WorldWideScience

Sample records for cells integrated networks

  1. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.

    Directory of Open Access Journals (Sweden)

    Naiqian Zhang

    Full Text Available The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN data and drug similarity network (DSN data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE and Cancer Genome Project (CGP studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested.

  2. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  3. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells

    Science.gov (United States)

    Fagnocchi, Luca; Zippo, Alessio

    2017-01-01

    Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity. Among the transcription factors, MYC represents a central hub, which modulates and integrates multiple mechanisms involved both in the maintenance of pluripotency and in cell reprogramming. Indeed, it instructs the PSC-specific cell cycle, metabolism and epigenetic landscape, contributes to limit exit from pluripotency and modulates signaling cascades affecting the PSC identity. Moreover, MYC extends its regulation on pluripotency by controlling PSC-specific non-coding RNAs. In this report, we review the MYC-controlled networks, which support the pluripotent state and discuss how their perturbation could affect cell identity. We further discuss recent finding demonstrating a central role of MYC in triggering epigenetic memory in PSCs, which depends on the establishment of a WNT-centered self-reinforcing circuit. Finally, we comment on the therapeutic implications of the role of MYC in affecting PSCs. Indeed, PSCs are used for both disease and cancer modeling and to derive cells for regenerative medicine. For these reasons, unraveling the MYC-mediated mechanism in those cells is fundamental to exploit their full potential and to identify therapeutic targets. PMID:28217689

  4. NASA Integrated Network COOP

    Science.gov (United States)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  5. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marc Jung

    Full Text Available It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs and human embryonal carcinoma cells (ECs if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven expression modules pertinent for self-renewal and differentiation of embryonic stem cells and induced pluripotent stem cells.We initially identified putative direct downstream targets of OCT4 by employing CHIP-on-chip analysis. A comparison of three peak analysis programs revealed a refined list of OCT4 targets in the human EC cell line NCCIT, this list was then compared to previously published OCT4 CHIP-on-chip datasets derived from both ES and EC cells. We have verified an enriched POU-motif, discovered by a de novo approach, thus enabling us to define six distinct modules of OCT4 binding and regulation of its target genes.A selection of these targets has been validated, like NANOG, which harbours the evolutionarily conserved OCT4-SOX2 binding motif within its proximal promoter. Other validated targets, which do not harbour the classical HMG motif are USP44 and GADD45G, a key regulator of the cell cycle. Over-expression of GADD45G in NCCIT cells resulted in an enrichment and up-regulation of genes associated with the cell cycle (CDKN1B, CDKN1C, CDK6 and MAPK4 and developmental processes (BMP4, HAND1, EOMES, ID2, GATA4, GATA5, ISL1 and MSX1. A comparison of positively regulated OCT4 targets common to EC and ES cells identified genes such as NANOG, PHC1, USP44, SOX2, PHF17 and OCT4, thus further confirming their universal role in maintaining self-renewal in both cell types. Finally we have created a user-friendly database (http://biit.cs.ut.ee/escd/, integrating all OCT4 and stem cell related datasets in both human and mouse ES and EC cells.In the current

  6. Wellbore Integrity Network

    Energy Technology Data Exchange (ETDEWEB)

    Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  7. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  8. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    Science.gov (United States)

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  9. An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation.

    Science.gov (United States)

    Sahu, Mousumi; Mallick, Bibekanand

    2016-10-01

    The differentiation of human Embryonic Stem Cells (hESCs) is accompanied by the formation of different intermediary cells, gradually losing its stemness and acquiring differentiation. The precise mechanisms underlying hESCs integrity and its differentiation into fibroblast (Fib) are still elusive. Here, we aimed to assess important genes and co-expression sub-networks responsible for stemness, early differentiation of hESCs into embryoid bodies (EBs) and its lineage specification into Fibs. To achieve this, we compared transcriptional profiles of hESCs-EBs and EBs-Fibs and obtained differentially expressed genes (DEGs) exclusive to hESCs-EBs (early differentiation), EBs-Fibs (late differentiation) and common DEGs in hESCs-EBs and EBs-Fibs. Then, we performed gene set enrichment analysis (GSEA) followed by overrepresentation study and identified key genes for each gene category. The regulations of these genes were studied by integrating ChIP-Seq data of core transcription factors (TFs) and histone methylation marks in hESCs. Finally, we identified co-expression sub-networks from key genes of each gene category using k-clique sub-network extraction method. Our study predicted seven genes edicting core stemness properties forming a co-expression network. From the pathway analysis of sub-networks of hESCs-EBs, we hypothesize that FGF2 is contributing to pluripotent transcription network of hESCs in association with DNMT3B and JARID2 thereby facilitating cell proliferation. On the contrary, FGF2 is found to promote cell migration in Fibs along with DDR2, CAV1, DAB2, and PARVA. Moreover, our study identified three k-clique sub-networks regulating TGF-β signaling pathway thereby promoting EBs to Fibs differentiation by: (i) modulating extracellular matrix involving ITGB1, TGFB1I1 and GBP1, (ii) regulating cell cycle remodeling involving CDKN1A, JUNB and DUSP1 and (iii) helping in epithelial to mesenchymal transition (EMT) involving THBS1, INHBA and LOX. This study put

