li. From this information, we have obtained new estimates for the rate of the {sup 8}Li(n,{gamma}){sup 9}Li reaction, which may act to limit the production of heavy elements during an inhomogeneous big bang. The two calculations produce reaction rates which differ by about a factor of 2 at the temperatures of interest, demonstrating the uncertainties in this approach. However, the spd calculation appears to be the more reliable of the two. (orig.).

  2. Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides

    NARCIS (Netherlands)

    Ngene, Peter; Verkuijlen, Margriet H. W.; Barre, Charlotte; Kentgens, Arno P. M.; de Jongh, Petra E.

    Intercalation and de-intercalation of lithium into graphene layers is a well-established phenomenon in Li-ion battery technology. Here we show how this phenomenon can be exploited to destabilize, and alter the hydrogen sorption behaviour of Li-based metal hydrides (LiBH4 and LiAlH4), thereby

  3. Using 13X, LiX, and LiPdAgX zeolites for CO_2 capture from post-combustion flue gas

    International Nuclear Information System (INIS)

    Chen, S.J.; Zhu, M.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Li, W.L.

    2017-01-01

    Highlights: • We synthesized a novel adsorbent named LiPdAgX zeolite. • CCS was proposed from microstructure, selectivity and separation factor of zeolite. • The static and flowing adsorption using CO_2/N_2 mixture on X zeolites were studied. • LiPdAgX zeolite required less energy for regeneration compared to 13X and MEA. • LiPdAgX zeolite can effectively capture CO_2 from post-combustion flue gas. - Abstract: This work investigates the application of X zeolites for capturing CO_2 from post-combustion flue gas. LiX and LiPdAgX zeolites were prepared by an ion-exchange method using 13X zeolite. X-ray diffraction analysis showed that all samples exhibited characteristic peaks of X zeolites, where the peak intensities increased in the order: LiPdAgX > LiX > 13X. The enhanced intensity of the diffraction peaks can increase the activity of the X zeolites and improve their adsorption performance. Scanning electron microscopy imaging showed that the intergranular pore canals of LiPdAgX zeolite were more concentrated. Pore structure analysis indicated that addition of Li"+ to the 13X zeolite enhanced the specific surface areas and pore volumes of the zeolites. Among the 13X, LiX, and LiPdAgX zeolites, LiPdAgX showed the highest CO_2/N_2selectivity, where the difference in the CO_2 adsorption capacity was due to differences in the number of adsorption sites and thermal conductivities of the X zeolites. The CO_2 breakthrough time increased in succession for the 13X, LiX, and LiPdAgX zeolites. The CO_2/N_2 separation factor of the LiPdAgX zeolite was twice that of the 13X zeolite at a CO_2 concentration of 20 vol.%. The temperature variations during the adsorption process were used to determine the regeneration energy and adsorption capacity of the X zeolites. LiPdAgX zeolite required less energy for regeneration than 13X zeolite and MEA. After regeneration, the separation factor of LiPdAgX zeolite remained at 6.38 for 20 vol.% CO_2 in the flue gas. Therefore, Li

  4. The cosmic 6Li and 7Li problems and BBN with long-lived charged massive particles

    International Nuclear Information System (INIS)

    Karsten, Jedamzik

    2007-01-01

    Charged massive particles (CHAMPs), when present during the Big Bang nucleosynthesis (BBN) era, may significantly alter the synthesis of light elements when compared to a standard BBN scenario. This is due to the formation of bound states with nuclei. This paper presents a detailed numerical and analytical analysis of such CHAMP BBN. All reactions important for predicting light-element yields are calculated within the Born approximation. Three prior neglected effects are treated in detail: (a) photo destruction of bound states due to electromagnetic cascades induced by the CHAMP decay, (b) late-time efficient destruction/production of H 2 , Li 6 , and Li 7 due to reactions on charge Z = 1 nuclei bound to CHAMPs, and (c) CHAMP exchange between nuclei. Each of these effects may induce orders-of-magnitude changes in the final abundance yields. The study focusses on the impact of CHAMPs on a possible simultaneous solution of the Li 6 and Li 7 problems. It is shown that a prior suggested simultaneous solution of the Li 6 and Li 7 problems for a relic decaying at τ x ∼ 1000 s is only very weakly dependent on the relic being neutral or charged, unless its hadronic branching ratio is B h -4 very small. By use of a Monte-Carlo analysis it is shown that within CHAMP BBN the existence of further parameter space for a simultaneous solution of the Li 6 and Li 7 problem for long decay times τ x ≥ 10 6 s seems possible but fairly unlikely. (author)

