WorldWideScience

Sample records for cells involves map

  1. Lck is involved in interleukin-2 induced proliferation but not cell survival in human T cells through a MAP kinase-independent pathway

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Kaltoft, K;

    2000-01-01

    found that an IL-2-sensitive, human mycosis fungoides-derived tumor T cell line is Lck negative, and that the IL-2-induced MAP kinase activation is comparable to non-cancerous T cells, although a little delayed in kinetics. An Lck expressing clone was established by transfecting Lck into mycosis...... fungoides tumor T cells, but Lck had no influence on the delayed kinetics of MAP kinase activation, indicating that Lck is not essential for MAP kinase activation in mycosis fungoides tumor T cells or in non-cancerous T cells. Taken together, this indicates that Lck is involved in IL-2-induced proliferation...

  2. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  3. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation

    Science.gov (United States)

    Ruzafa-Martínez, María; Ramos-Morcillo, Antonio Jesús

    2017-01-01

    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed. PMID:28231262

  4. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B.

    Science.gov (United States)

    Budagian, Vadim; Bulanova, Elena; Brovko, Luba; Orinska, Zane; Fayad, Raja; Paus, Ralf; Bulfone-Paus, Silvia

    2003-01-17

    ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate

  5. Fate mapping of dendritic cells

    Directory of Open Access Journals (Sweden)

    Barbara Ursula Schraml

    2015-05-01

    Full Text Available Dendritic cells (DCs are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.

  6. Proteomic mapping of stimulus-specific signaling pathways involved in THP-1 cells exposed to Porphyromonas gingivalis or its purified components.

    Science.gov (United States)

    Saba, Julian A; McComb, Mark E; Potts, Donna L; Costello, Catherine E; Amar, Salomon

    2007-06-01

    Periodontitis is an inflammatory disease initiated by host-parasite interactions which contributes to connective tissue destruction and alveolar bone resorption. Porphyromonas gingivalis (P.g.), a black-pigmented Gram-negative anaerobic bacterium, is a major pathogen in the development and progression of periodontitis. To characterize the role that P. gingivalis and its cell surface components play in disease processes, we investigated the differential expression of proteins induced by live P.g., P.g. LPS, and P.g. FimA, using two-dimensional gel electrophoresis in combination with mass spectrometry. We have tested whether, at the level of protein expression, unique signaling pathways are differentially induced by the bacterial components P.g. LPS and P.g. FimA, as compared to live P.g. We found that P.g. LPS stimulation of THP-1 up-regulated the expression of a set of proteins compared to control: deoxyribonuclease, actin, carbonic anhydrase 2, alpha enolase, adenylyl cyclase-associated protein (CAP1), protein disulfide isomerase (PDI), glucose regulated protein (grp78), and 70-kDa heat shock protein (HSP70), whereas FimA treatment did not result in statistically significant changes to protein levels versus the control. Live P.g. stimulation resulted in 12 differentially expressed proteins: CAP1, tubulin beta-2 chain, ATP synthase beta chain, tubulin alpha-6 chain, PDI, vimentin, 60-kDa heat shock protein, and nucleolin were found to be up-regulated, while carbonic anhydrase II, beta-actin, and HSP70 were down-regulated relative to control. These differential changes by the bacteria and its components are interpreted as preferential signal pathway activation in host immune/inflammatory responses to P.g. infection.

  7. Langerhans Cell Histiocytosis Involving Maxilla and Mandible

    Directory of Open Access Journals (Sweden)

    M. Guna Shekhar

    2009-06-01

    Full Text Available Langerhans cell histiocytosis is a relatively rare unique disease process characterized by an abnormal proliferation of immature dendritic cells usually affecting children and young adults. Jaws are involved in less than 10% of children with the disease while mandibular involvement in young children is uncommon and bilateral affection is very rare. The purpose of this report is to describe a unique and very rare case of simultaneous and bilateral occurrence of Langerhans cell histiocytosis in both the jaws of a four-year-old boy.

  8. Liver involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak [Alberta Children' s Hospital, Department of Diagnostic Imaging, Calgary, Alberta (Canada); Sharon, Raphael; Anderson, Ronald [Alberta Children' s Hospital, Department of Oncology, Calgary, AB (Canada); Pinto-Rojas, Alfredo [Alberta Children' s Hospital, Department of Pathology, Calgary, AB (Canada)

    2006-10-15

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  9. Osteoarticular involvement in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Geraldo Bezerra da Silva Junior

    2012-01-01

    Full Text Available The osteoarticular involvement in sickle cell disease has been poorly studied and it is mainly characterized by osteonecrosis, osteomyelitis and arthritis. The most frequent complications and those that require hospital care in sickle cell disease patients are painful vaso-occlusive crises and osteomyelitis. The deoxygenation and polymerization of hemoglobin S, which results in sickling and vascular occlusion, occur more often in tissues with low blood flow, such as in the bones. Bone microcirculation is a common place for erythrocyte sickling, which leads to thrombosis, infarct and necrosis. The pathogenesis of microvascular occlusion, the key event in painful crises, is complex and involves activation of leukocytes, platelets and endothelial cells, as well as hemoglobin S-containing red blood cells. Osteonecrosis is a frequent complication in sickle cell disease, with a painful and debilitating pattern. It is generally insidious and progressive, affecting mainly the hips (femur head and shoulders (humeral head. Dactylitis, also known as hand-foot syndrome, is an acute vaso-occlusive complication characterized by pain and edema in both hands and feet, frequently with increased local temperature and erythema. Osteomyelitis is the most common form of joint infection in sickle cell disease. The occurrence of connective tissue diseases, including rheumatoid arthritis and systemic lupus erythematosus, has rarely been reported in patients with sickle cell disease. The treatment of these complications is mainly symptomatic, and more detailed studies are required to understand the pathophysiological mechanisms involved in the complications and propose more adequate and specific therapies.

  10. Glial cells are involved in itch processing

    DEFF Research Database (Denmark)

    Andersen, Hjalte H.; Arendt-Nielsen, Lars; Gazerani, Parisa

    2016-01-01

    Recent discoveries in itch neurophysiology include itch-selective neuronal pathways, the clinically relevant non-histaminergic pathway, and elucidation of the notable similarities and differences between itch and pain. Potential involvement of glial cells in itch processing and the possibility...

  11. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  12. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  13. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  14. Involvement of the MAP kinase cascade in Xenopus mesoderm induction.

    OpenAIRE

    Gotoh, Y.; Masuyama, N; Suzuki, A.; Ueno, N; Nishida, E

    1995-01-01

    Mitogen-activated protein kinase (MAPK) is activated by MAPK kinase (MAPKK) in a variety of signaling pathways. This kinase cascade has been shown to function in cell proliferation and differentiation, but its role in early vertebrate development remains to be investigated. During early vertebrate embryogenesis, the induction and patterning of mesoderm are thought to be determined by signals from intercellular factors such as members of the fibroblast growth factor (FGF) family and members of...

  15. Innate lymphoid cells involve in tumorigenesis.

    Science.gov (United States)

    Tian, Zhiqiang; van Velkinburgh, Jennifer C; Wu, Yuzhang; Ni, Bing

    2016-01-01

    Innate lymphoid cells (ILCs) promptly initiate cytokine responses to pathogen exposure in the mucosa and mucosal-associated lymphoid tissues. ILCs were recently categorized as being of the lymphoid lineage and have been classified into three groups. ILCs play important roles in immunity against pathogens, and an anti-tumor immune-related function was recently demonstrated. In this review we discuss whether and how ILCs involve in the tumorigenesis, providing new insights into the mechanisms underlying the particular functions of ILCs as well as the potential targets for tumor intervention.

  16. Molecular mapping of brain areas involved in parrot vocal communication.

    Science.gov (United States)

    Jarvis, E D; Mello, C V

    2000-03-27

    Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.

  17. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    Science.gov (United States)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  18. Clustered Simple Cell Mapping: An extension to the Simple Cell Mapping method

    Science.gov (United States)

    Gyebrószki, Gergely; Csernák, Gábor

    2017-01-01

    When a dynamical system has a complex structure of fixed points, periodic cycles or even chaotic attractors, Cell Mapping methods are excellent tools to discover and thoroughly analyse all features in the state space. These methods discretize a region of the state space into cells and examine the dynamics in the cell state space. By determining one or more image cells for each cell, the global behaviour within the region can be quickly determined. In the simplest case - Simple Cell Mapping (SCM) method - only one image corresponds to a cell and usually a rectangular grid of cells is used. In typical applications the grid of cells is refined at specific locations. This paper, however, introduces a different approach, which is useful to expand the analysed state space region to include all features which properly characterize the global dynamics of the system. Instead of refining the initial cell state space, we start with a small initial state space region, analyse other interesting regions of the state space and incorporate them into a cluster of cell mapping solutions. By this approach, trajectories escaping the original state space region can be followed automatically and additional objects in the state space can be discovered. To illustrate the benefits of the method, we present the exploration of the phase-space of the micro-chaos map - a simple model of digitally controlled systems.

  19. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  20. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    ZOU HaiLin; XU JianXue

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, whichis not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre-spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in-variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen-eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  1. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  2. Cranial involvement in sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Ozlem, E-mail: yalinozlem@hotmail.com [Department of Radiology, Faculty of Medicine, Baskent University, Ankara (Turkey); Kizilkilic, Ebru, E-mail: ebru90@yahoo.com [Department of Hematology, Faculty of Medicine, Baskent University, Ankara (Turkey); Kizilkilic, Osman, E-mail: ebos90@hotmail.com [Department of Radiology, Faculty of Medicine, Baskent University, Ankara (Turkey); Yildirim, Tulin, E-mail: ytulin@hotmail.com [Department of Radiology, Faculty of Medicine, Baskent University, Ankara (Turkey); Karaca, Sibel, E-mail: sibelkaraca@hotmail.com [Department of Neurology, Faculty of Medicine, Baskent University, Ankara (Turkey); Yeral, Mahmut, E-mail: mahmutyeral@hotmail.com [Department of Hematology, Faculty of Medicine, Baskent University, Ankara (Turkey); Kasar, Mutlu, E-mail: mutlukasar@hotmail.com [Department of Hematology, Faculty of Medicine, Baskent University, Ankara (Turkey); Ozdogu, Hakan, E-mail: hakanozdogu@hotmail.com [Department of Hematology, Faculty of Medicine, Baskent University, Ankara (Turkey)

    2010-11-15

    Purpose: To evaluate cranial findings in patients with neurologically symptomatic sickle cell disease (SCD). Materials and methods: We studied 50 consecutive patients with SCD and neurologic symptoms. All patients underwent brain MR examinations: all 50 underwent classic MR imaging; 42, diffusion-weighted MR imaging; 10, MR angiography; four, MR venography; and three patients, digital subtraction angiography. Results: Of the 50 SCD patients, 19 (38%) had normal MR findings, and 31 (62%) showed abnormalities on brain MR images. Of the 50 patients, 16 (32%) had ischemic lesions; two (4%), subarachnoid hemorrhage; one (2%), moya-moya pattern; one (2%), posterior reversible encephalopathy; one (2%), dural venous sinus thrombosis; 12 (24%), low marrow signal intensity and thickness of the diploic space; 12 (24%), cerebral atrophy; and two (4%), osteomyelitis. Twenty-seven patients (54%) presented with headache, which was the most common clinical finding. Conclusions: The cranial involvement is one of the most devastating complications of SCD. Early and accurate diagnosis is important in the management of cranial complications of SCD.

  3. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  4. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Gerardo A Morfini

    Full Text Available Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS associated with superoxide dismutase 1 (SOD1 mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.

  5. Signal Transduction Involved in Cell Volume Regulation

    NARCIS (Netherlands)

    Th. van der Wijk (Thea)

    2001-01-01

    textabstract1.fammalian cells are surrounded by a selective permeable plasma membrane that allmvs the interior of the cell to differ in composition from the surrounding solution. The plasma membrane is formed by a bilayer of (phospho-) lipids and contains many different proteins. Hydrophobic molecul

  6. Crises in a driven Josephson junction studied by cell mapping

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Davidson, A.; Pedersen, Niels Falsig;

    1988-01-01

    We use the method of cell-to-cell mapping to locate attractors, basins, and saddle nodes in the phase plane of a driven Josephson junction. The cell-mapping method is discussed in some detail, emphasizing its ability to provide a global view of the phase plane. Our computations confirm the existe...

  7. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    Science.gov (United States)

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  8. A proteome map of primary cultured rat Schwann cells

    Directory of Open Access Journals (Sweden)

    Shen Mi

    2012-03-01

    Full Text Available Abstract Background Schwann cells (SCs are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs. Results Two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS was performed to identify the protein expressions in primary cultured SCs of rats. We identified a total of 1,232 proteins, which were categorized into 20 functional classes. We also used quantitative real time RT-PCR and Western blot analysis to validate some of proteomics-identified proteins. Conclusion We showed for the first time the proteome map of SCs. Our data could serve as a reference library to provide basic information for understanding SC biology.

  9. Mapping the social determinants of substance use for pregnant-involved young Aboriginal women.

    Science.gov (United States)

    Shahram, Sana Z; Bottorff, Joan L; Oelke, Nelly D; Kurtz, Donna L M; Thomas, Victoria; Spittal, Patricia M; And For The Cedar Project Partnership

    2017-12-01

    There is a dearth of knowledge about the social determinants of substance use among young pregnant-involved Indigenous women in Canada from their perspectives. As part of life history interviews, 17 young pregnant-involved Indigenous women with experiences with substances completed a participant-generated mapping activity CIRCLES (Charting Intersectional Relationships in the Context of Life Experiences with Substances). As women created their maps, they discussed how different social determinants impacted their experiences with pregnancy and substance use. The social determinants identified and used by women to explain determinants of their substance use were grouped into 10 themes: traumatic life histories; socioeconomic status; culture, identity and spirituality; shame and guilt; mental wellness; family connections; romantic and platonic relationships; strength and hope; mothering; and the intersections of determinants. We conclude that understanding the context and social determinants of substance use from a woman-informed perspective is paramount to informing effective and appropriate programs to support young Indigenous women who use substances.

  10. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).

    Science.gov (United States)

    Castède, Sophie; Campoy, José Antonio; Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  11. Giant Merkel Cell Carcinoma Involving the Face

    Directory of Open Access Journals (Sweden)

    Savaş Yaylı

    2012-06-01

    Full Text Available Merkel cell carcinoma is a rare, aggressive, malignant cutaneous tumor. It usually appears on the sun-exposed areas such as the head and neck in the elderly. A 72-year-old female patient was admitted to our clinic with the complaints of a big mass on her face. She described that the mass on her left cheek rapidly grew in three months. Her family and own medical history was unremarkable for skin cancers. On physical examination, there were no pathological findings except for a palpable submandibular lymphadenopathy. Dermatological examination revealed a giant tumoral lesion 9x9 cm in diameter, containing crusted and ulcerated areas on her left cheek. Histopathological examination of the specimen obtained from the lesion showed a neoplastic infiltration consisting small, atypic cells with big, round, hyperchromatic nucleus, narrow cytoplasms, and prominent nucleoulus in some areas, showing high mitotic activity. The neoplasm, which had apoptotic bodies and necrobiosis, also invaded the full thickness of the skin, and the epidermis was very thin. In immunochemistry, CK20 was strongly positive, S100 was focally positive, and EMA was positive, while synaptophysin, chromogranin, vimentin, CD3, CD20, as well as CD45, and CD99 were all negative. Based on these findings, the patient was diagnosed as having Merkel cell carcinoma. On the systemic screening for metastases, nodular lesions in the lungs compatible with metastases were detected on computed tomography. By the consultations with plastic and reconstructive surgeons and oncologists, she was accepted as inoperable and etoposide monotherapy was administered. In this report, we aimed to underline the importance of early diagnosis while presenting a case of giant Merkel cell carcinoma which shows an aggressive progression with lung metastases.

  12. Potential Mechanisms Involved in Ceramide-induced Apoptosis in Human Colon Cancer HT29 Cells

    Institute of Scientific and Technical Information of China (English)

    JING WANG; XIAO-WEN LV; YU-GUO DU

    2009-01-01

    Objective To investigate the potential mechanisms of cell death after the treatment with ceramide. Methods MTT assay,DNA ladder, reporter assay, FACS and Western blot assay were employed to investigate the potential mechanisms of cell death after the treatment with C2-ceramide. Results A short-time treatment with C2-ceramide induced cell death, which was associated with p38 MAP kinase activation, but had no links with typical caspase activation or PARP degradation. Rather than caspase inhibitor, Inhibitor of p38 MAP kinase blocked cell death induced by a short-time treatment with ceramide (12 h). Moreover, incubation of cells with ceramide for a long time (>12 h) increased subGl, but reduced S phase accompanied by caspase-dependent and caspase-independent changes including NFκB activation. Conclusion Ceramide-induced cell apoptosis involves both caspase-dependent and -independent signaling pathway. Caspase-independent cell death occurring in a relatively early stage, which is mediated via p38 MAP kinase, can progress into a stage involving both caspase-dependent and -independent mechanisms accompanied by cell signaling of MAPKs and NFκB.

  13. Langerhans cell histiocytosis with involvement of the pons: case report

    Energy Technology Data Exchange (ETDEWEB)

    Vourtsi, A. [Xatzopoulou, Athens (Greece)]|[Department of Radiology, University of Athens Medical School, Athens (Greece); Papadopoulos, A.; Moulopoulos, L.A.; Vlahos, L. [Department of Radiology, University of Athens Medical School, Athens (Greece); Xenellis, J. [Department of Otorhinolaryngology, University of Athens Medical School, Athens (Greece)

    1998-03-01

    Central nervous system involvement is uncommon in Langerhans cell histiocytosis. The suprasellar region is more frequently affected. There have been few reports of involvement of the brain parenchyma shown on CT or MRI. We present a case of involvement of the pons, showing marked contrast enhancement on MRI. (orig.) With 2 figs., 17 refs.

  14. Basaloid squamous cell carcinoma involving floor of the mouth

    Directory of Open Access Journals (Sweden)

    Sah Kunal

    2008-01-01

    Full Text Available Basaloid squamous cell carcinomas of oral mucosa are uncommon. Majority of them can be differentiated from squamous cell carcinoma by their aggressive clinical course and their histopathological features. This case report presents a case of 70-year-old male with basaloid squamous cell carcinoma involving the floor of the mouth.

  15. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium.

    Directory of Open Access Journals (Sweden)

    Sophie Castède

    Full Text Available The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  16. Maximal elements and generalized games involving condensing mappings in locally FC-uniform spaces and applications (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of set-valued mappings involving condensing mappings is proved in locally FC-uniform spaces. As applications,some new equilibrium existence theorems of generalized game involving condensing mappings are established in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces. Some further applications of our results to the systems of generalized vector quasi-equilibrium problems will be given in a follow-up paper.

  17. Langerhans cell histiocytosis involving central nervous system: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Won Jin; Park, Dong Woo; Lee, Seung Ro; Hahm, Chang Kok; Ju, Kyung Bin [Hanyang University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1997-01-01

    Langerhans cell histiocytosis(LCH) is a systemic disorder characterized by idiopathic proliferation of histiocytes in the reticuloendothelial system; CNS involvement outside the hypothalamus or pituitary gland is uncommon. We present a case of LCH involving the brainstem, cerebellum, and temporal lobes, and also showing hypothalamic involvement. The lesions were isointense or hypointense on T1WI and hyperintense on T2WI, and showed multifocal enhancing nodules on post-contrast CT and Gd-enhanced MRI.

  18. [May Medically Assisted Procreation (MAP) be relevant for homosexual women? Study among 147 gynaeco-logists involved in MAP techniques].

    Science.gov (United States)

    Sintes, R; Darves-Bornoz, J-M

    2002-01-01

    The second part of the twentieth century has seen societal modifications as well as evolution of medical techniques allowing now thinking human procreation in terms of choices or even rights. Certain voices require sometimes Medically Assisted Procreation (MAP) for lesbians. Even though society did not allow such a possibility in France, it seemed interesting to question about it professionals actively involved in the use of MAP techniques. Through systematic internet queries, we obtained a list of one hundred private or public french medical institutions with a unit for the treatment of sterility. A telephone call to their secretary allowed us to individualize those doctors who did practice MAP. A sample of 147 medical doctors practicing MAP was then drawn. They were questioned with a clinical instrument including 20 ended-questions in order to assess their opinions on: homosexual women with a desire of a child; possibility for these clinicians to intervene with a donor insemination in such situations; developmental risk for such children. One hundred twenty five (85%) accepted to answer. Nine percent of these gynaecologists still consider homosexuality as pathological, and 10% as deviant - contrary to international classifications of mental disorders - and 5% deny good maternal abilities to homosexual women. Before the so-called french laws of bioethics in 1994, none of them had practiced a donor insemination for a lesbian couple, though 4% had realized some for single homosexual women. Two third of them do not agree opening donor insemination to homosexual women though for half of them, the anonymity of a donor is not perceived as prejudicial to the child. Eighty-seven percent of these gynaecologists think that a child brought up by homosexual parents is at risk for developmental disorder, the configuration supposed the most pathogenic being when the birth results from a donor insemination. The supposedly most important risk factors are thought to be the

  19. Mapping of the regions involved in self-interaction of rice stripe virus P3 protein.

    Science.gov (United States)

    Zhao, S L; Hao, J H; Xue, Y N; Liang, C Y

    2016-03-01

    Rice stripe virus (RSV) protein P3 is a suppressor of RNA silencing in plants. P3 has been shown by biomolecular fluorescence complementation assay to self-interact in planta but the regions responsible for homotypic interaction have not been determined. Here we analyzed the domains for the self-interaction of P3 by using yeast two-hybrid, co-immunoprecipitation and fluorescence experiments. The results showed that P3 was also able to interact with itself in yeast and insect cells. The domain responsible for P3-P3 interaction was mapped to amino acids 15-30 at the N-terminal region of P3. Furthermore, subcellular localization suggested that the homo-oligomerization was the prerequisite for P3 to form larger protein aggregates in the nucleus of insect cell.

  20. Global behavior of gear system using mixed cell mapping

    Institute of Scientific and Technical Information of China (English)

    SHEN Yunwen; LIU Mengjun; DONG Haijun

    2004-01-01

    In some mechanical nonlinear systems, the transient motion will be undergoing a very long process and the attractor-basin boundaries are so complicated that some difficulties occur in analyzing the system global behavior. To solve this problem a mixed cell mapping method based on the point mapping and the principle of simple cell mapping is developed. The algorithm of the mixed cell mapping is studied. A dynamic model of a gear pair is established with the backlash, damping, transmission error and the time-varying stiffness taken into consideration. The global behaviors of this system are analyzed. The coexistence of the system attractors and the respective attractor-basin of each attractor with different parameters are obtained, thus laying a theoretical basis for improvement of the dynamic behaviors of gear system.

  1. Online unsupervised formation of cell assemblies for the encoding of multiple cognitive maps.

    Science.gov (United States)

    Salihoglu, Utku; Bersini, Hugues; Yamaguchi, Yoko; Molter, Colin

    2009-01-01

    Since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for brain information processing. After their introduction in artificial intelligence, cell assemblies became commonly used in computational neuroscience as a neural substrate for content addressable memories. However, the mechanisms underlying their formation are poorly understood and, so far, there is no biologically plausible algorithms which can explain how external stimuli can be online stored in cell assemblies. We addressed this question in a previous paper [Salihoglu, U., Bersini, H., Yamaguchi, Y., Molter, C., (2009). A model for the cognitive map formation: Application of the retroaxonal theory. In Proc. IEEE international joint conference on neural networks], were, based on biologically plausible mechanisms, a novel unsupervised algorithm for online cell assemblies' creation was developed. The procedure involved simultaneously, a fast Hebbian/anti-Hebbian learning of the network's recurrent connections for the creation of new cell assemblies, and a slower feedback signal which stabilized the cell assemblies by learning the feedforward input connections. Here, we first quantify the role played by the retroaxonal feedback mechanism. Then, we show how multiple cognitive maps, composed by a set of orthogonal input stimuli, can be encoded in the network. As a result, when facing a previously learned input, the system is able to retrieve the cognitive map it belongs to. As a consequence, ambiguous inputs which could belong to multiple cognitive maps can be disambiguated by the knowledge of the context, i.e. the cognitive map.

  2. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...... be estimation as a function of the load current. The data is based on an experiment conducted using a single BASF prototype Celtec P2100 HTPEM fuel cell (45 cm2 ) operated at 160 C, installed in a Greenlight fuel cell test station....

  3. New protein involved in the replacement of cell molecules

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed” compartme......In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed...

  4. Involvement of dendritic cells in autoimmune diseases in children

    Directory of Open Access Journals (Sweden)

    Reed Ann M

    2007-07-01

    Full Text Available Abstract Dendritic cells (DCs are professional antigen-presenting cells that are specialized in the uptake of antigens and their transport from peripheral tissues to the lymphoid organs. Over the last decades, the properties of DCs have been intensely studied and much knowledge has been gained about the role of DCs in various diseases and health conditions where the immune system is involved, particularly in cancer and autoimmune disorders. Emerging clues in autoimmune diseases, suggest that dendritic cell dysregulation might be involved in the development of various autoimmune disorders in both adults and children. However, studies investigating a possible contribution of DCs in autoimmune diseases in the pediatric population alone are scanty. The purpose of this review is to give a general overview of the current literature on the relevance of dendritic cells in the most common autoimmune conditions of childhood.

  5. Aspects of Information Architecture involved in process mapping in Military Organizations under the semiotic perspective

    Directory of Open Access Journals (Sweden)

    Mac Amaral Cartaxo

    2016-04-01

    Full Text Available Introduction: The description of the processes to represent the activities in an organization has important call semiotic, It is the flowcharts of uses, management reports and the various forms of representation of the strategies used. The subsequent interpretation of the organization's employees involved in learning tasks and the symbols used to translate the meanings of management practices is essential role for the organization. Objective: The objective of this study was to identify evidence of conceptual and empirical, on aspects of information architecture involved in the mapping process carried out in military organizations under the semiotic perspective. Methodology: The research is characterized as qualitative, case study and the data collection technique was the semi-structured interview, applied to management advisors. Results: The main results indicate that management practices described with the use of pictorial symbols and different layouts have greater impact to explain the relevance of management practices and indicators. Conclusion: With regard to the semiotic appeal, it was found that the impact of a management report is significant due to the use of signs and layout that stimulate further reading by simplifying complex concepts in tables, diagrams summarizing lengthy descriptions.

  6. Vessel involvement in giant cell arteritis : an imaging approach

    NARCIS (Netherlands)

    Holm, Pieter W; Sandovici, Maria; Slart, Riemer H.; Glaudemans, Andor W; Rutgers, Abraham; Brouwer, Elisabeth

    2016-01-01

    Vasculitis is classified based on the size of the involved vessels. The two major forms are small vessel vasculitis (SVV) and large vessel vasculitis (LVV). Main forms of LVV are Takayasu Arteritis (TA), Giant Cell Arteritis (GCA), Isolated Aortitis (IA) and Chronic Periaortitis (PC). This manuscrip

  7. Adult Langerhans Cell Histiocytosis with Hepatic and Pulmonary Involvement

    Science.gov (United States)

    Araujo, Bruno; Costa, Francisco; Lopes, Joanne; Castro, Ricardo

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare proliferative disorder of Langerhans cells of unknown etiology. It can involve multiple organ systems with different clinical presentation, which complicates the diagnosis. It can range from isolated to multisystem disease with different prognosis. Although common among children, liver involvement is relatively rare in adults and frequently overlooked. Natural history of liver LCH fits into two stages: an early stage with infiltration by histiocytes and a late stage with sclerosis of the biliary tree. Pulmonary findings are more common and include multiple nodules in different stages of cavitation, predominantly in the upper lobes. We present a case of adult LCH with pulmonary and biopsy proven liver involvement with resolution of the hepatic findings after treatment. PMID:25977828

  8. Adult Langerhans Cell Histiocytosis with Hepatic and Pulmonary Involvement

    Directory of Open Access Journals (Sweden)

    Bruno Araujo

    2015-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a rare proliferative disorder of Langerhans cells of unknown etiology. It can involve multiple organ systems with different clinical presentation, which complicates the diagnosis. It can range from isolated to multisystem disease with different prognosis. Although common among children, liver involvement is relatively rare in adults and frequently overlooked. Natural history of liver LCH fits into two stages: an early stage with infiltration by histiocytes and a late stage with sclerosis of the biliary tree. Pulmonary findings are more common and include multiple nodules in different stages of cavitation, predominantly in the upper lobes. We present a case of adult LCH with pulmonary and biopsy proven liver involvement with resolution of the hepatic findings after treatment.

  9. Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy.

    Science.gov (United States)

    Gilaberte, Yolanda; Milla, Laura; Salazar, Nerea; Vera-Alvarez, Jesús; Kourani, Omar; Damian, Alejandra; Rivarola, Viviana; Roca, Maria José; Espada, Jesús; González, Salvador; Juarranz, Angeles

    2014-09-01

    Photodynamic therapy (PDT) is widely used to treat non-melanoma skin cancer. However, some patients affected with squamous cell carcinoma (SCC) do not respond adequately to PDT with methyl-δ-aminolevulinic acid (MAL-PDT) and the tumors acquire an infiltrative phenotype and became histologically more aggressive, less differentiated, and more fibroblastic. To search for potential factors implicated in SCC resistance to PDT, we have used the SCC-13 cell line (parental) and resistant SCC-13 cells obtained by repeated MAL-PDT treatments (5th and 10th PDT-resistant generations). Xenografts assays in immunodeficient mice showed that the tumors generated by resistant cells were bigger than those induced by parental cells. Comparative genomic hybridization array (aCGH) showed that the three cell types presented amplicons in 3p12.1 CADM2, 7p11.2 EFGR, and 11q13.3 CCND1 genes. The 5th and 10th PDT-resistant cells showed an amplicon in 5q11.2 MAP3K1, which was not present in parental cells. The changes detected by aCGH on CCND1, EFGR, and MAP3K1 were confirmed in extracts of SCC-13 cells by reverse-transcriptase PCR and by western blot, and by immunohistochemistry in human biopsies from persistent tumors after MAL-PDT. Our data suggest that genomic imbalances related to CCND1, EFGR, and particularly MAP3K1 seem to be involved in the development of the resistance of SCC to PDT.

  10. The involvement of multipotential progenitor cells in Mooren's ulcer.

    Science.gov (United States)

    Lee, In Gul; Ye, Juan; Kim, Jae Chan

    2005-06-30

    The aim of this study was to assess the involvement of multipotential progenitor cells in the pathogenesis of Mooren's ulcer using immunohistochemical staining techniques. Tissue specimens were collected from 3 Mooren's ulcer patients who underwent lamellar keratectomy. Immunohistochemical staining patterns were analyzed using antibodies: CD34, c-kit, STRO-1, CD45RO, VEGF and a-SMA. Strong positive CD34, c-kit and STRO-1 cells were revealed in Mooren's ulcer specimens, especially in the superficial stroma. A few weakly expressed CD34 stroma cells were seen in normal limbal cornea but no immunoreactivity for c-kit and STRO-1 could be found. CD45RO positive T cells were found to have infiltrated in Mooren's ulcer. The immunostaining pattern of VEGF and a- SMA was closely correlated with the degree of expression and the number of CD34 positive cells. Bone marrow-derived multipotential progenitor cells may be involved in the pathogenesis of Mooren's ulcer by synergizing with other factors to amplify autoimmune destructive reactions and to contribute to the regeneration process. Specific therapeutic strategies that target the role of these cells in the disease are warranted.

  11. Immunohistochemical analysis of small plaque parapsoriasis: involvement of dendritic cells.

    Science.gov (United States)

    Zeybek, N Dilara; Asan, Esin; Erbil, A Hakan; Dagdeviren, Attila

    2008-01-01

    Small plaque parapsoriasis (SPP) is one of the cutaneous T-cell lymphoproliferative disorders. The aim of the present study was to show the antigenic profile of a subset of dendritic cells and lymphocytes in SPP in comparison with normal cells to provide data on the role of these two cell types in the pathogenesis of SPP. Skin biopsy specimens of lesions were obtained from 8 patients with SPP. Biopsies of the healthy skin from 9 control individuals were also analyzed. Immunohistochemistry was performed on the frozen tissue sections to reveal binding of anti-HLA Class II, anti-CD1a, anti-CD4, anti-CD8, anti-CD44, anti-CD45, and anti-CD68 monoclonal antibodies. There was a statistically significant increase in the number of CD1a(+), Langerhans cells (LCs), HLA-DR-immunoreactive and, CD1a-positive dermal dendritic cells and CD68(+) macrophages in the SPP group (p=0.008, 0.008, 0.002 and <0.0009, respectively). The number of lymphocytes positive for CD4, CD8 and CD45 was significantly higher than normal in the SPP group (p=0.015, <0.0009 and <0.0009, respectively). Our study demonstrates that both peptide- and lipid-based antigens are involved in the persistent antigenic exposure in SPP. Dendritic cells play a pivotal role in SPP by presenting antigens by both LC and dermal dendritic cells via MHC Class II and CD1a molecules. The CD68(+) macrophages are thought to be involved in the immune response in this pathology as an antigen-presenting cell.

  12. Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes.

    Science.gov (United States)

    Ribas, Gloria; González-Neira, Anna; Salas, Antonio; Milne, Roger L; Vega, Ana; Carracedo, Begoña; González, Emilio; Barroso, Eva; Fernández, Lara P; Yankilevich, Patricio; Robledo, Mercedes; Carracedo, Angel; Benítez, Javier

    2006-02-01

    One of the many potential uses of the HapMap project is its application to the investigation of complex disease aetiology among a wide range of populations. This study aims to assess the transferability of HapMap SNP data to the Spanish population in the context of cancer research. We have carried out a genotyping study in Spanish subjects involving 175 candidate cancer genes using an indirect gene-based approach and compared results with those for HapMap CEU subjects. Allele frequencies were very consistent between the two samples, with a high positive correlation (R) of 0.91 (PHapMap CEU data using pairwise r (2) thresholds of 0.8 and 0.5 was assessed by applying these to the Spanish and current HapMap data for 66 genes. In general, the HapMap tagSNPs performed very well. Our results show generally high concordance with HapMap data in allele frequencies and haplotype distributions and confirm the applicability of HapMap SNP data to the study of complex diseases among the Spanish population.

  13. Cerebellar and basal ganglion involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I.; Baskan, O.; Haliloglu, M.; Aydingoz, U. [Department of Radiology, Hacettepe University Hospital, Sihhiye 06100, Ankara (Turkey)

    1999-06-01

    Langerhans cell histiocytosis (LCH) is a disease of unknown cause characterised by proliferation of histiocytic granulomas in tissues; the primary cerebral manifestation is diabetes insipidus caused by hypothalamic infiltration. We present a patient in whom, except for the absence of high signal on T 1 weighting in the posterior pituitary, consistent with central diabetes insipidus, MRI showed no evidence of hypothalamic involvement by histiocytosis, despite the long duration of the disease. However, there was bilateral, symmetrical involvement of the cerebellum and globus pallidus in addition to a calvarial lesion. High signal in the cerebellar white matter on T 2-weighted images may represent demyelination, gliosis and cell loss, as previously reported on pathologic examination. (orig.) With 5 figs., 22 refs.

  14. Rare giant cell tumor involvement of the olecranon bone.

    Science.gov (United States)

    Yang, Chen; Gong, Yubao; Liu, Jianguo; Qi, Xin

    2014-06-01

    Giant cell tumor (GCT) of bone is a relatively common benign bone lesion and is usually located in long bones, but involvement of the olecranon is extremely rare. Here, we present a case of solitary GCT of bone in the olecranon that was confirmed by preoperative needle biopsy and postoperative histological examination. The treatment included intralesional curettage, allogeneic bone grafting, and plating. At 26 months follow-up, the patient had no local recurrence.

  15. Rare giant cell tumor involvement of the olecranon bone

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2014-01-01

    Full Text Available Giant cell tumor (GCT of bone is a relatively common benign bone lesion and is usually located in long bones, but involvement of the olecranon is extremely rare. Here, we present a case of solitary GCT of bone in the olecranon that was confirmed by preoperative needle biopsy and postoperative histological examination. The treatment included intralesional curettage, allogeneic bone grafting, and plating. At 26 months follow-up, the patient had no local recurrence.

  16. Genetic interaction mapping with microfluidic-based single cell sequencing

    Science.gov (United States)

    Haliburton, John R.; Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam; Abate, Adam R.

    2017-01-01

    Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. PMID:28170417

  17. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  18. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  19. Integrated map of the chromosome 8p12-p21 region, a region involved in human cancers and Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, A.; Chaffanet, M.; Birnbaum, D.; Pebusque, M.J. [INSERM, Marseille (France)] [and others

    1996-02-15

    This article discusses the genetic mapping of the specific region on human chromosome 8, 8p12-p21, and its implications to human hereditary cancers and diseases. The localization of disease genes such as NEFL and FGFR1 are given, accomplished using contigs which span the region of deletion involved in these hereditary diseases. 59 refs., 4 figs., 3 tabs.

  20. SOME RESULTS ON GENERALIZED EQUILIBRIUM PROBLEMS INVOLVING STRICTLY PSEUDOCONTRACTIVE MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    Jong Kyu Kim; Sun Young Cho; Xiaolong Qin

    2011-01-01

    In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.

  1. Liver involvement of Langerhans’ cell histiocytosis in children

    Science.gov (United States)

    Yi, Xiaoping; Han, Tong; Zai, Hongyan; Long, Xueying; Wang, Xiaoyi; Li, Wenzheng

    2015-01-01

    Objective: Liver involvement is relatively frequent in children with Langerhans cell histiocytosis (LCH). Its features remain poorly defined. Methods: A retrospective study was carried out on 14 hepatic LCH children in our hospital. The Clinicopathological and radiological features of this disease was discussed. Results: The rate of liver involvement in children LCH patients is 51.9%. Majority of the patients were disseminated cases. Hepatomegaly was clinically confirmed in 11 cases (78.6%). Liver function dysfunction was seen in nine (64.3%) children. The association of multi-modal imaging significantly yielded more diagnostic information. There are some imaging characteristics of this disease, CT and MRI could help to assess the staging, extent of the hepatic lesions. We found that liver involvement had a significant impact on survival. Patients treated with systemic chemotherapy earlier from time of diagnosis had a relatively better outcome. Conclusions: The rate of liver involvement in children LCH patients maybe much higher than that of expected. We suggest that clinical and biological liver evaluation and abdominal imaging must be performed regularly onwards to screen every LCH children patient from the time of the initial diagnosis. Patient should be treated with systemic chemotherapy earlier. PMID:26221247

  2. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  3. Cartographic Design in Flood Risk Mapping - A Challenge for Communication and Stakeholder Involvement

    Science.gov (United States)

    Fuchs, S.; Serrhini, K.; Dorner, W.

    2009-12-01

    In order to mitigate flood hazards and to minimise associated losses, technical protection measures have been additionally and increasingly supplemented by non-technical mitigation, i.e. land-use planning activities. This is commonly done by creating maps which indicate such areas by different cartographic symbols, such as colour, size, shape, and typography. Hazard and risk mapping is the accepted procedure when communicating potential threats to stakeholders, and is therefore required in the European Member States in order to meet the demands of the European Flood Risk Directive. However, available information is sparse concerning the impact of such maps on different stakeholders, i.e., specialists in flood risk management, politicians, and affected citizens. The lack of information stems from a traditional approach to map production which does not take into account specific end-user needs. In order to overcome this information shortage the current study used a circular approach such that feed-back mechanisms originating from different perception patterns of the end user would be considered. Different sets of small-scale as well as large-scale risk maps were presented to different groups of test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented communication of cartographic information. Therefore, the method of eye tracking was applied using a video-oculography technique. This resulted in a suggestion for a map template which fulfils the requirement to serve as an efficient communication tool for specialists and practitioners in hazard and risk mapping as well as for laypersons. Taking the results of this study will enable public authorities who are responsible for flood mitigation to (1) improve their flood risk maps, (2) enhance flood risk awareness, and therefore (3) create more disaster-resilient communities.