  10. Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells.

    Science.gov (United States)

    Latos, Paulina A; Goncalves, Angela; Oxley, David; Mohammed, Hisham; Turro, Ernest; Hemberger, Myriam

    2015-07-24

    Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.

  11. NASA Integrated Space Communications Network

    Science.gov (United States)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  12. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  13. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.;

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely with the in......In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  14. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  15. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  16. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    Science.gov (United States)

    Jia, Yanxin; Kiss, István Z.

    2017-01-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries. PMID:28387237

  17. Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model.

    Directory of Open Access Journals (Sweden)

    Matteo Farinella

    2014-04-01

    Full Text Available In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such 'background' synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5 pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a 'balanced' background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.

  18. Integration, mentoring & networking

    DEFF Research Database (Denmark)

    Bloksgaard, Lotte

    KVINFOs mentornetværk har siden 2003 anvendt mentoring og networking med det formål at åbne døre til det danske samfund og arbejdsmarked for kvinder med indvandrer-/flygtningebaggrund. I mentoringdelen matches kvinder med flygtninge- og indvandrerbaggrund (mentees) med kvinder, som er solidt...... forankret på det danske arbejdsmarked og har et bredt kendskab til Danmark (mentorer) - formålet er at støtte mentee i at realisere sit potentiale på det danske arbejdsmarked og i det danske samfund. Formålet med denne undersøgelse er, via gennemførsel af en række fokusgruppeinterviews med mentees fra...... KVINFOs mentornetværk, at indsamle og analysere disses erfaringer med at indgå i netværket samt opnå større viden om mentoring og networking som integrationsfremmende metoder....

  19. Integration of a laterally acquired gene into a cell network important for growth in a strain of Vibrio rotiferianus

    Directory of Open Access Journals (Sweden)

    Labbate Maurizio

    2011-11-01

    Full Text Available Abstract Background Lateral Gene Transfer (LGT is a major contributor to bacterial evolution and up to 25% of a bacterium's genome may have been acquired by this process over evolutionary periods of time. Successful LGT requires both the physical transfer of DNA and its successful incorporation into the host cell. One system that contributes to this latter step by site-specific recombination is the integron. Integrons are found in many diverse bacterial Genera and is a genetic system ubiquitous in vibrios that captures mobile DNA at a dedicated site. The presence of integron-associated genes, contained within units of mobile DNA called gene cassettes makes up a substantial component of the vibrio genome (1-3%. Little is known about the role of this system since the vast majority of genes in vibrio arrays are highly novel and functions cannot be ascribed. It is generally regarded that strain-specific mobile genes cannot be readily integrated into the cellular machinery since any perturbation of core metabolism is likely to result in a loss of fitness. Results In this study, at least one mobile gene contained within the Vibrio rotiferianus strain DAT722, but lacking close relatives elsewhere, is shown to greatly reduce host fitness when deleted and tested in growth assays. The precise role of the mobile gene product is unknown but impacts on the regulation of outermembrane porins. This demonstrates that strain specific laterally acquired mobile DNA can be integrated rapidly into bacterial networks such that it becomes advantageous for survival and adaptation in changing environments. Conclusions Mobile genes that are highly strain specific are generally believed to act in isolation. This is because perturbation of existing cell machinery by the acquisition of a new gene by LGT is highly likely to lower fitness. In contrast, we show here that at least one mobile gene, apparently unique to a strain, encodes a product that has integrated into central

  20. Integrated renewable energy networks

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Spencer, L.