  5. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  6. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  7. Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO 3 crystals

    Science.gov (United States)

    Dai, Li; Su, Yan-Qing; Wu, Shi-Ping; Guo, Jing-Jie; Xu, Chao; Xu, Yu-Heng

    2011-04-01

    A series of Zn: In: Fe: LiNbO3 crystals are grown by the Czochralski technique with various ratios of Li/Nb = 0.94, 1.05, 1.20 and 1.38 in the melt. The Zn, In, Fe, Nb and Li concentrations in the crystals are analyzed by inductively coupled plasma (ICP) spectrometry. The results indicate that with increasing the [Li]/[Nb] ratio in melt, [Li]/[Nb] ratio increases and goes up continuously in the crystal, the segregation coefficients of both Zn and In ions decrease. The absorption spectra measurement and two-wave coupling experiment are employed to study the effect of [Li]/[Nb] ratio on photorefractive properties of Zn: In: Fe: LiNbO3 crystals. It is found that the [Li]/[Nb] ratio increases, the write time is shortened and the photorefractive sensitivity is improved.

  8. Synthesis and thin film growth of alkaline cobaltates Na{sub x}CoO{sub 2} and Li{sub x}CoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra

    2013-02-18

    In this study sol-gel synthesis was used to fabricate Na{sub x}CoO{sub 2}, LiNi{sub 1/2}Co{sub 1/2}O{sub 2} and LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2}. By using acetate precursors a lower process temperature was accessible, which has a positive effect on the sodium and lithium loss during synthesis. The lithium based powders were single phase and kept cation stoichiometry after sintering. A small grain size is favourable for battery applications. Sodium content was slightly reduced after temperature treatment compared to the initial cation mixture, due to the high volatility of Na. To fabricate thin films PLD was used for deposition. All films were deposited on SrTiO{sub 3} substrates. The growth mechanism of Na{sub x}CoO{sub 2} on SrTiO{sub 3} was investigated and an in-plane and out-of-plane relation between film an substrate was found. The films grow 15 and 45 rotated with respect to the ab-plane of the substrate and grow in c-axis direction out-of-plane. The sodium content and the crystallinity of the Na{sub x}CoO{sub 2} was investigated as a function of the post deposition treatment. A change of x between 0.38 and 0.84 can be achieved. The γ-phase was preserved in all films despite of the change of the sodium content. The in-situ variation of sodium stoichiometry, allows to tune the film properties in a wide range. This feature is an advantage compared to bulk Na{sub x}CoO{sub 2}, in which only certain stoichiometries can be stabilized. Fabrication of superconducting thin films Na{sub 0.33}CoO{sub 2}.1.3H{sub 2}O was challenging, since the superconducting phase is metastable and hardly to stabilize as a thin film. LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} and LiNi{sub 1/2}Co{sub 1/2}O{sub 2} thin films were grown by PLD in (104)-orientation. These thin film materials are promising candidates as cathode materials for the development of thin film batteries.

  9. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    Science.gov (United States)

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  10. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.

    Science.gov (United States)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim

    2015-08-26

    The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.

  11. Solid state opto-impedance of LiNiVO{sub 4} and LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R [Central Electrochemical Research Institute, Karaikudi-630006, Tamil Nadu (India)

    2005-04-07

    Spinel type LiMn{sub 2}O{sub 4} and inverse spinel LiNiVO{sub 4} systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy {approx}5 eV, the LiNiVO{sub 4} system shows significant modification in the solid state impedance pattern while the LiMn{sub 2}O{sub 4} system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO{sub 4} with respect to LiMn{sub 2}O{sub 4}, which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint.