  4. Maximal elements and generalized games involving condensing mappings in locally FC-uniform spaces and applications (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper is a continuum of the preceding paper of author. Some new systems of generalized vector quasi-equilibrium problems involving condensing mappings are introduced and studied in locally FC-uniform spaces. By applying the existence theorem of maximal elements of condensing set-valued mappings in locally FC-uniform spaces obtained by author in the preceding paper, some new existence theorems of solutions for the systems of generalized vector quasi-equilibrium problems are proved in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces.

  5. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  6. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    Science.gov (United States)

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  7. Synthetic protein interactions reveal a functional map of the cell

    Science.gov (United States)

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  8. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  9. Mapping the development of cerebellar Purkinje cells in zebrafish.

    Science.gov (United States)

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  10. Convergence of Iterative Sequences for Generalized Equilibrium Problems Involving Inverse-Strongly Monotone Mappings

    Directory of Open Access Journals (Sweden)

    Cho SunYoung

    2010-01-01

    Full Text Available Abstract The purpose of this paper is to consider the weak convergence of an iterative sequence for finding a common element in the set of solutions of generalized equilibrium problems, in the set of solutions of classical variational inequalities, and in the set of fixed points of nonexpansive mappings.

  11. Multifocal Extranodal Involvement of Diffuse Large B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Devrim Cabuk

    2013-01-01

    Full Text Available Endobronchial involvement of extrapulmonary malignant tumors is uncommon and mostly associated with breast, kidney, colon, and rectum carcinomas. A 68-year-old male with a prior diagnosis of colon non-Hodgkin lymphoma (NHL was admitted to the hospital with a complaint of cough, sputum, and dyspnea. The chest radiograph showed right hilar enlargement and opacity at the right middle zone suggestive of a mass lesion. Computed tomography of thorax revealed a right-sided mass lesion extending to thoracic wall with the destruction of the third and the fourth ribs and a right hilar mass lesion. Fiberoptic bronchoscopy was performed in order to evaluate endobronchial involvement and showed stenosis with mucosal tumor infiltration in right upper lobe bronchus. The pathological examination of bronchoscopic biopsy specimen reported diffuse large B-cell lymphoma and the patient was accepted as the endobronchial recurrence of sigmoid colon NHL. The patient is still under treatment of R-ICE (rituximab-ifosfamide-carboplatin-etoposide chemotherapy and partial regression of pulmonary lesions was noted after 3 courses of treatment.

  12. Acinar Cell Carcinoma of the Pancreas with Colon Involvement

    Directory of Open Access Journals (Sweden)

    Naoki Asayama

    2014-01-01

    Full Text Available We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT revealed a large tumor (10.6×11.6 cm at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB, and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA. Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases.

  13. Fine-mapping of an Arabidopsis cell death mutation locus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An Arabidopsis cell death mutation locus was mapped to chromosome 2 between IGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.

  14. Fine-mapping of an Arabidopsis cell death mutation locus

    Institute of Scientific and Technical Information of China (English)

    牟中林; 戴亚; 李家洋

    2000-01-01

    An Arabidopsis cell death mutation locus was mapped to chromosome 2 between lGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.

  15. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    2006-01-01

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of hepato

  16. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death.

    Science.gov (United States)

    Laborde, E

    2010-09-01

    Glutathione transferases (GSTs) are enzymes that catalyze the conjugation of glutathione (GSH) to a variety of electrophilic substances. Their best known role is as cell housekeepers engaged in the detoxification of xenobiotics. Recently, GSTs have also been shown to act as modulators of signal transduction pathways that control cell proliferation and cell death. Their involvement in cancer cell growth and differentiation, and in the development of resistance to anticancer agents, has made them attractive drug targets. This review is focused on the inhibition of GSTs, in particular GSTP1-1, as a potential therapeutic approach for the treatment of cancer and other diseases associated with aberrant cell proliferation.

  17. Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: a brain stimulation mapping study.

    Science.gov (United States)

    Fernández Coello, Alejandro; Duvaux, Sophie; De Benedictis, Alessandro; Matsuda, Ryosuke; Duffau, Hugues

    2013-01-01

    Neural foundations underlying visual agnosia are poorly understood. The authors present the case of a patient who underwent awake surgery for a right basal temporooccipital low-grade glioma in which direct electrostimulation was used both at the cortical and subcortical level. Brain mapping over the inferior longitudinal fascicle generated contralateral visual hemiagnosia. These original findings are in agreement with recent tractography data that have confirmed the existence of an occipitotemporal pathway connecting occipital visual input to higher-level processing in temporal lobe structures. This is the first report of a true transient visual hemiagnosia elicited through electrostimulation, supporting the crucial role of inferior longitudinal fascicle in visual recognition.

  18. Involvement of PI3 kinase and MAP kinase in IGF-I and insulin-induced ovarian steroidogenesis in common carp Cyprinus carpio.

    Science.gov (United States)

    Paul, Sudipta; Pramanick, Kousik; Kundu, Sourav; Roy Moulik, Sujata; Pal, Puja; Mukherjee, Dilip

    2013-01-15

    Previously, we observed that in vitro steroidogenesis in intact ovarian follicles of common carp Cyprinus carpio can alone be induced by recombinant human insulin-like growth factor (IGF-I) and bovine insulin (b-insulin) and this induction was gonadotropin-independent. To investigate early signal transduction components involved in this process, the possible role of phosphatidylinositol 3-kinase (PI3 kinase) during ovarian steroidogenesis was examined. IGF-I and b-insulin induced testosterone and 17β-estradiol production in carp ovarian theca and granulosa cells in short-term coincubation and this induction was significantly inhibited by Wortmannin and LY294002, two mechanistically different specific inhibitors of PI3 kinase. IGF-I and b-insulin were shown to activate PI3 kinase from 30 min onwards with a maximum at 90 min. In this study, we found the involvement of mitogen-activated protein kinase (MAP kinase) in the regulation of IGF-I- and b-insulin-induced steroidogenesis in carp ovary. An antagonist of mitogen-activated protein kinase kinase1/2 (MEK1/2) markedly attenuated IGF-I- and b-insulin-induced steroid production. Cells treated with IGF-I and b-insulin stimulated ERK1/2-dependent phosphorylation of extracellular signal regulated protein kinase1/2 (ERKs1/2) in a time-dependent manner, which was significantly attenuated in presence of MEK1/2 inhibitor. PI3 kinase inhibitors strongly attenuated phosphorylation and activation of MAP kinase, which was increased during IGF-I and b-insulin-induced steroidogenesis. Taken together, these results suggest that PI3 kinase is an initial component of the signal transduction pathway which precedes the MAP kinase during IGF-I- and b-insulin-induced steroidogenesis in C. carpio ovarian follicles.

  19. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  20. Singular Features of Trypanosomatids' Phosphotransferases Involved in Cell Energy Management

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2011-01-01

    Full Text Available Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.

  1. Evidences Suggesting Involvement of Viruses in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kanupriya Gupta

    2013-01-01

    Full Text Available Oral cancer is one of the most common cancers and it constitutes a major health problem particularly in developing countries. Oral squamous cell carcinoma (OSCC represents the most frequent of all oral neoplasms. Several risk factors have been well characterized to be associated with OSCC with substantial evidences. The etiology of OSCC is complex and involves many factors. The most clearly defined potential factors are smoking and alcohol, which substantially increase the risk of OSCC. However, despite this clear association, a substantial proportion of patients develop OSCC without exposure to them, emphasizing the role of other risk factors such as genetic susceptibility and oncogenic viruses. Some viruses are strongly associated with OSCC while the association of others is less frequent and may depend on cofactors for their carcinogenic effects. Therefore, the exact role of viruses must be evaluated with care in order to improve the diagnosis and treatment of OSCC. Although a viral association within a subset of OSCC has been shown, the molecular and histopathological characteristics of these tumors have yet to be clearly defined.

  2. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  3. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r...eceptors involved in recruitment of inflammatory cells. Authors Ben-Baruch A, Mic

  4. QTL mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower

    Science.gov (United States)

    Whitney, Kenneth D.; Broman, Karl W.; Kane, Nolan C.; Hovick, Stephen M.; Randell, Rebecca A.; Rieseberg, Loren H.

    2014-01-01

    The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 SNP markers, and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological, and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favored in the wild. QTL for a number of other ecophysiological, phenological, and architectural traits co-localized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence. PMID:25522096

  5. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    Science.gov (United States)

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  6. A Conformal Mapping Suitable for Problems Involving Interaction Between Given Geometries and Known Far Fields.

    Science.gov (United States)

    1984-09-01

    A conformal transformation formula using Riemann-Stieltjes integrals is derived for use with problems involving the interaction between a given finite-sized geometry and a known far field. The derivative of this transformation is non-singular in the domain considered and tends to one at infinity. A formula is derived for transformation from the unit circle to the exterior of an arbitrarily given continuous curve with bounded variation . A special case of the transformation is very similar

  7. Variational and topological methods for operator equations involving duality mappings on Orlicz-Sobolev spaces

    Directory of Open Access Journals (Sweden)

    Pavel Matei

    2007-06-01

    Full Text Available Let $a:mathbb{R}o mathbb{R}$ be a strictly increasing odd continuous function with $lim_{to +infty }a(t=+infty $ and $A(t=int_{0}^{t}a(s,ds$, $tin mathbb{R}$, the $N$-function generated by $a$. Let $Omega $ be a bounded open subset of $mathbb{R}^{N}$, $Ngeq 2$, $T[u,u]$ a nonnegative quadratic form involving the only generalized derivatives of order $m$ of the function $uin W_{0}^{m}E_{A}(Omega $ and $g_{alpha }:Omegaimesmathbb{R}omathbb{R}$, $| alpha |

  8. Subicular place cells generate the same "map" for different environments: comparison with hippocampal cells.

    Science.gov (United States)

    Sharp, Patricia E

    2006-11-11

    Since the initial discovery of place cells in the hippocampus proper, similar spatial firing has been observed in additional regions throughout the hippocampal formation. One such region is the subiculum. Here, most cells show a significant, consistent variation in rate relative to location. Thus, subicular and hippocampal cells are similar, in providing a representation of momentary location in space. However, there are also some fundamental differences. First, many subicular cells have a directional signal superimposed on the place-related patterns. In contrast, hippocampal cells in the open field paradigm used here typically do not show a genuine directional component. The second critical difference has to do with how the cells code different environments. As is well known, hippocampal cells show different spatial patterns in environments which offer distinctly different stimulus properties. For example, a hippocampal cell which fires in the northwest portion of a striped cylinder will likely display a different field, or no field, when recorded in a gray square. In contrast, subicular cells are likely to show the same behavior across environments, such as choosing the northwest region of both enclosures. Further, if two environments differ in size, the subicular patterns will expand/shrink to fit. Thus, it appears that subicular cells form a rigid framework of interrelated firing fields which is fit into each new enclosure. In contrast, hippocampal cells create a new "map" specific to each environment. This suggests that the hippocampal and subicular regions work together to help provide the overall cognitive mapping abilities of the animal.

  9. Mapping of the molecular determinants involved in the interaction between eps15 and AP-2

    DEFF Research Database (Denmark)

    Iannolo, G; Salcini, A E; Gaidarov, I

    1997-01-01

    domain, located in its NH2-terminal region. In addition, a proline-rich region, located in the COOH-terminal portion of eps15, can bind to the Src homology 3 domain of the crk proto-oncogene product in vitro. Recently, coimmunoprecipitation between eps15 and AP-2, a major component of coated pits......, was reported. Here, we characterize the molecular determinants of the eps15/AP-2 interaction. The AP-2 binding region of eps15 is localized in its COOH-terminal region and spans approximately 80 amino acids. At least three molecular determinants, located at residues 650-660, 680-690, and 720-730, are involved...... in the binding. AP-2 binds to eps15 through its alpha subunit (alpha-adaptin); in particular, the COOH-terminal region of alpha-adaptin, the so-called alpha-ear, contains the eps15 binding region....

  10. Expression map of the human exome in CD34+ cells and blood cells: increased alternative splicing in cell motility and immune response genes.

    Directory of Open Access Journals (Sweden)

    Sylvie Tondeur

    Full Text Available BACKGROUND: Hematopoietic cells are endowed with very specific biological functions, including cell motility and immune response. These specific functions are dramatically altered during hematopoietic cell differentiation, whereby undifferentiated hematopoietic stem and progenitor cells (HSPC residing in bone marrow differentiate into platelets, red blood cells and immune cells that exit into the blood stream and eventually move into lymphoid organs or inflamed tissues. The contribution of alternative splicing (AS to these functions has long been minimized due to incomplete knowledge on AS events in hematopoietic cells. PRINCIPAL FINDINGS: Using Human Exon ST 1.0 microarrays, the entire exome expression profile of immature CD34+ HSPC and mature whole blood cells was mapped, compared to a collection of solid tissues and made freely available as an online exome expression atlas (Amazonia Exon! : http://amazonia.transcriptome.eu/exon.php. At a whole transcript level, HSPC strongly expressed EREG and the pluripotency marker DPPA4. Using a differential splicing index scheme (dsi, a list of 849 transcripts differentially expressed between hematopoietic cells and solid tissues was computed, that included NEDD9 and CD74. Some of these genes also underwent alternative splicing events during hematopoietic differentiation, such as INPP4B, PTPLA or COMMD6, with varied contribution of CD3+ T cells, CD19+ B cells, CD14+ or CD15+ myelomonocytic populations. Strikingly, these genes were significantly enriched for genes involved in cell motility, cell adhesion, response to wounding and immune processes. CONCLUSION: The relevance and the precision provided by this exon expression map highlights the contribution of alternative splicing to key feature of blood cells differentiation and function.

  11. Cell Mapping for Nanohybrid Circuit Architecture Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhu-Fei Chu; Yin-Shui Xia; Lun-Yao Wang

    2012-01-01

    Nanoelectronics constructed by nanoscale devices seems promising for the advanced development of integrated circuits (ICs). However,the lack of computer aided design (CAD) tools seriously hinders its development and applications.To investigate the cell mapping task in CAD flow,we present a genetic algorithm (GA) based method for Cmos/nanowire/MOLecular hybrid (CMOL),which is a nanohybrid circuit architecture.By designing several crossover operators and analyzing their performance,an efficient crossover operator is proposed.Combining a mutation operator,a GA based algorithm is presented and tested on the International Symposium on Circuits and Systems (ISCAS) benchmarks.The results show that the proposed method not only can obtain better area utilization and smaller delay,but also can handle larger benchmarks with CPU time improvement compared with the published methods.

  12. Inferring maps of forces inside cell membrane microdomains

    CERN Document Server

    Masson, J -B; Tuerkcan, S; Voisinne, G; Popoff, M R; Vergassola, M; Alexandrou, A

    2015-01-01

    Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $\\epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.

  13. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ.

    Science.gov (United States)

    Manuse, Sylvie; Jean, Nicolas L; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M; VanNieuwenhze, Michael S; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-27

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  14. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    Science.gov (United States)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  15. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Wiborg, Ove; Andersen, C; Knudsen, Charlotte Rohde;

    1996-01-01

    were characterized with respect to thermal and chemical stability, GTPase activity, tRNA affinity, and activity in an in vitro translation assay. Most conspicuously tRNA affinities were reduced for all mutants. The results verify our structural analysis of elongation factor Tu in complex with aminoacyl-tRNA......, which suggested an important role of Lys-89 and Asn-90 in tRNA binding. Furthermore, our results indicate helix B to be an important target site for nucleotide exchange factor EF-Ts. Also the mutants His-66 to Ala and His-118 to either Ala or Glu were characterized in an in vitro translation assay......Two residues of Escherichia coli elongation factor Tu involved in binding of aminoacyl-tRNA were identified and subjected to mutational analysis. Lys-89 and Asn-90 were each replaced by either Ala or Glu. The four single mutants were denoted K89A, K89E, N90A, and N90E, respectively. The mutants...

  16. Involvement of mast cells in adipose tissue fibrosis.

    Science.gov (United States)

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  17. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.

    Science.gov (United States)

    Eyerich, Stefanie; Eyerich, Kilian; Pennino, Davide; Carbone, Teresa; Nasorri, Francesca; Pallotta, Sabatino; Cianfarani, Francesca; Odorisio, Teresa; Traidl-Hoffmann, Claudia; Behrendt, Heidrun; Durham, Stephen R; Schmidt-Weber, Carsten B; Cavani, Andrea

    2009-12-01

    Th subsets are defined according to their production of lineage-indicating cytokines and functions. In this study, we have identified a subset of human Th cells that infiltrates the epidermis in individuals with inflammatory skin disorders and is characterized by the secretion of IL-22 and TNF-alpha, but not IFN-gamma, IL-4, or IL-17. In analogy to the Th17 subset, cells with this cytokine profile have been named the Th22 subset. Th22 clones derived from patients with psoriasis were stable in culture and exhibited a transcriptome profile clearly separate from those of Th1, Th2, and Th17 cells; it included genes encoding proteins involved in tissue remodeling, such as FGFs, and chemokines involved in angiogenesis and fibrosis. Primary human keratinocytes exposed to Th22 supernatants expressed a transcriptome response profile that included genes involved in innate immune pathways and the induction and modulation of adaptive immunity. These proinflammatory Th22 responses were synergistically dependent on IL-22 and TNF-alpha. Furthermore, Th22 supernatants enhanced wound healing in an in vitro injury model, which was exclusively dependent on IL-22. In conclusion, the human Th22 subset may represent a separate T cell subset with a distinct identity with respect to gene expression and function, present within the epidermal layer in inflammatory skin diseases. Future strategies directed against the Th22 subset may be of value in chronic inflammatory skin disorders.

  18. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Siwo Geoffrey

    2010-10-01

    Full Text Available Abstract Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c, a Zinc finger transcription factor (PFL0465c both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c.

  19. Induction of Apoptosis by Luteolin Involving Akt Inactivation in Human 786-O Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Ou

    2013-01-01

    Full Text Available There is a growing interest in the health-promoting effects of natural substances obtained from plants. Although luteolin has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity, the molecular mechanisms have not been well elucidated. This study provides evidence of an alternative target for luteolin and sheds light on the mechanism of its physiological benefits. Treatment of 786-O renal cell carcinoma (RCC cells (as well as A498 and ACHN with luteolin caused cell apoptosis and death. This cytotoxicity was caused by the downregulation of Akt and resultant upregulation of apoptosis signal-regulating kinase-1 (Ask1, p38, and c-Jun N-terminal kinase (JNK activities, probably via protein phosphatase 2A (PP2A activation. In addition to being a concurrent substrate of caspases and event of cell death, heat shock protein-90 (HSP90 cleavage might also play a role in driving further cellular alterations and cell death, at least in part, involving an Akt-related mechanism. Due to the high expression of HSP90 and Akt-related molecules in RCC and other cancer cells, our findings suggest that PP2A activation might work in concert with HSP90 cleavage to inactivate Akt and lead to a vicious caspase-dependent apoptotic cycle in luteolin-treated 786-O cells.

  20. Involvement of distinct PKC gene products in T cell functions

    Directory of Open Access Journals (Sweden)

    Gottfried eBaier

    2012-08-01

    Full Text Available It is well established that members of the Protein kinase C(PKC family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the flavor of PKC in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.

  1. Panaxynol induces neurite outgrowth in PC12D cells via cAMP- and MAP kinase-dependent mechanisms.

    Science.gov (United States)

    Wang, Ze-Jian; Nie, Bao-Ming; Chen, Hong-Zhuan; Lu, Yang

    2006-01-05

    Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.

  2. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading.

    Directory of Open Access Journals (Sweden)

    Erwan Dupont

    Full Text Available Sensorimotor restriction by a 14-day period of hindlimb unloading (HU in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2 is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV. By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059 through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.

  3. Irritable bowel syndrome - An inflammatory disease involving mast cells

    OpenAIRE

    Philpott, Hamish; Gibson, Peter; Thien, Frank

    2011-01-01

    Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder - that is the presence of symptoms in the absence of demonstrable pathological abnormalities. In recent times, low grade inflammatory infiltrates in both the small and large bowel of some patients with IBS - often rich in mast cells, along with serological markers of low grade inflammation have focussed attention on IBS as an inflammatory disease. The observation that mast cells often lie in close association to ...

  4. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  5. Irritable bowel syndrome - An inflammatory disease involving mast cells.

    Science.gov (United States)

    Philpott, Hamish; Gibson, Peter; Thien, Frank

    2011-04-01

    Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder - that is the presence of symptoms in the absence of demonstrable pathological abnormalities. In recent times, low grade inflammatory infiltrates in both the small and large bowel of some patients with IBS - often rich in mast cells, along with serological markers of low grade inflammation have focussed attention on IBS as an inflammatory disease. The observation that mast cells often lie in close association to enteric neurons, and in-vitro and in-vivo animal studies demonstrating that mast cell mediators may influence enteric motility provides a biologically plausible causal mechanism in IBS. Pilot studies on patients with IBS using the mast cell stabiliser sodium cromoglycate ('proof of concept') have been encouraging. The essential question remains why mast cells infiltrate the bowel of IBS patients. A disturbance of the 'brain-gut axis' is the current favoured hypothesis, whereby childhood stress or psychiatric comorbidity act via neuro-immune mechanisms to modulate low grade inflammation. An alternative hypothesis is that food allergy may be responsible. Serum specific IgE, and skin prick tests are not elevated in IBS patients, suggesting type 1 IgE mediated food allergy is not the cause. However questionnaire based studies indicate IBS patients have higher rates of atopic disease, and increased bronchial reactivity to methacholine has been demonstrated. In this review, we highlight the potential role of mast cells in IBS, and current and future research directions into this intriguing condition.

  6. Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma.

    Science.gov (United States)

    Einspahr, Janine G; Calvert, Valerie; Alberts, David S; Curiel-Lewandrowski, Clara; Warneke, James; Krouse, Robert; Stratton, Steven P; Liotta, Lance; Longo, Caterina; Pellacani, Giovanni; Pellicani, Giovanni; Prasad, Anil; Sagerman, Paul; Bermudez, Yira; Deng, Jianghong; Bowden, G Timothy; Petricoin, Emanuel F

    2012-03-01

    Reverse phase protein microarray analysis was used to identify cell signaling derangements in squamous cell carcinoma (SCC) compared with actinic keratosis (AK) and upper inner arm (UIA). We analyzed two independent tissue sets with isolation and enrichment of epithelial cells by laser capture microdissection. Set 1 served as a pilot and a means to identify protein pathway activation alterations that could be further validated in a second independent set. Set 1 was comprised of 4 AK, 13 SCC, and 20 UIA. Set 2 included 15 AK, 9 SCCs, and 20 UIAs. Activation of 51 signaling proteins, known to be involved in tumorigenesis, were assessed for set 1 and showed that the MEK-ERK [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK)] pathway was activated in SCC compared with AK and UIA, and that epidermal growth factor receptor (EGFR) and mTOR pathways were aberrantly activated in SCC. Unsupervised two-way hierarchical clustering revealed that AK and UIA shared a common signaling network activation architecture while SCC was dramatically different. Statistical analysis found that prosurvival signaling through phosphorylation of ASK and 4EBP1 as well as increased Bax and Bak expression was higher in AK compared with UIA. We expanded pathway network activation mapping in set 2 to 101 key signaling proteins, which corroborated activation of MEK-ERK, EGFR, and mTOR pathways through discovery of a number of upstream and downstream signaling molecules within these pathways to conclude that SCC is indeed a pathway activation-driven disease. Pathway activation mapping of SCC compared with AK revealed several interconnected networks that could be targeted with drug therapy for potential chemoprevention and therapeutic applications.

  7. Short waves-induced enhancement of proliferation of human chondrocytes: involvement of extracellular signal-regulated map-kinase (erk).

    Science.gov (United States)

    Wang, Jue-Long; Chan, Rai-Chi; Cheng, He-Hsiung; Huang, Chun-Jen; Lu, Yih-Chau; Chen, I-Shu; Liu, Shiuh-Inn; Hsu, Shu-Shong; Chang, Hong-Tai; Huang, Jong-Khing; Chen, Jin-Shyr; Ho, Chin-Man; Jan, Chung-Ren

    2007-07-01

    1. Short-wave diathermy (SWD) is a form of radiofrequency radiation that is used therapeutically by physiotherapists. The cellular mechanisms of SWD are unclear. The present study was performed to explore the effect of different conditions of short-wave exposure on the proliferation of cultured human chondrocytes. 2. Cells exposed to short waves once per day for seven consecutive days exhibited a significant increase in proliferation by 42% compared with the control cells. In cells that were treated with short waves twice per day for seven consecutive days, or only once on Day 1 and then examined for proliferation on Day 7, cell proliferation was greater than the control cells by 40% and 30%, respectively. 3. Given the importance of mitogen-activated protein kinases (MAPK) in the proliferation of different cell types, efforts were extended to explore the role of three major types of MAPK; that is, extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK) and p38. 4. It was found that the level of phosphorylated ERK (phospho-ERK 1 and ERK 2) increased significantly within 5-120 min following consecutive exposure to short waves for 7 days. Exposure to short waves failed to alter the intensity of phosphorylated JNK and p38 within 0-240 min. 5. Cells were exposed to short waves once for seven consecutive days in the presence of 0, 10 micromol/L, 20 micromol/L or 50 micromol/L PD98059 (an ERK inhibitor). PD98059 totally inhibited short waves-induced enhancement of proliferation without altering normal control viability. In the presence of short waves and PD98059, the cell viability was lower than the normal control. Together, the data suggest that short waves could increase proliferation in human chondrocytes through activation of the ERK pathway, which is also involved in maintaining normal cell proliferation under physiological conditions.

  8. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides

    NARCIS (Netherlands)

    Vries, de R.P.; Visser, J.

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a m

  9. Granular cell tumor with orbital involvement in a child

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Fabiano [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Radiologia; Iyeyasu, Josie Naomi; Carvalho, Keila Monteiro de [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Oftalmo-Otorrinolaringologia; Altemani, Albina Messias [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Anatomia Patologica

    2011-09-15

    The authors report a rare case of granular cell tumor in the left medial rectus muscle of a seven-year-old boy. Clinical, pathologic and radiologic findings of the present case are described and a brief literature review is undertaken. (author)

  10. Maid (GCIP) is involved in cell cycle control of hepatocytes

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Wüstefeld, Torsten; Miehe, Michaela;

    2007-01-01

    . Therefore, we studied the role of Maid during cell cycle progression after partial hepatectomy (PH). Lack of Maid expression after PH was associated with a delay in G1/S-phase progression as evidenced by delayed cyclinA expression and DNA replication in Maid-deficient mice. However, at later time points...

  11. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Larissa Ferraz [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Mataveli, Fábio D’Aguiar [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva [Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2015-07-01

    Evaluate the effects of VEGF{sub 165} gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF{sub 165} treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF{sub 165}. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF{sub 165}, suggesting greater tissue differentiation. The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF{sub 165} seems to provide a protective effect in the treatment of acute myocardial infarct.

  12. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pecorelli, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Child Neuropsychiatry Unit, University Hospital, AOUS, Siena (Italy); Bocci, Velio [Department of Physiology, University of Siena (Italy); Acquaviva, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Belmonte, Giuseppe [Department of Biomedical Sciences, University of Siena (Italy); Gardi, Concetta [Department of Molecular and Developmental Medicine, University of Siena (Italy); Virgili, Fabio [INRAN, Rome (Italy); Ciccoli, Lucia [Department of Molecular and Developmental Medicine, University of Siena (Italy); Valacchi, Giuseppe, E-mail: giuseppe.valacchi@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara (Italy); Department of Food and Nutrition, Kyung Hee University, Seoul (Korea, Republic of)

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  13. Cytological diagnosis of Langerhans cell histiocytosis with cutaneous involvement

    Directory of Open Access Journals (Sweden)

    Sushama A Chandekar

    2013-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a rare disease affecting predominantly children. The course of the disease varies, from spontaneous resolution to a progressive multisystem disorder with organ dysfunction and potential life-threatening complications. Diagnosis of LCH is often difficult and may be delayed because of its rarity and especially so if it occurs with unusual presentation. Fine needle aspiration cytology of a 4 year old male child, a case of LCH is presented with a purpose of highlighting the characteristic cytological features. A high index of suspicion, awareness of characteristic cytological features of LCH and its differential diagnoses is necessary. This can obviate the need of biopsy and electron microscopy. Immunohistochemistry if available can be performed on cytology smear and cell block.

  14. Crypt cells are involved in kin recognition in larval zebrafish

    Science.gov (United States)

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  15. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  16. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    Science.gov (United States)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.

  17. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling.

    Science.gov (United States)

    García-Mata, Carlos; Lamattina, Lorenzo

    2010-12-01

    Hydrogen sulphide (H(2) S) has been proposed as the third gasotransmitter. In animal cells, H(2) S has been implicated in several physiological processes. H(2) S is endogenously synthesized in both animals and plants by enzymes with l-Cys desulphydrase activity in the conversion of l-Cys to H(2) S, pyruvate and ammonia. The participation of H(2) S in both stomatal movement regulation and abscisic acid (ABA)-dependent induction of stomatal closure was studied in epidermal strips of three plant species (Vicia faba, Arabidopsis thaliana and Impatiens walleriana). The effect of H(2) S on stomatal movement was contrasted with leaf relative water content (RWC) measurements of whole plants subjected to water stress. In this work we report that exogenous H(2) S induces stomatal closure and this effect is impaired by the ATP-binding cassette (ABC) transporter inhibitor glibenclamide; scavenging H(2) S or inhibition of the enzyme responsible for endogenous H(2) S synthesis partially blocks ABA-dependent stomatal closure; and H(2) S treatment increases RWC and protects plants against drought stress. Our results indicate that H(2) S induces stomatal closure and participates in ABA-dependent signalling, possibly through the regulation of ABC transporters in guard cells.

  18. Mapping interactions between mRNA export factors in living cells.

    Directory of Open Access Journals (Sweden)

    I-Fang Teng

    Full Text Available The TREX complex couples nuclear mRNA processing events with subsequent export to the cytoplasm. TREX also acts as a binding platform for the mRNA export receptor Nxf1. The sites of mRNA transcription and processing within the nucleus have been studied extensively. However, little is known about where TREX assembly takes place and where Nxf1 is recruited to TREX to form the export competent mRNP. Here we have used sensitized emission Förster resonance energy transfer (FRET and fluorescence lifetime imaging (FLIM-FRET, to produce a spatial map in living cells of the sites for the interaction of two TREX subunits, Alyref and Chtop, with Nxf1. Prominent assembly sites for export factors are found in the vicinity of nuclear speckles in regions known to be involved in transcription, splicing and exon junction complex formation highlighting the close coupling of mRNA export with mRNP biogenesis.

  19. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  20. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    Science.gov (United States)

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  1. Population differences in the rate of proliferation of international HapMap cell lines.

    Science.gov (United States)

    Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen

    2010-12-10

    The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p HapMap panels into discovery and replication sets must take this into consideration.

  2. Map service: United States Decadal Production History Cells

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map service displays present and past oil and gas production in the United States, as well as the location and intensity of exploratory drilling outside...

  3. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  4. The Hagfish Gland Thread Cell: A Fiber-Producing Cell Involved in Predator Defense

    Directory of Open Access Journals (Sweden)

    Douglas S. Fudge

    2016-05-01

    Full Text Available Fibers are ubiquitous in biology, and include tensile materials produced by specialized glands (such as silks, extracellular fibrils that reinforce exoskeletons and connective tissues (such as chitin and collagen, as well as intracellular filaments that make up the metazoan cytoskeleton (such as F-actin, microtubules, and intermediate filaments. Hagfish gland thread cells are unique in that they produce a high aspect ratio fiber from cytoskeletal building blocks within the confines of their cytoplasm. These threads are elaborately coiled into structures that readily unravel when they are ejected into seawater from the slime glands. In this review we summarize what is currently known about the structure and function of gland thread cells and we speculate about the mechanism that these cells use to produce a mechanically robust fiber that is almost one hundred thousand times longer than it is wide. We propose that a key feature of this mechanism involves the unidirectional rotation of the cell’s nucleus, which would serve to twist disorganized filaments into a coherent thread and impart a torsional stress on the thread that would both facilitate coiling and drive energetic unravelling in seawater.

  5. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lovrić Jasmina

    2007-02-01

    Full Text Available Abstract Background Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable. Results We show here that QD surface modifications with N-acetylcysteine (NAC alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye. Conclusion QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.

  6. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    Science.gov (United States)

    O'Dushlaine, C; Kenny, E; Heron, E; Donohoe, G; Gill, M; Morris, D; Corvin, A

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (PSchizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  7. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  8. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    Science.gov (United States)

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  9. Involvement of epigenetic modifiers in the pathogenesis of testicular dysgenesis and germ cell cancer

    DEFF Research Database (Denmark)

    Lawaetz, Andreas C.; Almstrup, Kristian

    2015-01-01

    Testicular germ cell cancer manifests mainly in young adults as a seminoma or non-seminoma. The solid tumors are preceded by the presence of a non-invasive precursor cell, the carcinoma in situ cell (CIS), which shows great similarity to fetal germ cells. It is therefore hypothesized that the CIS...... of epigenetic modifiers with a focus on jumonji C enzymes in the development of testicular dysgenesis and germ cell cancer in men....... cell is a fetal germ cell that has been arrested during development due to testicular dysgenesis. CIS cells retain a fetal and open chromatin structure, and recently several epigenetic modifiers have been suggested to be involved in testicular dysgenesis in mice. We here review the possible involvement...

  10. P12 - PTHC1: A Continuing Cell Line Expressing PTH and Genes Involved in Calcium Homeostasis

    OpenAIRE

    Fabbri, S.; Mazzotta, C.; Ciuffi, S.; Mavilia, C; Galli, G; Zonefrati, R.; Strigoli, D.; Cavalli, L.; Cavalli, T.; Brandi, M L

    2010-01-01

    The main organs regulating serum levels of ionised calcium (Ca2+) are the parathyroids, which are composed of two different cell types: chief cells and oxyphil cells. Chief cells, through the calcium sensing receptor (CaSR), are affected by changes in calcium concentration, modifying PTH secretion in proportion to calcium levels. Current understanding of calcium regulation mechanisms connected to PTH and of the signalling pathways involved derive from in vitro studies carried out on primary c...

  11. Pulmonary Involvement of Peripheral T-cell Lymphoma, Unspecified: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin; Shim, Hyo Sub; Ham, Seok Jin; Kim, Tae Hoon; Kim, Sang Jin [Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2010-01-15

    Peripheral T-cell lymphoma is a rare type of lymphoma that's derived from postthymic lymphoid T cells. Pulmonary involvement of peripheral T-cell lymphoma of the unspecified type is very rare and the imaging findings of this illness have rarely been reported. We present here a case of peripheral T-cell lymphoma of the unspecified type with a cavitary lesion in the lung parenchyma, and we pathologically confirmed this illness by performing video-assisted thoracoscopic surgery.

  12. Involvement of proliferating cell nuclear antigen (Cyclin) in DNA replication in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, M.; Tan, E.M.; Ryoji, M.

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase /delta/ but not the other DNA polymerases in vitro. The authors injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase /delta/ is necessary for plasmid replication in vivo, Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase /alpha/. Anti-DNA polymerase /alpha/ alone inhibited plasmid replication by 63%. Thus, DNA ploymerase /alpha/ is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase /alpha/ antibody blocked 73% of replication. They concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase /delta/. In addition, they obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymearse /alpha/, that the structure of DNA polymerase /alpha/ holoenzyme for chromosome replication is significantly different from that for plasmid replication.

  13. Acute myeloid dendritic cell leukaemia with specific cutaneous involvement: a diagnostic challenge.

    Science.gov (United States)

    Ferran, M; Gallardo, F; Ferrer, A M; Salar, A; Pérez-Vila, E; Juanpere, N; Salgado, R; Espinet, B; Orfao, A; Florensa, L; Pujol, R M

    2008-05-01

    Myeloid or type 1 dendritic cell leukaemia is an exceedingly rare haematopoietic neoplasm characterized by a specific immunophenotypic profile close to plasmacytoid dendritic cell and acute myelogenous leukaemia. A 77-year-old man presenting specific cutaneous infiltration by myeloid dendritic cell leukaemia is reported. The clinical features as well as the cutaneous histopathological and immunohistochemical features led to the initial diagnosis of CD4+/CD56+ haematodermic neoplasm. However, extensive immunophenotypic studies performed from peripheral blood blasts disclosed that leukaemic cells expressed myeloid dendritic cell markers, confirming the diagnosis. The diagnostic difficulties of specific cutaneous involvement by myeloid dendritic cell leukaemia on the basis of routine histopathological and immunohistochemical features are highlighted.

  14. Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity.

    Science.gov (United States)

    Rouvier, E; Luciani, M F; Golstein, P

    1993-01-01

    Mechanisms of T cell-mediated cytotoxicity remain poorly defined at the molecular level. To investigate some of these mechanisms, we used as target cells, on the one hand, thymocytes from lpr and gld mouse mutants, and on the other hand, L1210 cells transfected or not with the apoptosis-inducing Fas molecule. These independent mutant or transfectant-based approaches both led to the conclusion that Fas was involved in the Ca(2+)-independent component of cytotoxicity mediated by at least two sources of T cells, namely nonantigen-specific in vitro activated hybridoma cells, and antigen-specific in vivo raised peritoneal exudate lymphocytes. Thus, in these cases, T cell-mediated cytotoxicity involved transduction via Fas of the target cell death signal.

  15. Mitochondria are involved in apoptosis induced by ultraviolet radiation in lepidopteran Spodoptera litura cell line

    Institute of Scientific and Technical Information of China (English)

    Shigang Shan; Kaiyu Liu; Jianxin Peng; Hanchao Yao; Yi Li; Huazhu Hong

    2009-01-01

    Mitochondria are involved in apoptosis of mammalian cells and even single-cell organisms, but mitochondria are not required in apoptosis in cultured Drosophila cells such as S2 and BG2 cell lines. It is not very clear whether mitochondria are involved in apoptosis in other insect cells such as lepidopteran cell lines. Thus, we determined to elucidate the role of mitochondria in apoptosis induced by ultraviolet radiation in Spodoptera litura (Lepidoptera: Noctuidae) cell line (SL-ZSU-1). The Western blot results suggested that cytochrome c in the ultraviolet-treated SL-1 cells was released from the mitochondria to cytosol as early as 4 h after the induction of ultraviolet radiation and increased in the cytosolic fractions in a time-dependent manner. Flow cytometric analysis of mitochondrial membrane potential (△Ψm) of SL-ZSU-1 cell treated with ultraviolet-C (UV-C) light indicated the decrease in mitochondrial membrane potential was dependent on the times of ultraviolet treatment. Both of them are different from apoptosis in cultured Drosophila melanogaster cell lines (S2 and BG2) and it appears evident mitochondria are involved in apoptosis of the studied lepidopteran cells.

  16. [Helper T cell paradigm: Th17 and regulatory T cells involved in autoimmune inflammatory disorders, pathogen defense and allergic diseases].

    Science.gov (United States)

    Noma, Takeshi

    2010-01-01

    The helper T cell paradigm, divided into two distinct subsets, Th1 and Th2 cells, characterized by distinct cytokine and functions, has been expanded to IL-17-producing Th17 cells. Th1 cells producing IFN-γ are involved in delayed-type hypersensitivity, effective in intracellular pathogens defense, while Th2 cells secrete IL-4, IL-5, IL-13 and IL-25 and has a central role in IgE production, eosinophilic inflammation, and the protection for helminthic parasite infection. Th17 cell lineages, expressing IL-17 family of cytokines and IL-23-mediated functions on T cells, plays a role in immune response to fungi and extracellular pathogens and autoimmune inflammatory disorders. Th17 cells are required the combination of IL-6 and TGF-β and the transcription factors, RORC2/RORgt (mice) and STAT3 for differentiation, and produce IL-17, IL-22, IL-17F, IL-21 and CCL20. FOXP3+ regulatory T (Treg) cells produce TGF-β and IL-10, which regulate effector T cells, and thus maintain peripheral tolerance. Four functionally unique CD4+ T cells, including the regulatory T (Treg) cells are now involved in the regulation of immune responses to pathogens, self-antigens and allergens. Any defect in the entire CD4+T cell population might results in human diseases. In this review, the biology of Th17 cells and Treg cells and their role in immune diseases are presented.