    2015-12-01

    This multidisciplinary research is focused on studying implementation of diverse renewable energy networks. Our modern economy now depends heavily on large-scale, energy-intensive technologies. A transition to low carbon, renewable sources of energy is needed. We will develop a procedure for designing and analyzing renewable energy systems based on the magnitude, distribution, temporal characteristics, reliability and costs of the various renewable resources (including biomass waste streams) in combination with various measures to control the magnitude and timing of energy demand. The southern Canadian prairies are an ideal location for developing renewable energy networks. The region is blessed with steady, westerly winds and bright sunshine for more hours annually than Houston Texas. Extensive irrigation agriculture provides huge waste streams that can be processed biologically and chemically to create a range of biofuels. The first stage involves mapping existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation, such as ridges, rooftops and valley walls, will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids.

  1. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  2. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  3. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    /or misfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  4. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    aggregation and/or mislfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  5. Integrating phosphorylation network with transcriptional network reveals novel functional relationships.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.

  6. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  7. Dynamic network management and service integration for airborne network

    Science.gov (United States)

    Pan, Wei; Li, Weihua

    2009-12-01

    The development of airborne network is conducive to resource sharing, flight management and interoperability in civilian and military aviation fields. To enhance the integrated ability of airborne network, the paper focuses on dynamic network management and service integration architecture for airborne network (DNMSIAN). Adaptive routing based on the mapping mechanism between connection identification and routing identification can provide diversified network access, and ensure the credibility and mobility of the aviation information exchange. Dynamic network management based on trustworthy cluster can ensure dynamic airborne network controllable and safe. Service integration based on semantic web and ontology can meet the customized and diversified needs for aviation information services. The DNMSIAN simulation platform demonstrates that our proposed methods can effectively perform dynamic network management and service integration.

  8. Integrating proteomics profiling data sets: a network perspective.

    Science.gov (United States)

    Bhat, Akshay; Dakna, Mohammed; Mischak, Harald

    2015-01-01

    Understanding disease mechanisms often requires complex and accurate integration of cellular pathways and molecular networks. Systems biology offers the possibility to provide a comprehensive map of the cell's intricate wiring network, which can ultimately lead to decipher the disease phenotype. Here, we describe what biological pathways are, how they function in normal and abnormal cellular systems, limitations faced by databases for integrating data, and highlight how network models are emerging as a powerful integrative framework to understand and interpret the roles of proteins and peptides in diseases.

  9. Reconstruction of biological networks based on life science data integration

    OpenAIRE

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-01-01

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and V...

  10. The California Integrated Seismic Network

    Science.gov (United States)

    Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.

    2007-05-01

    The mission of the California Integrated Seismic Network (CISN) is to operate a reliable, modern system to monitor earthquakes throughout the state; to generate and distribute information in real-time for emergency response, for the benefit of public safety, and for loss mitigation; and to collect and archive data for seismological and earthquake engineering research. To meet these needs, the CISN operates data processing and archiving centers, as well as more than 3000 seismic stations. Furthermore, the CISN is actively developing and enhancing its infrastructure, including its automated processing and archival systems. The CISN integrates seismic and strong motion networks operated by the University of California Berkeley (UCB), the California Institute of Technology (Caltech), and the United States Geological Survey (USGS) offices in Menlo Park and Pasadena, as well as the USGS National Strong Motion Program (NSMP), and the California Geological Survey (CGS). The CISN operates two earthquake management centers (the NCEMC and SCEMC) where statewide, real-time earthquake monitoring takes place, and an engineering data center (EDC) for processing strong motion data and making it available in near real-time to the engineering community. These centers employ redundant hardware to minimize disruptions to the earthquake detection and processing systems. At the same time, dual feeds of data from a subset of broadband and strong motion stations are telemetered in real- time directly to both the NCEMC and the SCEMC to ensure the availability of statewide data in the event of a catastrophic failure at one of these two centers. The CISN uses a backbone T1 ring (with automatic backup over the internet) to interconnect the centers and the California Office of Emergency Services. The T1 ring enables real-time exchange of selected waveforms, derived ground motion data, phase arrivals, earthquake parameters, and ShakeMaps. With the goal of operating similar and redundant

  11. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  12. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  13. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  14. Integrating network awareness in ATLAS distributed computing

    CERN Document Server

    De, K; The ATLAS collaboration; Klimentov, A; Maeno, T; Mckee, S; Nilsson, P; Petrosyan, A; Vukotic, I; Wenaus, T

    2014-01-01

    A crucial contributor to the success of the massively scaled global computing system that delivers the analysis needs of the LHC experiments is the networking infrastructure upon which the system is built. The experiments have been able to exploit excellent high-bandwidth networking in adapting their computing models for the most efficient utilization of resources. New advanced networking technologies now becoming available such as software defined networks hold the potential of further leveraging the network to optimize workflows and dataflows, through proactive control of the network fabric on the part of high level applications such as experiment workload management and data management systems. End to end monitoring of networking and data flow performance further allows applications to adapt based on real time conditions. We will describe efforts underway in ATLAS on integrating network awareness at the application level, particularly in workload management.