  12. Study of the 6Li(p,π+)7Li reaction at 600 MeV

    International Nuclear Information System (INIS)

    Bauer, T.; Beurtey, R.; Boudard, A.; Bruge, G.; Chaumeaux, A.; Couvert, P.; Duhm, H.H.; Garreta, D.; Matoba, M.; Terrein, Y.; Aslanides, E.; Bertini, R.; Brochard, F.; Gorodetzky, Ph.; Hibou, F.; Bimbot, L.; Le Bornec, Y.; Tatischeff, B.; Dillig, M.

    1977-01-01

    The positive pion production through the 6 Li(p,π + ) reaction at 600 MeV has been studied using the high-resolution magnetic spectrometer SPES I. Differential cross sections have been measured from 5 0 to 35 0 sub(lab). The 6 Li(p,π + ) reaction feeds preferentially the 4.63 MeV 7/2 - level of 7 Li. The results of a calculation based on two- and three-nucleon diagrams with π and rho exchange between the projectile and a bound nucleon are also presented. (Auth.)

  13. Formation and control of zinc nitride in a molten LiCl-KCl-Li3N system

    International Nuclear Information System (INIS)

    Goto, Takuya; Toyoura, Kazuaki; Tsujimura, Hiroyuki; Ito, Yasuhiko

    2004-01-01

    We investigated a possibility of electrochemical formation and control of zinc nitride in a molten LiCl-KCl-Li 3 N system at 673 K. Zinc nitride films were obtained by means of potentiostatic electrolysis of zinc electrodes in the melt. From XRD analysis, it was confirmed that obtained films consisted of Zn 3 N 2 and LiZnN and that the composition of each film was effected by the applied potential value. In the potential range from 0.75 to 1.6 V (versus Li + /Li), the ratio of Zn 3 N 2 increased as the applied potential was more positive. Based on the result, we achieved the formation of Zn 3 N 2 film (3-5 μm) in anti-scandium oxide structure (a = 0.977 nm) by means of potentiostatic electrolysis at 1.6 V for 3 h

  14. Density functional study of electronic structure, elastic and optical properties of MNH2 (M=Li, Na, K, Rb)

    International Nuclear Information System (INIS)

    Babu, K Ramesh; Vaitheeswaran, G

    2014-01-01

    We report a systematic first principles density functional study on the electronic structure, elastic and optical properties of nitrogen based solid hydrogen storage materials LiNH 2 , NaNH 2 , KNH 2 , and RbNH 2 . The ground state structural properties are calculated by using standard density functional theory, and also dispersion corrected density functional theory. We find that van der Waals interactions are dominant in LiNH 2 whereas they are relatively weak in other alkali metal amides. The calculated elastic constants show that all the compounds are mechanically stable and LiNH 2 is found to be a stiffer material among the alkali metal amides. The melting temperatures are calculated and follow the order RbNH 2 2 2 2 . The electronic band structure is calculated by using the Tran–Blaha modified Becke–Johnson potential and found that all the compounds are insulators, with a considerable band gap. The [NH 2 ] − derived states completely dominate in the entire valence band region while the metal atom states occupy the conduction band. The calculated band structure is used to analyze the different interband optical transitions occurring between valence and conduction bands. Our calculations show that these materials have considerable optical anisotropy. (paper)

  15. Dehydriding and rehydriding reactions of LiBH4

    International Nuclear Information System (INIS)

    Orimo, S.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Zuettel, A.

    2005-01-01

    Structural differences in LiBH 4 before and after the melting reaction at approximately 550-bar K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH 4 begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH 4 ]-anion in LiBH 4 was found to be effective for the confirmation of the reversibility. In the present study, LiBH 4 was successively dehydrided (decomposed) into LiH and B under 1-bar MPa of hydrogen at 873-bar K, and then rehydrided (recombined) into LiBH 4 under 35-bar MPa of hydrogen at the same temperature (873-bar K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30-bar K, for LiBH 4 substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH 4 alone. This is similar to the tendency exhibited by LiNH 2