  17. Central nervous system involvement in T-cell lymphoma: A single center experience.

    Science.gov (United States)

    Gurion, Ronit; Mehta, Neha; Migliacci, Jocelyn C; Zelenetz, Andrew; Moskowitz, Alison; Lunning, Matthew; Moskowitz, Craig; Hamlin, Paul; Horwitz, Steven

    2016-05-01

    Background We characterized the incidence of central nervous system (CNS) involvement, risk factors and outcome in a large single institution dataset of peripheral T-cell lymphoma (PTCL). Methods Retrospective review of the PTCL database at Memorial Sloan Kettering Cancer Center. We identified 231 patients with any subtype of PTCL between 1994-2011 with a minimum six months of follow-up or an event defined as relapse or death. Results Histologies included peripheral T-cell lymphoma-not otherwise specified (PTCL-NOS) (31.6%), angioimmunoblastic (16.9%), anaplastic large cell lymphoma (ALCL), ALK- (12.1%), ALCL, ALK + (6.1%), extranodal NK/T-cell lymphoma (7.4%), adult T-cell leukemia/lymphoma (ATLL) (7.4%), and transformed mycosis fungoides (8.7%). Seventeen patients had CNS disease (7%). Fifteen had CNS involvement with PTCL and two had diffuse large B-cell lymphoma and glioblastoma. Median time to CNS involvement was 3.44 months (0.16-103.1). CNS prophylaxis was given to 24 patients (primarily intrathecal methotrexate). Rates of CNS involvement were not different in patients who received prophylaxis. Univariate analysis identified stage III-IV, bone marrow involvement, >1 extranodal site and ATLL as risk factors for CNS disease. On multivariate analysis, >1 extranodal site and international prognostic index (IPI) ≥ 3 were predictive for CNS involvement. The median survival of patients with CNS involvement was 2.63 months (0.10-75). Conclusions Despite high relapse rates, PTCL, except ATLL, carries a low risk of CNS involvement. Prognosis with CNS involvement is poor and risk factors include: >1 extra nodal site and IPI ≥3.

  18. Involvement of the parasympathetic nervous system in the initiation of regeneration of pancreatic β-cells.

    Science.gov (United States)

    Medina, Anya; Yamada, Satoko; Hara, Akemi; Hamamoto, Kohei; Kojima, Itaru

    2013-01-01

    The mechanism that initiates regeneration of pancreatic β-cells is not clear at present. The vagal nerve is implicated in the regulation of gastrointestinal functions, glucose metabolism and proliferation of pancreatic β-cells under physiological conditions. To elucidate the triggering mechanism of the regeneration of pancreatic β-cells, we examined the involvement of the vagal nerve. To this end, we employed a rat pancreatic duct ligation (DL) model, in which profound β-cell neogenesis and β-cell proliferation were observed within a week. We administered atropine to block the vagal nerve. Administration of atropine inhibited proliferation of β-cells in both islets and islet-like cell clusters (ICC), without affecting ductal cell proliferation in the ligated pancreas. The numbers of PDX-1 and MafB-positive cells in or attaching to the ducts were significantly reduced by atropine. MafB/glucagon and MafB/insulin double-positive cells were also decreased by atropine. Finally, atropine reduced the number of MafA-positive ductal cells, all of which were positive for insulin, by 50% on day 5. These results strongly suggest that the vagal nerve is involved in β-cell proliferation, induction of endocrine progenitors and neogenesis of α- and β-cells.

  19. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells

    Institute of Scientific and Technical Information of China (English)

    Feng-ze WANG; Li SHA; Wei-ying ZHANG; Lian-ying WU; Ling QIAO; Nan LI; Xiao-dong ZHANG; Li-hong YE

    2007-01-01

    Aim: To investigat the effect of Hepatitis B X-interacting protein (HBXIP) on cell proliferation. Methods: A rabbit antibody against HBXIP was generated. The RNA interference (RNAi) fragment of the HBXIP gene was constructed in the pSilencer-3.0-H1 vector termed pSilencer-hbxip. Plasmids of the pcDNA3-hbxip encoding HBXIP gene and pSilencer-hbxip were transfected into human breast carcinoma MCF-7 cells, hepatoma H7402 cells, and the normal human hepatic cell line L-O2, respectively. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro- mide (MTT) assay and 5-bromo-2-deoxyuridine incorporation assay were applied to detect cell proliferation. MCF-7 cells and L-O2 cells in the cell cycle were examined by flow cytometry. The proteins involved in cell proliferation and cell cycle were investigated by Western blot. Results: Overexpression of HBXIP resulted in the promotion of proliferation of MCF-7, H7402, and L-O2 cells. Flow cytometry showed that the overexpression of HBXIP promoted the cell prolifera-tion of MCF-7 and L-O2 cells, and led to an increased cell proliferative index in MCF-7 cells (from 46.25% to 58.28%) and L-O2 cells (from 29.62% to 35.54%). Western blot showed that expression levels of c-Myc, Bcl-2, and proliferating cell nuclear antigen were upregulated in MCF-7, H7402, or L-O2 cells, whereas that of p27 was downregulated. However, the RNAi of HBXIP brought opposite results.Conclusion: One of the functions of HBXIP is its involvement in cell proliferation.

  20. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-11-01

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: • Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. • The nanoscale distribution of CD20 on cancer cells was characterized. • The distribution of CD20 was non-uniform on the surface of cancer cells.

  1. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells.

    NARCIS (Netherlands)

    Li, F.; Dam, G.B. ten; Murugan, S.; Yamada, S.; Hashiguchi, T.; Mizumoto, S.; Oguri, K.; Okayama, M.; Kuppevelt, A.H.M.S.M. van; Sugahara, K.

    2008-01-01

    The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process

  2. The Fas pathway is involved in pancreatic beta cell secretory function

    DEFF Research Database (Denmark)

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel

    2007-01-01

    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...

  3. Involvement of PACAP/ADNP signaling in the resistance to cell death in malignant peripheral nerve sheath tumor (MPNST) cells.

    Science.gov (United States)

    Castorina, Alessandro; Giunta, Salvatore; Scuderi, Soraya; D'Agata, Velia

    2012-11-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas able to grow under conditions of metabolic stress caused by insufficient nutrients or oxygen. Both pituitary adenylate cyclase-activating polypeptide (PACAP) and activity-dependent neuroprotective protein (ADNP) have glioprotective potential. However, whether PACAP/ADNP signaling is involved in the resistance to cell death in MPNST cells remains to be clarified. Here, we investigated the involvement of this signaling system in the survival response of MPNST cells against hydrogen peroxide (H(2)O(2))-evoked death both in the presence of normal serum (NS) and in serum-starved (SS) cells. Results showed that ADNP levels increased time-dependently (6-48 h) in SS cells. Treatment with PACAP38 (10(-9) to 10(-5) M) dose-dependently increased ADNP levels in NS but not in SS cells. PAC(1)/VPAC receptor antagonists completely suppressed PACAP-stimulated ADNP increase and partially reduced ADNP expression in SS cells. NS-cultured cells exposed to H(2)O(2) showed significantly reduced cell viability (~50 %), increased p53 and caspase-3, and DNA fragmentation, without affecting ADNP expression. Serum starvation significantly reduced H(2)O(2)-induced detrimental effects in MPNST cells, which were not further ameliorated by PACAP38. Altogether, these finding provide evidence for the involvement of an endogenous PACAP-mediated ADNP signaling system that increases MPNST cell resistance to H(2)O(2)-induced death upon serum starvation.

  4. Extramedullary Involvement of Mast Cell Leukemia Detected by 18F-FDG PET/CT.

    Science.gov (United States)

    Fu, Zhanli; Zhang, Jin; Liu, Meng; Li, Ziao; Li, Qian

    2016-07-01

    Mast cell leukemia (MCL) is a very rare subtype of systemic mastocytosis, characterized by the leukemic expansion of immature mast cells. We present a case of MCL with extramedullary involvement of cervical lymph node and lung demonstrated by the initial F-FDG PET/CT scan. After a transient complete remission by induction chemotherapy and allogeneic hematopoietic stem cell transplantation, the follow-up PET/CT showed extensive extramedullary relapse involving multiple lymph nodes and small bowel. F-FDG PET/CT may be a useful tool to comprehensively stage and follow-up MCL.

  5. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  6. The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses

    DEFF Research Database (Denmark)

    Blom, Lars H; Martel, Britta C; Larsen, Lau F

    2017-01-01

    BACKGROUND: The pathology of allergic diseases involves type 2 immune cells, such as Th2, ILC2, and basophils exerting their effect by production of IL-4, IL-5, and IL-13. However, surface receptors that are specifically expressed on type 2 immune cells are less well documented. The aim...... and ILC2 cells and basophils. In peanut-allergic subjects the peanut-specific Th2 (CD154(+) CRTh2(+) ) cells expressed more CD200R than the non-allergen specific Th2 (CD154(-) CRTh2(+) ) cells. Moreover, co-staining of CD161 and CD200R identified peanut-specific highly differentiated IL-4(+) IL-5(+) Th2...

  7. Protein micro patterned lattices to probe a fundamental lengthscale involved in cell adhesion

    CERN Document Server

    Guillou, Herve; Chaussy, Jacques; Block, Marc R

    2009-01-01

    Cell adhesion, a fundamental process of cell biology is involved in the embryo development and in numerous pathologies especially those related to cancers. We constrained cells to adhere on extracellular matrix proteins patterned in a micro lattices. The actin cytoskeleton is particularly sensitive to this constraint and reproducibly self organizes in simple geometrical patterns. Such highly organized cells are functional and proliferate. We performed statistical analysis of spread cells morphologies and discuss the existence of a fundamental lengthscale associated with active processes required for spreading.

  8. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    Science.gov (United States)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  9. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    Directory of Open Access Journals (Sweden)

    Li Shengwen

    2012-09-01

    Full Text Available Abstract Background The cancer stem cell (CSC hypothesis posits that deregulated neural stem cells (NSCs form the basis of brain tumors such as glioblastoma multiforme (GBM. GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer

  10. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  11. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes.

    Directory of Open Access Journals (Sweden)

    Saem Mul Park

    Full Text Available The lymphatic sinuses in human lymph nodes (LNs are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs. A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs; in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.

  12. Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections.

    Science.gov (United States)

    Proctor, Richard A; Kriegeskorte, André; Kahl, Barbara C; Becker, Karsten; Löffler, Bettina; Peters, Georg

    2014-01-01

    Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electron

  13. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  14. The Epstein-Barr Virus-encoded miR-BART22 targets MAP3K5 to promote host cell proliferative and invasive abilities in nasopharyngeal carcinoma

    Science.gov (United States)

    Chen, Ruichao; Zhang, Minfeng; Li, Qiulian; Xiong, Hanzhen; Liu, Shaoyan; Fang, Weiyi; Zhang, Qianbing; Liu, Zhen; Xu, Xuehu; Jiang, Qingping

    2017-01-01

    miR-BART22, a new discovered Epstein-Barr virus (EBV) miRNA, is abundant in Nasopharyngeal carcinoma (NPC). It has been reported that miR-BART22 promoted the tumor development by down-modulating EBV LMP2 expression to evade the host immune response. But its cell target genes have still been obscure. We have reported an inverse correlation between the BART-22 and MAP3K5 protein expression in NPC tissues and NPC cell lines. Meanwhile, MAP3K5 protein expression level was significantly decreased in primary NPC tissues compared with nasopharyngitis when MAP3K5 mRNA expression was consistent in two group tissues. According to our data and target prediction by miRnada, we assume MAP3K5 is an important target gene of NPC. MAP3K5, also named apoptosis signal-regulating kinase1 (ASK1), is an important early answer gene in P38MAPK pathway and an apoptosis-related gene. In present study, MAP3K5 was verified the target gene of miR-BART22 by luciferase assay. miRBART-22 decreased MAP3K5 protein level. Moreover, it also decreased MAP3K5 downstream gene MAP2K4 expression in P38MAPK pathway, and even their activated phosphorylation forms. Additionally, we found stable transfection of miR-BAT22 could improve tumor cells' proliferative and invasive abilities in NPC cell line 5-8F. The data highlight the role of the EBV miR-BART22 in regulating genes involving in apoptosis and some important pathways to promote cancer development. And it also raises the possibility that inhibitors of miR-BART22 can be as a therapeutic strategy for NPC and other EBV-infected tumors treatment. PMID:28243335

  15. Image resizing using saliency strength map and seam carving for white blood cell analysis

    Directory of Open Access Journals (Sweden)

    Nam JaeYeal

    2010-09-01

    Full Text Available Abstract Background A new image-resizing method using seam carving and a Saliency Strength Map (SSM is proposed to preserve important contents, such as white blood cells included in blood cell images. Methods To apply seam carving to cell images, a SSM is initially generated using a visual attention model and the structural properties of white blood cells are then used to create an energy map for seam carving. As a result, the energy map maximizes the energies of the white blood cells, while minimizing the energies of the red blood cells and background. Thus, the use of a SSM allows the proposed method to reduce the image size efficiently, while preserving the important white blood cells. Results Experimental results using the PSNR (Peak Signal-to-Noise Ratio and ROD (Ratio of Distortion of blood cell images confirm that the proposed method is able to produce better resizing results than conventional methods, as the seam carving is performed based on an SSM and energy map. Conclusions For further improvement, a faster medical image resizing method is currently being investigated to reduce the computation time, while maintaining the same image quality.

  16. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye;

    2013-01-01

    a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map...

  17. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone.

    Science.gov (United States)

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Singh, Keshav K; Soares, Paula; Videira, Arnaldo

    2011-03-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild-type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug.

  18. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    RATNA KUMARI; SURBHI CHOUHAN; SNAHLATA SINGH; RISHI RAJ CHHIPA; AMRENDRA KUMAR AJAY; MANOJ KUMAR BHAT

    2017-03-01

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity ofcells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-typep53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell lineMCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53status, pERK contributes to doxorubicin-induced cell death.

  19. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells

    Science.gov (United States)

    Looney, Timothy J.; Zhang, Li; Chen, Chih-Hsin; Lee, Jae Hyun; Chari, Sheila; Mao, Frank Fuxiang; Pelizzola, Mattia; Zhang, Lu; Lister, Ryan; Baker, Samuel W.; Fernandes, Croydon J.; Gaetz, Jedidiah; Foshay, Kara M.; Clift, Kayla L.; Zhang, Zhenyu; Li, Wei-Qiang; Vallender, Eric J.; Wagner, Ulrich; Qin, Jane Yuxia; Michelini, Katelyn J.; Bugarija, Branimir; Park, Donghyun; Aryee, Emmanuel; Stricker, Thomas; Zhou, Jie; White, Kevin P.; Ren, Bing; Schroth, Gary P.; Ecker, Joseph R.; Xiang, Andy Peng; Lahn, Bruce T.

    2014-01-01

    Both diffusible factors acting in trans and chromatin components acting in cis are implicated in gene regulation, but the extent to which either process causally determines a cell's transcriptional identity is unclear. We recently used cell fusion to define a class of silent genes termed “cis-silenced” (or “occluded”) genes, which remain silent even in the presence of trans-acting transcriptional activators. We further showed that occlusion of lineage-inappropriate genes plays a critical role in maintaining the transcriptional identities of somatic cells. Here, we present, for the first time, a comprehensive map of occluded genes in somatic cells. Specifically, we mapped occluded genes in mouse fibroblasts via fusion to a dozen different rat cell types followed by whole-transcriptome profiling. We found that occluded genes are highly prevalent and stable in somatic cells, representing a sizeable fraction of silent genes. Occluded genes are also highly enriched for important developmental regulators of alternative lineages, consistent with the role of occlusion in safeguarding cell identities. Alongside this map, we also present whole-genome maps of DNA methylation and eight other chromatin marks. These maps uncover a complex relationship between chromatin state and occlusion. Furthermore, we found that DNA methylation functions as the memory of occlusion in a subset of occluded genes, while histone deacetylation contributes to the implementation but not memory of occlusion. Our data suggest that the identities of individual cell types are defined largely by the occlusion status of their genomes. The comprehensive reference maps reported here provide the foundation for future studies aimed at understanding the role of occlusion in development and disease. PMID:24310002

  20. Ethylene is involved in stress responses induced by fusicoccin in sycamore cultured cells.

    Science.gov (United States)

    Malerba, Massimo; Crosti, Paolo; Cerana, Raffaella

    2010-11-15

    The phytohormone ethylene is involved in many physiological and developmental processes of plants, as well as in stress responses and in the development of disease resistance. Fusicoccin (FC) is a well-known phytotoxin, that in sycamore (Acer pseudoplatanus L.) cultured cells, induces a set of stress responses, including synthesis of ethylene. In this study, we investigated the possible involvement of ethylene in the FC-induced stress responses of sycamore cells by means of Co(2+), a well-known specific inhibitor of ethylene biosynthesis. Co(2+) inhibited the accumulation of dead cells in the culture, the production of nitric oxide (NO) and of the molecular chaperone Binding Protein (BiP) in the endoplasmic reticulum induced by FC. By contrast, Co(2+) was ineffective on the FC-induced accumulation of cells with fragmented DNA, production of H(2)O(2) and release of cytochrome c from the mitochondrion, and only partially reduced the accumulation of regulative 14-3-3 proteins in the cytosol. In addition, we compared the effect of FC on the above parameters with that of the ethylene-releasing compound ethephon (2-chloroethane phosphonic acid). The results suggest that ethylene is involved in several stress responses induced by FC in sycamore cells, including a form of cell death that does not show apoptotic features and possibly involves NO as a signaling molecule.

  1. Calpains are involved in Entamoeba histolytica-induced death of HT-29 colonic epithelial cells.

    Science.gov (United States)

    Jang, Yun Soo; Song, Kyoung-Ju; Kim, Ju Young; Lee, Young Ah; Kim, Kyeong Ah; Lee, Sang Kyou; Shin, Myeong Heon

    2011-06-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that can cause amebic colitis and liver abscess in humans. E. histolytica has the capability to kill colon epithelial cells in vitro; however, information regarding the role of calpain in colon cell death induced by ameba is limited. In this study, we investigated whether calpains are involved in the E. histolytica-induced cell death of HT-29 colonic epithelial cells. When HT-29 cells were co-incubated with E. histolytica, the propidium iodide stained dead cells markedly increased compared to that in HT-29 cells incubated with medium alone. This pro-death effect induced by ameba was effectively blocked by pretreatment of HT-29 cells with the calpain inhibitor, calpeptin. Moreover, knockdown of m- and µ-calpain by siRNA significantly reduced E. histolytica-induced HT-29 cell death. These results suggest that m- and µ-calpain may be involved in colon epithelial cell death induced by E. histolytica.

  2. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae).

    Science.gov (United States)

    Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine

    2013-08-01

    High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.

  3. A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving Lipschitz continuous and accretive mappings

    Science.gov (United States)

    Buong, Nguyen; Dung, Nguyen Dinh

    2014-03-01

    In this paper, we present a regularized parameter choice in a new regularization method of Browder-Tikhonov type, for finding a common solution of a finite system of ill-posed operator equations involving Lipschitz continuous and accretive mappings in a real reflexive and strictly convex Banach space with a uniformly Gateaux differentiate norm. An estimate for convergence rates of regularized solution is also established.

  4. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes

    DEFF Research Database (Denmark)

    Lassen, N A; Ingvar, D H

    1990-01-01

    Mapping of cortical and subcortical grey matter active during voluntary movements by means of measurements of local increases of CBF or CMR-Glucose is reviewed. Most of the studies concern observations in man during hand movements using the intracarotid Xenon-133 injection technique, an approach...

  5. Isolated cutaneous involvement in a child with nodal anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Vibhu Mendiratta

    2016-01-01

    Full Text Available Non-Hodgkin lymphoma is a common childhood T-cell and B-cell neoplasm that originates primarily from lymphoid tissue. Cutaneous involvement can be in the form of a primary extranodal lymphoma, or secondary to metastasis from a non-cutaneous location. The latter is uncommon, and isolated cutaneous involvement is rarely reported. We report a case of isolated secondary cutaneous involvement from nodal anaplastic large cell lymphoma (CD30 + and ALK + in a 7-year-old boy who was on chemotherapy. This case is reported for its unusual clinical presentation as an acute febrile, generalized papulonodular eruption that mimicked deep fungal infection, with the absence of other foci of systemic metastasis.

  6. MAP kinase specifically mediates the ABA-induced H2O2 generation in guard cells of Vicia faba L

    Institute of Scientific and Technical Information of China (English)

    JIANG Jing; AN Guoyong; WANG Pengcheng; WANG Pengtao; HAN Jinfeng; JIA Yanbin; SONG Chunpeng

    2003-01-01

    Mitogen-activated protein (MAP) kinase is involved in ABA- or H2O2-signaling, and H2O2 acts as intermediate in the downstream of ABA signal transduction pathway, which has recently emerged as a secondary messenger of ABA signaling. Using an epidermal strip bioassay and laser scanning confocal microscope, we provided the first evidence that MAP kinase plays an important role in H2O2 signal initial, amplification and specific targeting in response to stimuli in guard cells. ABA- or H2O2-induced Vicia faba stomatal closure was inhibited or reversed by the specific inhibitor PD98059 of MEK1/2; the guard cells were pre-incubated or -microinjected by 10 (mol·L-1 PD98059, ABA could not enhance the fluorescence intensity of H2O2 probe dichlorofluorescein (DCF). Meanwhile, after ABA induced the H2O2 accumulation in guard cells, the exogenous or intracellular PD98059 could reduce the DCF fluorescence intensity. Most interestingly, on the contrary to ABA, the DCF fluorescence intensity of guard cells treated by 100 (mol·L-1 salicylic acid (SA) was not down-regulated by PD98059, yet PD98059 did not regulate the stomatal movement being induced by light, dark or salicylic acid. These results suggest that MEK1/2 could mediate stomatal closure by abolishing the ABA-induced H2O2 generation/accumula- tion in the specific manner.

  7. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.

    Science.gov (United States)

    Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D; Ziller, Michael; Croft, Gist F; Amoroso, Mackenzie W; Oakley, Derek H; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander

    2011-02-04

    The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.

  8. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms

    Science.gov (United States)

    Bezine, Elisabeth; Malaisé, Yann; Loeuillet, Aurore; Chevalier, Marianne; Boutet-Robinet, Elisa; Salles, Bernard; Mirey, Gladys; Vignard, Julien

    2016-01-01

    The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity. PMID:27775089

  9. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jian Wen MAO; Li Xin CHEN; Li Wei WANG; Tim JACOB; Xue Rong SUN; Hui LI; Lin Yan ZHU; Pan LI; Ping ZHONG; Si Huai NIE

    2005-01-01

    The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5'-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of nonmigrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.

  10. Systemic sclerosis patients present alterations in the expression of molecules involved in B cell regulation

    Directory of Open Access Journals (Sweden)

    Lilian eSoto

    2015-09-01

    Full Text Available The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors, in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naïve and memory B cell sub-populations from systemic sclerosis patients. To achieve this, blood samples were drawn from thirty one systemic sclerosis patients and fifty three healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcgammaRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naïve B cells related to memory B cells, compared to healthy controls. Transitional and naïve B cells from patients express higher levels of CD86 and FcgammaRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, while memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate to different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B cell regulation. These abnormalities may be determinant in the B cell hyperactivation observed in systemic sclerosis.

  11. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Oue, Erika [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Lee, Ji-Won; Sakamoto, Kei [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Iimura, Tadahiro [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Aoki, Kazuhiro [Section of Pharmacology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Kayamori, Kou [Section of Diagnostic Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Department of Pathology, Ome Municipal General Hospital, Ome, Tokyo (Japan); Michi, Yasuyuki; Yamashiro, Masashi; Harada, Kiyoshi; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first

  12. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  13. Single nucleotide-level mapping of DNA double-strand breaks in human HEK293T cells

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2017-03-01

    Full Text Available Constitutional biological processes involve the generation of DNA double-strand breaks (DSBs. The production of such breaks and their subsequent resolution are also highly relevant to neurodegenerative diseases and cancer, in which extensive DNA fragmentation has been described Stephens et al. (2011, Blondet et al. (2001. Tchurikov et al. Tchurikov et al. (2011, 2013 have reported previously that frequent sites of DSBs occur in chromosomal domains involved in the co-ordinated expression of genes. This group report that hot spots of DSBs in human HEK293T cells often coincide with H3K4me3 marks, associated with active transcription Kravatsky et al. (2015 and that frequent sites of DNA double-strand breakage are likely to be relevant to cancer genomics Tchurikov et al. (2013, 2016 . Recently, they applied a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended DSB sites and mapped these to the human genome within defined co-ordinate ‘windows’. In this paper, we re-analyse public RAFT data to derive sites of DSBs at the single-nucleotide level across the built genome for human HEK293T cells (https://figshare.com/s/35220b2b79eaaaf64ed8. This refined mapping, combined with accessory ENCODE data tracks and ribosomal DNA-related sequence annotations, will likely be of value for the design of clinically relevant targeted assays such as those for cancer susceptibility, diagnosis, treatment-matching and prognostication.

  14. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte

    2014-01-01

    OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...... for mitogenic activity in INS-1E cells. Proteins and peptides in mitogenic active serum fractions were identified by amino acid sequencing and mass spectrometry. MAIN OUTCOME MEASURES: Presence of circulating beta cell proliferating factors. RESULTS: Late gestational pregnancy serum significantly increased...

  15. Periaortic lymph node involvement by metastatic angiosarcoma and benign sinus mesothelial cells.

    Science.gov (United States)

    Isotalo, P A; Jabit, M; Wenckebach, G F

    2001-05-01

    Hyperplastic mesothelial cells involving lymph node sinuses have only been recently described. Most nodal mesothelial cells are thought to originate from mesothelial surfaces disrupted by serosal effusions. Dislodged mesothelial cells likely gain access to submesothelial lymphatics via mesothelial stomata and disseminate to draining lymph nodes. Unusual lymph node architectural patterns result when benign sinus mesothelial cells occur concurrently with a neoplastic nodal process. We describe a young man who developed diffuse metastases from a primary cardiac angiosarcoma. His periaortic lymph nodes contained metastatic angiosarcoma and hyperplastic mesothelial cells with a sinus distribution. The patient had a clinical history of progressive haemoperitoneum, exacerbated by thrombocytopaenia and disseminated intravascular coagulation. Massive haemoperitoneum of 5000 ml was confirmed at autopsy. This is the first report to suggest that multiple episodes of intraperitoneal haemorrhage and ascites may both act in the same manner to cause dislodgment and dissemination of mesothelial cells to draining lymph node sinuses.

  16. Identification by Gene Coregulation Mapping of Novel Genes involved in Embryonic Stem Cell Differentiation

    NARCIS (Netherlands)

    Pennings, J.L.A.; Dartel, van D.A.M.; Pronk, T.E.; Hendriksen, P.J.M.; Piersma, A.H.

    2011-01-01

    A combined analysis of data from a series of literature studies can lead to more reliable results than that based on a single study. A common problem in performing combined analyses of literature microarray gene expression data is that the original raw data are not always available and not always ea

  17. Involvement of MAPKs in ICAM-1 Expression in Glomerular Endothelial Cells in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Watanabe,Naomi

    2011-08-01

    Full Text Available Inflammatory processes are involved in the pathogenesis of diabetic nephropathy. The aim of this study was to clarify the role of mitogen-activated protein kinase (MAPK pathways for induction of intercellular adhesion molecule-1 (ICAM-1 expression in glomerular endothelial cells under diabetic conditions. We examined the expression of ICAM-1 in the kidneys of experimental diabetic rats. Human glomerular endothelial cells (GE cells were exposed to normal glucose concentration, high glucose concentration (HG, or high mannitol concentration (HM, and then the expression of the ICAM-1 protein and the phosphorylation of the 3 subfamilies of mitogen-activated protein kinase (MAPK were determined using Western blot analysis. Next, to evaluate the involvement of MAPKs in HG- or HM-induced ICAM-1 expression, we preincubated GE cells with the inhibitors for ERK, p38 or JNK 1h prior to the application of glucose or mannitol. Expression of ICAM-1 was increased in the glomeruli of diabetic rats. Both HG and HM induced ICAM-1 expression and phosphorylation of ERK1/2, p38 and JNK in GE cells. Expression of ICAM-1 was significantly attenuated by inhibitors of ERK, p38 and JNK. We conclude that activation of ERK1/2, p38 and JNK cascades may be involved in ICAM-1 expression in glomerular endothelial cells under diabetic conditions.

  18. Macula densa cell signaling involves ATP release through a maxi anion channel.

    Science.gov (United States)

    Bell, Phillip Darwin; Lapointe, Jean-Yves; Sabirov, Ravshan; Hayashi, Seiji; Peti-Peterdi, Janos; Manabe, Ken-Ichi; Kovacs, Gergely; Okada, Yasunobu

    2003-04-01

    Macula densa cells are unique renal biosensor cells that detect changes in luminal NaCl concentration ([NaCl](L)) and transmit signals to the mesangial cellafferent arteriolar complex. They are the critical link between renal salt and water excretion and glomerular hemodynamics, thus playing a key role in regulation of body fluid volume. Since identification of these cells in the early 1900s, the nature of the signaling process from macula densa cells to the glomerular contractile elements has remained unknown. In patch-clamp studies of macula densa cells, we identified an [NaCl](L)-sensitive ATP-permeable large-conductance (380 pS) anion channel. Also, we directly demonstrated the release of ATP (up to 10 microM) at the basolateral membrane of macula densa cells, in a manner dependent on [NaCl](L), by using an ATP bioassay technique. Furthermore, we found that glomerular mesangial cells respond with elevations in cytosolic Ca(2+) concentration to extracellular application of ATP (EC(50) 0.8 microM). Importantly, we also found increases in cytosolic Ca(2+) concentration with elevations in [NaCl](L), when fura-2-loaded mesangial cells were placed close to the basolateral membrane of macula densa cells. Thus, cell-to-cell communication between macula densa cells and mesangial cells, which express P2Y(2) receptors, involves the release of ATP from macula densa cells via maxi anion channels at the basolateral membrane. This mechanism may represent a new paradigm in cell-to-cell signal transduction mediated by ATP.

  19. ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate

    Energy Technology Data Exchange (ETDEWEB)

    Masse, Julie [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France); Piquet-Pellorce, Claire [Universite de Rennes 1, 35043 Rennes cedex, EA 4427 SeRAIC (France); Viet, Justine; Guerrier, Daniel; Pellerin, Isabelle [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France); Deschamps, Stephane, E-mail: stephane.deschamps@univ-rennes1.fr [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France)

    2011-08-01

    The nuclear zinc finger protein ZFPIP/Zfp462 is an important factor involved in cell division during the early embryonic development of vertebrates. In pluripotent P19 cells, ZFPIP/Zfp462 takes part in cell proliferation, likely via its role in maintaining chromatin structure. To further define the function of ZFPIP/Zfp462 in the mechanisms of pluripotency and cell differentiation, we constructed a stable P19 cell line in which ZFPIP/Zfp462 knockdown is inducible. We report that ZFPIP/Zfp462 was vital for mitosis and self-renewal in pluripotent P19 cells. Its depletion induced substantial decreases in the expression of the pluripotency genes Nanog, Oct4 and Sox2 and was associated with the transient expression of specific neuronal differentiation markers. We also demonstrated that ZFPIP/Zfp462 expression appears to be unnecessary after neuronal differentiation is induced in P19 cells. Taken together, our results strongly suggest that ZFPIP/Zfp462 is a key chromatin factor involved in maintaining P19 pluripotency and in the early mechanisms of neural differentiation but that it is dispensable in differentiated P19 cells.

  20. Haplotype Map of Sickle Cell Anemia in Tunisia

    OpenAIRE

    Imen Moumni; Maha Ben Mustapha; Sarra Sassi; Amine Zorai; Ikbel Ben Mansour; Kais Douzi; Dorra Chouachi; Fethi Mellouli; Mohamed Bejaoui; Salem Abbes

    2014-01-01

    International audience; β-Globin haplotypes are important to establish the ethnic origin and predict the clinical development of sickle cell disease patients (SCD). To determine the chromosomal background of β (S) Tunisian sickle cell patients, in this first study in Tunisia, we have explored four polymorphic regions of β-globin cluster on chromosome 11. It is the 5' region of β-LCR-HS2 site, the intervening sequence II (IVSII) region of two fetal ((G)γ and (A)γ) genes and the 5' region of β-...

  1. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction.

    Science.gov (United States)

    Sanches, Larissa Juliani; Marinello, Poliana Camila; Panis, Carolina; Fagundes, Tatiane Renata; Morgado-Díaz, José Andrés; de-Freitas-Junior, Julio Cesar Madureira; Cecchini, Rubens; Cecchini, Alessandra Lourenço; Luiz, Rodrigo Cabral

    2017-03-01

    Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.

  2. The Resource Mapping Algorithm of Wireless Virtualized Networks for Saving Energy in Ultradense Small Cells

    Directory of Open Access Journals (Sweden)

    Sai Zou

    2015-01-01

    Full Text Available As the current network is designed for peak loads, it results in insufficient resource utilization and energy waste. Virtualized technology makes it possible that intelligent energy perception network could be deployed and resource sharing could become an effective energy saving technology. How to make more small cells into sleeping state for energy saving in ultradense small cell system has become a research hot spot. Based on the mapping feature of virtualized network, a new wireless resource mapping algorithm for saving energy in ultradense small cells has been put forward when wireless resource amount is satisfied in every small cell. First of all, the method divides the virtual cells. Again through the alternate updating between small cell mapping and wireless resource allocation, least amount of small cells is used and other small cells turn into sleeping state on the premise of guaranteeing users’ QoS. Next, the energy consumption of the wireless access system, wireless resource utilization, and the convergence of the proposed algorithm are analyzed in theory. Finally, the simulation results demonstrate that the algorithm can effectively reduce the system energy consumption and required wireless resource amount under the condition of satisfying users’ QoS.

  3. Genetic analysis of the Arabidopsis protein kinases MAP3Kε1 and MAP3Kε2 indicates roles in cell expansion and embryo development.

    Science.gov (United States)

    Chaiwongsar, Suraphon; Strohm, Allison K; Su, Shih-Heng; Krysan, Patrick J

    2012-01-01

    MAP3Kε1 and MAP3Kε2 are a pair of Arabidopsis thaliana genes that encode protein kinases related to cdc7p from Saccharomyces cerevisiae. We have previously shown that the map3kε1;map3kε2 double-mutant combination causes pollen lethality. In this study, we have used an ethanol-inducible promoter construct to rescue this lethal phenotype and create map3kε1(-/-);map3kε2(-/-) double-mutant plants in order to examine the function of these genes in the sporophyte. These rescued double-mutant plants carry a yellow fluorescent protein (YFP)-MAP3Kε1 transgene under the control of the alcohol-inducible AlcA promoter from Aspergillus nidulans. The double-mutant plants were significantly smaller and had shorter roots than wild-type when grown in the absence of ethanol treatment. Microscopic analysis indicated that cell elongation was reduced in the roots of the double-mutant plants and cell expansion was reduced in rosette leaves. Treatment with ethanol to induce expression of YFP-MAP3Kε1 largely rescued the leaf phenotypes. The double-mutant combination also caused embryos to arrest in the early stages of development. Through the use of YFP reporter constructs we determined that MAP3Kε1 and MAP3Kε2 are expressed during embryo development, and also in root tissue. Our results indicate that MAP3Kε1 and MAP3Kε2 have roles outside of pollen development and that these genes affect several aspects of sporophyte development.

  4. HapMap SNP Scanner: an online program to mine SNPs responsible for cell phenotype.

    Science.gov (United States)

    Yamamura, T; Hikita, J; Bleakley, M; Hirosawa, T; Sato-Otsubo, A; Torikai, H; Hamajima, T; Nannya, Y; Demachi-Okamura, A; Maruya, E; Saji, H; Yamamoto, Y; Takahashi, T; Emi, N; Morishima, Y; Kodera, Y; Kuzushima, K; Riddell, S R; Ogawa, S; Akatsuka, Y

    2012-08-01

    Minor histocompatibility (H) antigens are targets of graft-vs-host disease and graft-vs-tumor responses after human leukocyte antigen matched allogeneic hematopoietic stem cell transplantation. Recently, we reported a strategy for genetic mapping of linkage disequilibrium blocks that encoded novel minor H antigens using the large dataset from the International HapMap Project combined with conventional immunologic assays to assess recognition of HapMap B-lymphoid cell line by minor H antigen-specific T cells. In this study, we have constructed and provide an online interactive program and demonstrate its utility for searching for single-nucleotide polymorphisms (SNPs) responsible for minor H antigen generation. The website is available as 'HapMap SNP Scanner', and can incorporate T-cell recognition and other data with genotyping datasets from CEU, JPT, CHB, and YRI to provide a list of candidate SNPs that correlate with observed phenotypes. This method should substantially facilitate discovery of novel SNPs responsible for minor H antigens and be applicable for assaying of other specific cell phenotypes (e.g. drug sensitivity) to identify individuals who may benefit from SNP-based customized therapies.

  5. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall

    NARCIS (Netherlands)

    Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2009-01-01

    It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the

  6. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    NARCIS (Netherlands)

    B.K. Dahal (Bhola); D. Kosanovic (Djuro); C. Kaulen (Christina); T. Cornitescu (Teodora); R. Savai (Rajkumar); J. Hoffmann (Julia); I.K.M. Reiss (Irwin); H.A. Ghofrani; N. Weissmann; W.M. Kuebler (Wolfgang); W. Seeger (Werner); F. Grimminger; R.T. Schermuly (Ralph Theo)

    2011-01-01

    textabstractBackground: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenes

  7. Involvement of IRF4 dependent dendritic cells in T cell dependent colitis

    DEFF Research Database (Denmark)

    Pool, Lieneke; Rivollier, Aymeric Marie Christian; Agace, William Winston

    of chronic intestinal inflammation remains unclear. In the current study we used the CD45RBhi T cell transfer model of colitis to determine the role of IRF4 dependent DCs in intestinal inflammation. In this model naïve CD4+ T cells when transferred into RAG-/- mice, proliferate and expand in response...... these results suggest an important role for Irf4 dependent DCs in T cell driven colitis....

  8. NDRG2: a Myc-repressed gene involved in cancer and cell stress

    Institute of Scientific and Technical Information of China (English)

    Libo Yao; Jian Zhang; Xuewu Liu

    2008-01-01

    As a master switch for cell proliferation and differentiation,Myc exerts its biological functions mainly through transcriptional regulation of its target genes,which are involved in cells' interaction and communication with their external environment.The N-Myc downstream-regulated gene (NDRG) family is composed ofNDRG1,NDRG2,NDRG3 and NDRG4,which are important in cell proliferation and differentiation.This review summarizes the recent studies on the structure,tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.

  9. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  10. The MAP kinase pathway is required for entry into mitosis and cell survival.