  15. Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle.

    Science.gov (United States)

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-02-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms.

  16. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  17. Trends in Integrated Ship Control Networking

    DEFF Research Database (Denmark)

    Jørgensen, N.; Nielsen, Jens Frederik Dalsgaard

    1997-01-01

    Integrated Ship Control systems can be designed as robust, distributed, autonomous control systems. The EU funded ATOMOS and ATOMOS II projects involves both technical and non technical aspects of this process. A reference modelling concept giving an outline of a generic ISC system covering...... the network and the equipment connected to it, a framework for verification of network functionality and performance by simulation and a general distribution platform for ISC systems, The ATOMOS Network, are results of this work....

  18. Trends in Integrated Ship Control Networking

    OpenAIRE

    Jørgensen, N.; Nielsen, Jens Frederik Dalsgaard

    1997-01-01

    Integrated Ship Control systems can be designed as robust, distributed, autonomous control systems. The EU funded ATOMOS and ATOMOS II projects involves both technical and non technical aspects of this process. A reference modelling concept giving an outline of a generic ISC system covering the network and the equipment connected to it, a framework for verification of network functionality and performance by simulation and a general distribution platform for ISC systems, The ATOMOS Network, a...

  19. Conceptual Integration Network:Chang’an Flower

    Institute of Scientific and Technical Information of China (English)

    杨华

    2012-01-01

    ⅠConceptual Integration Network Conceptual integration-"blending"-is a general cognitive operation on a par with analogy,recursion,mental modeling,conceptual categorization,and framing.In blending,structure from input mental spaces is projected to a separate,"blending"

  20. Performance analysis of adaptive scheduling in integrated services UMTS networks

    NARCIS (Netherlands)

    Litjens, Remco; Berg, van den Hans

    2002-01-01

    For an integrated services UMTS network serving speech and data calls, we propose, evaluate and compare different scheduling schemes, which dynamically adapt the shared data transport channel rates to the varying speech traffic load. within each cell, the assigned data transfer resources are distrib

  1. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    Science.gov (United States)

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  2. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  3. Measuring the degree of integration for an integrated service network

    Directory of Open Access Journals (Sweden)

    Chenglin Ye

    2012-09-01

    Full Text Available Background: Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies' perception and expectation. We propose a method for quantifying the agencies' service integration. Using the data from the Children's Treatment Network (CTN, we aimed to measure the degree of integration for the CTN agencies in York and Simcoe.  Theory and Methods: We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score.  Results: Most agencies' integration scores were less than 65%. As measured by the agreement between every other agency's perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39% - 49% and 52% (95% CI: 48% - 56%, respectively. The sensitivity analysis showed that the global scores were robust.  Conclusion: Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes.

  4. Measuring the degree of integration for an integrated service network

    Directory of Open Access Journals (Sweden)

    Chenglin Ye

    2012-09-01

    Full Text Available Background: Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies' perception and expectation. We propose a method for quantifying the agencies' service integration. Using the data from the Children's Treatment Network (CTN, we aimed to measure the degree of integration for the CTN agencies in York and Simcoe. Theory and Methods: We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score. Results: Most agencies' integration scores were less than 65%. As measured by the agreement between every other agency's perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39% - 49% and 52% (95% CI: 48% - 56%, respectively. The sensitivity analysis showed that the global scores were robust. Conclusion: Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes. 

  5. Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle

    OpenAIRE

    Ying Li; Guang Li; Benjamin Görling; Burkhard Luy; Jiulin Du; Jun Yan

    2015-01-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an inter...