  16. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  17. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  18. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  19. Facile synthesis of aluminum-doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolin, E-mail: liu_x_l@sina.cn [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Li, Dan; Mo, Qiaoling; Guo, Xiaoyu; Yang, Xiaoxiao [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Chen, Guoxin, E-mail: gxchen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang (China); Zhong, Shengwen [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China)

    2014-10-01

    Graphical abstract: LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes are prepared by templated transformation method using monodisperse MnCO{sub 3} microspheres as precursor. As a cathodic material for high voltage lithium ion batteries, the as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres are investigated by galvanostatic cycling (GC) approach to evaluate their electrochemical properties in the range of 2.7–4.8 V vs. Li/Li{sup +} at the current rate 1 C. - Highlights: • LNMO and LANMO hollow microspheres are synthesized by template method. • The as-synthesized hollow microspheres have particle-size of 2 μm. • The hollow structure is responsible for improved electrochemical performance. - Abstract: This paper presents the preparation of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and aluminum (Al) doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes using monodisperse MnCO{sub 3} microspheres as precursor and template, which were synthesized using MnSO{sub 4}·H{sub 2}O, NaHCO{sub 3} and ethanol in water at room temperature. XRD and morphology characterization results indicated that the as-prepared LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} were both spinel structure, and have particle sizes of 2–3 μm. The cathode electrochemical properties of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres (as 5 V cathodes) were evaluated and compared by galvanostatic cycling (GC) vs. Li/Li{sup +} at the current rate 1 C in 2.7–4.8 V. The specific initial capacities of all samples were in the range of 70–120 mA h g{sup −1}. Compared to undoped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}, Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow structures can effectively improve discharge capacity (up to 140 (±5) mA h g{sup −1}) and cycling stability (70

  20. On the reduction of generalized polylogarithms to Li_n and Li_2_,_2 and on the evaluation thereof

    International Nuclear Information System (INIS)

    Frellesvig, Hjalte; Tommasini, Damiano; Wever, Christopher

    2016-01-01

    We give expressions for all generalized polylogarithms up to weight four in terms of the functions log, Li_n, and Li_2_,_2, valid for arbitrary complex variables. Furthermore we provide algorithms for manipulation and numerical evaluation of Li_n and Li_2_,_2, and add codes in Mathematica and C++ implementing the results. With these results we calculate a number of previously unknown integrals, which we add in appendix C.

  1. (1−x)[(K$_{0.5}$Na$_{0.5}$)NbO$_3$–LiSbO$_3

    Indian Academy of Sciences (India)

    Lead-free piezoelectric ceramics ( 1 − x ) [0.95(K 0.5 Na 0.5 )NbO 3 –0.05LiSbO 3 ]– x BiFe 0.8 Co 0.2 O 3 (KNN–LS– x BFC) were prepared by a conventional sintering technique. The effect of BFC content on the structure, piezoelectricand electrical properties of KNN–LS ceramics was investigated. The results reveal that ...

  2. Influence of the composition to the physical properties of NaF-LiF-LaF3 melt liquid systems

    Directory of Open Access Journals (Sweden)

    L. A. Bulavin

    2013-06-01

    Full Text Available Influence of the chemical composition of NaF-LiF-LaF3 system on temperature dependence of electrical con-ductivity, viscosity and thermoelectric power has been studied in a wide temperature range between 600 and 1500 К. The obtained results could help in design of the molten salt reactor blanket.

  3. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  4. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  5. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  6. Study of Moessbauer effect on LiFe5-x Alx O8, LiFe 5-x Gax O8 and LiGa5-x Fex O8 systems

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1982-01-01

    The measures obtained by Moessbauer spectroscopy from LiFe 5-x Ga x O 8 and LiFe 5-x Al x O 8 systems are presented. A comparative study of the influences of dopant diamagnetic ions on magnetic structures of lithium ferrite was performed. The LiGa 5-x Fe x O 8 systems were analysed based on the existing data from LiAl 5-x Fe x O 8 systems, otaining informations about the iron ion behaviour in both matrices. (M.C.K.) [pt

  7. Operando X-ray diffraction analysis for a glyme-based Li-O_2 battery

    International Nuclear Information System (INIS)

    Yogi, C.; Takao, N.; Kubobuchi, K.; Matsumoto, M.; Mogi, M.; Imai, H.; Watanabe, T.