    Science.gov (United States)

    Liu, Xiaoqi; Yan, Shi; Zhou, Tianhua; Terada, Yasuhiko; Erikson, Raymond L

    2004-01-22

    In this communication, we examined the role of the MAP kinase pathway in the G2/M phase of the cell cycle. Activation of the Plk1 and MAP kinase pathways was initially evaluated in FT210 cells, which arrest at G2 phase at the restrictive temperature (39 degrees C), due to a mutation in the cdc2 gene. Previous studies had shown that these cells enter mitosis at the nonpermissive temperature upon incubation with okadaic acid, a protein phosphatase 1 and 2A inhibitor. We show that treatment of FT210 cells at 39 degrees C with okadaic acid activated Plk1, as shown by hyperphosphorylation and elevated protein kinase activity, and also induced activation of the MAP kinase pathway. The specific Mek inhibitor PD98059 antagonized the okadaic acid-induced activation of both Plk1 and MAP kinases. This suggests that activation of the MAP kinase pathway may contribute to the okadaic acid-induced activation of Plk1 in FT210 cells at 39 degrees C. We also found that PD98059 strongly attenuated progression of HeLa cells through mitosis, and active Mek colocalizes with Plk1 at mitotic structures. To study the potential function of the MAP kinase pathway during mitosis, RNAi was used to specifically deplete five members of this pathway (Raf1, Mek1/2, Erk1/2). Each of these five protein kinases is required for cell proliferation and survival, and depletion of any of these proteins eventually leads to apoptosis. Treatment with Mek inhibitors also inhibited cell proliferation and caused apoptosis. A dramatic increase of Plk1 activities and a moderate increase of Cdc2 activities in Raf1-depleted cells indicate that Raf1-depleted cells arrest in the late G2 or M phase. Mek1 and Erk1 depletion also caused cell cycle arrest at G2, suggesting that these enzymes are required for the G2/M transition, whereas the loss of Mek2 or Erk2 caused arrest at G1.

  11. Lymphatic involvement in the disappearance of steroidogenic cells from the corpus luteum during luteolysis.

    Directory of Open Access Journals (Sweden)

    Hironori Abe

    Full Text Available In mammals, the corpus luteum (CL is an essential endocrine gland for the establishment and maintenance of pregnancy. If pregnancy is not established, the CL regresses and disappears rapidly from the ovary. A possible explanation for the rapid disappearance of the CL is that luteal cells are transported from the ovary via lymphatic vessels. Here, we report the presence of cells positive for 3β-hydroxysteroid dehydrogenase (3β-HSD, an enzyme involved in progesterone synthesis, in the lumen of lymphatic vessels at the regressing luteal stage and in the lymphatic fluid collected from the ovarian pedicle ipsilateral to the regressing CL. The 3β-HSD positive cells were alive and contained lipid droplets. The 3β-HSD positive cells in the lymphatic fluid were most abundant at days 22-24 after ovulation. These findings show that live steroidogenic cells are in the lymphatic vessels drained from the CL. The outflow of steroidogenic cells starts at the regressing luteal stage and continues after next ovulation. The overall findings suggest that the complete disappearance of the CL during luteolysis is involved in the outflow of luteal cells from the CL via ovarian lymphatic vessels.

  12. Haplotype Map of Sickle Cell Anemia in Tunisia

    Directory of Open Access Journals (Sweden)

    Imen Moumni

    2014-01-01

    Full Text Available β-Globin haplotypes are important to establish the ethnic origin and predict the clinical development of sickle cell disease patients (SCD. To determine the chromosomal background of βS Tunisian sickle cell patients, in this first study in Tunisia, we have explored four polymorphic regions of β-globin cluster on chromosome 11. It is the 5′ region of β-LCR-HS2 site, the intervening sequence II (IVSII region of two fetal (γG and γA genes and the 5′ region of β-globin gene. The results reveal a high molecular diversity of a microsatellite configuration describing the sequences haplotypes. The linkage disequilibrium analysis showed various haplotype combinations giving 22 “extended haplotypes”. These results confirm the utility of the β-globin haplotypes for population studies and contribute to knowledge of the Tunisian gene pool, as well as establishing the role of genetic markers in physiopathology of SCD.

  13. Haplotype map of sickle cell anemia in Tunisia.

    Science.gov (United States)

    Moumni, Imen; Ben Mustapha, Maha; Sassi, Sarra; Zorai, Amine; Ben Mansour, Ikbel; Douzi, Kais; Chouachi, Dorra; Mellouli, Fethi; Bejaoui, Mohamed; Abbes, Salem

    2014-01-01

    β-Globin haplotypes are important to establish the ethnic origin and predict the clinical development of sickle cell disease patients (SCD). To determine the chromosomal background of β (S) Tunisian sickle cell patients, in this first study in Tunisia, we have explored four polymorphic regions of β-globin cluster on chromosome 11. It is the 5' region of β-LCR-HS2 site, the intervening sequence II (IVSII) region of two fetal ((G)γ and (A)γ) genes and the 5' region of β-globin gene. The results reveal a high molecular diversity of a microsatellite configuration describing the sequences haplotypes. The linkage disequilibrium analysis showed various haplotype combinations giving 22 "extended haplotypes". These results confirm the utility of the β-globin haplotypes for population studies and contribute to knowledge of the Tunisian gene pool, as well as establishing the role of genetic markers in physiopathology of SCD.

  14. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  15. Mechanisms Involved in the Pro-Apoptotic Effect of Melatonin in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Isaac Antolín

    2013-03-01

    Full Text Available It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect.

  16. Involvement of IRF4 dependent dendritic cells in T cell dependent colitis

    DEFF Research Database (Denmark)

    Pool, Lieneke; Rivollier, Aymeric Marie Christian; Agace, William Winston

    in genetically susceptible individuals and pathogenic CD4+ T cells, which accumulate in the inflamed mucosa, are believed to be key drivers of the disease. While dendritic cells (DCs) are important in the priming of intestinal adaptive immunity and tolerance their role in the initiation and perpetuation...... of chronic intestinal inflammation remains unclear. In the current study we used the CD45RBhi T cell transfer model of colitis to determine the role of IRF4 dependent DCs in intestinal inflammation. In this model naïve CD4+ T cells when transferred into RAG-/- mice, proliferate and expand in response...... to bacterial derived luminal antigen, localize to the intestinal mucosa and induce colitis. Adoptive transfer of naïve T cells into CD11cCre.IRF4fl/fl.RAG-1-/- mice resulted in reduced monocyte recruitment to the intestine and mesenteric lymph nodes (MLN) compared to Cre- controls. Inflammatory cytokines...

  17. Involvement of hydrogen peroxide in safingol-induced endonuclease G-mediated apoptosis of squamous cell carcinoma cells.

    Science.gov (United States)

    Hamada, Masakazu; Wakabayashi, Ken; Masui, Atsushi; Iwai, Soichi; Imai, Tomoaki; Yura, Yoshiaki

    2014-02-17

    Safingol, a L-threo-dihydrosphingosine, induced the nuclear translocation of a mitochondrial apoptogenic mediator--endonuclease G (endo G)--and apoptosis of human oral squamous cell carcinoma (SCC) cells. Upstream mediators remain largely unknown. The levels of hydrogen peroxide (H2O2) in cultured oral SCC cells were measured. Treatment with safingol increased intracellular H2O2 levels but not extracellular H2O2 levels, indicating the production of H2O2. The cell killing effect of safingol and H2O2 was diminished in the presence of reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). Dual staining of cells with annexin V and propidium iodide (PI) revealed that apoptotic cell death occurred by treatment with H2O2 and safingol. The number of apoptotic cells was reduced in the presence of NAC. In untreated cells, endo G distributed in the cytoplasm and an association of endo G with mitochondria was observed. After treatment with H2O2 and safingol, endo G was distributed to the nucleus and cytoplasm, indicating the nuclear translocation of the mitochondrial factor. NAC prevented the increase of apoptotic cells and the translocation of endo G. Knock down of endo G diminished the cell killing effect of H2O2 and safingol. These results suggest that H2O2 is involved in the endo G-mediated apoptosis of oral SCC cells by safingol.

  18. Involvement of Hydrogen Peroxide in Safingol-Induced Endonuclease G-Mediated Apoptosis of Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    2014-02-01

    Full Text Available Safingol, a L-threo-dihydrosphingosine, induced the nuclear translocation of a mitochondrial apoptogenic mediator—endonuclease G (endo G—and apoptosis of human oral squamous cell carcinoma (SCC cells. Upstream mediators remain largely unknown. The levels of hydrogen peroxide (H2O2 in cultured oral SCC cells were measured. Treatment with safingol increased intracellular H2O2 levels but not extracellular H2O2 levels, indicating the production of H2O2. The cell killing effect of safingol and H2O2 was diminished in the presence of reactive oxygen species (ROS scavenger N-acetyl-L-cysteine (NAC. Dual staining of cells with annexin V and propidium iodide (PI revealed that apoptotic cell death occurred by treatment with H2O2 and safingol. The number of apoptotic cells was reduced in the presence of NAC. In untreated cells, endo G distributed in the cytoplasm and an association of endo G with mitochondria was observed. After treatment with H2O2 and safingol, endo G was distributed to the nucleus and cytoplasm, indicating the nuclear translocation of the mitochondrial factor. NAC prevented the increase of apoptotic cells and the translocation of endo G. Knock down of endo G diminished the cell killing effect of H2O2 and safingol. These results suggest that H2O2 is involved in the endo G-mediated apoptosis of oral SCC cells by safingol.

  19. Nanomechanical mapping of first binding steps of a virus to animal cells

    Science.gov (United States)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2016-10-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  20. Stem-cell dynamics and lineage topology from in vivo fate mapping in the hematopoietic system.

    Science.gov (United States)

    Höfer, Thomas; Barile, Melania; Flossdorf, Michael

    2016-06-01

    In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells.

  1. LifeMap Discovery™: the embryonic development, stem cells, and regenerative medicine research portal.

    Directory of Open Access Journals (Sweden)

    Ron Edgar

    Full Text Available LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery. LifeMap Discovery is freely available to academic nonprofit institutions at http://discovery.lifemapsc.com.

  2. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies.

    Science.gov (United States)

    Record, Michel; Carayon, Kevin; Poirot, Marc; Silvente-Poirot, Sandrine

    2014-01-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.

  3. A temperature-mapping system for multi-cell SRF accelerating cavities

    CERN Document Server

    Ge, M; Furuta, F; Smith, E; Liepe, M; Posen, S; Padamsee, H; Hartill, D; Mi, X

    2015-01-01

    A Temperature mapping (T-map) system for Superconducting Radio Frequency (SRF) cavities consists of a thermometer array positioned precisely on an exterior cavity wall, capable of detecting small increases in temperature; therefore it is a powerful tool for research on the quality factor (Q0) of SRF cavities. A new multi-cell T-mapping system is has been developed at Cornell University. The system has nearly two thousand thermometers to cover 7-cell SRF cavities for Cornell ERL project. A new multiplexing scheme was adopted to reduce number of wires. A 1mK resolution of the temperature increase Delta T is achieved. A 9-cell cavity of TESLA geometry was tested with the T-map system. By converting Delta T to power loss and quality factor, it has been found that for this cavity, most surface losses were generated by the first cell when the accelerating gradient is increased above 15MV/m. The comparison of Q-value between with and without hotspots shows the heating on cavity wall degraded cavity Q0 about 1.65 tim...

  4. Identification, isolation and expansion of myoendothelial cells involved in leech muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Annalisa Grimaldi

    Full Text Available Adult skeletal muscle in vertebrates contains myoendothelial cells that express both myogenic and endothelial markers, and which are able to differentiate into myogenic cells to contribute to muscle regeneration. In spite of intensive research efforts, numerous questions remain regarding the role of cytokine signalling on myoendothelial cell differentiation and muscle regeneration. Here we used Hirudo medicinalis (Annelid, leech as an emerging new model to study myoendothelial cells and muscle regeneration. Although the leech has relative anatomical simplicity, it shows a striking similarity with vertebrate responses and is a reliable model for studying a variety of basic events, such as tissue repair. Double immunohistochemical analysis were used to characterize myoendothelial cells in leeches and, by injecting in vivo the matrigel biopolymer supplemented with the cytokine Vascular Endothelial Growth Factor (VEGF, we were able to isolate this specific cell population expressing myogenic and endothelial markers. We then evaluated the effect of VEGF on these cells in vitro. Our data indicate that, similar to that proposed for vertebrates, myoendothelial cells of the leech directly participate in myogenesis both in vivo and in vitro, and that VEGF secretion is involved in the recruitment and expansion of these muscle progenitor cells.

  5. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    Science.gov (United States)

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  6. Involvement of LPA Receptor 3 in LPA-induced BGC- 803 Cell Migration

    Directory of Open Access Journals (Sweden)

    Erdene Oyungerel

    2013-12-01

    Full Text Available Lysophosphatidic acid ˄ LPA ˅ is a bioactive phospholipid mediator, which elicits a variety of biological functions mainly through G-protein coupled receptors. Although LPA is shown to stimulate proliferation and motility via LPA receptors, LPAR1 and LPAR3 in several cancer cell lines, but the role of LPA receptors in gastric cancer cells is still being unknown. However, several researches reported that LPAR2 play an important role in the carcinogenesis of gastric cancer, but there is no report to show the LPAR3 involvement in the carcinogenesis. For this reason, we examined LPA receptors (LPAR1, LPAR2 and LPAR3 in BGC-803 cells along with real time PCR method. Real-time PCR analyses were used to evaluate the expression of LPA receptors in BGC-803 cells. Among these receptors, LPAR3 was shown to be highly expressed in BGC-803 cells, a human gastric cancer cell line. Transient transfection with LPAR3 siRNA was observed to reduce LPAR3 mRNA in BGC-803 cells and eliminate the LPA-induced cell migration. The results suggest that the LPAR3 regulates LPA-induced BGC-803 cell migration.

  7. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells

    Energy Technology Data Exchange (ETDEWEB)

    Masse, Julie; Laurent, Audrey; Nicol, Barbara; Guerrier, Daniel; Pellerin, Isabelle; Deschamps, Stephane [UMR CNRS 6061, Institut of Genetique et Developpement de Rennes (IGDR), Faculte de Medecine, Universite de Rennes 1, 35043 Rennes cedex (France)

    2010-04-15

    Toti- or pluripotent cells proliferation and/or differentiation have been shown to be strongly related to nuclear chromatin organization and structure over the last past years. We have recently identified ZFPIP/Zfp462 as a zinc finger nuclear factor necessary for correct cell division during early embryonic developmental steps of vertebrates. We thus questioned whether this factor was playing a general role during cell division or if it was somehow involved in embryonic cell fate or differentiation. To achieve this goal, we performed a knock-down experiment in the pluripotent P19 and differentiated 3T3 cell lines, both expressing endogenous ZFPIP/Zfp462. Using specific shRNA directed against ZFPIP/Zfp462 transcripts, we demonstrated that depletion of this protein induced cell death in P19 but had no effect in 3T3 cells. In addition, in the absence of the protein, the P19 cells exhibited a complete destructuration of pericentromeric domains associated with a redistribution of the HP1{alpha} proteins and an increase in DNA satellites transcribed RNAs level. These data suggested an instrumental role of ZFPIP/Zfp462 in maintaining the chromatin structure of pluripotent cells.

  8. CFTR is involved in the regulation of glucagon secretion in human and rodent alpha cells.

    Science.gov (United States)

    Edlund, Anna; Pedersen, Morten Gram; Lindqvist, Andreas; Wierup, Nils; Flodström-Tullberg, Malin; Eliasson, Lena

    2017-12-01

    Glucagon is the main counterregulatory hormone in the body. Still, the mechanism involved in the regulation of glucagon secretion from pancreatic alpha cells remains elusive. Dysregulated glucagon secretion is common in patients with Cystic Fibrosis (CF) that develop CF related diabetes (CFRD). CF is caused by a mutation in the Cl(-) channel Cystic fibrosis transmembrane conductance regulator (CFTR), but whether CFTR is present in human alpha cells and regulate glucagon secretion has not been investigated in detail. Here, both human and mouse alpha cells showed CFTR protein expression, whereas CFTR was absent in somatostatin secreting delta cells. CFTR-current activity induced by cAMP was measured in single alpha cells. Glucagon secretion at different glucose levels and in the presence of forskolin was increased by CFTR-inhibition in human islets, whereas depolarization-induced glucagon secretion was unaffected. CFTR is suggested to mainly regulate the membrane potential through an intrinsic alpha cell effect, as supported by a mathematical model of alpha cell electrophysiology. In conclusion, CFTR channels are present in alpha cells and act as important negative regulators of cAMP-enhanced glucagon secretion through effects on alpha cell membrane potential. Our data support that loss-of-function mutations in CFTR contributes to dysregulated glucagon secretion in CFRD.

  9. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  10. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review).

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2015-11-01

    The kidneys play a physiologic role in the regulation of urine formation and nutrient reabsorption in the proximal tubule epithelial cells. Kidney development has been shown to be regulated through calcium (Ca2+) signaling processes that are present through numerous steps of tubulogenesis and nephron induction during embryonic development of the kidneys. Ca2+-binding proteins, such as calbindin-D28k and regucalcin are important proteins that are commonly used as biomarkers in pronephric tubules, and the ureteric bud and metanephric mesenchyme. Previous research on regucalcin focused on Ca2+ sensors that are involved in renal organogenesis and the link between Ca2+-dependent signals and polycystins. Moreover, regucalcin has been highlighted to play a multifunctional role in kidney cell regulation. The regucalcin gene, which is localized on the X chromosome, is regulated through various transcription factors. Regucalcin has been found to regulate intracellular Ca2+ homeostasis in kidney proximal tubule epithelial cells. Regucalcin has been demonstrated to regulate the activity of various enzymes that are involved in intracellular signaling pathways. It has been noted that regucalcin suppresses DNA synthesis and regulates the gene expression of various proteins related to mineral transport, transcription factors, cell proliferation and apoptosis. The overexpression of regucalcin has been shown to exert suppressive effects on cell proliferation and apoptotic cell death, which are stimulated by various stimulatory factors. Moreover, regucalcin gene expression was found to to be involved in various pathophysiological states, including renal failure. This review discusses recent findings concerning the potential role of regucalcin as a regulatory protein in the kidney proximal tubule epithelial cells.

  11. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency

    Institute of Scientific and Technical Information of China (English)

    R David Hawkins; Zhen Ye; Samantha Kuan; Pengzhi Yu; Hui Liu; Xinmin Zhang; Roland D Green; Victor V Lobanenkov; Ron Stewart; James A Thomson; Bing Ren; Gary C Hon; Chuhu Yang; Jessica E Antosiewicz-Bourget; LeonardKLee; Que-Minh Ngo; Sarit Klugman; Keith A Ching; Lee E Edsall

    2011-01-01

    Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells.While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types.In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genomewide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage.We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes.We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4mel and H3K27ac,which correlate with expression of their potential target genes.Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs.Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.

  12. Langerhans' cell histiocytosis: pathology, imaging and treatment of skeletal involvement

    Energy Technology Data Exchange (ETDEWEB)

    Azouz, E. Michel [University of Miami, Pediatric Radiology Section, Department of Radiology, Miami, FL (United States); Saigal, Gaurav [McGill University, Department of Medical Imaging, Quebec (Canada); Rodriguez, Maria M. [University of Miami, Department of Pathology, Miami, FL (United States); Podda, Antonello [University of Miami, Division of Pediatric Hematology/Oncology, Miami, FL (United States)

    2005-02-01

    Langerhans' cell histiocytosis (LCH) is manifested in a variety of ways, the most common being the eosinophilic granuloma, a localized, often solitary bone lesion that occurs predominantly in the pediatric age group. The hallmark of LCH is the proliferation and accumulation of a specific histiocyte: the Langerhans' cell. In bone this may cause pain and adjacent soft-tissue swelling, but some lesions are asymptomatic. LCH can involve any bone, but most lesions occur in the skull (especially the calvarium and temporal bones), the pelvis, spine, mandible, ribs, and tubular bones. Imaging diagnosis of the disease in bone is first based on the plain radiographic appearance, which is usually a central destructive, aggressive-looking lesion. In the skull, the lesions develop in the diploic space, are lytic, and their edges may be beveled, scalloped or confluent (geographic), or show a ''button sequestrum.'' Vertebral body involvement usually causes collapse, resulting in vertebra plana. With significant recent improvements in the quality of gamma cameras, imaging techniques, and in studying children, bone scintigraphy at diagnosis and on follow-up usually reveals the sites of active disease, especially when the involvement is polyostotic. CT and MR imaging are very useful in providing detailed cross-sectional anatomic detail of the involved bone, including the bone marrow and the adjacent soft tissues. CT is better suited for demonstrating bone detail and MR imaging for bone marrow and soft-tissue involvement. (orig.)

  13. Molecular mapping of 12q22 deletions in male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1994-09-01

    Germ cell tumors (GCTs) arise in young males from mid-meiotic germ cells. A subset of GCTs display embryonal-like as well as extra-embryonal-like histologic differentiation, and thus provide unique opportunities to study malignant transformation and in vivo differentiation. Cytogenetically, GCTs are characterized by 2 nonrandom abnormalities involving chromosome 12. One is i(12p), seen in >80% of tumors, and tandem duplications of 12p in the remaining. The other is deletion or monosomy of 12q in >30% of tumors. Recently, we have identified 2 sites for candidate tumor suppressor genes (TSGs), at 12q13 and 12q22, by analysis of loss of heterozygosity (LOH). At 12q22, a high frequency of LOH at the loci D12S7 and D12S12 and homozygous deletions in one tumor at the D12S7 and MGF loci were observed. In the present study, we further characterize the 12q22 deletion by analysis of 5 polymorphic (CA){sub n} markers D12S81, D12S101, D12S206, D12S218, and D12S234 in a panel of 66 tumor DNA samples derived from tumor specimens or cell lines and their corresponding normal cells. Sixty four of these were informative for at least one locus and 24 (41.4%) showed LOH at one or more loci. The frequency of LOH was 31.3% for D12S81, 28% for D12S101, 24.2% for D12S206, 37.0% for D12S218, and 25.7% for D12S234. In an attempt to physically map the markers, we employed pulsed-field gel electrophoresis and found that MGF and D12S12 probes co-hybridized to a 700 kb fragment with BssHII digestion, suggesting that these two loci are within a 700 kb region of 12q22. In view of homozygous deletion of MGF, and high frequency of LOH at D12S12 (47%) and D12S218 (37%), we suggest that the putative TSG may lie in the vicinity of these loci.

  14. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

    Science.gov (United States)

    Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.; Susilo, M.; Nauman, E.; Contera, S. Antoranz

    2011-12-01

    The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis, mechano-transduction, focal adhesion, motility, metastasis and drug delivery. Techniques based on quasi-static atomic force microscopy techniques can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ~10-1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.

  15. Bacillus thuringiensis peptidoglycan hydrolase SleB171 involved in daughter cell separation during cell division.

    Science.gov (United States)

    Li, Hua; Hu, Penggao; Zhao, Xiuyun; Yu, Ziniu; Li, Lin

    2016-04-01

    Whole-genome analyses have revealed a putative cell wall hydrolase gene (sleB171) that constitutes an operon with two other genes (ypeBandyhcN) of unknown function inBacillus thuringiensisBMB171. The putative SleB171 protein consists of 259 amino acids and has a molecular weight of 28.3 kDa. Gene disruption ofsleB171in the BMB171 genome causes the formation of long cell chains during the vegetative growth phase and delays spore formation and spore release, although it has no significant effect on cell growth and the ultimate release of the spores. The inseparable vegetative cells were nearly restored through the complementation ofsleB171expression. Real-time quantitative polymerase chain reaction analysis revealed thatsleB171is mainly active in the vegetative growth phase, with a maximum activity at the early stationary growth phase. Western blot analysis also confirmed thatsleB171is preferentially expressed during the vegetative growth phase. These results demonstrated that SleB171 plays an essential role in the daughter cell separation during cell division.

  16. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  17. Induction of leukemia cell apoptosis by cheliensisin A involves down-regulation of Bcl-2 expression

    Institute of Scientific and Technical Information of China (English)

    Li ZHONG; Chao-ming LI; Xiao-jiang HAO; Li-guang LOU

    2005-01-01

    Aim: To investigate the apoptosis-inducing effect of cheliensisin A (GC-51), a novel styryl-lactone isolated from Goniothalamus cheliensis, on human promyelocytic leukemia HL-60 cells and the mechanism of action involved.Methods: Apoptotic cell death was determined by morphological examination and DNA agarose gel electrophoresis. The activity of caspase-3 was assessed using Western blotting and the expression of Bcl-2 and Bax genes was analyzed using the reverse transcription-polymerase chain reaction (RT-PCR) method. Results:GC-51 significantly inhibited the proliferation of HL-60 cells with an IC50 of 2.4±0.2 μmol/L and effectively induced apoptosis in HL-60 cells. Exposure of HL-60cells to 10 μmol/L GC-51 for 8 h resulted in approximately 53% of the cells under going apoptosis. Caspase-3 was activated in GC-51-treated cells, which was manifested by the appearance of the 17 kDa active form of caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Meanwhile, GC-51 markedly reduced the expression of the anti-apoptotic gene Bcl-2 and increased the expression of the pro-apoptotic gene Bax. The apoptosis-inducing effect of GC-51 was cAMP dependent protein kinase (PKA) dependent because PKA, but not the protein kinase C, specific inhibitor H-89, blocked the induction of apoptosis by GC-51 in HL-60 cells. Conclusion: The results demonstrate that GC-51 effectively induces apoptosis in HL-60 cells and that this effect is PKA-dependent and involves the downregulation of Bcl-2 expression and the activation of caspase-3.

  18. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection.

    Directory of Open Access Journals (Sweden)

    Isabelle Derré

    2007-10-01

    Full Text Available Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.

  19. ALK-positive anaplastic large cell lymphoma with soft tissue involvement in a young woman

    Directory of Open Access Journals (Sweden)

    Gao KH

    2016-07-01

    Full Text Available Kehai Gao, Hongtao Li, Caihong Huang, Huazhuang Li, Jun Fang, Chen Tian Department of Orthopaedics, Yidu Central Hospital, Shandong, People’s Republic of China Introduction: Anaplastic large cell lymphoma (ALCL is a type of non-Hodgkin lymphoma that has strong expression of CD30. ALCL can sometimes involve the bone marrow, and in advanced stages, it can produce destructive extranodal lesions. But anaplastic large cell lymphoma kinase (ALK+ ALCL with soft tissue involvement is very rare.Case report: A 35-year-old woman presented with waist pain for over 1 month. The biopsy of soft tissue lesions showed that these cells were positive for ALK-1, CD30, TIA-1, GranzymeB, CD4, CD8, and Ki67 (90%+ and negative for CD3, CD5, CD20, CD10, cytokeratin (CK, TdT, HMB-45, epithelial membrane antigen (EMA, and pan-CK, which identified ALCL. After six cycles of Hyper-CVAD/MA regimen, she achieved partial remission. Three months later, she died due to disease progression.Conclusion: This case illustrates the unusual presentation of ALCL in soft tissue with a bad response to chemotherapy. Because of the tendency for rapid progression, ALCL in young adults with extranodal lesions are often treated with high-grade chemotherapy, such as Hyper-CVAD/MA. Keywords: anaplastic large cell lymphoma, ALK+, soft tissue involvement, Hyper-CVAD/MA

  20. Extra-osseous involvement of Langerhans' cell histiocytosis in children

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sabine; Gudinchet, Francois [Departments of Radiology and Interventional Radiology, University Hospital Centre - CHUV, Lausanne (Switzerland); Eich, Georg [Department of Paediatric Radiology, Children' s Hospital, Zuerich (Switzerland); Hanquinet, Sylviane [Department of Paediatric Radiology, Hopital Cantonal, Geneva (Switzerland); Tschaeppeler, Heinz [Department of Paediatric Radiology, Children' s Hospital, Bern (Switzerland); Waibel, Peter [Department of Paediatric Radiology, Children' s Hospital, St. Gallen (Switzerland)

    2004-04-01

    The predominant clinical and radiological features of Langerhans' cell histiocytosis (LCH) in children are due to osseous involvement. Extra-osseous disease is far less common, occurring in association with bone disease or in isolation; nearly all anatomical sites may be affected and in very various combinations. The following article is based on a multicentre review of 31 children with extra-osseous LCH. The objective is to summarise the diverse possibilities of organ involvement. The radiological manifestations using different imaging modalities are rarely pathognomonic on their own. Nevertheless, familiarity with the imaging findings, especially in children with systemic disease, may be essential for early diagnosis. (orig.)

  1. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures.

    Science.gov (United States)

    Silva, Thayane Martins; França, Guilherme Rapozeiro; Ornelas, Isis Moraes; Loiola, Erick Correia; Ulrich, Henning; Ventura, Ana Lucia Marques

    2015-06-01

    When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.

  2. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-29

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.

  3. Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus.

    Science.gov (United States)

    Mercer, Audrey; Eastlake, Karen; Trigg, Hayley L; Thomson, Alex M

    2012-01-01

    There is a growing recognition that the CA2 region of the hippocampus has its own distinctive properties, inputs, and pathologies. The dendritic and axonal patterns of some interneurons in this region are also strikingly different from those described previously in CA1 and CA3. The local circuitry in this region, however, had yet to be studied in detail. Accordingly, using dual intracellular recordings and biocytin-filling, excitatory and inhibitory connections involving CA2 parvalbumin-positive basket cells were characterized for the first time. CA2 basket cells targeted neighboring pyramidal cells and received excitatory inputs from them. CA2 basket cells that resembled those in CA1 with a fast spiking behavior and dendritic tree confined to the region of origin received depressing excitatory postsynaptic potentials (EPSPs). In contrast, unlike CA1 basket cells but like CA1 Oriens-Lacunosum Moleculare (OLM) cells, the majority of CA2 basket cells had horizontally oriented dendrites in Stratum Oriens (SO), which extended into all three CA subfields, had an adapting firing pattern, presented a "sag" in their voltage responses to hyperpolarizing current injection, and received facilitating EPSPs. The expression of I(h) did not influence the EPSP time courses and paired pulse ratios (PPR). Estimates of the probability of release (p) for the depressing and facilitating EPSPs were correlated with the PPR. Connections with low probabilities of release had higher PPR. Quantal amplitude (q) for the facilitating connections was larger than q at depressing inputs onto fast spiking basket cells.

  4. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    Science.gov (United States)

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  5. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Directory of Open Access Journals (Sweden)

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  6. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    Science.gov (United States)

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  7. Calcineurin is universally involved in vesicle endocytosis at neuronal and nonneuronal secretory cells.

    Science.gov (United States)

    Wu, Xin-Sheng; Zhang, Zhen; Zhao, Wei-Dong; Wang, Dongsheng; Luo, Fujun; Wu, Ling-Gang

    2014-05-22

    Calcium influx triggers and accelerates endocytosis in nerve terminals and nonneuronal secretory cells. Whether calcium/calmodulin-activated calcineurin, which dephosphorylates endocytic proteins, mediates this process is highly controversial for different cell types, developmental stages, and endocytic forms. Using three preparations that previously produced discrepant results (i.e., large calyx-type synapses, conventional cerebellar synapses, and neuroendocrine chromaffin cells containing large dense-core vesicles), we found that calcineurin gene knockout consistently slowed down endocytosis, regardless of cell type, developmental stage, or endocytic form (rapid or slow). In contrast, calcineurin and calmodulin blockers slowed down endocytosis at a relatively small calcium influx, but did not inhibit endocytosis at a large calcium influx, resulting in false-negative results. These results suggest that calcineurin is universally involved in endocytosis. They may also help explain the discrepancies among previous pharmacological studies. We therefore suggest that calcineurin should be included as a key player in mediating calcium-triggered and -accelerated vesicle endocytosis.

  8. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry.

    Science.gov (United States)

    Shimojima, Masayuki; Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz; Kawaoka, Yoshihiro

    2012-02-01

    Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry.

  9. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells.

    Science.gov (United States)

    Yi, Lan; Shan, Jian; Chen, Xin; Li, Guoqing; Li, Linwei; Tan, Hui; Su, Qi

    2016-09-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, calreticulin (CRT) was found to be downregulated in differentiated HL-60 cells treated with DADS. The present study investigated the role of CRT proteins in DADS-induced proliferation, invasion and differentiation in HL-60 cells. The present study demonstrated that DADS treatment significantly changed the morphology of HL-60 cells and caused the significant time-dependent downregulation of CRT. Small interfering RNA (siRNA)-mediated knockdown of CRT expression significantly inhibited proliferation, decreased invasion ability, increased the expression of cluster of differentiation (CD)11b and reduced the expression of CD33 in DADS-treated HL-60 cells. DADS also significantly affected cell proliferation, invasion and differentiation in CRT-overexpressed HL-60 cells. Nitroblue tetrazolium (NBT) reduction assays showed decreased NBT reduction activity in the CRT overexpression group and increased NBT reduction in the CRT siRNA group. Following treatment with DADS, the NBT reduction abilities in all groups were increased. In conclusion, the present study clearly demonstrates the downregulation of CRT during DADS-induced differentiation in HL-60 cells and indicates that CRT is involved in cell proliferation, invasion and differentiation in DADS-treated HL-60 cells.

  10. Involvement of M-cadherin in terminal differentiation of skeletal muscle cells.

    Science.gov (United States)

    Zeschnigk, M; Kozian, D; Kuch, C; Schmoll, M; Starzinski-Powitz, A

    1995-09-01

    Cadherins are a gene family encoding calcium-dependent cell adhesion proteins which are thought to act in the establishment and maintenance of tissue organization. M-cadherin, one member of the family, has been found in myogenic cells of somitic origin during embryogenesis and in the adult. These findings have suggested that M-cadherin is involved in the regulation of morphogenesis of skeletal muscle cells. Therefore, we investigated the function of M-cadherin in the fusion of myoblasts into myotubes (terminal differentiation) in cell culture. Furthermore, we tested whether M-cadherin might influence (a) the expression of troponin T, a typical marker of biochemical differentiation of skeletal muscle cells, and (b) withdrawal of myoblasts from the cell cycle (called terminal commitment). The studies were performed by using antagonistic peptides which correspond to sequences of the putative M-cadherin binding domain. Analogous peptides of N-cadherin have previously been shown to interfere functionally with the N-cadherin-mediated cell adhesion. In the presence of antagonistic M-cadherin peptides, the fusion of myoblasts into myotubes was inhibited. Analysis of troponin T revealed that it was downregulated at the protein level although its mRNA was still detectable. In addition, withdrawal from the cell cycle typical for terminal commitment of muscle cells was not complete in fusion-blocked myogenic cells. Finally, expression of M-cadherin antisense RNA reducing the expression of the endogenous M-cadherin protein interfered with the fusion process of myoblasts. Our data imply that M-cadherin-mediated myoblast interaction plays an important role in terminal differentiation of skeletal muscle cells.

  11. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  12. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Shu-Yan Huang; Jing-Xin Feng; Yan-Yan Gao; Li Zhao; Jun Lu; Bai-Qu Huang; Yu Zhang

    2011-01-01

    AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay.SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.

  13. IL-37 Confers Protection against Mycobacterial Infection Involving Suppressing Inflammation and Modulating T Cell Activation

    Science.gov (United States)

    Yang, Hua; He, Xin; Ji, Qun; Bai, Wenjuan; Chen, Hao; Chen, Jianxia; Peng, Wenxia; Liu, Siyu; Liu, Zhonghua; Ge, Baoxue

    2017-01-01

    Interleukin-37 (IL-37), a novel member of the IL-1 family, plays fundamental immunosuppressive roles by broadly reducing both innate inflammation and acquired immunity, but whether it is involved in the pathogenesis of tuberculosis (TB) has not been clearly elucidated. In this study, single nucleotide polymorphism (SNP) analysis demonstrated an association of the genetic variant rs3811047 of IL-37 with TB susceptibility. In line with previous report, a significant elevated IL-37 abundance in the sera and increased expression of IL-37 protein in the peripheral blood mononuclear cells (PBMC) were observed in TB patients in comparison to healthy controls. Moreover, release of IL-37 were detected in either macrophages infected with Mycobacterium tuberculosis (Mtb) or the lung of BCG-infected mice, concurrent with reduced production of proinflammatory cytokines including IL-6 and TNF-α. Furthermore, in contrast to wild-type mice, BCG-infected IL-37-Tg mice manifested with reduced mycobacterial burden and tissue damage in the lung, accompanied by higher frequency of Th1 cell and less frequencies of regulatory T cells and Th17 cells in the spleen. Taken together, our findings demonstrated that IL-37 conferred resistance to Mtb infection possibly involving suppressing detrimental inflammation and modulating T cell responses. These findings implicated that IL-37 may be employed as a new molecular target for the therapy and diagnosis of TB. PMID:28076390

  14. Molecular Mechanisms Involved in Mesenchymal Stem Cell Migration to the Site of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Katarina Kollar

    2009-01-01

    Full Text Available Mesenchymal stem cells or multipotent mesenchymal stromal cells (both referred to as MSC have been shown in some studies to have a beneficial effect on myocardial recovery after infarct. Current strategies for MSC delivery to heart involve intravenous, intraarterial, and intramuscular delivery. Different routes of MSC delivery and a lack of knowledge of the mechanisms that MSC utilise to migrate in vivo has most likely led to the marked variations in results that have been found. This review aims to summarise the current knowledge of MSC migratory mechanisms and looks to future methods of MSC manipulation prior to delivery in order to enhance MSC migration and engraftment.

  15. JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis.

    Science.gov (United States)

    Hartl, M; Reiter, F; Bader, A G; Castellazzi, M; Bister, K

    2001-11-20

    Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian fibrosarcomas. Kinetic analysis using a doxycycline-controlled conditional cell transformation system showed that expression of the 0.8-kb JAC mRNA is induced rapidly upon activation of the oncogenic v-jun allele. Nucleotide sequence analysis and transcriptional mapping revealed that the JAC gene contains two exons, with the longest ORF confined to exon 2. The deduced 68-amino acid chicken JAC protein is rich in cysteine residues and displays 37% sequence identity to mammalian high-sulfur keratin-associated proteins. The promoter region of JAC contains a consensus (5'-TGACTCA-3') and a nonconsensus (5'-TGAGTAA-3') AP-1 binding site in tandem, which are both specifically bound by the Gag-Jun hybrid protein encoded by ASV17. Mutational analysis revealed that the two AP-1 sites confer strong transcriptional activation by Gag-Jun in a synergistic manner. Ectopic expression of JAC in avian fibroblasts leads to anchorage-independent growth, strongly suggesting that deregulation of JAC is an essential event in jun-induced cell transformation and tumorigenesis.

  16. Magnesium intracellular content and distribution map in drug-resistant and -sensitive whole cells

    Directory of Open Access Journals (Sweden)

    Emil Malucelli

    2014-01-01

    Full Text Available Magnesium (Mg plays crucial structural and regulatory roles within cells. Despite the extensive amount of data about the biochemistry of Mg, a complete picture of its regulation and cellular homeostasis is lacking. Thanks to recent improvements in third generation synchrotron X-ray sources, X-ray fluorescence microscopy (XRFM is becoming a highly sensitive method for mapping elemental distributions in cells. XRFM maps the element content but not the concentration, which is a relevant variable in a biological context. We tackled this issue by combining XRFM with atomic force microscopy that was used to obtain morphological information of the sample. The aim of the present study was to compare the content and the distribution of Mg in drug-resistant and -sensitive tumor cell lines. Our data has shown a massive increase of Mg in LoVo drug-resistant cells. Moreover, the map of intracellular Mg showed marked differences in the pattern distribution between sensitive and resistant cells.

  17. Langerhans cell histiocytosis with multisystem involvement in an infant: A case report

    Science.gov (United States)

    BI, LINTAO; SUN, BUTONG; LU, ZHENXIA; SHI, ZHANGZHEN; WANG, DAN; ZHU, ZHENXING

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a proliferative disease of histiocyte-like cells, with a wide range of clinical presentations that vary from a solitary lesion to more severe multifocal or disseminated lesions. The disease can affect any age group; however, the peak incidence rate is in infants aged between 1 and 3 years-old. Diagnosis of LCH should be based on the synthetical analysis of clinical presentations, in addition to features of imaging and histopathology. Although certain cases regress spontaneously, other patients require systemic chemotherapy together with the administration of steroids. The present study reports the case of an infant with LDH with multisystem involvement, including that of the bone, skin, orbit, spleen and lungs. The patient received chemotherapy and obtained rapid improvement in the involved systems. A total of 2.5 years after completion of the therapy, the patient still remains in follow-up and no evidence of active disease has been noted. PMID:26136948

  18. The prognostic importance of parotid involvement by head and neck squamous cell carcinoma - Case report*

    Science.gov (United States)

    Gouveia, Bruna Melhoranse; Barbosa, Maria Helena de Magalhães; Carneiro, Leonardo Hoehl; Hadj, Luzia Abrao El; Fernandes, Nurimar Conceição

    2016-01-01

    Squamous cell carcinoma (SCC) is the second-most common malignant cutaneous cancer, with 60% occurring in the head and neck region. Metastases are uncommon and imply a more conservative prognosis. This report describes a case of parotid-invasive, facial squamous cell carcinoma, highlighting the importance of its prognostic and therapeutic management. The patient is an 81-year-old female, exhibiting extensive tumoral lesions in the pre-auricular region, affecting the parotid parenchyma and implying the metastatic involvement of the intra-parotid lymph node. Parotid involvement caused by SCC in specificity tumors is discussed herein. Parotid invasion is currently recognized as an isolated variable. It affects survival rates and determines certain changes in case management, such as the broadening of resection areas and adjuvant radiotherapy. PMID:27438204

  19. Involvement of MAP3K8 and miR-17-5p in poor virologic response to interferon-based combination therapy for chronic hepatitis C.

    Directory of Open Access Journals (Sweden)

    Akihito Tsubota

    Full Text Available Despite advances in chronic hepatitis C treatment, a proportion of patients respond poorly to treatment. This study aimed to explore hepatic mRNA and microRNA signatures involved in hepatitis C treatment resistance. Global hepatic mRNA and microRNA expression profiles were compared using microarray data between treatment responses. Quantitative real-time polymerase chain reaction validated the gene signatures from 130 patients who were infected with hepatitis C virus genotype 1b and treated with pegylated interferon-alpha and ribavirin combination therapy. The correlation between mRNA and microRNA was evaluated using in silico analysis and in vitro siRNA and microRNA inhibition/overexpression experiments. Multivariate regression analysis identified that the independent variables IL28B SNP rs8099917, hsa-miR-122-5p, hsa-miR-17-5p, and MAP3K8 were significantly associated with a poor virologic response. MAP3K8 and miR-17-5p expression were inversely correlated with treatment response. Furthermore, miR-17-5p repressed HCV production by targeting MAP3K8. Collectively, the data suggest that several molecules and the inverse correlation between mRNA and microRNA contributed to a host genetic refractory hepatitis C treatment response.

  20. Applying the Intervention Mapping protocol to develop a kindergarten-based, family-involved intervention to increase European preschool children's physical activity levels: the ToyBox-study.

    Science.gov (United States)

    De Craemer, M; De Decker, E; De Bourdeaudhuij, I; Verloigne, M; Duvinage, K; Koletzko, B; Ibrügger, S; Kreichauf, S; Grammatikaki, E; Moreno, L; Iotova, V; Socha, P; Szott, K; Manios, Y; Cardon, G

    2014-08-01

    Although sufficient physical activity is beneficial for preschoolers' health, activity levels in most preschoolers are low. As preschoolers spend a considerable amount of time at home and at kindergarten, interventions should target both environments to increase their activity levels. The aim of the current paper was to describe the six different steps of the Intervention Mapping protocol towards the systematic development and implementation of the physical activity component of the ToyBox-intervention. This intervention is a kindergarten-based, family-involved intervention implemented across six European countries. Based on the results of literature reviews and focus groups with parents/caregivers and kindergarten teachers, matrices of change objectives were created. Then, theory-based methods and practical strategies were selected to develop intervention materials at three different levels: (i) individual level (preschoolers); (ii) interpersonal level (parents/caregivers) and (iii) organizational level (teachers). This resulted in a standardized intervention with room for local and cultural adaptations in each participating country. Although the Intervention Mapping protocol is a time-consuming process, using this systematic approach may lead to an increase in intervention effectiveness. The presented matrices of change objectives are useful for future programme planners to develop and implement an intervention based on the Intervention Mapping protocol to increase physical activity levels in preschoolers.

  1. Conjunctival Involvement of T-Cell Lymphoma in a Patient with Mycosis Fungoides.

    Science.gov (United States)

    Aldrees, Sultan S; Zoroquiain, Pablo; Alghamdi, Sarah A; Logan, Patrick T; Callejo, Sonia; Burnier, Miguel N

    2016-01-01

    Background. Ocular involvement in mycosis fungoides (MF) cases occurs in one-third of patients with the eyelid being the most frequent site affected; however, conjunctival involvement is rarely reported. Herein, we report a rare case of conjunctival involvement of MF. Case Presentation. A 66-year-old man who was previously diagnosed with MF in 2010 and was treated presented in 2014 complaining of foreign body sensation and redness in both eyes. Slit lamp examination of both eyes showed erythematous conjunctival growth that extended circumferentially. Physical examination revealed erythematous skin lesions on different body parts. Conjunctival biopsy was performed and revealed a dense, highly polymorphic lymphocytic population. The immunophenotype demonstrated a neoplastic T-cell origin consistent with MF. A diagnosis of conjunctival involvement by MF was made. The conjunctiva was treated with radiotherapy resulting in tumor regression. There were no recurrences at the 6-month follow-up. Conclusion. T-cell lymphoma should be considered in patients with a history of MF presenting with conjunctival and skin lesions.

  2. Conjunctival Involvement of T-Cell Lymphoma in a Patient with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Sultan S. Aldrees

    2016-01-01

    Full Text Available Background. Ocular involvement in mycosis fungoides (MF cases occurs in one-third of patients with the eyelid being the most frequent site affected; however, conjunctival involvement is rarely reported. Herein, we report a rare case of conjunctival involvement of MF. Case Presentation. A 66-year-old man who was previously diagnosed with MF in 2010 and was treated presented in 2014 complaining of foreign body sensation and redness in both eyes. Slit lamp examination of both eyes showed erythematous conjunctival growth that extended circumferentially. Physical examination revealed erythematous skin lesions on different body parts. Conjunctival biopsy was performed and revealed a dense, highly polymorphic lymphocytic population. The immunophenotype demonstrated a neoplastic T-cell origin consistent with MF. A diagnosis of conjunctival involvement by MF was made. The conjunctiva was treated with radiotherapy resulting in tumor regression. There were no recurrences at the 6-month follow-up. Conclusion. T-cell lymphoma should be considered in patients with a history of MF presenting with conjunctival and skin lesions.

  3. The Fas pathway is involved in pancreatic β cell secretory function

    Science.gov (United States)

    Schumann, Desiree M.; Maedler, Kathrin; Franklin, Isobel; Konrad, Daniel; Størling, Joachim; Böni-Schnetzler, Marianne; Gjinovci, Asllan; Kurrer, Michael O.; Gauthier, Benoit R.; Bosco, Domenico; Andres, Axel; Berney, Thierry; Greter, Melanie; Becher, Burkhard; Chervonsky, Alexander V.; Halban, Philippe A.; Mandrup-Poulsen, Thomas; Wollheim, Claes B.; Donath, Marc Y.

    2007-01-01

    Pancreatic β cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in β cell apoptosis or proliferation, depending on the activity of the caspase-8 inhibitor FLIP. Here we show that the Fas pathway also regulates β cell secretory function. We observed impaired glucose tolerance in Fas-deficient mice due to a delayed and decreased insulin secretory pattern. Expression of PDX-1, a β cell-specific transcription factor regulating insulin gene expression and mitochondrial metabolism, was decreased in Fas-deficient β cells. As a consequence, insulin and ATP production were severely reduced and only partly compensated for by increased β cell mass. Up-regulation of FLIP enhanced NF-κB activity via NF-κB-inducing kinase and RelB. This led to increased PDX-1 and insulin production independent of changes in cell turnover. The results support a previously undescribed role for the Fas pathway in regulating insulin production and release. PMID:17299038

  4. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  5. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

    Science.gov (United States)

    Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J; Yang, Wan Seok; Fridman, Daniel J; Wolpaw, Adam J; Smukste, Inese; Peltier, John M; Boniface, J Jay; Smith, Richard; Lessnick, Stephen L; Sahasrabudhe, Sudhir; Stockwell, Brent R

    2007-06-14

    Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

  6. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  7. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  8. Signal pathways involved in emodin-induced contraction of smooth muscle cells from rat colon

    Institute of Scientific and Technical Information of China (English)

    Tao Ma; Qing-Hui Qi; Jian Xu; Zuo-Liang Dong; Wen-Xiu Yang

    2004-01-01

    AIM: To investigate the effects induced by emodin on single smooth muscle cells from rat colon in vitro, and to determine the signal pathways involved.METHODS: Cells were isolated from the muscle layers of Wistar rat colon by enzymatic digestion. Cell length was measured by computerized image micrometry. Intracellular Ca2+ ([Ca2+]i) signals were studied using the fluorescent Ca2+ indicator fluo-3 and confocal microscopy. PKCα distribution at rest state or after stimulation was measured with immunofluorescence confocal microscopy.RESULTS: (1) Emodin dose-dependently caused colonic smooth muscle cells contraction; (2) emodin induced an increase in intracellular Ca2+ concentration; (3) the contractile responses induced by emodin were respectively inhibited by preincubation of the cells with ML-7 (an inhibitorof MLCK)and calphostin C (an inhibitor of PKC); (4) Incubation of cells with emodin caused translocation of PKCα from cytosolic area to the membrane.CONCLUSION: Emodin has a direct contractile effect on colonic smooth muscle cell. This signal cascade induced by emodin is initiated by increased [Ca2+]i and PKCα translocation,which in turn lead to the activation of MLCK and the suppression of MLCP. Both of them contribute to the emodininduced contraction.

  9. Diffuse large B-cell lymphoma involving the central nervous system.

    Science.gov (United States)

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2011-02-01

    Lymphomas involving the central nervous system are recognized increasingly in immunocompetent as well as immunosuppressed individuals, and the majority of the cases are diffuse large B-cell lymphoma (DLBCL). The aim of this study was to compare the immunophenotype, clinicopathological features, and association with Epstein-Barr virus (EBV) of DLBCL of the central nervous system (CNS) in 3 different clinical situations: primary, in immunocompetent patients; "primary," in immunosuppressed patients; and in patients with secondary involvement by systemic lymphoma. The authors reviewed the clinicopathological features, morphology, immunophenotype (according to germinal-center B-cell-like and nongerminal B-cell-like subtypes), and association with EBV in 36 cases of DLBCL of the CNS, including 25 primary cases, 5 associated with immunosuppression, and 6 cases with secondary involvement. Survival was evaluated in 15 cases of primary CNS lymphomas. Of the 36 patients, 19 were male and 18 female. Only 2 cases of lymphomas were EBV-positive; both occurred in immunosuppressed patients. Separation into germinal-center and non-germinal center subtypes by an immunohistochemistry panel showed that 68% of primary, 80% of secondary, and 83% of the cases associated with immunosuppression were of non-germinal-center subtype, respectively. Patients with non-germinal-center immunophenotype showed significantly worse survival than those with CNS lymphomas of the germinal-center subtype.

  10. Skeletal muscle satellite cells, mitochondria and microRNAs: their involvement in the pathogenesis of ALS

    Directory of Open Access Journals (Sweden)

    Stavroula Tsitkanou

    2016-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS, also known as motor neurone disease (MND, is a fatal motor neurone disorder. It results in progressive degeneration and death of upper and lower motor neurones, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between two to five years from the onset of symptoms. ALS manifests as either familial ALS (FALS (~10% of cases or sporadic ALS (SALS, (~90% of cases. Mutations in the copper/zinc (CuZn superoxide dismutase (SOD1 gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signalling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.

  11. The involvement of human-nuc gene in polyploidization of K562 cell line.

    Science.gov (United States)

    Cavalloni, G; Danè, A; Piacibello, W; Bruno, S; Lamas, E; Bréchot, C; Aglietta, M

    2000-12-01

    During megakaryocyte differentiation, the immature megakaryocyte increases its ploidy to a 2(x) DNA content by a process called endomitosis. This leads to the formation of a giant cell, the mature megakaryocyte, which gives rise to platelets. We investigated the role of human-nuc (h-nuc), a gene involved in septum formation in karyokynesis in yeast, during megakaryocytic polyploidization. Nocodazole and 12-O-tetradecanoylphorbol-13-acetate (TPA) were used to induce megakaryocytic differentiation in K562 cell line. The ploidy distribution and CD41 expression of treated K562 cells were evaluated by flow cytometry. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we analyzed the h-nuc mRNA expression on treated K562 cells. Mature megakaryocyte-like polyploid cells were detected at day 5-7 of treatment with nocodazole. TPA also had a similar effect on K562 cells, but it was much weaker than that of nocodazole. The analysis of ploidy of nocodazole-treated K562 cells showed that nocodazole preferentially induced polyploidization of K562 cell line with a pronounced increase of the cells 8N at day 7 of culture. Expression of CD41, a differentiation-related phenotype, was significantly induced by TPA after 7 days of treatment, showing that functional maturation was mainly induced by TPA. In contrast, there was no significant increase in CD41 expression in nocodazole-treated K562 cells, suggesting that polyploidization and functional maturation are separately regulated during megakaryocytopoiesis. RT-PCR analysis indicated that h-nuc mRNA increased after 72 hours in the presence of nocodazole, preceding the induction of polyploidization. Our data indicate that h-nuc might play a role in polyploidization during megakaryocytic differentiation via inhibition of septum formation.

  12. Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao PANG; Ning-ling SUN

    2009-01-01

    Aim: Catecholamine-induced vascular smooth muscle cell (VSMC) proliferation is one of the major events in the pathogenesis of atherosclerosis and vascular remodeling. The calcineurin-NFAT pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the calcineurin-NFAT pathway was involved in the regulation of phenylephrine-induced VSMC proliferation.Methods: Proliferation of VSMC was measured using an MTT assay and cell counts. Localization of NFATcl was detected by immunofluorescence staining. NFATcl-DNA binding was determined by EMSA and luciferase activity analyses.NFATcl and calcineurin levels were assayed by immunoprecipitation.Results: Phenylephrine (PE, an α1-adrenoceptor agonist) increased VSMC proliferation and cell number. Prazosin (an α1-adrenoceptor antagonist), cyclosporin A (CsA, an inhibitor of calcineurin) and chelerythrine (an inhibitor of PKC)decreased PE-induced proliferation and cell number. Additional treatment of VSMC with CsA or chelerythrine further inhibited proliferation and cell number in the chelerythrine-pretreatment group and the CsA-pretreatment group. CsA and chelerythrine alone had no effect on either absorbance or cell number. CsA decreased PE-induced calcineurin levels and activity. NFATc1 was translocated from the cytoplasm to the nucleus upon treatment with PE. This translocation was reversed by CsA. CsA decreased the PE-induced NFATc1 level in the nucleus. PE increased NFAT's DNA binding activity and NFAT-dependent reporter gene expression. CsA blocked these effects.Conclusion: CsA partially suppresses PE-induced VSMC proliferation by inhibiting calcineurin activity and NFATc1 nuclear translocation. The calcineurin-NFATc1 pathway is involved in the hyperplastic growth of VSMC induced by phenylephrine.

  13. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls

    Institute of Scientific and Technical Information of China (English)

    Qing Wei; Wenbin Zhou; Guangzhen Hu; Jiamian Wei; Hongquan Yang; Jirong Huang

    2008-01-01

    The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However,its role in phytochrome A (phyA) signaling remains elusive. In this study,we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death,which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Ga mutant gpal but aggravated in the Gβ mutant agbl in comparison with the wild type (WT),indicative of antagonistic roles of GPAI and AGB1 in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide633),which generates reactive oxygen species (ROS)on exposure to WL,is required for FR-preconditioned cell death. Moreover,ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly,the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the cell death. In addition,we observe that agbl is more sensitive to H2O2 than WT seedlings,indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together,we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death of Arabidopsis hypocotyls.Apossible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.

  14. PE-induced apoptosis in SMMC-7721 cells: Involvement of Erk and Stat signalling pathways

    Science.gov (United States)

    XUE, LI; LI, MING; CHEN, TENG; SUN, HAIFENG; ZHU, JIE; LI, XIA; WU, FENG; WANG, BIAO; LI, JUPING; CHEN, YANJIONG

    2014-01-01

    Emerging evidence indicates that the redistribution of phosphatidylethanolamine (PE) across the bilayer of the plasma membrane is an important molecular marker for apoptosis. However, the effect of PE on apoptosis and the underlying mechanism of PE remain unclear. In the current study, MTT and flow cytometric assays were used to examine the effects of PE on apoptosis in SMMC-7721 cells. The level of mitochondrial membrane potential (ΔΨm) and the expression of Bax, Bcl-2, caspase-3, phospho-Erk and phospho-Stat1/2 in SMMC-7721 cells that were exposed to PE were also investigated. The results showed that PE inhibited proliferation, caused G0/G1 phase cell cycle arrest and induced apoptosis in SMMC-7721 cells in a dose-dependent manner. Rhodamine 123 staining showed that the treatment of SMMC-7721 cells with different concentrations of PE for 24 h significantly decreased the level of ΔΨm and exerted dose-dependent effects. Using immunofluorescence and western blotting, we found that the expression of Bax was upregulated, whereas that of Bcl-2 was downregulated in PE-induced apoptotic cells. In addition, these events were accompanied by an increase in caspase-3 expression in a dose-dependent manner following PE treatment. PE-induced apoptosis was accompanied by a decrease in Erk phosphorylation and by the activation of Stat1/2 phosphorylation in SMMC-7721 cells. In conclusion, the results suggested that PE-induced apoptosis is involved in upregulating the Bax/Bcl-2 protein ratio and decreasing the ΔΨm. Moreover, the results showed that the Erk and Stat1/2 signalling pathways may be involved in the process of PE-induced apoptosis. PMID:24821075

  15. SC1, an immunoglobulin-superfamily cell adhesion molecule, is involved in the brain metastatic activity of lung cancer cells

    Science.gov (United States)

    KUBOTA, YUKA; KIRIMURA, NAOKI; SHIBA, HATSUKI; ADACHI, KAZUHIDE; TSUKAMOTO, YASUHIRO

    2015-01-01

    SC1 is a cell adhesion molecule that belongs to the immunoglobulin superfamily; this molecule was initially purified from the chick embryonic nervous system and was reported to exhibit homophilic adhesion activity. SC1 is transiently expressed in various organs during development and has been identified in numerous neoplastic tissues, including lung cancer and colorectal carcinomas. The present study focused on the encephalic metastasis of lung cancer cells with respect to the potential function of SC1, as this molecule is known to be consistently expressed in the central nervous system as well as lung cancers. SC1 complementary DNA was introduced into A549 cells, a human lung cancer-derived cell line. The stable overexpression of the SC1 protein in A549 cells was demonstrated to enhance the self-aggregation of the cells. In addition, the SC1 transfectants enhanced the metastatic and invasive potential to the encephalic parenchyma following implantation into nude mice. In conclusion, the results of the present study demonstrated that cell adhesion due interactions between SC1 on brain tissue and SC1 on lung cancer cells was involved in the malignant aspects of lung cancer, including invasion and metastasis to the brain. PMID:26622821

  16. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells.

    Science.gov (United States)

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment.

  17. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method.

    Science.gov (United States)

    Liu, Xiaojun; Hong, Ling; Jiang, Jun

    2016-08-01

    Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.

  18. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method

    Science.gov (United States)

    Liu, Xiaojun; Hong, Ling; Jiang, Jun

    2016-08-01

    Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.

  19. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?

    NARCIS (Netherlands)

    Bogaerdt, van den A.J.; Veen, van der A.G.; Zuijlen, van P.P.; Reijnen, L.; Verkerk, M.; Bank, R.A.; Middelkoop, E.; Ulrich, M.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  20. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells : Are mesenchymal stromal cells involved in scar formation?

    NARCIS (Netherlands)

    van den Bogaerdt, Antoon J.; van der Veen, Vincent C.; van Zuijlen, Paul P. M.; Reijnen, Linda; Verkerk, Michelle; Bank, Ruud A.; Middelkoop, Esther; Ulrich, Magda M. W.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  1. Functional mapping of the circuits involved in the expression of contextual fear responses in socially defeated animals.

    Science.gov (United States)

    Faturi, C B; Rangel, M J; Baldo, M V C; Canteras, N S

    2014-05-01

    In this study, we have aimed at outlining the neural systems underlying the expression of contextual fear to social defeat. First, we have developed an experimental procedure, where defeated animals could express, without the presence of a dominant aggressive male, robust and reliable conditioned fear responses to the context associated with social defeat. Next, by examining the pattern of Fos expression, we have been able to outline a brain circuit comprising septal and amygdalar sites, as well as downstream hypothalamic paths, putatively involved in the expression of contextual fear to social threat. Of particular relevance, we have found that exposure to a defeat-associated context results in a striking Fos up-regulation in the dorsomedial part of the dorsal premammillary nucleus (PMDdm). To further understand the role of the PMDdm in the circuit organizing conditioned fear to social threats, we have been able to observe that pharmacological blockade of the PMDdm reduced fear responses to a social defeat-associated context. Next, we observed that pharmacological blockade of the dorsomedial part of the periaqueductal gray, one of the main targets of the PMDdm, produced an even higher reduction of conditioned fear in defeated intruders, and appears as an important node for the expression of contextual defensive responses to social threats. The present results help to elucidate the basic organization of the neural circuits underlying contextual conditioned responses to social defeat, and reveal that they share at least part of the same circuit involved in innate responses to social defeat to an aggressive conspecific.

  2. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    Science.gov (United States)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  3. Involvement of PIKE in icariin induced cardiomyocyte differentiation from murine embryonic stem cells.

    Science.gov (United States)

    Zhou, Limin; Zheng, Bei; Tang, Leilei; Huang, Yujie; Zhu, Danyan

    2014-03-01

    Icariin (ICA) has demonstrated to induce cardiomyocyte differentiation from murine embryonic stem (ES) cells in vitro, however, the mechanisms have not been fully elucidated. In the present study, we investigated whether phosphatidylinositol 3-kinase enhancer (PIKE) was involved in ICA induced cardiomyocyte differentiation of ES cells. Small interfering RNA (siRNA) of PIKE was applied to investigate the role of PIKE in ICA induced cardiomyocyte differentiation. The cardiomyocytes derived from ES cells were verified using immunofluorescence. The expressions of Troponin T, PIKE, phosphatidylinositol 3-kinase (PI3K), and nuclear factor-kappaB (NF-kappaB) were detected by western blot. The change of reactive oxygen species (ROS) generation was estimated using the fluorescent dye 2', 7' - dichlorodihydrofluorescein diacetate. The results showed that PIKE expression increased during cardiomyocyte differentiation. ICA markedly enhanced PIKE and PI3K expression in a time-dependent manner. Knockdown of PIKE by siRNAs blocked the differentiation of ES cells into cardiomyocytes expressing alpha-actinin for cardiac sarcomeric structures. Moreover, reduced ROS generation and NF-kappaB nuclear translocation were responsible for the inhibitory effect of si-PIKE. In conclusion, PIKE was involved in ICA induced cardiomyocyte differentiation, and ROS generation and NF-kappaB nuclear translocation were associated with PIKE activation.

  4. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Williams, H J; Norton, N; Dwyer, S; Moskvina, V; Nikolov, I; Carroll, L; Georgieva, L; Williams, N M; Morris, D W; Quinn, E M; Giegling, I; Ikeda, M; Wood, J; Lencz, T; Hultman, C; Lichtenstein, P; Thiselton, D; Maher, B S; Malhotra, A K; Riley, B; Kendler, K S; Gill, M; Sullivan, P; Sklar, P; Purcell, S; Nimgaonkar, V L; Kirov, G; Holmans, P; Corvin, A; Rujescu, D; Craddock, N; Owen, M J; O'Donovan, M C

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  5. Staphylococcus aureus Small Colony Variants (SCVs: A Road Map for the Metabolic Pathways Involved in Persistent Infections

    Directory of Open Access Journals (Sweden)

    Richard Allan Proctor

    2014-07-01

    Full Text Available Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006, thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF, and cold shock protein B (CspB found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact

  6. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    LENUS (Irish Health Repository)

    Williams, H J

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia\\/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  7. Finding zeros of nonlinear functions using the hybrid parallel cell mapping method

    Science.gov (United States)

    Xiong, Fu-Rui; Schütze, Oliver; Ding, Qian; Sun, Jian-Qiao

    2016-05-01

    Analysis of nonlinear dynamical systems including finding equilibrium states and stability boundaries often leads to a problem of finding zeros of vector functions. However, finding all the zeros of a set of vector functions in the domain of interest is quite a challenging task. This paper proposes a zero finding algorithm that combines the cell mapping methods and the subdivision techniques. Both the simple cell mapping (SCM) and generalized cell mapping (GCM) methods are used to identify a covering set of zeros. The subdivision technique is applied to enhance the solution resolution. The parallel implementation of the proposed method is discussed extensively. Several examples are presented to demonstrate the application and effectiveness of the proposed method. We then extend the study of finding zeros to the problem of finding stability boundaries of potential fields. Examples of two and three dimensional potential fields are studied. In addition to the effectiveness in finding the stability boundaries, the proposed method can handle several millions of cells in just a few seconds with the help of parallel computing in graphics processing units (GPUs).

  8. Genomic approaches towards identification of components involved in peptide based cell growth of Arabidopsis thailana

    DEFF Research Database (Denmark)

    Mahmood, Khalid

    Secreted peptides are considered now as important signaling molecules involved in plant growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) is a small peptide that promotes cell elongation and expansion at nanomolar concentration. This is achieved through binding...... elongation. FAB1C is highly down regulated in psy1r mutant plants and is assumed to play role in acidification and formation of vacuole that may contribute in cell elongation. In short, our work provides insights how growth coordinated through cellular communication using PSY1 as a signal molecule....... to extracellular domain of the leucine-rich repeat (LRR) receptor kinase called PSY1R. Upon binding of the peptide, PSY1R transduces the signal by phosphorylating the plasma membrane H+-ATPase (AHA2) leading to proton extrusion results in cell elongation. To understand the molecular basis of PSY1 response...

  9. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    Science.gov (United States)

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-05

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.

  10. Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells.

    Science.gov (United States)

    Zhang, Baigang; Peng, Xiaoli; Li, Guanghui; Xu, Yunfeng; Xia, Xiaodong; Wang, Qian

    2015-02-01

    Patulin (PAT) is one of the most widely disseminated mycotoxins found in agricultural products and could cause renal damage. However, the mechanism of cell damage remains obscure. In this study, the human embryonic kidney cells (HEK293) were treated with PAT (2.5-15 μM). The cytotoxicity was assessed with MTT assay and apoptotic cells were detected by flow cytometry, and further identified by chromatin condensation and nuclear fragmentation with Hoechst 33342 under fluorescence microscope. Reactive oxygen species (ROS) with DCFH-DA was analyzed by fluorometry. The activities of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) and malondialdehyde (MDA) content were determined to reveal the potential mechanism of PAT induced apoptosis. The mitochondrial membrane potential was measured by JC-1 probe. The results showed that PAT dose-dependently inhibited the growth of HEK293 cells and resulted in apoptosis in HEK293 cells. Treatment with PAT could induce ROS and MDA accumulation, accompanied by the losses of SOD, CAT, GSH and disruption of the mitochondrial membrane potential. These data suggest that PAT may induce apoptosis in HEK293 cells, in which oxidative stress is involved.

  11. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival

    Science.gov (United States)

    Romorini, Leonardo; Garate, Ximena; Neiman, Gabriel; Luzzani, Carlos; Furmento, Verónica Alejandra; Guberman, Alejandra Sonia; Sevlever, Gustavo Emilio; Scassa, María Elida; Miriuka, Santiago Gabriel

    2016-01-01

    Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival. PMID:27762303

  12. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.

    Science.gov (United States)

    Spencer, Allison K; Siddiqui, Bilal A; Thomas, Jeffrey H

    2015-06-15

    Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.

  13. Role of Berberine on molecular markers involved in migration of esophageal cancer cells.

    Science.gov (United States)

    Mishan, M A; Ahmadiankia, N; Matin, M M; Heirani-Tabasi, A; Shahriyari, M; Bidkhori, H R; Naderi-Meshkin, H; Bahrami, A R

    2015-12-14

    Berberine is an isoquinoline alkaloid found in several plant species like famous chinese herb, Rhizoma coptidis which has been used locally as a strong gastrointestinal remedy for thousands of years. The inhibitory effects of berberine on tumor progression properties have been reported before. In this study, we investigated the effect of berberine on an esophageal cancer cell line, KYSE-30 with emphasis on its effects on the expression of certain chemokine receptors. The cytotoxic effect of berberine on KYSE-30 cells was analyzed by MTT assay. In vitro cell migration assay was also applied to the treated cells and the expression levels of the selected chemokine receptors (CXCR4 and CCR7) was measured at mRNA level. A retarded growth, associated with increasing concentrations of berberine, was obvious. On the other hand, the migration rate of the cells was decreased when they were treated with different concentrations of berberine and the expression levels of the two chemokine receptors, involved in the migration and metastasis of esophageal cancer cells, were decreased following the same treatments. With these results, we tend to conclude that berberine might be a proper candidate for further investigations, by targeting the chemokine receptors, and possible applications as anti-metastatic agent in cancer studies.

  14. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  15. Involvement of IL-2 in homeostasis of regulatory T cells: the IL-2 cycle.

    Science.gov (United States)

    Yarkoni, Shai; Kaminitz, Ayelet; Sagiv, Yuval; Yaniv, Isaac; Askenasy, Nadir

    2008-09-01

    A large body of evidence on the activity of regulatory T (Treg) cells was gathered during the last decade, and a similar number of reviews and opinion papers attempted to integrate the experimental findings. The abundant literature clearly delineates an exciting area of research but also underlines some major controversies. A linear cause-result interpretation of experimental maneuvers often ignores the fact that the activity of Treg cells is orchestrated with the effector T (Teff) cells within an intricate network of physiological immune homeostasis. Every modulation of the activity of the effector (cytotoxic) immune system revolves to affect the activity of regulatory (suppressive) cells through elaborate feedback loops of negative and positive regulation. The lack of IL-2 production by innate Treg cells makes this cytokine a prime coupler of the effector and suppressive mechanisms. Here we attempt to integrate evidence that delineates the involvement of IL-2 in primary and secondary feedback loops that regulate the activity of suppressive cells within the elaborate network of physiological immune homeostasis.

  16. Expression of human TFF3 in relation to growth of HT-29 cell subpopulations: involvement of PI3-K but not STAT6.

    Science.gov (United States)

    Durual, Stéphane; Blanchard, Carine; Estienne, Monique; Jacquier, Marie-France; Cuber, Jean-Claude; Perrot, Valérie; Laboisse, Christian; Cuber, Jean-Claude

    2005-02-01

    The trefoil factor family (TFF) peptides 1 and 2 (TFF1 and 2) are expressed in mucus cells of the stomach, whereas TFF3 is localized in goblet cells of the intestine. In the present study, we aimed to determine whether phosphatidylinositol 3-kinase (PI3-K) or signal transducer and activator of transcription protein 6 (STAT6) is involved in the expression of goblet cell specific markers. TFF3 expression was analyzed by RT-PCR, Northern blot, and radioimmunoassay (RIA) in relation to cell growth in subclones of HT-29 cells including the CL.16E and methotrexate (MTX) cell lines, which both exhibit a phenotype of mucus-secreting intestinal cells. A 30-fold increase in TFF3 mRNA levels and a 10-fold increase in TFF3-cell content were observed between the early proliferative and the late confluency states. The levels of MUC2 and MUC3 mRNA were also increased in the course of the differentiation process. A three to fourfold increase in PI3-K and Akt activities was observed in early post-confluent cells as compared with pre-confluent cells. Exposure of pre- and post-confluent cells to LY294002, a specific PI3-K inhibitor, for 1-4 days profoundly reduced TFF3 and MUC2 expression. A marked reduction in mucin granules content was also observed in LY-treated cells. Inhibition of the mitogen-activated protein (MAP) kinase kinase (MEK) with PD98059 did not modify the course of differentiation of the goblet cell lines. Moreover, stable transfection of HT-29 CL.16E cells with a dominant negative form of STAT6 had no effect on TFF3 induction. Together, these data indicate that PI3-K promotes the expression of TFF3 and MUC2 and that the PI3-K/Akt pathway may play a pivotal role in intestinal goblet cell differentiation.

  17. Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Otsuka Koki

    2011-02-01

    Full Text Available Abstract Background Pregnane X receptor (PXR is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells. Methods mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo. DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC. Results The 6 colon cancer cell lines were classified into two groups (high or low expression cells based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the PXR promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48 than in the high expression cells (LS180 and LoVo. This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of PXR promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis. Conclusions PXR promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability

  18. Pharmacological protection of retinal pigmented epithelial cells by sulindac involves PPAR-α.

    Science.gov (United States)

    Sur, Arunodoy; Kesaraju, Shailaja; Prentice, Howard; Ayyanathan, Kasirajan; Baronas-Lowell, Diane; Zhu, Danhong; Hinton, David R; Blanks, Janet; Weissbach, Herbert

    2014-11-25

    The retinal pigmented epithelial (RPE) layer is one of the major ocular tissues affected by oxidative stress and is known to play an important role in the etiology of age-related macular degeneration (AMD), the major cause of blinding in the elderly. In the present study, sulindac, a nonsteroidal antiinflammatory drug (NSAID), was tested for protection against oxidative stress-induced damage in an established RPE cell line (ARPE-19). Besides its established antiinflammatory activity, sulindac has previously been shown to protect cardiac tissue against ischemia/reperfusion damage, although the exact mechanism was not elucidated. As shown here, sulindac can also protect RPE cells from chemical oxidative damage or UV light by initiating a protective mechanism similar to what is observed in ischemic preconditioning (IPC) response. The mechanism of protection appears to be triggered by reactive oxygen species (ROS) and involves known IPC signaling components such as PKG and PKC epsilon in addition to the mitochondrial ATP-sensitive K(+) channel. Sulindac induced iNOS and Hsp70, late-phase IPC markers in the RPE cells. A unique feature of the sulindac protective response is that it involves activation of the peroxisome proliferator-activated receptor alpha (PPAR-α). We have also used low-passage human fetal RPE and polarized primary fetal RPE cells to validate the basic observation that sulindac can protect retinal cells against oxidative stress. These findings indicate a mechanism for preventing oxidative stress in RPE cells and suggest that sulindac could be used therapeutically for slowing the progression of AMD.

  19. Identification of proteins involved in neural progenitor cell targeting of gliomas

    Directory of Open Access Journals (Sweden)

    Honeth Gabriella

    2009-06-01

    Full Text Available Abstract Background Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. Methods Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. Results We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. Conclusion These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.

  20. Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ.

    Directory of Open Access Journals (Sweden)

    Kumar Nikhil

    Full Text Available Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER, a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ, a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC conjugate, a novel class of hybrid compound (PTER-ITC synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7 and -independent (MDA-MB-231 breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway.

  1. Corynebacterium diphtheriae invasion-associated protein (DIP1281 is involved in cell surface organization, adhesion and internalization in epithelial cells

    Directory of Open Access Journals (Sweden)

    Rheinlaender Johannes

    2010-01-01

    Full Text Available Abstract Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated the function of surface-associated protein DIP1281, previously annotated as hypothetical invasion-associated protein. Results Microscopic inspection of DIP1281 mutant strains revealed an increased size of the single cells in combination with an altered less club-like shape and formation of chains of cells rather than the typical V-like division forms or palisades of growing C. diphtheriae cells. Cell viability was not impaired. Immuno-fluorescence microscopy, SDS-PAGE and 2-D PAGE of surface proteins revealed clear differences of wild-type and mutant protein patterns, which were verified by atomic force microscopy. DIP1281 mutant cells were not only altered in shape and surface structure but completely lack the ability to adhere to host cells and consequently invade these. Conclusions Our data indicate that DIP1281 is predominantly involved in the organization of the outer surface protein layer rather than in the separation of the peptidoglycan cell wall of dividing bacteria. The adhesion- and invasion-negative phenotype of corresponding mutant strains is an effect of rearrangements of the outer surface.

  2. A candidate region for Nevoid Basal Cell Carcinoma Syndrome defined by genetic and physical mapping

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, B.; Negus, K.; Berkman, J. [Univ. of Queensland, Brisbane (Australia)] [and others

    1994-09-01

    Nevoid Basal Cell Carcinoma Syndrome (NBCCS, or Gorlin`s syndrome) is a cancer predisposition syndrome charcterized by multiple basal cell carcinomas (BCCs) and diverse developmental defects. The gene responsible for NBCCS, which is most likely to be a tumor suppressor gene, has previously been mapped to 9q22.3-q31 in a 12 cM interval between the microsatellite marker loci D9S12 and D9S109. Combined multipoint and haplotype analyses of Australian pedigrees has further refined the localization to a 2 cM interval between markers D9S196 and D9S180. Our loss of heterozygosity (LOH) studies from sporadic (n= 58) and familial (n=41) BCCs indicate that 50% have deletions within the NBCCS candidate region. All LOH is consistent with the genetic mapping of the NBCCS locus. Additionally, one sporadic tumor indicates that the smallest region of overlap in the deletions is within the interval D9S287 (proximal) and D9S180 (distal). A series of YAC clones from within this region has been mapped by FISH to examine chimerism. These clones, which have been mapped with respect to one another, form a contig which encompasses the candidate region from D9S196 to D9S180.

  3. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome

    Science.gov (United States)

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E.; Oltz, Eugene M.; Jarvis, James N.; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F.; Wang, Ting

    2016-01-01

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. PMID:26888867

  4. Establishment of a Protein Reference Map for Soybean Root Hair Cells

    Science.gov (United States)

    Root hairs are single tubular cells formed from the differentiation of epidermal cells on roots. They are involved in water and nutrient uptake, and represent the infection site on leguminous roots by rhizobia, soil bacteria that establish a nitrogen fixing symbiosis. Root hairs develop by polar cel...

  5. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide.

    Directory of Open Access Journals (Sweden)

    Irene Amigo-Jiménez

    Full Text Available BACKGROUND: Matrix metalloproteinase-9 (MMP-9 contributes to chronic lymphocytic leukemia (CLL pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO and fludarabine as examples of cytotoxic drugs. METHODS: We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. RESULTS: In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2 and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. CONCLUSIONS: Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This

  6. Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Tae Mogami

    Full Text Available Ovarian clear cell adenocarcinoma (CCC is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca(++-binding annexin A4 (ANXA4 protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.

  7. Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells.

    Science.gov (United States)

    Mogami, Tae; Yokota, Naho; Asai-Sato, Mikiko; Yamada, Roppei; Koizume, Shiro; Sakuma, Yuji; Yoshihara, Mitsuyo; Nakamura, Yoshiyasu; Takano, Yasuo; Hirahara, Fumiki; Miyagi, Yohei; Miyagi, Etsuko

    2013-01-01

    Ovarian clear cell adenocarcinoma (CCC) is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca(++)-binding annexin A4 (ANXA4) protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs) that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO) resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.

  8. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi's sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Darya A Haas

    Full Text Available Kaposi's sarcoma (KS is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs and cyclooxygenase-2 (COX-2. The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells.

  9. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters.

    Science.gov (United States)

    Němcová-Fürstová, Vlasta; Kopperová, Dana; Balušíková, Kamila; Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka; Daniel, Petr; Souček, Pavel; Kovář, Jan

    2016-11-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100nM and 300nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells.