    2016-01-01

    We investigated the effect of the carbon species in the air (oxygen) electrode, electrolyte concentration, and humidity in the supplied O_2 gas on the Li-O_2 reactions by using the operando XRD analysis. Regarding carbon species, we found that the over-potentials in the galvanostatic discharge-charge process were suppressed when using the KB carbon in the air electrode. The results of operando XRD measurements revealed that the Li_2O_2 formed on the KB had the smaller crystalline or more amorphous like structures, which could be one reason for faster reaction kinetics of Li_2O_2 dissolution. The discharge-charge curves of the cells with different concentration of LiTFSI/(G4)_n electrolyte showed the slight difference but less differences in the Li_2O_2 formation and dissolution behaviors. In addition to the nature of Li_2O_2 products, reaction of Li-salts would also have ineligible effects. We also found that the higher humidity in oxygen produced more the LiOH and promoted the Li_2O_2 dissolution, which indicate that the LiOH formation could affect the Li_2O_2 morphologies or surface chemistries. Our present results demonstrated that the operando XRD measurement are useful for analyzing the reaction mechanism of Li-O_2 battery.

  8. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  9. The optical potential for 6Li-6Li elastic scattering at 156 MeV

    International Nuclear Information System (INIS)

    Micek, S.; Majka, Z.; Klewe-Nebenius, H.; Rebel, H.; Gils, H.J.

    1984-10-01

    Elastic scattering of 6 Li from 6 Li has been studied for the beam energy of 156 MeV. The experimental differential cross section has been analysed on the basis of the optical model using various phenomenological forms. The spin-orbit interaction proves to be less significant. A semi-microscopic double-folding cluster model which generates the real part of the optical potential by an antisymmetrized d-α cluster wave function of 6 Li and α-α, d-d and d-α interactions is well able to describe the experimental data. (orig.) [de

  10. Prussian Blue Mg-Li Hybrid Batteries.

    Science.gov (United States)

    Sun, Xiaoqi; Duffort, Victor; Nazar, Linda F

    2016-08-01

    The major advantage of Mg batteries relies on their promise of employing an Mg metal negative electrode, which offers much higher energy density compared to graphitic carbon. However, the strong coulombic interaction of Mg 2+ ions with anions leads to their sluggish diffusion in the solid state, which along with a high desolvation energy, hinders the development of positive electrode materials. To circumvent this limitation, Mg metal negative electrodes can be used in hybrid systems by coupling an Li + insertion cathode through a dual salt electrolyte. Two "high voltage" Prussian blue analogues (average 2.3 V vs Mg/Mg 2+ ; 3.0 V vs Li/Li + ) are investigated as cathode materials and the influence of structural water is shown. Their electrochemical profiles, presenting two voltage plateaus, are explained based on the two unique Fe bonding environments. Structural water has a beneficial impact on the cell voltage. Capacities of 125 mAh g -1 are obtained at a current density of 10 mA g -1 (≈C/10), while stable performance up to 300 cycles is demonstrated at 200 mA g -1 (≈2C). The hybrid cell design is a step toward building a safe and high density energy storage system.

  11. Improved Cycling Stability of Cobalt-free Li-rich Oxides with a Stable Interface by Dual Doping

    International Nuclear Information System (INIS)