  10. Expression of Some Genes Involved in Epigenetic in Breast Cancer Cell Lines: The Effect of Quercetin

    Directory of Open Access Journals (Sweden)

    fahime mohamadian

    2015-11-01

    Full Text Available Background & Objectives: Breast cancer is one of the most common cancers among women. Incorrect pattern of gene expression involved in epigenetic including APOBEC3B, DNMT-1, and TET-1 can develop breast cancer. Quercetin is a natural flavonoid with antioxidant and anti-cancer properties that have been reported in other studies. To investigate the effect mechanism of quercetin, this study examined the effect of quercetin on the expression of genes which were referred to in two classes of breast cancer cell lines. Materials & Methods: Cell lines including MCF-7 and MDA-MB-453 in separate boxes in the control group and the treated groups with two dosages of 50 and 100 mm of quercetin were cultured for 24 and 48 hours, respectively. RNA was extracted from the cells and then was converted to cDNA. Real-time PCR was used for APOBEC3B, DNMT_1, and TET-1 expression. Results: The results showed that quercetin had conflicting results after 24 hours in two cell lines as there was a decrease in the gene expression of APQBEC3B and an increase in that of DNMT-1 in MCF-7 cell line. In contrast, the cell line of MDA-MB-453, APOBEC3B, and DNMT-1 gene expression increased. While the 48-hour results showed that quercetin reduced the gene expression of APOBEC3B and DNMT-1 and increased that of the TET-1 in both cell lines. Conclusion: Due to the satisfactory effects of quercetin on breast cancer cells after 48 hours, these effects can be probably applied through epigenetic mechanisms. However, the final decision needs further investigation.

  11. ROCK is involved in vasculogenic mimicry formation in hepatocellular carcinoma cell line.

    Science.gov (United States)

    Zhang, Ji-Gang; Li, Xiao-Yu; Wang, Yu-Zhu; Zhang, Qi-Di; Gu, Sheng-Ying; Wu, Xin; Zhu, Guan-Hua; Li, Qin; Liu, Gao-Lin

    2014-01-01

    Ras homolog family member A (RhoA) and Rho-associated coiled coil-containing protein kinases 1 and 2 (ROCK1 and 2) are key regulators of focal adhesion, actomyosin contraction and cell motility. RhoA/ROCK signaling has emerged as an attractive target for the development of new cancer therapeutics. Whether RhoA/ROCK is involved in regulating the formation of tumor cell vasculogenic mimicry (VM) is largely unknown. To confirm this hypothesis, we performed in vitro experiments using hepatocellular carcinoma (HCC) cell lines. Firstly, we demonstrated that HCC cells with higher active RhoA/ROCK expression were prone to form VM channels, as compared with RhoA/ROCK low-expressing cells. Furthermore, Y27632 (a specific inhibitor of ROCK) rather than exoenzyme C3 (a specific inhibitor of RhoA) effectively inhibited the formation of tubular network structures in a dose-dependent manner. To elucidate the possible mechanism of ROCK on VM formation, real-time qPCR, western blot and immunofluorescence were used to detect changes of the key VM-related factors, including VE-cadherin, erythropoietin-producing hepatocellular carcinoma-A2 (EphA2), phosphoinositide 3-kinase (PI3K), matrix metalloproteinase (MMP)14, MMP2, MMP9 and laminin 5γ2-chain (LAMC2), and epithelial-mesenchymal-transition (EMT) markers: E-cadherin and Vimentin. The results showed that all the expression profiles were attenuated by blockage of ROCK. In addition, in vitro cell migration and invasion assays showed that Y27632 inhibited the migration and invasion capacity of HCC cell lines in a dose-dependent manner markedly. These data indicate that ROCK is an important mediator in the formation of tumor cell VM, and suggest that ROCK inhibition may prove useful in the treatment of VM in HCC.

  12. Prophylaxis with ketotifen in rats with portal hyper tension:involvement of mast cell and eicosanoids

    Institute of Scientific and Technical Information of China (English)

    Fernando Sánchez-Patán; Jaime Arias; Raquel Anchuelo; Elena Vara; Cruz García; Yolanoa Saavedra; Patri Vergara; Carmen Cuellar; Marta Rodero; Maria-Angeles Aller

    2008-01-01

    BACKGROUND: Since we have previously shown an increase of mast cells in the small bowel and in the mesenteric lymph nodes in the rats with prehepatic portal hypertension, it can be hypothesized that this essential inlfammatory cell would be involved in the pathogeny of the splanchnic changes related to portal hypertension. METHODS: To verify this hypothesis, we ifrst studied mast cell inifltration in the ileum and in the mesenteric lymph nodes in sham-operated male Wistar rats (n=12) and in short-term prehepatic portal hypertensive rats (n=12), and the serum levels of rat mast cell proteaseⅡ (RMCP-Ⅱ) by ELISA. In a second set of experiments ketotifen, a mast cell stabilizer drug, was administered to sham-operated (n=10) and portal hypertensive (n=12) rats 24 hours before the intervention and prostanoids (PGE2, PGI2, TXB2) and leukotrienes (LTC4, LTB4) were assayed by RIA, mast cell inifltration in the ileum and in the mesenteric lymph nodes and the serum levels of RMCP-Ⅱ were also studied, to show its effectiveness to prevent the mesenteric alterations produced by the inlfammatory mediators released by the mast cell. RESULTS: Forty-eight hours after the intervention RMCP-Ⅱ(P CONCLUSIONS: In acute portal hypertension in the rat, the mast cell translocation from intestinal mucosa to mesenteric lymph nodes, where they are activated and degranulates, would represent a defence mechanism to avoid the activation of an acute and massive inlfammatory response in this location. Prophylactic administration of ketotifen is able to reduce the splanchnic inlfammatory changes related to acute portal hypertension in the rat.

  13. Proteomic analysis of pathways involved in estrogen-induced growth and apoptosis of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhang-Zhi Hu

    Full Text Available BACKGROUND: Estrogen is a known growth promoter for estrogen receptor (ER-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we sought to identify signaling networks that are triggered by estradiol (E2 in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C versus cells that proliferate upon exposure to E2 (MCF-7. The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1 is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation. CONCLUSIONS: G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen.

  14. Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Mori, Ryuji; Saiki, Mizue; Nakamura, Yukiko; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    2004-12-01

    Seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) were cultivated on board the Space Shuttle STS-95 mission and changes in the morphology and the cell wall properties of coleoptiles were analyzed. In space, rice coleoptiles showed a spontaneous (automorphic) curvature toward the caryopsis in the elongating region. The angle of automorphic curvature was larger in Koshihikari than in a gibberellin-deficient dwarf cultivar, Tan-ginbozu, and the angle gradually decreased during the growth of coleoptiles in both cultivars. The more quickly expanding convex side of the bending region of the rice coleoptiles showed a greater extensibility of the cell wall than the opposite side. There was a significant correlation between the angle of curvature and the difference in the cell wall extensibility between the convex and the concave sides. Both the levels of the cell wall polysaccharides per unit length of coleoptile and the ratio of high-molecular-mass polysaccharides in the hemicellulose fraction were lower in the convex side than the concave one. Also, the activity of (1-->3),(1-->4)-beta-glucanases in the cell wall was higher in the convex side than the concave one. These results suggest that the uneven modifications of cell wall metabolism bring about the difference in the levels and the molecular size of the cell wall polysaccharides, thereby causing the difference in capacity of the cell wall to expand between the dorsal and the ventral sides, leading to the automorphic curvature of rice coleoptiles in space. The data also suggest the involvement of gibberellins in inducing the automorphic curvature under microgravity conditions.

  15. Mapping of B-Cell Epitopes in a Trypanosoma cruzi Immunodominant Antigen Expressed in Natural Infections

    Science.gov (United States)

    Lesénéchal, Mylène; Becquart, Laurence; Lacoux, Xavier; Ladavière, Laurent; Baida, Renata C. P.; Paranhos-Baccalà, Glaucia; da Silveira, José Franco

    2005-01-01

    Tc40 is an immunodominant antigen present in natural Trypanosoma cruzi infections. This immunogen was thoroughly mapped by using overlapping amino acid sequences identified by gene cloning and chemical peptide synthesis. To map continuous epitopes of the Tc40 antigen, an epitope expression library was constructed and screened with sera from human chagasic patients. A major, linear B-cell epitope spanning residues 403 to 426 (PAKAAAPPAA) was identified in the central domain of Tc40. A synthetic peptide spanning this region reacted strongly with 89.8% of the serum samples from T. cruzi-infected individuals. This indicates that the main antigenic site is defined by the linear sequence of the peptide rather than a conformation-dependent structure. The major B-cell epitope of Tc40 shares a high degree of sequence identity with T. cruzi ribosomal and RNA binding proteins, suggesting the existence of cross-reactivity among these molecules. PMID:15699429

  16. Mapping of error cells in clinical measure to symmetric power space.

    Science.gov (United States)

    Abelman, H; Abelman, S

    2007-09-01

    During the refraction procedure, the power of the nearest equivalent sphere lens, known as the scalar power, is conserved within upper and lower bounds in the sphere (and cylinder) lens powers. Bounds are brought closer together while keeping the circle of least confusion on the retina. The sphere and cylinder powers and changes in these powers are thus dependent. Changes are depicted in the cylinder-sphere plane by error cells with one pair of parallel sides of negative gradient and the other pair aligned with the graph axis of cylinder power. Scalar power constitutes a vector space, is a meaningful ophthalmic quantity and is represented by the semi-trace of the dioptric power matrix. The purpose of this article is to map to error cells for the following: coordinates of the dioptric power matrix, its principal powers and meridians and its entries from error cells surrounding powers in sphere, cylinder and axis. Error cells in clinical measure for conserved scalar power now contain more compensatory lens powers. Such cells and their respective mappings in terms of most scientific and alternate clinical quantities now image consistently not only to the cells from where they originate but also to each other.

  17. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  18. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    Institute of Scientific and Technical Information of China (English)

    Jacqueline Brown; Hannelie Bothma; Robin Veale; Pascale Willem

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 ( CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21( C-MYC, FAM84B), 11q22.1-q22.3 ( BIRC2, BIRC3), 5p15.2 ( CTNND2), 3q11.2-q12.2 ( MINA) and 18p11.32 ( TYMS, YES1). The significant deletions included 1p31.2-p31.1 ( CTH, GADD45α, DIRAS3), 2q22.1 ( LRP1B), 3p12.1-p14.2 ( FHIT), 4q22.1-q32.1 ( CASP6, SMAD1), 8p23.2-q11.1 ( BNIP3L) and 18q21.1-q21.2 ( SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3 , FGF4 , FGF19 , CCND1 and C-MYC ) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  19. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation.

    Science.gov (United States)

    Sakaguchi, N; Maeda, K

    2016-01-01

    Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.

  20. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Qualman Stephen J

    2007-06-01

    Full Text Available Abstract Background Stat3 has been classified as a proto-oncogene and constitutive Stat3 signaling appears to be involved in oncogenesis of human cancers. However, whether constitutive Stat3 signaling plays a role in the survival and growth of osteosarcomas, rhabdomyosarcomas, and soft-tissue sarcomas is still unclear. Methods To examine whether Stat3 is activated in osteosarcomas, rhabdomyosarcomas and other soft-tissue sarcomas we analyzed sarcoma tissue microarray slides and sarcoma cell lines using immunohistochemistry and Western blot analysis, respectively, with a phospho-specific Stat3 antibody. To examine whether the activated Stat3 pathway is important for sarcoma cell growth and survival, adenovirus-mediated expression of a dominant-negative Stat3 (Y705F and a small molecule inhibitor (termed STA-21 were used to inhibit constitutive Stat3 signaling in human sarcoma cell lines expressing elevated levels of Stat3 phosphorylation. Cell viability was determined by MTT assays and induction of apoptosis was analyzed by western blotting using antibodies that specifically recognize cleaved caspases-3, 8, and 9. Results Stat3 phosphorylation is elevated in 19% (21/113 of osteosarcoma, 27% (17/64 of rhabdomyosarcoma, and 15% (22/151 of other soft-tissue sarcoma tissues as well as in sarcoma cell lines. Expression of the dominant-negative Stat3 and treatment of STA-21 inhibited cell viability and growth and induced apoptosis through caspases 3, 8 and 9 pathways in human sarcoma cell lines expressing elevated levels of phosphorylated Stat3. Conclusion This study demonstrates that Stat3 phosphorylation is elevated in human rhabdomyosarcoma, osteosarcomas and soft-tissue sarcomas. Furthermore, the activated Stat3 pathway is important for cell growth and survival of human sarcoma cells.

  1. The involvement of mutant Rac1 in the formation of invadopodia in cultured melanoma cells.

    Science.gov (United States)

    Revach, Or-Yam; Winograd-Katz, Sabina E; Samuels, Yardena; Geiger, Benjamin

    2016-04-10

    In this article, we discuss the complex involvement of a Rho-family GTPase, Rac1, in cell migration and in invadopodia-mediated matrix degradation. We discuss the involvement of invadopodia in invasive cell migration, and their capacity to promote cancer metastasis. Considering the regulation of invadopodia formation, we describe studies that demonstrate the role of Rac1 in the metastatic process, and the suggestion that this effect is attributable to the capacity of Rac1 to promote invadopodia formation. This notion is demonstrated here by showing that knockdown of Rac1 in melanoma cells expressing a wild-type form of this GTPase, reduces invadopodia-dependent matrix degradation. Interestingly, we also show that excessive activity of Rac1, displayed by the P29S, hyperactive, "fast cycling" mutant of Rac1, which is present in 5-10% of melanoma tumors, inhibits invadopodia function. Moreover, knockdown of this hyperactive mutant enhanced matrix degradation, indicating that excessive Rac1 activity by this mutant can negatively regulate invadopodia formation and function.

  2. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  3. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  4. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival

    Institute of Scientific and Technical Information of China (English)

    Sheena M Cruickshank; Louise Wakenshaw; John Cardone; Peter D Howdle; Peter J Murray; Simon R Carding

    2008-01-01

    AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC).METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines.RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis.CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.

  5. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress.

    Science.gov (United States)

    Valente, Caroline; Pasqualim, Patrícia; Jacomasso, Thiago; Maurer, Juliana Bello Baron; Souza, Emanuel Maltempi de; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Carnieri, Eva Gunilla Skare; Cadena, Sílvia Maria Suter Correia

    2012-12-01

    In this study, the responses of plant uncoupling mitochondrial protein (PUMP) and alternative oxidase (AOX) in mitochondria from embryogenic cells of A. angustifolia subjected to cold stress (4°C for 24 h or 48 h) is reported. In the mitochondria of stressed cells, PUMP activity increased by approximately 45% (at 24h and 48 h), which was determined by measuring the oxygen consumption after the addition of linoleic acid and the inhibition by BSA and ATP. PUMP activation was confirmed using transmembrane electrical potential (Δψ) assays. Immunoblot assays showed an increase of PUMP expression by 40% and 150% after 24h and 48 h of cold stress, respectively. AOX activity, measured under conditions similar to those of the PUMP assays, was only slightly increased in the mitochondria from stressed cells (at 24h and 48 h), as demonstrated by oxygen consumption experiments. Cell viability was unaffected by cold stress, indicating that the effects on PUMP and AOX were not caused by cell death. These results show that the main response of this gymnosperm to cold stress is the activation of PUMP, which suggests that this protein may be involved in the control of reactive oxygen species generation, which has been previously associated with this condition.

  6. Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2014-01-01

    The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cellintegrity and trigger breast tumor initiation. Therefore, we exploredin silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cellidentity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance:CBX6 andPCGF2, encoding proteins belonging to the Polycomb group, andSMARCD3 andSMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression ofSMARCA4 andHAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression ofALDH1A3 and GATA3, and the down-regulation ofNOTCH4and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression ofMYC and the down-regulation ofCCNE1, with the latter suggesting a block in cellcycle progression at the G1 phase.

  7. Endoscopic biopsy of a B-cell lymphoma involving the entire ventricular system: A case report

    Science.gov (United States)

    QIN, JIA-ZHEN; WU, YUE-KUI; YANG, ZHI-JUN; LV, JUN; DANG, YUAN-YUAN; ZHANG, HONG-TIAN; DAI, YI-WU

    2016-01-01

    A 62-year-old male suffering from vomiting and mild preceding nausea for 15 days was examined in the present case report. Magnetic resonance imaging revealed a homogeneously enhancing cluster-like lesion involving the lateral, third and fourth ventricles. An endoscopic biopsy was performed, and histopathological examination led to the diagnosis of a high-grade diffuse large B-cell lymphoma. To the best of our knowledge, the present study reports the first case of a primary lymphoma involving the entire ventricular system. Therefore, primary lymphomas should be considered in the list of ventricular tumors. An endoscopic biopsy requires minimal invasion to obtain an adequate tissue sample, and frequently leads to the correct diagnosis and subsequent treatment protocols. PMID:26889262

  8. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps.

    OpenAIRE

    Kuperstein, Inna; Cohen, David PA; POOK, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2013-01-01

    International audience; BACKGROUND: Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabi...

  9. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    OpenAIRE

    Kuperstein, Inna; Cohen, David PA; POOK, Stuart; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2013-01-01

    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three...

  10. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene.

    OpenAIRE

    Stillman, D J; Bankier, A T; Seddon, A; Groenhout, E G; Nasmyth, K A

    1988-01-01

    The yeast HO gene, which encodes an endonuclease involved in initiating mating type interconversion, is expressed in mother cells but not in daughters. It has been demonstrated that the SWI5 gene, which is an activator of HO expression, plays a critical role in this differential mother/daughter expression of HO. In this paper we describe the cloning and sequencing of the SWI5 gene. The predicted amino acid sequence derived from the cloned SWI5 gene shows homology with the repeated DNA-binding...

  11. Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    CERN Document Server

    Chattopadhyay, Manojit; Dan, Pranab K; 10.1007/s00170-010-2802-4

    2011-01-01

    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in t...

  12. Effect of malaria components on blood mononuclear cells involved in immune response

    Institute of Scientific and Technical Information of China (English)

    Chuchard Punsawad

    2013-01-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  13. Effect of malaria components on blood mononuclear cells involved in immune response.

    Science.gov (United States)

    Punsawad, Chuchard

    2013-09-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  14. System Dynamics Modelling of the Processes Involving the Maintenance of the Naive T Cell Repertoire

    CERN Document Server

    Figueredo, Grazziela P; Whitbrook, Amanda

    2010-01-01

    The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immunodegradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.

  15. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  16. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2010-04-08

    Abstract Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.

  17. Mechanisms involved in calcium oxalate endocytosis by Madin-Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    A.H. Campos

    2000-01-01

    Full Text Available Calcium oxalate (CaOx crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001 or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005 administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001 or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001. Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01, or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05; however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6, tetraethylammonium (1 mM; N = 6 or cromakalim (1 µM; N = 6. Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.

  18. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death

    Science.gov (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Fridman, Yael; Lers, Amnon; Eshel, Dani

    2017-01-01

    Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion. PMID:28119713

  19. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control.

    Science.gov (United States)

    Grant, Gavin D; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K; Mahoney, J Matthew; Loros, Jennifer J; Dunlap, Jay C; Whitfield, Michael L

    2012-08-01

    We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle-dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.

  20. CDC27 protein is involved in radiation response in squamous cell cervix carcinoma.

    Science.gov (United States)

    Rajkumar, T; Gopal, G; Selvaluxmi, G; Rajalekshmy, K R

    2005-10-01

    In the present study, an attempt was made to identify genes involved in radiation response in cervix carcinoma. Differential display technique was used to study the expression profiles of tumour biopsy samples obtained from patients, responding and not responding to treatment. The samples were obtained prior to radiotherapy and subsequent to treatment with Tele-radiation at 10 Gray (Gy). One of the differentially expressed cDNAs, when sequenced was identified to be CDC27. Immuno-histochemical analysis of pre- and post-treated tumour samples from fifteen patients showed the downregulation of expression of CDC27 protein in seven patients. Down-regulation was associated with poorer response to radiotherapy. Cervical cancer cell lines SiHa and C33A were irradiated and their nuclei were stained for expression of CDC27 and analyzed using fluorescent-activated cell sorting (FACS). Down-regulation of CDC27 protein in the irradiated SiHa cell line was associated with greater survival fraction, compared to the irradiated C33A cell line, which had only slight fall in the level of CDC27 protein. This is the first study to suggest a role for CDC27 in radiation response. However, a larger cohort is needed to further confirm the value of CDC27 protein as a predictive marker, for radiation response in cervix cancer.

  1. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    Science.gov (United States)

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  2. Involvement of stathmin 1 in the neurotrophic effects of PACAP in PC12 cells.

    Science.gov (United States)

    Dejda, Agnieszka; Chan, Philippe; Seaborn, Tommy; Coquet, Laurent; Jouenne, Thierry; Fournier, Alain; Vaudry, Hubert; Vaudry, David

    2010-09-01

    Rat pheochromocytoma PC12 cells have been widely used to investigate the neurotrophic activities of pituitary adenylate cyclase-activating polypeptide (PACAP). In particular, PACAP has been shown to promote differentiation and to inhibit apoptosis of PC12 cells. In order to identify the mechanisms mediating these effects, we sought for proteins that are phosphorylated upon PACAP treatment. High-performance liquid chromatography and 2D gel electrophoresis analysis, coupled with mass spectrometry, revealed that stathmin 1 is strongly phosphorylated within only 5 min of exposure to PACAP. Western blot experiments confirmed that PACAP induced a robust phosphorylation of stathmin 1 in a time-dependent manner. On the other hand, PACAP decreased stathmin 1 gene expression. Investigations of the signaling mechanisms known to be activated by PACAP revealed that phosphorylation of stathmin 1 was mainly mediated through the protein kinase A and mitogen-activated protein kinase pathways. Blockage of stathmin 1 expression with small interfering RNA did not affect PC12 cell differentiation induced by PACAP but reduced the ability of the peptide to inhibit caspase 3 activity and significantly decreased its neuroprotective action. Taken together, these data demonstrate that stathmin 1 is involved in the neurotrophic effect of PACAP in PC12 cells.

  3. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    Science.gov (United States)

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.

  4. Involvement of endothelin receptors in normal and pathological development of neural crest cells.

    Science.gov (United States)

    Pla, Patrick; Larue, Lionel

    2003-06-01

    Endothelin receptors (Ednr) are G-protein-coupled receptors with seven membrane-spanning domains and are involved in various physiological processes in adults. We review here the function of these receptors during the development and transformation of the neural crest cell-specific lineage. Neural crest cells (NCC) may be classified according to their location in the body. In particular, there are clear differences between the neural crest cells arising from the cephalic part of the embryo and those arising from the vagal and truncal part. The development of cranial and cardiac NCC requires the endothelin-1/Ednra system to be fully functional whereas the development of more posterior NCC requires full functionality of the endothelin-3/Ednrb system. Mutations have been found in the genes corresponding to these systems in mammals. These mutations principally impair pigmentation and enteric ganglia development. The precise patterns of expression of these receptors and their ligands have been determined in avian and mammalian models. Data obtained in vitro and in vivo have provided insight into the roles of these proteins in cell proliferation, migration, differentiation and transformation.

  5. Three key variables involved in feeder preparation for the maintenance of human embryonic stem cells.

    Science.gov (United States)

    Zhou, Di; Liu, Tiancheng; Zhou, Xiaoying; Lu, Guangxiu

    2009-07-01

    Although the development of a feeder-free culture system for future applications of human embryonic stem cells (hESCs), at present the regular culture system uses mitotically inactivated mouse embryonic fibroblasts (mEFs) as feeder cells for maintaining undifferentiated hESCs. Mitomycin C (MMC) is used to inactivate mEFs, but this causes DNA damage, and it is unclear whether MMC remains in the culture system after several washes. Three variables have been evaluated with respect to feeder preparation and MMC involvement, including mEF exposure to MMC, density of feeder cells, and different wash steps during the preparation of feeder cells. These variables are critical to the subsequent planting of hESCs because remnants of MMC would be unsafe with respect to long-term culture of hESCs The novel data here evaluates the remnant amounts of MMC in a hESCs culture system using HPLC/MS/MS. The ultimate objective of this study is the control of MMC within a safe range.

  6. Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death.

    Science.gov (United States)

    Izumi, Yasuhiko; Ezumi, Masayuki; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2014-06-01

    The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson's disease (PD). Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50μM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.

  7. Papillary renal cell carcinoma with metastatic laparoscopic port site and vaginal involvement: a case report

    Directory of Open Access Journals (Sweden)

    Fong Kah

    2011-04-01

    Full Text Available Abstract Introduction Laparoscopic port-site metastasis is a rare but well recognized outcome following surgery in urological cancers, with its etiology not clearly understood. Additionally, vaginal metastasis in clear cell renal cell carcinoma is rare, and has not been previously reported in the setting of papillary renal cell carcinoma. Case presentation We present the case of a 71-year-old Chinese woman with metastatic type II papillary renal cell carcinoma with histologically verified vaginal involvement and a concurrent laparoscopic port-site metastasis. This was also associated with a unique constellation of widely disseminated metastatic sites, which include a local relapse, the peritoneum and the urethra. Conclusion Laparoscopic port-site metastases are associated with the presence of advanced cancer with multiple sites of metastasis. We hypothesize from the findings of our report and background data that this phenomenon is more likely to be related to tumor factors rather than operative factors. We also present what is, to the best of our knowledge, the first reported case in the literature of vaginal and urethral metastasis and the second reported case of laparoscopic port-site recurrence.

  8. Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    Full Text Available Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation.

  9. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2.

    Science.gov (United States)

    Liniger, Matthias; Summerfield, Artur; Zimmer, Gert; McCullough, Kenneth C; Ruggli, Nicolas

    2012-01-01

    Avian influenza viruses (AIV) raise worldwide veterinary and public health concerns due to their potential for zoonotic transmission. While infection with highly pathogenic AIV results in high mortality in chickens, this is not necessarily the case in wild birds and ducks. It is known that innate immune factors can contribute to the outcome of infection. In this context, retinoic acid-inducible gene I (RIG-I) is the main cytosolic pattern recognition receptor known for detecting influenza A virus infection in mammalian cells. Chickens, unlike ducks, lack RIG-I, yet chicken cells do produce type I interferon (IFN) in response to AIV infection. Consequently, we sought to identify the cytosolic recognition elements in chicken cells. Chicken mRNA encoding the putative chicken analogs of CARDIF and LGP2 (chCARDIF and chLGP2, respectively) were identified. HT7-tagged chCARDIF was observed to associate with mitochondria in chicken DF-1 fibroblasts. The exogenous expression of chCARDIF, as well as of the caspase activation and recruitment domains (CARDs) of the chicken melanoma differentiation-associated protein 5 (chMDA5), strongly activated the chicken IFN-β (chIFN-β) promoter. The silencing of chMDA5, chCARDIF, and chIRF3 reduced chIFN-β levels induced by AIV, indicating their involvement in AIV sensing. As with mammalian cells, chLGP2 had opposing effects. While overexpression decreased the activation of the chIFN-β promoter, the silencing of endogenous chLGP2 reduced chIFN-β induced by AIV. We finally demonstrate that the chMDA5 signaling pathway is inhibited by the viral nonstructural protein 1. In conclusion, chicken cells, including DF-1 fibroblasts and HD-11 macrophage-like cells, employ chMDA5 for sensing AIV.

  10. Colon cancer cell chemosensitisation by fish oil emulsion involves apoptotic mitochondria pathway.

    Science.gov (United States)

    Granci, Virginie; Cai, Fang; Lecumberri, Elena; Clerc, Aurélie; Dupertuis, Yves M; Pichard, Claude

    2013-04-14

    Adjuvant use of safe compounds with anti-tumour properties has been proposed to improve cancer chemotherapy outcome. We aimed to investigate the effects of fish oil emulsion (FOE) rich in n-3 PUFA with the standard chemotherapeutic agents 5-fluorouracil (5-FU), oxaliplatin (OX) or irinotecan (IRI) on two human colorectal adenocarcinoma cells with different genetic backgrounds. The HT-29 (Bax+/+) and LS174T (Bax-/-) cells were co-treated for 24-72 h with 1 μm-5-FU, 1 μm-OX or 10 μm-IRI and/or FOE dilution corresponding to 24 μm-EPA and 20·5 μm-DHA. Soyabean oil emulsion (SOE) was used as isoenergetic and isolipid control. Cell viability, apoptosis and nuclear morphological changes were evaluated by cytotoxic colorimetric assay, flow cytometry analysis with annexin V and 4',6'-diamidino-2-phenylindole staining, respectively. A cationic fluorescent probe was used to evaluate mitochondrial dysfunction, and protein expression involved in mitochondrial apoptosis was determined by Western blot. In contrast to SOE, co-treatment with FOE enhanced significantly the pro-apoptotic and cytotoxic effects of 5-FU, OX or IRI in HT-29 but not in LS174T cells (two-way ANOVA, P <0.01). These results were confirmed by the formation of apoptotic bodies in HT-29 cells. A significant increase in mitochondrial membrane depolarisation was observed after the combination of 5-FU or IRI with FOE in HT-29 but not in LS174T cells (P <0.05). Co-administration of FOE with the standard agents, 5-FU, OX and IRI, could be a good alternative to increase the efficacy of chemotherapeutic protocols through a Bax-dependent mitochondrial pathway.

  11. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives

    Science.gov (United States)

    Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan

    2016-11-01

    The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.

  12. Mast cell mediators: Their differential release and the secretory pathways involved

    Directory of Open Access Journals (Sweden)

    Tae Chul eMoon

    2014-11-01

    Full Text Available Mast cells (MC are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of preformed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll Like Receptor-mediated. However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes and species of origin, as well as on the intracellular synthesis, storage and secretory processes involved.

  13. High Frequency of Bone Marrow Involvement in Intravascular Large B-Cell Lymphoma.

    Science.gov (United States)

    Wang, Jianchao; Ding, Wenshuang; Gao, Limin; Yao, Wenqing; Chen, Min; Zhao, Sha; Liu, Weiping; Zhang, Wenyan

    2017-04-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of diffuse large B-cell lymphoma. Thirteen cases of IVLBCL with a median age of 56 years were analyzed retrospectively. Nonspecific symptoms such as fever and hepatosplenomegaly were the most common manifestations, and the bone marrow was usually involved in 8/13 (61.5%) cases. All tumors expressed CD20, and 12/13 (92.3%) of the tumors exhibited a nongerminal center phenotype by Hans algorithm. CD5 was expressed in 3/12 (25%) of the tumors. MYC was negative in all cases, and BCL2 was positive in 10/12 (83.3%) cases. Cytogenetic analysis revealed 5 cases that did not have rearrangements in either the MYC or the BCL2 gene. No association with Epstein-Barr virus was found. Seven of 11 patients received chemotherapy. The median survival time was 6 months. Patients with hemophagocytic syndrome had poor prognoses. Our study demonstrates that IVLBCL has a poor clinical outcome with a high frequency of bone marrow involvement and that the MYC gene may not play an important role in the poor prognosis of IVLBCL.

  14. Carbon Monoxide-induced Stomatal Closure Involves Generation of Hydrogen Peroxide in Vicia faba Guard Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping She; Xi-Gui Song

    2008-01-01

    Here the regulatory role of CO during stomatal movement In Vicla faba L. was surveyed. Results Indicated that, like hydrogen peroxide (H2O2), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H2O2 exhibit the similar regulation role in the atomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H2O2 removal) and diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H2O2 fluorescence induced by CO, implying that CO induced-atomatal closure probably involves H2O2 signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H2O2 fluorescence. These results show that, perhaps like H2O2, the levels of CO in guard cells of V. faba are higher In the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H2O2 in darkness respectively, and that CO is involved in darkness-induced H2O2 synthesis in V. faba guard cells.

  15. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    Science.gov (United States)

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.

  16. Molecular mechanisms involved in secretory vesicle recruitment to the plasma membrane in beta-cells.

    Science.gov (United States)

    Varadi, Aniko; Ainscow, E K; Allan, V J; Rutter, G A

    2002-04-01

    Glucose stimulates the release of insulin in part by activating the recruitment of secretory vesicles to the cell surface. While this movement is known to be microtubule-dependent, the molecular motors involved are undefined. Active kinesin was found to be essential for vesicle translocation in live beta-cells, since microinjection of cDNA encoding dominant-negative KHC(mut) (motor domain of kinesin heavy chain containing a Thr(93)-->Asn point mutation) blocked vesicular movements. Moreover, expression of KHC(mut) strongly inhibited the sustained, but not acute, stimulation of secretion by glucose. Thus, vesicles released during the first phase of insulin secretion exist largely within a translocation-independent pool. Kinesin-driven anterograde movement of vesicles is then necessary for the sustained (second phase) of insulin release. Kinesin may, therefore, represent a novel target for increases in intracellular ATP concentrations in response to elevated extracellular glucose and may be involved in the ATP-sensitive K+channel-independent stimulation of secretion by the sugar.

  17. NPFF2 receptor is involved in the modulatory effects of neuropeptide FF for macrophage cell line.

    Science.gov (United States)

    Sun, Yu-long; Sun, Tao; Zhang, Xiao-yuan; He, Ning; Zhuang, Yan; Li, Jing-yi; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2014-05-01

    Neuropeptide FF (NPFF) interacts with specific receptors to regulate diverse biological processes. Its modulatory effect in the immune field, however, has not been fully explored yet. Here, we report that NPFF2 receptors may be functionally expressed in two immune cell models, the primary peritoneal macrophage and RAW 264.7 macrophage. Firstly, the mRNA levels of NPFF2 receptor were up-regulated in macrophages when treated with LPS for 24 to 72 h. Subsequently, our data hinted that NPFF regulates the viability of both kinds of macrophages. After treatment with RF9, a reported antagonist for both NPFF receptors, delayed or inhibited the NPFF-induced macrophages viability augmentation, suggesting the involvement of NPFF2 receptor. Furthermore, down-regulation of nitric oxide (NO) synthases (NOSs) partially significantly inhibited the viability augmentation of macrophages induced by NPFF, implying a nitric oxide synthases- dependent pathway is involved. However, the NOSs are not the only route by which NPFF affects the viability of macrophages. Pharmacological inhibitors of NF-κB signal pathway also blocked the NPFF-induced macrophages growth, suggesting the involvement of the NF-κB signal pathway. The regulation activity of NPFF for macrophages suggests that NPFF could act as a potential hormone in the control of immune system. Collectively, our data provide new evidence about the immune modulatory effect of NPFF, which will be helpful in extending the scope of NPFF functions.

  18. B-cell epitope mapping for the design of vaccines and effective diagnostics

    Directory of Open Access Journals (Sweden)

    Tarek A. Ahmad

    2016-01-01

    Full Text Available The increasing resistance of many microbial strains to antibiotics, delayed laboratory results, and side effects of many chemotherapeutics has raised the need to search for sensitive diagnostics and new prophylactic strategies especially prevention by vaccination. Understanding the epitope/antibody interaction is the key to constructing potent vaccines and effective diagnostics. B-cell epitope mapping is a promising approach to identifying the main antigenic determinants of microorganisms, in special concern the discontinuous conformational ones. Epitope-based vaccines have remarkable privilege over the conventional ones since they are specific, able to avoid undesirable immune responses, generate long lasting immunity, and are reasonably cheaper. This up-to-date review discusses and compares the different physical, computational, and molecular methods that have been used in epitope mapping. The role of each method in the identification of potent epitopes in viruses, bacteria, fungi, parasites, as well as human diseases are tagged and documented. Simultaneously, frequent combinatorial methods are highlighted. The article aims to assist researchers to design the most suitable protocol for mapping their B-cell epitopes.

  19. A novel cell binding site in the coiled‐coil domain of laminin involved in capillary morphogenesis

    DEFF Research Database (Denmark)

    Sanz, Laura; García-Bermejo, Laura; Blanco, Francisco J

    2003-01-01

    Recently, we reported the isolation and characterization of an anti‐laminin antibody that modulates the extracellular matrix‐dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction....

  20. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  1. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    Science.gov (United States)

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  2. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Lihua Shi; Yusuf A Hannun; Jianru Zuo; Jacek Bielawski; Jinye Mu; Haili Dong; Chong Teng; Jian Zhang; Xiaohui Yang; Nario Tomishige; Kentaro Hanada

    2007-01-01

    Sphingolipids have been suggested to act as second messengers for an array of cellular signaling activities in plant cells, including stress responses and programmed cell death (PCD). However, the mechanisms underpinning these processes are not well understood. Here, we report that an Arabidopsis mutant, fumonisin Bl resistant11-1 (fbr11-1), which fails to generate reactive oxygen intermediates (ROIs), is incapable of initiating PCD when the mutant is challenged by fumonisin B1 (FB1), a specific inhibitor of ceramide synthase. Molecular analysis indicated that FBR11 encodes a long-chain basel (LCB1) subunit of serine palmitoyltransferase (SPT), which catalyzes the first rate-limiting step of de novo sphingolipid synthesis. Mass spectrometric analysis of the sphingolipid concentrations revealed that whereas the fbrll-1 mutation did not affect basal levels of sphingoid bases, the mutant showed attenuated formation of sphingoid bases in response to FB1 By a direct feeding experiment, we show that the free sphingoid bases dihydrosphingosine, phytosphingosine and sphingosine efficiently induce ROI generation followed by cell death. Conversely, ROI generation and cell death induced by dihydrosphingosine were specifically blocked by its phosphorylated form dihydrosphingosine-1 -phosphate in a dose-dependent manner, suggesting that the maintenance of homeostasis between a free sphingoid base and its phosphorylated derivative is critical to determining the cell fate. Because alterations of the sphingolipid level occur prior to the ROI production, we propose that the free sphingoid bases are involved in the control of PCD in Arabidopsis, presumably through the regulation of the ROI level upon receiving different developmental or environmental cues.

  3. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  4. The involvement of cation leaks in the storage lesion of red blood cells.

    Directory of Open Access Journals (Sweden)

    Joanna F Flatt

    2014-06-01

    Full Text Available Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the ‘storage lesion’, which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. Further study of stored red blood cells from donors known to have a high or low-rate of cation leak will shed more light on the relationship between cation gradients and the manifestation of the various elements of the storage lesion.

  5. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    Science.gov (United States)

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  6. Chromosomal mapping of the structural gene coding for the mouse cell adhesion molecule uvomorulin

    Energy Technology Data Exchange (ETDEWEB)

    Eistetter, H.R.; Adolph, S.; Ringwald, M.; Simon-Chazottes, D.; Schuh, R.; Guenet, J.L.; Kemler, R. (Max-Planck-Gesellschaft, Tuebingen (West Germany))

    1988-05-01

    The gene coding for the mouse cell adhesion molecule uvomorulin has been mapped to chromosome 8. Uvomorulin cDNA clone F5H3 identified restriction fragment length polymorphisms in Southern blots of genomic DNA from mouse species Mus musculus domesticus and Mus spretus. By analyzing the segregation pattern of the gene in 75 offspring from an interspecific backcross a single genetic locus, Um, was defined on chromosome 8. Recombination frequency between Um and the co-segregating loci serum esterase 1 (Es-1) and tyrosine aminotransferase (Tat) places Um about 14 centimorgan (cM) distal to Es-1, and 5 cM proximal to Tat. In situ hybridization of uvomorulin ({sup 3}H)cDNA to mouse metaphase chromosomes located the Um locus close to the distal end of chromosome 8 (bands C3-E1). Since uvomorulin is evolutionarily highly conserved, its chromosomal assignment adds an important marker to the mouse genetic map.

  7. High-throughput mapping of origins of replication in human cells.

    Science.gov (United States)

    Lucas, Isabelle; Palakodeti, Aparna; Jiang, Yanwen; Young, David J; Jiang, Nan; Fernald, Anthony A; Le Beau, Michelle M

    2007-08-01

    Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.

  8. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells.

    Science.gov (United States)

    Putaala, Heli; Mäkivuokko, Harri; Tiihonen, Kirsti; Rautonen, Nina

    2011-11-01

    High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse, and distal colon in sequence. The subsequent fermentation metabolomes were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated gene ontology classes linked with cell cycle, and affected number of metabolically active cells. Furthermore, up-regulated effects on classes linked with apoptosis, with increased caspase 2 and 3 activity, implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARα and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.

  9. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Science.gov (United States)

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health.

  10. Identifying components of the hair-cell interactome involved in cochlear amplification

    Directory of Open Access Journals (Sweden)

    Cheatham MaryAnn

    2009-03-01

    Full Text Available Abstract Background Although outer hair cells (OHCs play a key role in cochlear amplification, it is not fully understood how they amplify sound signals by more than 100 fold. Two competing or possibly complementary mechanisms, stereocilia-based and somatic electromotility-based amplification, have been considered. Lacking knowledge about the exceptionally rich protein networks in the OHC plasma membrane, as well as related protein-protein interactions, limits our understanding of cochlear function. Therefore, we focused on finding protein partners for two important membrane proteins: Cadherin 23 (cdh23 and prestin. Cdh23 is one of the tip-link proteins involved in transducer function, a key component of mechanoelectrical transduction and stereocilia-based amplification. Prestin is a basolateral membrane protein responsible for OHC somatic electromotility. Results Using the membrane-based yeast two-hybrid system to screen a newly built cDNA library made predominantly from OHCs, we identified two completely different groups of potential protein partners using prestin and cdh23 as bait. These include both membrane bound and cytoplasmic proteins with 12 being de novo gene products with unknown function(s. In addition, some of these genes are closely associated with deafness loci, implying a potentially important role in hearing. The most abundant prey for prestin (38% is composed of a group of proteins involved in electron transport, which may play a role in OHC survival. The most abundant group of cdh23 prey (55% contains calcium-binding domains. Since calcium performs an important role in hair cell mechanoelectrical transduction and amplification, understanding the interactions between cdh23 and calcium-binding proteins should increase our knowledge of hair cell function at the molecular level. Conclusion The results of this study shed light on some protein networks in cochlear hair cells. Not only was a group of de novo genes closely associated

  11. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    Science.gov (United States)

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  12. Mesogleal cells of the jellyfish Aurelia aurita are involved in the formation of mesogleal fibres.

    Science.gov (United States)

    Shaposhnikova, Tatiana; Matveev, Ivan; Napara, Tatiana; Podgornaya, Olga

    2005-11-01

    The extracellular matrix of the jellyfish Aurelia aurita (Scyphozoa, Cnidaria), known as the mesoglea, is populated by numerous mesogleal cells (Mc). We determined the pattern of the Mc and the mesoglea, raised polyclonal antibodies (RA47) against the major mesogleal protein pA47 (47 kDa) and checked their specificity. In the mesoglea, RA47 stains pA47 itself. In immunoblots of Mc, RA47 stains bands of 120 kDa and 80 kDa; weaker staining is observed at pA47. The same staining pattern is seen on blots of jellyfish epidermal cells and of whole Hydra (Hydrozoa) or isolated mesoglea of Hydra. Our data indicate that pA47 is synthesized by Mc and epidermal cells as high molecular precursors. Using immunostaining techniques, we showed Mc to be involved in the formation of mesogleal non-collagenous (called "elastic" in classic morphological studies) fibres. The biochemical and morphological data suggest that Mc originate from the epidermis.

  13. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo -Inositol Accumulation

    KAUST Repository

    Bruggeman, Quentin

    2015-06-05

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants. © 2015 American Society of Plant Biologists. All rights reserved.

  14. Identification of Corynebacterium diphtheriae gene involved in adherence to epithelial cells.

    Science.gov (United States)

    Kolodkina, Valentina; Denisevich, Tatyana; Titov, Leonid

    2011-03-01

    Corynebacterium diphtheriae the causative pathogen of human diphtheria infects the nasopharynx or skin. Although diphtheria has been extensively studied, little is known about the two key aspects of C. diphtheriae invasiveness: colonization and invasion. The role of adhesive properties in establishing the infection of C. diphtheriae strains, independent of toxin production, still needs to be clarified. In this study, we describe a novel gene involved in adherence to epithelial cells. Transformation of C. diphtheriae 225, biotype gravis, ribotype St-Petersburg by EZ:TN(KAN-2)Tnp Transposome was undertaken. A C. diphtheriae 225 Tn5 insertion library of 2800 mutants was created. Five hundred and eighty five transformants were qualitatively screened for reduced adherence to HEp-2 cells by an adherence assay. One mutant strain consistently exhibiting 15.2% of the wild-type adherence was isolated. The DNA flanking the transposon was identified by inverse PCR and subsequent sequencing. The disrupted gene was 94% identical to the C. diphtheriae DIP1621 gene that belongs to unclassified genes. In conclusion, the disruption of the C. diphtheriae DIP1621 gene led to decreased adherence to epithelial cells; its exact function remains to be established.

  15. Extranodal NK/T-cell lymphoma presenting with primary cardiac involvement

    Directory of Open Access Journals (Sweden)

    Lisa M. Lepeak

    2011-08-01

    Full Text Available Primary cardiac lymphoma is extremely uncommon. We report a case of a 54 year old Caucasian male with a history of non-small cell lung cancer treated by surgical resection who presented with chest pain and dyspnea on exertion. Computerized tomography (CT imaging confirmed a 7.8¥3.8 cm right atrial soft tissue mass infiltrating the lateral wall of the right atrium, and a 5 cm pericardiophrenic mass. Echocardiography confirmed a moderate pericardial effusion without tamponade physiology. Percutaneous biopsy of the pericardiophrenic mass revealed pathologic features diagnostic of NK/T-cell lymphoma. He received CHOP chemotherapy with some improvement in symptoms, but experienced radiographic progression after 2 cycles. He received palliative involved field radiotherapy but developed new sites of progressive disease within the abdomen and died shortly after completing radiotherapy. NK/T-cell lymphomas are aggressive tumors that may present with unusual extranodal disease sites. Prompt diagnosis with consideration for referral to a specialty center with experience in treatment of these rare tumors may offer the greatest potential for improving treatment outcomes.

  16. DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

    Directory of Open Access Journals (Sweden)

    Benedikt M Kessler

    2016-07-01

    Full Text Available Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs, have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  17. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  18. Involvement of TBL/DUF231 proteins into cell wall biology.

    Science.gov (United States)

    Bischoff, Volker; Selbig, Joachim; Scheible, Wolf-Rüdiger

    2010-08-01

    Through map-based cloning we determined TRICHOME BIREFRINGENCE (TBR) to belong to a plant-specific, yet anonymous gene family with 46 members in Arabidopsis thaliana. These genes all encode the domain of unknown function 231 (DUF231). TBR and its homolog TRICHOME BIREFRINGENCE-LIKE3 (TBL3) are transcriptionally coordinated with CELLULOSE SYNTHASE (CESA) genes, and loss of TBR or TBL3 results in decreased levels of crystalline secondary wall cellulose in trichomes and stems, respectively. Loss of TBR or TBL3 further results in increased pectin methylesterase (PME) activity and reduced pectin esterification in etiolated Arabidopsis hypocotyls. Together, the results suggest that DUF231 proteins might function in the maintenance of pectin- and probably homogalacturonan esterification, and that this is a requirement for normal secondary wall cellulose synthesis, at least in some tissues and organs. Here we expand the discussion about the role of TBL/DUF231 proteins in cell wall biology based on sequence and structure analyses. Our analysis revealed structural similarities of TBR with a rhamnogalacturonan acetylesterase (RGAE) of Aspergillus aculeatus and the protein LUSTRIN A-LIKE (Oryza sativa). The implications of these findings in regard to TBL functions are discussed.

  19. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  20. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    Science.gov (United States)

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  1. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Directory of Open Access Journals (Sweden)

    Teruyuki Hayashi

    Full Text Available Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT in combination with fluorescence lifetime imaging microscopy (FLIM. Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  2. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Science.gov (United States)

    Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

    2015-01-01

    Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  3. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  4. Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.

    Science.gov (United States)

    Moutinho-Pereira, Sara; Stuurman, Nico; Afonso, Olga; Hornsveld, Marten; Aguiar, Paulo; Goshima, Gohta; Vale, Ronald D; Maiato, Helder

    2013-12-01

    Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen identified 197 genes involved in acentrosomal spindle assembly, eight of which had no previously described mitotic phenotypes and produced defective and/or short spindles. All 197 genes also produced RNAi phenotypes when centrosomes were present, indicating that none were entirely selective for the acentrosomal pathway. However, a subset of genes produced a selective defect in pole focusing when centrosomes were absent, suggesting that centrosomes compensate for this shape defect. Another subset of genes was specifically associated with the formation of multipolar spindles only when centrosomes were present. We further show that the chromosomal passenger complex orchestrates multiple centrosome-independent processes required for mitotic spindle assembly/maintenance. On the other hand, despite the formation of a chromosome-enriched RanGTP gradient, S2 cells depleted of RCC1, the guanine-nucleotide exchange factor for Ran on chromosomes, established functional bipolar spindles. Finally, we show that cells without functional centrosomes have a delay in chromosome congression and anaphase onset, which can be explained by the lack of polar ejection forces. Overall, these findings establish the constitutive nature of a centrosome-independent spindle assembly program and how this program is adapted to the presence/absence of centrosomes in animal somatic cells.

  5. Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts.

    Science.gov (United States)

    Boonstra, Jurjen J; van Marion, Ronald; Douben, Hannie J C W; Lanchbury, Jerry S; Timms, Kirsten M; Abkevich, Victor; Tilanus, Hugo W; de Klein, Annelies; Dinjens, Winand N M

    2012-03-01

    Human esophageal adenocarcinoma (EAC) cell lines and xenografts are powerful tools in the search for genetic alterations because these models are composed of pure human cancer cell populations without admixture of normal human cells. In particular detection of homozygous deletions (HDs) is easier using these pure populations of cancer cells. Identification of HDs could potentially lead to the subsequent identification of new tumor suppressor genes (TSGs) involved in esophageal adenocarcinogenesis. Genome wide single nucleotide polymorphism (SNP) arrays were used to identify HDs in 10 verified EAC cell lines and nine EAC xenografts. In total, 61 HDs (range 1-6 per sample) were detected and confirmed by polymerase chain reaction. Besides HDs observed in common fragile genomic regions (n = 26), and gene deserts (n = 8), 27 HDs were located in gene-containing regions. HDs were noted for known TSGs, including CDKN2A, SMAD4 and CDH3/CDH1. Twenty-two new chromosomal regions were detected harboring potentially new TSGs involved in EAC carcinogenesis. Two of these regions of homozygous loss, encompassing the ITGAV and RUNX1 gene, were detected in multiple samples indicating a potential role in the carcinogenesis of EAC. To exclude culturing artifacts, these last two deletions were confirmed by fluorescent in situ hybridization in the primary tumors of which the involved cell lines and xenografts were derived. In summary, in this report we describe the identification of HDs in a series of verified EAC cell lines and xenografts. The deletions documented here are a step forward identifying the key genes involved in EAC development.

  6. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9.

    Science.gov (United States)

    Nie, Fang; Liu, Tianming; Zhong, Liang; Yang, Xianggui; Liu, Yunhong; Xia, Hongwei; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; Chen, Tingmei

    2016-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR‑148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid‑mediated overexpression of miR‑148b promoted cell proliferation, increased the S‑phase population of the cell cycle and enhanced apoptosis in the 786‑O and OS‑RC‑2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit‑8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen‑activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c‑Jun N‑terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, overexpression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR‑148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway.

  7. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    Science.gov (United States)

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  8. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Monetti, Emanuela; Kadono, Takashi; Tran, Daniel; Azzarello, Elisa; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Briand, Joël; Kawano, Tomonori; Mancuso, Stefano; Bouteau, François

    2014-03-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.

  9. Isolated Post-Transplantation Lymphoproliferative Disease Involving the Breast and Axilla as Peripheral T-cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Young [Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 150-950 (Korea, Republic of); Cha, Eun Suk; Lee, Jee Eun [Department of Radiology, Ewha Womans University School of Medicine, Seoul 158-710 (Korea, Republic of); Sung, Sun Hee [Department of Pathology, Ewha Womans University School of Medicine, Seoul 158-710 (Korea, Republic of)

    2013-07-01

    Post-transplantation lymphoproliferative disorders (PTLDs) are a heterogeneous group of diseases that represent serious complications following immunosuppressive therapy for solid organ or hematopoietic-cell recipients. In contrast to B-cell PTLD, T-cell PTLD is less frequent and is not usually associated with Epstein Barr Virus infection. Moreover, to our knowledge, isolated T-cell PTLD involving the breast is extremely rare and this condition has never been reported previously in the literature. Herein, we report a rare case of isolated T-cell PTLD of the breast that occurred after a patient had been treated for allogeneic peripheral blood stem cell transplantation due to acute myeloblastic leukemia.

  10. Cellular and molecular characterization of multipolar Map5-expressing cells: a subset of newly generated, stage-specific parenchymal cells in the mammalian central nervous system.

    Science.gov (United States)

    Crociara, Paola; Parolisi, Roberta; Conte, Daniele; Fumagalli, Marta; Bonfanti, Luca

    2013-01-01

    Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons. We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells. We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions.

  11. Role of calcium, protein kinase C and MAP kinase in the activation of mast cells

    Directory of Open Access Journals (Sweden)

    Michael A. Beaven

    1996-01-01

    Full Text Available The mechanisms of activation of mast cells have been studied in most detail in rat RBL-2H3 cells. These cells respond to antigen via the IgE receptor (FceRI through sequential activation of the tyrosine kinases, Lyn and Syk, and to adenosine analogs via the adenosine A3 receptor (A3R and a pertussis toxin-sensitive G protein, most likely Gi-3. Other receptors, introduced through gene transfection, include the muscarinic ml receptor (mlR which acts via Gq/11. Stimulation of cells via FceRI, A3R or ml R leads to the activation of phospholipase (PL C, PLD and mitogen-activated protein (MAP kinase resulting in the generation of inositol phosphates and diglycerides, an increase of cytosolic Ca2+, the activation of protein kinase C (PKC and the phosphorylation of various proteins by PKC and MAP kinase. The extent and time course of these events varies for each receptor. These variations, as well as the effects of pharmacologic probes, gene transfection and reconstitution of responses in washed permeabilized cells, indicate how these events relate to functional responses. A modest but sustained elevation of cytosolic Ca2+ through an influx of extracellular Ca2+ and activation of PKCβ and PKCδ are sufficient for optimal release of preformed secretory granules. Phosphorylation of a cytosolic PLAj by AMP kinase (p42mapk and a modest increase in cytosolic Ca2+ are necessary for the activation of Pl^ and the binding of PLA2 to membranes, respectively. Finally, both de novo generation and secretion via Golgi-derived vesicles of certain cytokines are dependent on Ca2+ and PKC as well as additional signals most probably phosphorylation of proteins by Syk and p42mapk.

  12. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells.

    Science.gov (United States)

    Eiffler, Ina; Behnke, Jane; Ziesemer, Sabine; Müller, Christian; Hildebrandt, Jan-Peter

    2016-09-01

    Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.

  13. CD4+ T-cell lines used to evaluate a Mycobacterium avium subsp. paratuberculosis (MAP) peptide vaccine

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Al-Touama, Zainab

    selected using an anti CD4 mAb and Dynabeads. Sorted CD4+ cells were cultivated with purified protein derivative from MAP (PPDj) or E. coli sonicate, IL-2, and IL-15. After two cultivation cycles, T cells were tested for recall responses in a proliferative T-cell assay. T-cell line responses were...... antigens. T-cell lines were now generated by cultivating CD4+ cells with peptides instead of PPDj. Initially, both healthy and MAP-infected goats were vaccinated with 119 peptides defined by in silico analysis. Cellular responses to the peptides were not detected using standard IFN- γ plasma ELISA. However......The aim of the study was to establish a protocol for generation of MAP-specific T-cell lines and to use these lines for evaluation of a peptide vaccine. A protocol for culturing T-cell lines from peripheral blood of goats naturally infected with MAP was established. CD4+ T cells were positively...

  14. Involvement of Phosphatases in Proliferation, Maturation, and Hemoglobinization of Developing Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Eitan Fibach

    2011-01-01

    Full Text Available Production of RBCs is triggered by the action of erythropoietin (Epo through its binding to surface receptors (Epo-R on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors, including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation of the precursors into hemoglobin (Hb-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate. Adding vanadate to cultured erythroid precursors of normal donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production of fetal hemoglobin (HbF. Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease ameliorates the clinical symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a therapeutic modality for elevating HbF in patients with β-hemoglobinopathies as well as for intensifying the Epo response in other forms of anemia.

  15. Let7a involves in neural stem cell differentiation relating with TLX level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Juhyun [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Kyoung Joo; Oh, Yumi [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Jong Eun, E-mail: jelee@yuhs.ac [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-07-10

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. - Highlights: • Let7a influences on NSC differentiation and proliferation. • Let7a involves in mainly NSC differentiation rather than proliferation. • Let7a positively regulates the TLX expression.

  16. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD.

    Science.gov (United States)

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Hu, Youli; Qian, Yanning

    2017-03-30

    Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.

  17. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10 is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ, and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR, supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development.

  18. Insulin-independent GLUT4 translocation in proliferative vascular smooth muscle cells involves SM22α.

    Science.gov (United States)

    Zhao, Li-Li; Zhang, Fan; Chen, Peng; Xie, Xiao-Li; Dou, Yong-Qing; Lin, Yan-Ling; Nie, Lei; Lv, Pin; Zhang, Dan-Dan; Li, Xiao-Kun; Miao, Sui-Bing; Yin, Ya-Juan; Dong, Li-Hua; Song, Yu; Shu, Ya-Nan; Han, Mei

    2017-02-01

    The insulin-sensitive glucose transporter 4 (GLUT4) is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs) and is significantly upregulated in rabbit neointima. This study investigated the role of GLUT4 in VSMC proliferation, the cellular mechanism underlying PDGF-BB-stimulated GLUT4 translocation, and effects of SM22α, an actin-binding protein, on this process. Chronic treatment of VSMCs with PDGF-BB significantly elevated GLUT4 expression and glucose uptake. PDGF-BB-induced VSMC proliferation was dependent on GLUT4-mediated glucose uptake. Meanwhile, the response of GLUT4 to insulin decreased in PDGF-BB-stimulated VSMCs. PDGF-BB-induced GLUT4 translocation partially rescued glucose utilization in insulin-resistant cells. Immunofluorescence and western blot analysis revealed that PDGF-BB induced GLUT4 translocation in an actin dynamics-dependent manner. SM22α disruption facilitated GLUT4 translocation and glucose uptake by promoting actin dynamics and cortical actin polymerization. Similar results were observed in VSMCs of SM22α (-/-) mice. The in vivo experiments showed that the glucose level in the neointima induced by ligation was significantly increased in SM22α (-/-) mice, accompanied by increased neointimal thickness, compared with those in wild-type mice. These findings suggest that GLUT4-mediated glucose uptake is involved in VSMC proliferation, and provide a novel link between SM22α and glucose utilization in PDGF-BB-triggered proliferation.

  19. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yanagihara Kazuyoshi

    2009-06-01

    Full Text Available Abstract Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS, which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20 of gastric cancer cell lines (8–18-fold amplification and 4.7% (4/86 of primary gastric tumors (8–50-fold amplification. KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild

  20. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles.

    Science.gov (United States)

    Li, Ang; Qin, Lili; Zhu, Di; Zhu, Rongrong; Sun, Jing; Wang, Shilong

    2010-02-01

    Layered double hydroxide (LDH) nanoparticles are attractive as potential drug vectors for the targeting not only of tissues, but also of intracellular organelles, and particularly the acidic endolysosomes created after cell endocytosis. The purpose of this study was to investigate the ability of LDH nanoparticles designed as vectors to activate dendritic cells (DCs), as measured by various cellular functions. The study also explored the possible signaling pathway through which the LDH nanoparticles exerted their effects on the cellular functions of DCs. First, LDH nanoparticles with different ratios of Mg(OH)(2) to Al(OH)(3) (1:1, 2:1 and 3:1, called R1, R2 and R3 respectively) were optimized and had a hydrodynamic diameter of 57 nm with a zeta potential of +35 mV. Then, the efficient endocytosis of the optimized LDH nanoparticles by bone marrow-derived dendritic cells (MDDCs) was monitored by fluorescence-activated cell sorting. The effect of R1, R2 and R3 on the expression of the pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, and IL-12) and the co-stimulatory molecules (CD40, CD80, CD86, and MHC class II) in MDDCs was examined. The exposure of R1 caused a dose-dependent increase in the expression of TNF-alpha, IL-12, CD86 and CD40, while R2 and R3 did not up-regulate these cytokines and co-stimulatory molecules. Migration assays showed that R1 could increase the migration capacity of DCs to CCL21 and up-regulate the expression of CCR7. Furthermore, we found that R1 significantly increased the NF-kappaB expression in the nucleus (in a dose-dependent manner) and promoted the degradation of total IkappaBalpha levels, indicating that the NF-kappaB signaling pathway might involve in an R1-induced DC activation. Our results suggested that LDH nanoparticles, in the future, may function as a useful vector for ex vivo engineering to promote vaccine delivery in immune cells.

  1. Clinical implications of the involvement of tPA in neuronal cell death.

    Science.gov (United States)

    Tsirka, S E

    1997-05-01

    Tissue plasminogen activator (tPA), the serine protease that converts inactive plasminogen to the protease plasmin, was recently shown to mediate neurodegeneration in the mouse hippocampus. Mice deficient in tissue plasminogen activator (tPA) display a dramatic resistance to a paradigm of excitotoxic neuronal death that involves intrahippocampal injection of the excitotoxin. This model is thought to reproduce the mechanism of neuronal death observed during acute (such as ischemic stroke) and degenerative (such as amyotrophic lateral sclerosis) diseases of the nervous system. The requirement for the proteolytic activity of tPA to mediate neuronal death is acute in the adult mouse. Serine protease inhibitors, specific for tPA or the tPA/plasmin proteolytic cascade, are effective in conferring extensive neuroprotection following the excitotoxic injection. These findings suggest possible new ways for interfering with the neuronal death observed in the hippocampus as a result of excitotoxicity. In addition, tPA is produced in the hippocampus primarily by microglial cells, which become activated in response to the neuronal injury. Blocking microglial activation has been shown in other injury paradigms to protect against neuronal death, therefore suggesting another way to retard neurodegeneration in the CNS. Furthermore, after the insult has been inflicted and in the presence of a compromised blood-brain barrier macrophages (cells deriving from the same lineage as microglia) migrate into the brain, where they are thought to contribute to the neuronal cell loss by secreting neurotoxic molecules. If these macrophages/microglia expressed, however, a tPA inhibitor, rather than the possibly neurotoxic tPA, they might be able to protect the neurons from dying.

  2. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells.

    Science.gov (United States)

    Arretxe, Enara; Armengol, Sandra; Mula, Sarai; Chico, Yolanda; Ochoa, Begoña; Martínez, María José

    2015-12-15

    The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.

  3. Fine genetic mapping of the gene for nevoid basal cell carcinoma syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Wicking, C.; Berkman, J.; Wainwright, B. [Univ. of Queensland, Brisbane (Australia)] [and others

    1994-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS, or Gorlin syndrome) is a cancer predisposition syndrome characterized by multiple basal cell carcinomas and diverse developmental defects. The gene responsible for NBCCS, which is most likely to be a tumor suppressor gene, has previously been mapped to 9q22.3-q31 in a 12-cM interval between the microsatellite marker loci D9S12.1 and D9S109. Combined multipoint and haplotype analyses of additional polymorphisms in this region in our collection of Australasian pedigrees have further refined the localization of the gene to between the markers D9S196 and D9S180, an interval reported to be approximately 2 cM. 27 refs., 4 figs., 1 tab.

  4. The X-linked F cell production locus: Genetic mapping and role in fetal hemoglobin production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Smith, K.D.; Moore, R.D. [John Hopkins Univ., Baltimore, MD (United States)] [and others

    1994-09-01

    Postnatal fetal hemoglobin (Hb F) production is confined to a subset of erythocytes termed F-cells. There is a 10-20 fold variation in F-cell production in sickle cell disease (SCD) and normal individuals. Most of the variation in F-cell production has been attributed to a diallelic (High, Low) X-linked gene, the F-cell production (FCP) locus that we recently mapped to Xp22.2-22.3 (LOD=4.56, theta=0.04). Using multiple regression analysis in 262 Jamaican SCD patients we determined the relative contribution of the FCP locus and other variables previously associated with variation in Hb F level (gender, age, beta-globin haplotypes, number of alpha-globin genes and the FCP locus phenotypes). When the FCP locus is in the regression model, the FCP locus alone accounts for approximately 40% of the variation in Hb F level while the contribution of age, alpha-globin gene number, and beta-globin haplotypes was insignificant. When individuals with High FCP allele are removed from the analysis, the beta globin haplotype now contribute to >10% of the Hb F variation. We conclude that the X-linked FCP locus is the major determinant of all known variables in Hb F production. Using 4 highly polymorphic dinucleotide repeat markers that we identified from cosmids in Xp22.2-22.3, have localized the FCP locus to a 1 Mb minimal candidate region between DXS143 and DXS410.

  5. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    Laura eAmo

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  6. The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer

    Science.gov (United States)

    Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey

    2017-01-01

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852

  7. P2X7Rs are involved in cell death, growth and cellular signaling in primary human osteoblasts

    DEFF Research Database (Denmark)

    Agrawal, Ankita; Henriksen, Zanne; Syberg, Susanne;

    2017-01-01

    The ionotropic ATP-gated P2X7 receptor (P2X7R) is involved in the regulation of many physiological functions including bone metabolism. Several studies on osteoblasts from rodents and human osteoblast-like cell lines have addressed the expression and function of P2X7R on these bone-forming cells...

  8. Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines.

    Science.gov (United States)

    Cao, Yihua; Kimura, Shuichi; Itoi, Takayuki; Honda, Kohsuke; Ohtake, Hisao; Omasa, Takeshi

    2012-06-01

    Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.

  9. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  10. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  11. Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2009-12-01

    Full Text Available Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease.

  12. Identification of Target Genes Involved in Wound Healing Angiogenesis of Endothelial Cells with the Treatment of a Chinese 2-Herb Formula.

    Science.gov (United States)

    Tam, Jacqueline Chor Wing; Ko, Chun Hay; Koon, Chi Man; Cheng, Zhang; Lok, Wong Hing; Lau, Ching Po; Leung, Ping Chung; Fung, Kwok Pui; Chan, Wai Yee; Lau, Clara Bik San

    2015-01-01

    Angiogenesis is vitally important in diabetic wound healing. We had previously demonstrated that a Chinese 2-herb formula (NF3) significantly stimulated angiogenesis of HUVEC in wound healing. However, the molecular mechanism has not yet been elucidated. In line with this, global expression profiling of NF3-treated HUVEC was performed so as to assess the regulatory role of NF3 involved in the underlying signaling pathways in wound healing angiogenesis. The microarray results illustrated that different panels of differentially expressed genes were strictly governed in NF3-treated HUVEC in a time-regulated manner. The microarray analysis followed by qRT-PCR and western blotting verification of NF3-treated HUVEC at 6 h revealed the involvement of various genes in diverse biological process, e.g., MAP3K14 in anti-inflammation; SLC5A8 in anti-tumorogenesis; DNAJB7 in protein translation; BIRC5, EPCAM, INSL4, MMP8 and NPR3 in cell proliferation; CXCR7, EPCAM, HAND1 and MMP8 in migration; CXCR7, EPCAM and MMP8 in tubular formation; and BIRC5, CXCR7, EPCAM, HAND1, MMP8 and UBD in angiogenesis. After 16 h incubation of NF3, other sets of genes were shown with differential expression in HUVEC, e.g., IL1RAPL2 and NR1H4 in anti-inflammation; miR28 in anti-tumorogenesis; GRIN1 and LCN1 in anti-oxidation; EPB41 in intracellular signal transduction; PRL and TFAP2A in cell proliferation; miR28, PRL and SCG2 in cell migration; PRL in tubular formation; and miR28, NR1H4 and PRL in angiogenesis. This study provided concrete scientific evidence in support of the regulatory role of NF3 on endothelial cells involved in wound healing angiogenesis.

  13. Identification of Target Genes Involved in Wound Healing Angiogenesis of Endothelial Cells with the Treatment of a Chinese 2-Herb Formula.

    Directory of Open Access Journals (Sweden)

    Jacqueline Chor Wing Tam

    Full Text Available Angiogenesis is vitally important in diabetic wound healing. We had previously demonstrated that a Chinese 2-herb formula (NF3 significantly stimulated angiogenesis of HUVEC in wound healing. However, the molecular mechanism has not yet been elucidated. In line with this, global expression profiling of NF3-treated HUVEC was performed so as to assess the regulatory role of NF3 involved in the underlying signaling pathways in wound healing angiogenesis. The microarray results illustrated that different panels of differentially expressed genes were strictly governed in NF3-treated HUVEC in a time-regulated manner. The microarray analysis followed by qRT-PCR and western blotting verification of NF3-treated HUVEC at 6 h revealed the involvement of various genes in diverse biological process, e.g., MAP3K14 in anti-inflammation; SLC5A8 in anti-tumorogenesis; DNAJB7 in protein translation; BIRC5, EPCAM, INSL4, MMP8 and NPR3 in cell proliferation; CXCR7, EPCAM, HAND1 and MMP8 in migration; CXCR7, EPCAM and MMP8 in tubular formation; and BIRC5, CXCR7, EPCAM, HAND1, MMP8 and UBD in angiogenesis. After 16 h incubation of NF3, other sets of genes were shown with differential expression in HUVEC, e.g., IL1RAPL2 and NR1H4 in anti-inflammation; miR28 in anti-tumorogenesis; GRIN1 and LCN1 in anti-oxidation; EPB41 in intracellular signal transduction; PRL and TFAP2A in cell proliferation; miR28, PRL and SCG2 in cell migration; PRL in tubular formation; and miR28, NR1H4 and PRL in angiogenesis. This study provided concrete scientific evidence in support of the regulatory role of NF3 on endothelial cells involved in wound healing angiogenesis.

  14. Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor

    Science.gov (United States)

    Han, Na; Kim, You Jeong; Park, Su Min; Kim, Seung Man; Lee, Ji Suk; Jung, Hye Sook; Lee, Eun Ju; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo

    2016-01-01

    Background Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription factors are implicated in the regulation of cell apoptosis and survival, but their role in neuronal cells remains unclear. We examined the role of FOXO transcription factors and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt and apoptosis-related signaling pathways in PC-12 cells exposed to repeated glucose deprivation/reperfusion. Methods PC-12 cells were exposed to control (Dulbecco's Modified Eagle Medium [DMEM] containing 25 mM glucose) or glucose deprivation/reperfusion (DMEM with 0 mM glucose for 6 hours and then DMEM with 25 mM glucose for 18 hours) for 5 days. MTT assay and Western blot analysis were performed for cell viability, apoptosis, and the expression of survival signaling pathways. FOXO3/4',6-diamidino-2-phenylindole staining was done to ascertain the involvement of FOXO transcription factors in glucose deprivation/reperfusion conditions. Results Compared to PC-12 cells not exposed to hypoglycemia, cells exposed to glucose deprivation/reperfusion showed a reduction of cell viability, decreased expression of phosphorylated Akt and Bcl-2, and an increase of cleaved caspase-3 expression. Of note, FOXO3 protein was localized in the nuclei of glucose deprivation/reperfusion cells but not in the control cells. Conclusion Repeated glucose deprivation/reperfusion caused the neuronal cell death. Activated FOXO3 via the PI3K/Akt pathway in repeated glucose deprivation/reperfusion was involved in genes related to apoptosis.

  15. Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans.

    Science.gov (United States)

    Flores, Heather A; DuMont, Vanessa L Bauer; Fatoo, Aalya; Hubbard, Diana; Hijji, Mohammed; Barbash, Daniel A; Aquadro, Charles F

    2015-02-09

    Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.

  16. Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells.

    Directory of Open Access Journals (Sweden)

    M Sayeedur Rahman

    Full Text Available The long-standing proposal that phospholipase A2 (PLA2 enzymes are involved in rickettsial infection of host cells has been given support by the recent characterization of a patatin phospholipase (Pat2 with PLA2 activity from the pathogens Rickettsia prowazekii and R. typhi. However, pat2 is not encoded in all Rickettsia genomes; yet another uncharacterized patatin (Pat1 is indeed ubiquitous. Here, evolutionary analysis of both patatins across 46 Rickettsia genomes revealed 1 pat1 and pat2 loci are syntenic across all genomes, 2 both Pat1 and Pat2 do not contain predicted Sec-dependent signal sequences, 3 pat2 has been pseudogenized multiple times in rickettsial evolution, and 4 ubiquitous pat1 forms two divergent groups (pat1A and pat1B with strong evidence for recombination between pat1B and plasmid-encoded homologs. In light of these findings, we extended the characterization of R. typhi Pat1 and Pat2 proteins and determined their role in the infection process. As previously demonstrated for Pat2, we determined that 1 Pat1 is expressed and secreted into the host cytoplasm during R. typhi infection, 2 expression of recombinant Pat1 is cytotoxic to yeast cells, 3 recombinant Pat1 possesses PLA2 activity that requires a host cofactor, and 4 both Pat1 cytotoxicity and PLA2 activity were reduced by PLA2 inhibitors and abolished by site-directed mutagenesis of catalytic Ser/Asp residues. To ascertain the role of Pat1 and Pat2 in R. typhi infection, antibodies to both proteins were used to pretreat rickettsiae. Subsequent invasion and plaque assays both indicated a significant decrease in R. typhi infection compared to that by pre-immune IgG. Furthermore, antibody-pretreatment of R. typhi blocked/delayed phagosomal escapes. Together, these data suggest both enzymes are involved early in the infection process. Collectively, our study suggests that R. typhi utilizes two evolutionary divergent patatin phospholipases to support its intracellular life

  17. Involvement of soluble Fas Ligand in germ cell apoptosis in testis of rats undergoing autoimmune orchitis.

    Science.gov (United States)

    Jacobo, Patricia Verónica; Fass, Mónica; Pérez, Cecilia Valeria; Jarazo-Dietrich, Sabrina; Lustig, Livia; Theas, María Susana

    2012-11-01

    Experimental autoimmune orchitis (EAO) is a model of chronic inflammation and infertility useful for studying immune and germ cell (GC) interactions. EAO is characterized by severe damage of seminiferous tubules (STs) with GCs that undergo apoptosis and sloughing. Based on previous results showing that Fas-Fas Ligand (L) system is one of the main mediators of apoptosis in EAO, in the present work we studied the involvement of Fas and the soluble form of FasL (sFasL) in GC death induction. EAO was induced in rats by immunization with testis homogenate and adjuvants; control (C) rats were injected with adjuvants; a group of non-immunized normal (N) rats was also studied. Activation of Fas employing an anti-Fas antibody decreased viability (trypan blue exclusion test) and induced apoptosis (TUNEL) of GCs from STs of N and EAO rats, an effect more pronounced on GCs from EAO STs. By Western blot we detected an increase in sFasL content in the testicular fluid of rats with severe EAO compared to N and C rats. By intratesticular injection of FasL conjugated to Strep-Tag molecule (FasL-Strep, BioTAGnology) and its immunofluorescent localization, we demonstrated that sFasL is able to enter the adluminal compartment of the STs. Moreover, FasL-Strep induced GC apoptosis in testicular fragments of N rats. By flow cytometry, we detected an increase in the number of membrane FasL-expressing CD4+ and CD8+ T cells in testis during EAO development but no expression of FasL by macrophages. Our results demonstrate that sFasL is locally produced in the chronically inflamed testis and that this molecule is able to enter the adluminal compartment of STs and induce apoptosis of Fas-bearing GCs.

  18. Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death.

    Science.gov (United States)

    Watanabe, M; Choudhry, A; Berlan, M; Singal, A; Siwik, E; Mohr, S; Fisher, S A

    1998-10-01

    The embryonic outflow tract is a simple tubular structure that connects the single primitive ventricle with the aortic sac and aortic arch arteries. This structure undergoes a complex sequence of morphogenetic processes to become the portion of the heart that aligns the right and left ventricles with the pulmonary artery and aorta. Abnormalities of the outflow tract are involved in many clinically significant congenital cardiac defects; however, the cellular and molecular processes governing the development of this important structure are incompletely understood. Histologic and tissue-tagging studies indicate that the outflow tract tissues compact and are incorporated predominantly into a region of the right ventricle. The hypothesis tested in the current study was that cell death or apoptosis in the muscular portion of the outflow tract is an important cellular mechanism for outflow tract shortening. The tubular outflow tract myocardium was specifically marked by infecting myocytes of the chicken embryo heart with a recombinant replication-defective adenovirus expressing beta-galactosidase (beta-gal) under the control of the cytomegalovirus promoter. Histochemical detection of the beta -gal-labeled outflow tract myocytes revealed that the tubular structure shortened to become a compact ring at the level of the pulmonic infundibulum over several days of development (stages 25-32, embryonic days 4-8). The appearance of apoptotic cardiomyocytes was correlated with OFT shortening by two histologic assays, TUNEL labeling of DNA fragments and AnnexinV binding. The rise and fall in the number of apoptotic myocytes detected by histologic analyses paralleled the change in activity levels of Caspase-3, a protease in the apoptotic cascade, measured in outflow tract homogenates. These results suggest that the elimination of myocytes by programmed cell death is one mechanism by which the outflow tract myocardium remodels to form the proper connection between the ventricular

  19. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    Science.gov (United States)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-01-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses. PMID:28157207

  20. Experimental and numerical studies of local current mapping on a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hwnag, J.J. [Department of Environment and Energy, National University of Tainan, Tainan 700 (China); Chang, W.R. [Department of Landscape Architecture, Chung-Hua University, Hsinchu 300 (China); Peng, R.G. [Department of Mechanical Engineering, National Chiao Tong University, Hsinchu 300 (China); Chen, P.Y. [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300 (China); Su, A. [Department of Mechanical Engineering and Fuel Cell Center, Yuan Ze University, Taoyuan (China)

    2008-10-15

    Local current distribution on a PEM fuel cell has been mapped experimentally by using a special-designed single cell fixture. It is composed of a composite cathodic flow-field plate, a membrane electrode assembly (MEA) and a stainless-steel anodic flow-field plate. An array of 16 individual conductive segments was distributed on the composite plate. A self-made MEA is in direct contact with the segmented current collectors. Regional-averaged current through each segment is determined by using the Hall-effect sensor. To ensure the data reliability, a comparison of polarization curves was made between the composite flow-field plate and the conventional flow-field plate. Then, the effects of flow-field patterns, dew points of the cathodic feedings and cathodic stoichiometrics on the local current distribution were examined. The transient variation of the local current distribution on the cathode under supersaturated conditions was further visualized to illustrate the flooding phenomena in different flow patterns. This technique developed by the present work has contributed to knowledge and understanding the local current distributions in a PEM fuel cell that is helpful in designing the fuel-cell components. (author)

  1. Half-cell potential mapping to assess repair work on RC structures

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B. [Cagliari Univ., Dept. of Materials Science (Italy)

    2000-07-01

    Results on the successful use and on the limitations of half-cell potential mapping as an assessment technique after completion of repair work on a concrete structure are reviewed. Examples of repair discussed include traditional repair, electrochemical chloride removal, electrochemical realkalization and the application of surface applied corrosion inhibitors. Results indicate that half-cell potential measurements after traditional repair work or electrochemical chloride removal provide direct evidence of repassivation of the rebars when performed several weeks after the repair work (readings during the first few days after repair tend to show very negative potentials). Special attention must be given to the use of polymer-modified mortars when used in surface treatment of rebars; half-cell potential could remain permanently negative due to restricted oxygen access. Half-cell potential measurements are not considered effective in measuring the efficiency and durability of surface applied corrosion inhibitors due to pore solution pH and composition, and the mostly unknown mechanism of action of inhibitor blends. 18 refs., 8 figs.

  2. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  3. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    Science.gov (United States)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-02-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG – IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses.

  4. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology.

    Science.gov (United States)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Joshi, Hiren J; Kong, Yun; Vester-Christensen, Malene B; Schjoldager, Katrine T-B G; Lavrsen, Kirstine; Dabelsteen, Sally; Pedersen, Nis B; Marcos-Silva, Lara; Gupta, Ramneek; Bennett, Eric Paul; Mandel, Ulla; Brunak, Søren; Wandall, Hans H; Levery, Steven B; Clausen, Henrik

    2013-05-15

    Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function.