    Xie, Dongjiu; Li, Guangshe; Li, Qi; Fu, Chaochao; Fan, Jianming; Li, Liping

    2016-01-01

    Highlights: • Cobalt-free Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 oxides are prepared by a sol-gel method. • Dual-doping strengthens the covalence of Mn-O bonds and suppresses the side reactions between cathode and electrolyte. • Doped cathode has a capacity retention over 92.2% after 100 cycles at a high temperature of 55 °C. - Abstract: Li-rich cobalt-free oxides, popularly used as a cathode with high capacity in lithium ion battery, always suffer from poor cycling stability between 2.0 and 4.8 V vs Li"+/Li, especially when cycled at high temperatures (>50 °C). To overcome this issue, Na"+ and Al"3"+ dual-doped Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 Li-rich cathode is prepared in this study. It is shown that the side reactions between cathode and electrolyte during cycling are suppressed. The improved cycling performance is observed for all of the doped samples, among which the sample with x = 0.03 exhibits the highest capacity retention of 86.1% after 200 cycles between 2.0 and 4.8 V at 2C (1C = 200 mA g"−"1) and shows a remarkable cycling stability, even at a high temperature of 55 °C (a capacity retention of 92.2% after 100 cycles). Moreover, the average voltage of the sample with x = 0.03 after 100 cycles at 0.5C remains at 3.11 V with a retention ratio of 86.6%. This work provides a new strategy to develop Li-rich cobalt-free cathodes with excellent cycling stability for lithium ion batteries at high temperatures.

  12. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    Science.gov (United States)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  13. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-CxH(2x+1)OSO3Li (x = 12, 14, 16, 18, and 20)

    International Nuclear Information System (INIS)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-01-01

    Electrical conductivity (σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2x+1) OSO 3 Li (x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2x+1) OSO 3 Na and n-C x H (2x+1) OSO 3 K (x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (ΔS). For n-C 18 H 37 OSO 3 Li and n-C 20 H 41 OSO 3 Li salts, each melting point produced a small ΔS mp value compared with the total entropy change in the solid phases (ΔS tr1 +ΔS tr2 ). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7 Li NMR spectra of n-C 18 H 37 OSO 3 Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals

  14. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin, E-mail: chongmin.wang@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Shi, Wei [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352 (United States); National Active Distribution Network Technology Research Center, School of Electrical Engineering, Beijing Jiaotong University, 3 Shangyuancun Street, Haidian District, Beijing 100044 (China); Zheng, Jianming; Zhang, Ji-guang [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352 (United States)

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  15. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong; Lee, Hongkyung; Kim, Hee-Tak

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2S particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.

  16. Nuclear charge radius of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rodolfo, E-mail: R.Sanchez@GSI.de; Noertershaeuser, Wilfried [Gesellschaft fuer Schwerionenforschung (Germany); Dax, Andreas [CERN(Switzerland); Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas [Gesellschaft fuer Schwerionenforschung (Germany); Wojtaszek, Agnieszka [Swietokrzyska Academy, Institute of Physics (Poland); Bushaw, Bruce A. [Pacific Northwest National Laboratory (United States); Drake, Gordon W. F. [University of Windsor, Department of Physics (Canada); Yan Zongchao [University of New Brunswick, Department of Physics (Canada); Zimmermann, Claus [Physikalisches Institut, Eberhard Karls Universitaet Tuebingen (Germany); Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D. [Tri-University Meson Facility (Canada)

    2006-07-15

    We have determined the nuclear charge radius of {sup 11}Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the {sup 7}Li-{sup 11}Li isotope shift (IS) was measured in the 2s{yields}3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10{sup -5}. The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from {sup 6}Li to {sup 9}Li, and then increase with {sup 11}Li about 11% larger than {sup 9}Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of {sup 11}Li; thus, the results are compared with a number of nuclear structure models.

  17. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Ma, Rui; Shao, Lianyi; Wu, Kaiqiang; Shui, Miao; Wang, Dongjie; Pan, Jianguo; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2013-09-11

    In this paper, we reported on a comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries. Combined with powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, galvanostatic discharge/charge tests and in situ X-ray diffraction technologies, we explore and compare the insertion/extraction mechanisms of LiVPO4F based on the V3+/V2+/V+ redox couples and Li4Ti5O12 based on the Ti4+/Ti3+ redox couple cycled in 1.0-3.0 V and 0.0-3.0 V. The electrochemical results indicate that both LiVPO4F and Li4Ti5O12 are solid electrolyte interphase free materials in 1.0-3.0 V. The insertion/extraction mechanisms of LiVPO4F and Li4Ti5O12 are similar with each other in 1.0-3.0 V as proved by in situ X-ray diffraction. It also demonstrates that both samples possess stable structure in 0.0-3.0 V. Additionally, the electrochemical performance tests of LiVPO4F and Li4Ti5O12 indicate that both samples cycled in 0.0-3.0 V exhibit much higher capacities t