  5. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  6. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  7. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity

    Institute of Scientific and Technical Information of China (English)

    Hanbing Zhong; Danyang Wang; Nan Wang; Yesenia Rios; Haigen Huang; Song Li; Xinrong Wu; Shuo Lin

    2011-01-01

    Blood vessels normally maintain stereotyped lumen diameters and their stable structures are crucial for vascular function. However, very little is known about the molecular mechanisms controlling the maintenance of vessel diameters and the integrity of endothelial cells. We investigated this issue in zebrafish embryos by a chemical genetics approach. Small molecule libraries were screened using live Tg(kdrl:GRCFP)zn1 transgenic embryos in which endothelial cells are specifically labeled with GFP. By analyzing the effects of compounds on the morphology and function of embryonic blood vessels after lumen formation, PP1, a putative Src kinase inhibitor, was identified as capable of specifically reducing vascular lumen size by interrupting endothelial-cell integrity. The inhibitory effect is not due to Src or general VEGF signaling inhibition because another Src inhibitor and Src morpholino as well as several VEGFR inhibitors failed to produce a similar phenotype. After profiling a panel of 22 representative mammalian kinases and surveying published data, we selected a few possible new candidates. Combinational analysis of these candidate kinase inhibitors established that PP1 induced endothelial collapse by inhibiting both the VEGFR2 and MAP kinase pathways. More importantly, combinatory use of two clinically approved drugs Dasatinib and Sunitinib produced the same phenotype. This is the first study to elucidate the pathways controlling maintenance of endothelial integrity using a chemical genetics approach, indicating that endothelial integrity is controlled by the combined action of the VEGFR2 and MAP kinase pathways. Our results also suggest the possible side effect of the combination of two anticancer drugs on the circulatory system.

  8. Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer.

    Science.gov (United States)

    Gu, Tao; Ohashi, Rina; Cui, Ri; Tajima, Ken; Yoshioka, Masakata; Iwakami, Shinichiro; Sasaki, Shinichi; Shinohara, Atsuko; Matsukawa, Takehisa; Kobayashi, Jun; Inaba, Yutaka; Takahashi, Kazuhisa

    2009-11-01

    Osteopontin (OPN) is a multi-functional cytokine involved in cell survival, migration and adhesion which is associated with tumorigenesis, progression and metastasis. However, the role of OPN in chemo-sensitivity of human lung cancer has not yet been elucidated. The purpose of this study is to investigate the role of OPN in chemo-sensitivity of lung cancer cells. We developed a stable OPN transfectant (SBC-3/OPN) and a control transfectant (SBC-3/NEO) from human small cell lung cancer cell line, SBC-3. SBC-3/OPN cells were more resistant to cisplatin than SBC-3/NEO cells. Multi-drug resistance-associated protein (MRP) does not appear to be involved in the development of acquired chemo-resistance, since MRP inhibitor did not alter chemo-sensitivity. After exposure to cisplatin, the apoptotic SBC-3/OPN cells were reduced in number compared to SBC-3/NEO cells. Treatment with cisplatin revealed that the expression of anti-apoptotic protein, bcl-2, was down-regulated in SBC-3/NEO cells, while that of SBC-3/OPN cells was not altered. In contrast, pro-apoptotic protein, bax, was not altered in both SBC-3/OPN and SBC-3/NEO cells, thus bcl-2/bax ratio was decreased in SBC-3/NEO but not altered in SBC-3/OPN cells. Activation of caspase-3 and caspase-9 was increased in SBC-3/NEO cells, but not in SBC-3/OPN cells. Our results suggest that OPN enhances chemo-resistance of cisplatin in SBC-3 cells by suppressing bcl-2 protein down-regulation, thereby blocking the caspase-9- and caspase-3-dependent cell apoptosis.

  9. Identification of a Novel Nucleus Protein Involved in the Regulation of Urokinase in 95D Cells

    Institute of Scientific and Technical Information of China (English)

    Chang TONG; Li TAN; Ping LI; Yun-Song ZHU

    2005-01-01

    The urokinase-type plasminogen activator (uPA) plays an important role in cellular invasion.By using the downstream part of a 74 bp DNA region called the cooperation mediator (COM) of the uPA promoter as a bait sequence in the yeast one-hybrid screen, a gene called PBK1 was previously cloned from the cDNA library of the 95D lung cancer cell strain. In this study, the intracellular distribution of PBK1 was studied by using the transient transfection of pEGFP-C3-PBK1, and PBK1 was found to be localized in the nucleus. Co-transfection of pEGFP-C3-PBK1 and the deletion mutants of the pGL3-uPA promoter indicated that PBK1 can increase the uPA promoter activity by about 25% and this effect is uPA enhancer-dependent.Western blotting and Enzyme-linked immunoadsordent assay further confirmed that PBK1 can upregulate the expression of uPA. Our results suggest that PBK1 is involved in the regulation of uPA expression, which might provide a new clue to further understanding the regulation mechanism of uPA expression.

  10. Involvement of lipids in dimethoate-induced inhibition of testosterone biosynthesis in rat interstitial cells.

    Science.gov (United States)

    Astiz, Mariana; Hurtado de Catalfo, Graciela E; de Alaniz, María J T; Marra, Carlos Alberto

    2009-08-01

    The mechanism involved in the inhibition of testosterone (Te) biosynthesis after a sub-chronic exposure to low doses of dimethoate (D) was studied in rat interstitial cells (IC). Expression of COX-2 in IC isolated from D-treated rats increased by 44% over C data, while transcription of StAR decreased by approx. 50% and the expression of this protein was diminished by approximately 40%. PGE(2) and PGF(2alpha) were increased by 61 and 78%, respectively. Te concentration decreased by 49% in IC homogenates. Concomitantly, plasma concentration of LH and FSH both increased. Araquidonate (ARA) and C(22) fatty acyl chains in phospholipids from IC mitochondrial fraction decreased by approx. 30% after D treatment. Protein carbonyls, lipoperoxides and nitrite content increased while alpha-tocopherol and the antioxidant capacity of the soluble cellular fraction decreased significantly. Stimulation with h-CG 10 nM overnight failed to overcome the inhibition caused by D on both Te biosynthesis and 3beta- and 17beta-hydroxysteroid dehydrogenases. Decreased Te biosynthesis may be attributed to (1) inhibition of StAR protein activity due to the stimulation of COX-2 and the overproduction of PGF(2alpha), (2) decreased stimulatory effect of ARA on StAR with a subsequent reduction in the availability of CHO for the androgenic pathway, and/or (3) indirect inhibition of steroidogenic enzymes by a lower transcriptional rate caused by elevated PGF(2alpha). Rofecoxib administration prevents the deleterious effect(s) exerted by D.

  11. Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms.

    Science.gov (United States)

    Pirovani, Carlos Priminho; da Silva Santiago, André; dos Santos, Lívia Santana; Micheli, Fabienne; Margis, Rogério; da Silva Gesteira, Abelmon; Alvim, Fátima Cerqueira; Pereira, Gonçalo Amarante Guimarães; de Mattos Cascardo, Júlio Cézar

    2010-11-01

    Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.3, 14.1, 14.3 and 22.8 kDa, respectively. His-tagged recombinant proteins were purified from Escherichia coli expression, and showed inhibitory activities against M. perniciosa. The four recombinant cystatins exhibited K(i) values against papain in the range of 152-221 nM. Recombinant TcCYS3 and TcCYS4 immobilized in CNBr-Sepharose were efficient to capture M. perniciosa proteases from culture media. Polyclonal antibodies raised against the recombinant TcCYS4 detected that the endogenous protein was more abundant in young cacao tissues, when compared with mature tissues. A ~85 kDa cacao multicystatin induced by M. perniciosa inoculation, MpNEP (necrosis and ethylene-inducing protein) and M. perniciosa culture supernatant infiltration were detected by anti-TcCYS4 antibodies in cacao young tissues. A direct role of the cacao cystatins in the defense against this phytopathogen was proposed, as well as its involvement in the development of symptoms of programmed cell death.

  12. Secondary Involvement of the Mandible due to Basal Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Pegah Mosannen Mozaffary

    2015-05-01

    Full Text Available Basal cell carcinoma (BCC is the most common cutaneous malignancy among Caucasians. Rare examples of aggressive and neglected BCC have been reported. Here we report a unique case of a neglected BCC with significant jaw involvement. A 50-year-old female, referred by an otorhinologist, presented with a large ulcer on her chin, which was extended to her mandibular vestibule. The ulcer was 9×5.5 cm in size, and tissue destruction, necrosis was observed in the central portion, and the mandibular bone was exposed. On intraoral examination, tooth mobility and severe bone loss were evident. Due to the primary cutaneous origin of the lesion, BCC was considered as preliminary diagnosis. Biopsy was performed and diagnosis of BCC was confirmed. The diseased mandibular bone was resected and reconstructed with a surgical plate. The soft tissue defect was reconstructed with deltopectoral flap. The patient refused secondary stage plastic surgery. Although BCC is not a lethal malignancy, if left untreated and neglected, it can result in severe destruction, disfigurement, and even mortality.

  13. Hypoxic preconditioning involves system Xc- regulation in mouse neural stem cells.

    Science.gov (United States)

    Sims, Brian; Clarke, Melinda; Francillion, Ludwig; Kindred, Elijah; Hopkins, Elana Shuford; Sontheimer, Harald

    2012-03-01

    In animals, hypoxic preconditioning has been used as a form of neuroprotection. The exact mechanism involved in neuroprotective hypoxic preconditioning has not been described, yet could be valuable for possible neuroprotective strategies. The overexpression of the cystine-glutamate exchanger, system Xc-, has been demonstrated as being neuroprotective (Shih, Erb et al. 2006). Here, using immunohistochemistry, we demonstrate that C57BL/6 mice exposed to hypoxia showed an increase in system Xc- expression, with the highest level of intensity in the hippocampus. Western Blot analysis also showed an almost 2-fold increase in system Xc- protein in hypoxia-exposed versus control mice. The mRNA for the regulatory subunit of system Xc-, xCT, and the xCT/actin ratio were also increased under hypoxic conditions. Experiments using hypoxia-inducible factor (HIF-1α) siRNA showed a statistically significant decrease in HIF-1α and system Xc- expression. Under hypoxic conditions, system Xc- activity, as determined by cystine uptake, increased 2-fold. Importantly, hypoxic preconditioning was attenuated in neural stem cells by pharmacological inhibition of system Xc- activity with S4-carboxyphenylglycine. These data provide the first evidence of hypoxic regulation of the cystine glutamate exchanger system Xc-.

  14. Metastin is not involved in metastatic potential of non-small cell lung cancer.

    Science.gov (United States)

    Karapanagiotou, Eleni M; Dilana, Kalliopi D; Gkiozos, Ioannis; Gratsias, Ioannis; Tsimpoukis, Sotirios; Polyzos, Aris; Syrigos, Kostas N

    2011-06-01

    Metastin, the product of the KISS-1 gene, seems to represent a strong suppressant of metastasis for some types of cancer. The aim of this study is to explore whether circulating levels of metastin could be used as a marker for the metastatic potential of non-small cell lung cancer (NSCLC) as well as a diagnostic marker in NSCLC patients. The possible correlation between metastin and leptin circulating levels was also evaluated. Fasting serum levels of metastin and leptin were determined in 96 NSCLC patients at diagnosis (76 with metastatic disease and 21 with locally advanced disease) and 49 healthy volunteers using commercial available ELISA. Serum metastin levels presented no differences between NSCLC patients and healthy volunteers (1.18 ± 0.98 vs. 1.17 ± 0.39 ng/ml, P = 0.979) as well as between patients with metastatic and locally advanced disease (1.17 ± 1.05 vs. 1.21 ± 0.64 ng/ml, P = 0.872). There was no statistically significant correlation between circulating metastin and leptin levels in NSCLC patients and patients with locally advanced and metastatic disease. This study shows a lack of direct involvement of metastin in the diagnosis and metastatic potential of NSCLC.

  15. Genes and quantitative genetic variation involved with senescence in cells, organs and the whole plant

    Directory of Open Access Journals (Sweden)

    Benoit ePujol

    2015-02-01

    Full Text Available Senescence, the deterioration of morphological, physiological and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is however unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed towards plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by ageing research.

  16. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    Directory of Open Access Journals (Sweden)

    Hanson Bonnie J

    2005-10-01

    Full Text Available Abstract Background The transcription factor activator protein-1 (AP-1 has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi. This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi

  17. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    Science.gov (United States)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  18. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells.

    Science.gov (United States)

    Hara-Chikuma, Mariko; Watanabe, Sachiko; Satooka, Hiroki

    2016-03-18

    Aquaporin 3 (AQP3), a water/glycerol channel protein, is capable of transporting hydrogen peroxide (H2O2). Here, we show that AQP3-mediated intracellular H2O2 is involved in epidermal growth factor (EGF)-induced cell signaling and its dependent cell function in the EGF receptor (EGFR)-positive cancer cell lines A431 and H1666. AQP3 knockdown suppressed the transport into the cells of extracellular H2O2 produced in response to EGF in A431 and H1666 cells. EGF-induced Erk and Akt activation, which occurred through SHP2 and/or PTEN modulation, was impaired by AQP3 knockdown. Cell growth and migration induced by EGF stimulation were attenuated in AQP3 knockdown cells compared with those in control cells. Coincidentally, tumor growth of A431 cell xenografts in immunodeficient mice was decreased by AQP3 knockdown. Accordingly, a xenograft with AQP3 knockdown A431 cells significantly enhanced the survival of recipient mice compared with the transplantation with control cells. In addition, AQP3 associated with EGFR and NADPH oxidase 2, which we propose is linked to AQP3 producing a localized increase in intracellular H2O2 to function as a second messenger during EGFR cell signaling. Therefore, our findings suggest that AQP3 is required for EGF-EGFR cell signaling in cancer cells and is a therapeutic target for cancer progression.

  19. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.

    Directory of Open Access Journals (Sweden)

    Praveen K Pilly

    Full Text Available Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous

  20. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gao Jingchun

    2013-01-01

    Full Text Available Abstract Background Mirk/Dyrk1B contributes to G0 arrest by destabilization of cyclin D1 and stabilization of p27kip1 to maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK signaling. This study was performed to investigate the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling. Methods The correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both ovarian cancer and non-small cell lung cancer (NSCLC cells were analyzed by simple regression. Mirk/Dyrk1B unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS proteomics analysis. The human cancer cells were treated with small interfering RNAs (siRNAs and/or U0126, an inhibitor of MEK for indicated duration, followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow cytometry and Western blot, respectively. Results Our study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway and subsequent changes in cell cycle proteins (cyclin D1, p27kip1, accompanied by increased growth rate and cells from G0/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis in the human cancer cells

  1. Central nervous system involvement in mantle cell lymphoma : clinical features, prognostic factors and outcomes from the European Mantle Cell Lymphoma Network

    NARCIS (Netherlands)

    Cheah, C. Y.; George, A.; Gine, E.; Chiappella, A.; Kluin-Nelemans, H. C.; Jurczak, W.; Krawczyk, K.; Mocikova, H.; Klener, P.; Salek, D.; Walewski, J.; Szymczyk, M.; Smolej, L.; Auer, R. L.; Ritchie, D. S.; Arcaini, L.; Williams, M. E.; Dreyling, M.; Seymour, J. F.

    2013-01-01

    Central nervous system (CNS) involvement in mantle cell lymphoma (MCL) is uncommon, and the manifestations and natural history are not well described. We present the data on 57 patients with MCL who developed CNS involvement, from a database of 1396 consecutively treated patients at 14 institutions.

  2. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone

    OpenAIRE

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Keshav K Singh; Soares, Paula; Videira, Arnaldo

    2011-01-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppres...

  3. Intraoperative radioisotope sentinel lymph node mapping in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sugi, Kazuro; Sudou, Manabu [National Sanyo Hospital, Ube, Yamaguchi (Japan); Kaneda, Yoshikazu; Hamano, Kimikazu [Yamaguchi Univ., Ube (Japan). School of Medicine

    2003-05-01

    We performed intraoperative Technetium (Tc) 99m sentinel lymph node (SN) mapping in patients with clinical T1N0M0 non-small cell lung cancer (NSCLC). Twenty patients with clinical T1N0M0 NSCLC were enrolled. Before thoracotomy, the primary tumor was injected with 2 mCi Tc-99m. After dissection, scintigraphic readings of lymph nodes were obtained ex vivo with a handheld gamma counter. The migration of the Tc solution was considered successful if any node registered five times or more count comared with background values. If lymph nodes were found to have the highest or more than 50% of the highest counts and measurements were greater than five times the intrathoracic background, those nodes were classified as sentinel nodes. Four of the 20 patients did not have NSCLC and were excluded. Eleven patients (68.8%) had SNs identified. No inaccurately identified SNs were encountered. Intraoperative SN mapping with Tc-99m is an accurate way to identify the first site of potential nodal metastases of NSCLC. Several technical problems still remain unresolved in this method, however. (author)

  4. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  5. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy

    Science.gov (United States)

    Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.

    2016-02-01

    Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.

  6. Mapping the Competition between Exciton Dissociation and Charge Transport in Organic Solar Cells.

    Science.gov (United States)

    Oh, Soong Ju; Kim, Jong Bok; Mativetsky, Jeffrey M; Loo, Yueh-Lin; Kagan, Cherie R

    2016-10-03

    The competition between exciton dissociation and charge transport in organic solar cells comprising poly(3-hexylthiophene) [P3HT] and phenyl-C61-butyric acid methyl ester [PCBM] is investigated by correlated scanning confocal photoluminescence and photocurrent microscopies. Contrary to the general expectation that higher photoluminescence quenching is indicative of higher photocurrent, microscale mapping of bulk-heterojunction solar-cell devices shows that photoluminescence quenching and photocurrent can be inversely proportional to one another. To understand this phenomenon, we construct a model system by selectively laminating a PCBM layer onto a P3HT film to form a PCBM/P3HT planar junction on half of the device and a P3HT single junction on the other half. Upon thermal annealing to allow for interdiffusion of PCBM into P3HT, an inverse relationship between photoluminescence quenching and photocurrent is observed at the boundary between the PCBM/P3HT junction and P3HT layer. Incorporation of PCBM in P3HT works to increase photoluminescence quenching, consistent with efficient charge separation, but conductive atomic force microscopy measurements reveal that PCBM acts to decrease P3HT hole mobility, limiting the efficiency of charge transport. This suggests that photoluminescence-quenching measurements should be used with caution in evaluating new organic materials for organic solar cells.

  7. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins

    Science.gov (United States)

    Koorman, Thijs; Lemmens, Irma; Ramalho, João J.; Nieuwenhuize, Susan; van den Heuvel, Sander; Tavernier, Jan; Nance, Jeremy; Boxem, Mike

    2015-01-01

    The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization. PMID:26780296

  8. Mapping the Environmental Boundaries for Methanogenesis in Serpentinizing Systems using a Cell-scale Numerical Model

    Science.gov (United States)

    Alperin, M. J.; Hoehler, T. M.; McCollom, T.

    2011-12-01

    Serpentinizing systems occur where liquid water reacts with ultramafic minerals. The reaction releases heat and produces an alkaline fluid that is rich in H2. The abundant H2 suggests that the energetics of methane production by CO2 reduction is highly favorable (ΔG ~ -102 kJ/mol CH4 for [H2] ~ 10-2 M). Given the possibility of subsurface water and ultramafic minerals on Mars, methanogenesis in serpentinizing systems has been considered as a possible model for photosynthesis-independent, extraterrestrial life. However, the high pH (9 - 11) and possibly elevated temperature have a negative impact on the overall cellular energy balance by increasing the cell's maintenance energy and reducing the concentration of CO2 substrate. We developed a reaction-transport model on the scale of a methanogen cell to investigate how the overall bioenergetics of methane production is influenced by the interplay between pH, temperature, and H2 and CO2 concentration. The model differentiates the cell into three basic structural units (cell wall, cell membrane with gated ion channels, and cytoplasm) and employs both thermodynamic and kinetic controls to estimate an upper-limit energy yield as a function of environmental conditions. The model provides a map of the range of environmental extremes for which the energy balance for microbial methane production is positive. The model also provides a tool for exploring the energetics of different metabolic strategies that methanogens could use to cope with stresses associated with life in an alkaline, low-CO2 environment.

  9. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  10. MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment

    Science.gov (United States)

    Tang, Guan-Nan; Li, Cheng-Lin; Yao, Yin; Xu, Zhi-Bin; Deng, Meng-Xia; Wang, Shu-Yue; Sun, Yue-Qi; Shi, Jian-Bo

    2016-01-01

    Administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs) significantly alleviates allergic airway inflammation. There are no studies that refer to the role of microRNAs (miRNAs) after the BM-MSCs treatment in airway allergic inflammation. We induced a mouse model of asthma and performed the transplantation of BM-MSCs. We analyzed aberrant miRNAs and key immune regulators using both miRNA and messenger RNA (mRNA) polymerase chain reaction (PCR) arrays. We identified that 296 miRNAs were differently expressed after the induction of asthma and/or the treatment of BM-MSCs, in which 14 miRNAs presented the reverse variation tendency between asthma induction and BM-MSCs transplantation. Mmu-miR-21a-3p, mmu-miR-449c-5p, and mmu-miR-496a-3p were further confirmed to be differently expressed with additional samples and quantitative real-time PCR. With an mRNA PCR array, we identified 19 genes to be involved in the allergy induction and the administration of BM-MSCs. Further target genes analysis revealed that mmu-miR-21a-3p was significantly correlated with the immune regulator activin A receptor, Type IIA (Acvr2a). Mmu-miR-21a-3p had opposite expression with Acvr2a after asthma and BM-MSCs treatment. Acvr2a had binding sites for miR-21a for both mice and human, suggesting that miR-21/Acvr2a axis is conserved between human and mice. Dual-luciferase reporter assay showed that mmu-miR-21a-3p negatively regulated the transcript of Acvr2a. In addition, has-miR-21a inhibitor significantly increased the expression of Acvr2a mRNA in BEAS-2B cells under lipopolysaccharide stimulation. Our results suggest that there were different miRNA and mRNA profiles after asthma induction and BM-MSCs treatment, and the miR-21/Acvr2a axis is an important mechanism for the induction of asthmatic inflammation. PMID:27106170

  11. MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment.

    Science.gov (United States)

    Tang, Guan-Nan; Li, Cheng-Lin; Yao, Yin; Xu, Zhi-Bin; Deng, Meng-Xia; Wang, Shu-Yue; Sun, Yue-Qi; Shi, Jian-Bo; Fu, Qing-Ling

    2016-06-15

    Administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs) significantly alleviates allergic airway inflammation. There are no studies that refer to the role of microRNAs (miRNAs) after the BM-MSCs treatment in airway allergic inflammation. We induced a mouse model of asthma and performed the transplantation of BM-MSCs. We analyzed aberrant miRNAs and key immune regulators using both miRNA and messenger RNA (mRNA) polymerase chain reaction (PCR) arrays. We identified that 296 miRNAs were differently expressed after the induction of asthma and/or the treatment of BM-MSCs, in which 14 miRNAs presented the reverse variation tendency between asthma induction and BM-MSCs transplantation. Mmu-miR-21a-3p, mmu-miR-449c-5p, and mmu-miR-496a-3p were further confirmed to be differently expressed with additional samples and quantitative real-time PCR. With an mRNA PCR array, we identified 19 genes to be involved in the allergy induction and the administration of BM-MSCs. Further target genes analysis revealed that mmu-miR-21a-3p was significantly correlated with the immune regulator activin A receptor, Type IIA (Acvr2a). Mmu-miR-21a-3p had opposite expression with Acvr2a after asthma and BM-MSCs treatment. Acvr2a had binding sites for miR-21a for both mice and human, suggesting that miR-21/Acvr2a axis is conserved between human and mice. Dual-luciferase reporter assay showed that mmu-miR-21a-3p negatively regulated the transcript of Acvr2a. In addition, has-miR-21a inhibitor significantly increased the expression of Acvr2a mRNA in BEAS-2B cells under lipopolysaccharide stimulation. Our results suggest that there were different miRNA and mRNA profiles after asthma induction and BM-MSCs treatment, and the miR-21/Acvr2a axis is an important mechanism for the induction of asthmatic inflammation.

  12. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    Science.gov (United States)

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  13. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development.

    Science.gov (United States)

    Bernstein, Nirit; Shoresh, Michal; Xu, Yan; Huang, Bingru

    2010-10-15

    Sensitivity to salinity varies between plant organs and between cells of different developmental stages within a single organ. The physiological and molecular bases for the differential responses are not known. Exposure of plants to salinity is known to induce formation of reactive oxygen species (ROS), which are involved in damage mechanisms but also in cell growth processes. The objective of this study was to elucidate developmental-stage-specific and organ-specific involvement of oxidative defense in the plant response to salinity in maize (Zea mays L.). Plants were grown in nutrient solution containing 1mM NaCl (control) or 80mM NaCl. The oxidative stress response and damage symptoms along the cell developmental gradient in growing and mature tissue of leaves and roots were examined. Unlike leaves, roots did not suffer oxidative damage in either growing or mature cells and demonstrated reduced antioxidant response. This may reflect different requirements of ROS for growth mechanisms of leaf and root cells. In leaves, growing tissue demonstrated higher stimulation of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity under salinity than mature tissue, whereas mature tissue demonstrated higher stimulation of catalase. These results indicate differential roles for these ROS-scavenging enzymes at different cell developmental stages. Because ROS are required for cell expansion, the higher increase in SOD and APX activities in the growing leaf cells that resulted in reduction of ROS content under salinity could lead to the inhibition of cell growth under salinity.

  14. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  15. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    Science.gov (United States)

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  16. Central Nervous System Involvement of T-cell Prolymphocytic Leukemia Diagnosed with Stereotactic Brain Biopsy: Case Report

    Directory of Open Access Journals (Sweden)

    Selçuk Göçmen

    2014-03-01

    Full Text Available Prolymphocytic leukemia (PLL is a generalized malignancy of the lymphoid tissue characterized by the accumulation of monoclonal lymphocytes, usually of B cell type. Involvement of the central nervous system (CNS is an extremely rare complication of T-cell prolymphocytic leukemia (T-PLL. We describe a case of T-PLL presenting with symptomatic infiltration of the brain that was histopathologically proven by stereotactic brain biopsy. We emphasize the importance of rapid diagnosis and immediate treatment for patients presenting with CNS involvement and a history of leukemia or lymphoma.

  17. Langerhans Cell Histiocytosis of the Thyroid with Multiple Cervical Lymph Node Involvement Accompanying Metastatic Thyroid Papillary Carcinoma

    Science.gov (United States)

    Ceyran, A. Bahar; Şenol, Serkan; Bayraktar, Barış; Özkanlı, Şeyma; Cinel, Z. Leyla; Aydın, Abdullah

    2014-01-01

    A 37-year-old male case was admitted with goiter. Ultrasonography of thyroid showed a 5 cm cystic nodule in the left lobe with a 1.5 cm solid component. Fine needle aspiration biopsy revealed atypia of undetermined significance or follicular lesion. The patient was operated on. The pathological diagnosis was reported as papillary thyroid carcinoma. The immunohistochemical examination showed multiple foci of Langerhans cell histiocytosis involving both lobes. The patient died due to cardiac arrest with respiratory causes in the early postoperative period. Langerhans cell histiocytosis is a rare primary condition which involves abnormal clonal proliferation of Langerhans cells in various tissues and organs. Thyroid involvement is infrequently seen. Although the etiology is unknown, genetic components may be linked to the disease. It is also associated with a family history of thyroid disease. Papillary thyroid carcinoma is the most common malignant epithelial tumor of the thyroid gland. Langerhans cell histiocytosis presenting with papillary thyroid carcinoma is rare. The privilege of our case is langerhans cell histiocytosis of the thyroid with multiple cervical lymph node involvement accompanying cervical lymph node metastatic thyroid papillary carcinoma. PMID:25349760

  18. A Case Report: The Diagnosis and Therapeutic Evaluation for a Rare Disease of Langerhans Cell Histiocytosis Involving Thyroid

    Science.gov (United States)

    Cai, Ye-Feng; Wang, Qing-Xuan; Ni, Chun-Jue; Dong, Si-Yang; Lv, Lin; Li, Quan; Chen, En-Dong; Zhang, Xiao-Hua

    2015-01-01

    Abstract Langerhans cell histiocytosis (LCH) involving the thyroid gland is extremely rare. Currently, the diagnosis and therapeutic evaluation for LCH involving thyroid is a challenge. We reported a rare case of LCH involving thyroid, presenting as painless thyroid goiters, and successfully performed positron emission tomography/computed tomography (PET/CT) to make an accurate diagnosis and therapeutic evaluation for LCH. Although the histology or cytology is the golden standard for the diagnosis of LCH involving thyroid, the PET/CT should be keep in mind when LCH involving thyroid with inconclusive cytologic results. During the treatment of LCH, PET/CT can be performed to assess the therapeutic effect and select the most effective and reliable treatment for LCH. PMID:26554785

  19. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart.

    Science.gov (United States)

    Yacobi-Sharon, Keren; Namdar, Yuval; Arama, Eli

    2013-04-15

    In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.

  20. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl.

    Science.gov (United States)

    Nacu, Eugen; Glausch, Mareen; Le, Huy Quang; Damanik, Febriyani Fiain Rochel; Schuez, Maritta; Knapp, Dunja; Khattak, Shahryar; Richter, Tobias; Tanaka, Elly M

    2013-02-01

    During salamander limb regeneration, only the structures distal to the amputation plane are regenerated, a property known as the rule of distal transformation. Multiple cell types are involved in limb regeneration; therefore, determining which cell types participate in distal transformation is important for understanding how the proximo-distal outcome of regeneration is achieved. We show that connective tissue-derived blastema cells obey the rule of distal transformation. They also have nuclear MEIS, which can act as an upper arm identity regulator, only upon upper arm amputation. By contrast, myogenic cells do not obey the rule of distal transformation and display nuclear MEIS upon amputation at any proximo-distal level. These results indicate that connective tissue cells, but not myogenic cells, are involved in establishing the proximo-distal outcome of regeneration and are likely to guide muscle patterning. Moreover, we show that, similarly to limb development, muscle patterning in regeneration is influenced by β-catenin signalling.

  1. Downregulation of the tumor suppressor HSPB7, involved in the p53 pathway, in renal cell carcinoma by hypermethylation

    OpenAIRE

    2014-01-01

    In order to identify genes involved in renal carcinogenesis, we analyzed the expression profile of renal cell carcinomas (RCCs) using microarrays consisting of 27,648 cDNA or ESTs, and found a small heat shock protein, HSPB7, to be significantly and commonly downregulated in RCC. Subsequent quantitative PCR (qPCR) and immunohistochemical (IHC) analyses confirmed the downregulation of HSPB7 in RCC tissues and cancer cell lines in both transcriptional and protein levels. Bisulfite sequencing of...

  2. Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka.

    Science.gov (United States)

    Nishimura, Toshiya; Sato, Tetsuya; Yamamoto, Yasuhiro; Watakabe, Ikuko; Ohkawa, Yasuyuki; Suyama, Mikita; Kobayashi, Satoru; Tanaka, Minoru

    2015-07-17

    Sex determination is an essential step in the commitment of a germ cell to a sperm or egg. However, the intrinsic factors that determine the sexual fate of vertebrate germ cells are unknown. Here, we show that foxl3, which is expressed in germ cells but not somatic cells in the gonad, is involved in sperm-egg fate decision in medaka fish. Adult XX medaka with disrupted foxl3 developed functional sperm in the expanded germinal epithelium of a histologically functional ovary. In chimeric medaka, mutant germ cells initiated spermatogenesis in female wild-type gonad. These results indicate that a germ cell-intrinsic cue for the sperm-egg fate decision is present in medaka and that spermatogenesis can proceed in a female gonadal environment.

  3. Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease.

    Science.gov (United States)

    Shao, Liang; Lie, Albert K W; Zhang, You; Wong, Cheuk-Hong; Kwong, Yok-Lam

    2015-09-01

    Chronic graft-versus-host disease (cGVHD) is an important complication after allogeneic hematopoietic stem cell transplantation (HSCT). To define the roles of T-cells and B-cells in cGVHD, a murine minor histocompatibility complex-mismatched HSCT model was used. Depletion of donor splenocyte CD4(+) T-cells and B220(+) B-cells alleviated cGVHD. Allogeneic recipients had significantly increased splenic germinal centers (GCs), with significant increases in follicular T-helper (Tfh) cells and GC B-cells. There were increased expressions in Tfh cells of inducible T-cell co-stimulator (ICOS), interleukin (IL)-4 and IL-17, and in GC B-cells of B-cell activating factor receptor and ICOS ligand. Depletion of donor splenocyte CD4(+) T-cells abrogated aberrant GC formation and suppressed Tfh cells and GC B-cells. Interestingly, depletion of donor splenocyte B200(+) B-cells also suppressed Tfh cells in addition to GC B-cells. These results suggested that in cGVHD, both Tfh and GC B-cells were involved, and their developments were mutually dependent. The mammalian target of rapamycin (mTOR) inhibitor everolimus was effective in suppressing cGVHD, Tfh cells, and GC B-cells, either as a prophylaxis or when cGVHD had established. These results implied that therapeutic targeting of both T-cells and B-cells in cGVHD might be effective. Signaling via mTOR may be another useful target in cGVHD.

  4. Cytotoxic cell involvement in human cutaneous leishmaniasis: assessments in active disease, under therapy and after clinical cure.

    Science.gov (United States)

    Cunha, C F; Ferraz, R; Pimentel, M I F; Lyra, M R; Schubach, A O; Da-Cruz, A M; Bertho, A L

    2016-04-01

    Cutaneous leishmaniasis (CL) is an important public health issue worldwide. The control of Leishmania infection depends on cellular immune mechanisms, and the inflammatory response may contribute to pathogenesis. A beneficial role of CD8(+) T lymphocytes has been proposed; nevertheless, other studies suggest a cytotoxic role of CD8(+) T lymphocytes involved in tissue damage, showing controversial role of these cells. The goal of the current study was to understand the immunopathology of CL and determine the profile of cytotoxic cells--such as CD4(+) T, natural killer and natural killer T cells--that might be involved in triggering immunological mechanisms, and may lead to cure or disease progression. The frequencies of cytotoxic cell populations in peripheral blood, obtained from patients with active disease, during treatment and after clinical healing, were assessed by flow cytometry. Cytotoxicity could not be related to a deleterious role in Leishmania braziliensis infection, as patients with active CL showed similar percentages of degranulation to healthy individuals (HI). Cured patients exhibited a lower percentage of degranulating cells, which may be due to a downregulation of the immune response. The understanding of the immunopathological mechanisms involved in CL and the commitment of cytotoxic cells enables improvements in therapeutic strategies.

  5. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan, E-mail: drqzliu@hotmail.com

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  6. Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2015-01-01

    Full Text Available Cannabinoid Δ9-tetrahydrocannabinol (THC is effective in treating osteoarthritis (OA, and the mechanism, however, is still elusive. Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown. Cofilin-1 is a cytoskeleton protein, participating in the inflammation of OA. In this study, MG-63 cells, an osteosarcoma cell-line, were exposed to lipopolysaccharide (LPS to mimic the inflammation of OA. We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1. We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α, interleukin- (IL- 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells. However, administration of CB2 receptor antagonist or the CB2-siRNA, not CB1 antagonist AM251, partially abolished the THC-induced anti-inflammatory effects above. In addition, overexpression of cofilin-1 significantly reversed the THC-induced anti-inflammatory effects in MG-63 cells. These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.

  7. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    Science.gov (United States)

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint.

  8. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    Science.gov (United States)

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  9. Lymph node involvement by mycosis fungoides and Sézary syndrome mimicking angioimmunoblastic T-cell lymphoma.

    Science.gov (United States)

    LeBlanc, Robert E; Lefterova, Martina I; Suarez, Carlos J; Tavallaee, Mahkam; Kim, Youn H; Schrijver, Iris; Kim, Jinah; Gratzinger, Dita

    2015-09-01

    Clinical management of cutaneous T-cell lymphoma (CTCL) and angioimmunoblastic T-cell lymphoma (AITL) differs markedly. Diagnostic distinction is critical. Herein, we describe a series of 4 patients with clinically, molecularly, and histopathologically annotated mycosis fungoides or Sézary syndrome whose nodal disease mimicked AITL. The patients otherwise exhibited classic clinical manifestations of mycosis fungoides/Sézary syndrome preceding the onset of lymphadenopathy by 1 to 5 years. Skin biopsies revealed epidermotropic infiltrates characteristic of CTCL. Lymph node biopsies revealed dense CD4+ T-cell infiltrates that coexpressed follicular helper T-cell markers and were accompanied by proliferations of high endothelial venules and arborizing CD21+ follicular dendritic cell networks. Two patients had T-cell receptor gene rearrangement studies performed on their skin, lymph node, and peripheral blood demonstrating identical polymerase chain reaction clones in all 3 tissues. A small secondary clonal B-cell population was present in 1 patient that mimicked the B-cell proliferations known to accompany AITL and persisted on successive nodal biopsies over several years. This latter phenomenon has not previously been described in CTCL. The potential for patients to be misdiagnosed with AITL for lack of consideration of advanced-stage CTCL with nodal involvement underscores the necessity of information sharing among the various pathologists and clinicians involved in the care of each patient.

  10. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    Science.gov (United States)

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.

  11. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.; Harren, F.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2¿3 days which indicates the existence

  12. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Yakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.J.; Harren, F.J.M.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 23 days which indicates the existence

  13. CD27-triggering on primary plasma cell leukaemia cells has anti-apoptotic effects involving mitogen activated protein kinases

    NARCIS (Netherlands)

    Guikema, JEJ; Vellenga, E; Abdulahad, WH; Hovenga, S; Bos, NA

    2004-01-01

    Primary plasma cell leukaemia (PCL) is a rare plasma cell malignancy, which is related to multiple myeloma (MM) and is characterized by a poor prognosis. In a previous study we demonstrated that PCL plasma cells display a high expression of CD27, in contrast to MM plasma cells. The present study was

  14. Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines

    Directory of Open Access Journals (Sweden)

    Ramão Anelisa

    2012-09-01

    Full Text Available Abstract Background The most frequent and malignant brain cancer is glioblastoma multiforme (GBM. In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53 are known to be tumorigenic in nude mice, but T98G cells (mutant p53 are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.

  15. Ecdysone Receptor (EcR Is Involved in the Transcription of Cell Cycle Genes in the Silkworm

    Directory of Open Access Journals (Sweden)

    Wenliang Qian

    2015-02-01

    Full Text Available EcR (ecdysone receptor-mediated ecdysone signaling pathway contributes to regulate the transcription of genes involved in various processes during insect development. In this work, we detected the expression of EcR gene in silkworm ovary-derived BmN4 cells and found that EcR RNAi result in an alteration of cell shape, indicating that EcR may orchestrate cell cycle progression. EcR RNAi and EcR overexpression analysis revealed that in the cultured BmN4 cells, EcR respectively promoted and suppressed the transcription of E2F-1 and CycE, two genes controlling cell cycle progression. Further examination demonstrated that ecdysone application in BmN4 cells not only changed the transcription of these two cell cycle genes like that under EcR overexpression, but also induced cell cycle arrest at G2/M phase. In vivo analysis confirmed that E2F-1 expression was elevated in silk gland of silkworm larvae after ecdysone application, which is same as its response to ecdysone in BmN4 cells. However, ecdysone also promotes CycE transcription in silk gland, and this is converse with the observation in BmN4 cells. These results provide new insights into understanding the roles of EcR-mediated ecdysone signaling in the regulation of cell cycle.

  16. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  17. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...... neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death....

  18. Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo.

    Directory of Open Access Journals (Sweden)

    Elsa Abranches

    Full Text Available BACKGROUND: The in vitro generation of neurons from embryonic stem (ES cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor

  19. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.