  6. Digital telephony and network integration

    CERN Document Server

    Keiser, Bernhard E

    1995-01-01

    What is "digital telephony"? To the authors, the term digital telephony denotes the technology used to provide a completely digital telecommunication system from end-to-end. This implies the use of digital technology from one end instru­ ment through transmission facilities and switching centers to another end instru­ ment. Digital telephony has become possible only because of the recent and on­ going surge of semiconductor developments, allowing microminiaturization and high reliability along with reduced costs. This book deals with both the future and the present. Thus, the first chapter is entitled, "A Network in Transition." As baselines, Chapters 2 and 11 provide the reader with the present status of teler-hone technology in terms of voice digiti­ zation as well as switching principles. The book is an outgrowth of the authors' consulting and teaching experience in the field since the early 1980s. The book has been written to provide both the engineering student and the practicing engineer a working k...

  7. An integrated network model of psychotic symptoms.

    Science.gov (United States)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, André; Hoek, Hans W; Goekoop, Rutger

    2015-12-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice.

  8. Electric vehicle integration into modern power networks

    CERN Document Server

    Garcia-Valle, Rodrigo

    2012-01-01

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources.New business mo

  9. Integrated Network Architecture for NASA's Orion Missions

    Science.gov (United States)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  10. Novel Candidate Key Drivers in the Integrative Network of Genes, MicroRNAs, Methylations, and Copy Number Variations in Squamous Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2015-01-01

    Full Text Available The mechanisms of lung cancer are highly complex. Not only mRNA gene expression but also microRNAs, DNA methylation, and copy number variation (CNV play roles in tumorigenesis. It is difficult to incorporate so much information into a single model that can comprehensively reflect all these lung cancer mechanisms. In this study, we analyzed the 129 TCGA (The Cancer Genome Atlas squamous cell lung carcinoma samples with gene expression, microRNA expression, DNA methylation, and CNV data. First, we used variance inflation factor (VIF regression to build the whole genome integrative network. Then, we isolated the lung cancer subnetwork by identifying the known lung cancer genes and their direct regulators. This subnetwork was refined by the Bayesian method, and the directed regulations among mRNA genes, microRNAs, methylations, and CNVs were obtained. The novel candidate key drivers in this refined subnetwork, such as the methylation of ARHGDIB and HOXD3, microRNA let-7a and miR-31, and the CNV of AGAP2, were identified and analyzed. On three large public available lung cancer datasets, the key drivers ARHGDIB and HOXD3 demonstrated significant associations with the overall survival of lung cancer patients. Our results provide new insights into lung cancer mechanisms.

  11. Integrated network design and scheduling problems :

    Energy Technology Data Exchange (ETDEWEB)

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  12. Integrated microfluidic platforms for investigating neuronal networks

    Science.gov (United States)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  13. Interleukin-7 Receptor Signaling Network: An Integrated Systems Perspective

    Institute of Scientific and Technical Information of China (English)

    Megan J. Palmer; Vinay S. Mahajan; Lily C. Trajman; Darrell J. Irvine; Douglas A.Lauffenburger; Jianzhu Chen

    2008-01-01

    Interleukin-7 (IL-7) is an essential cytokine for the development and homeostatic maintenance of T and B lymphocytes. Binding of IL-7 to its cognate receptor, the IL-7 receptor (IL-7R), activates multiple pathways that regulate lymphocyte survival, glucose uptake, proliferation and differentiation. There has been much interest in understanding how IL-7 receptor signaling is modulated at multiple interconnected network levels. This review examines how the strength of the signal through the IL-7 receptor is modulated in T and B cells, including the use of shared receptor components, signaling crosstaik, shared interaction domains, feedback loops, integrated gene regulation, muitimerization and ligand competition. We discuss how these network control mechanisms could integrate to govern the properties of IL-7R signaling in lymphocytes in health and disease. Analysis of IL-7receptor signaling at a network level in a systematic manner will allow for a comprehensive approach to understanding the impact of multiple signaling pathways on lymphocyte biology.

  14. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  15. Integrative bayesian network analysis of genomic data.

    Science.gov (United States)

    Ni, Yang; Stingo, Francesco C; Baladandayuthapani, Veerabhadran

    2014-01-01

    Rapid development of genome-wide profiling technologies has made it possible to conduct integrative analysis on genomic data from multiple platforms. In this study, we develop a novel integrative Bayesian network approach to investigate the relationships between genetic and epigenetic alterations as well as how these mutations affect a patient's clinical outcome. We take a Bayesian network approach that admits a convenient decomposition of the joint distribution into local distributions. Exploiting the prior biological knowledge about regulatory mechanisms, we model each local distribution as linear regressions. This allows us to analyze multi-platform genome-wide data in a computationally efficient manner. We illustrate the performance of our approach through simulation studies. Our methods are motivated by and applied to a multi-platform glioblastoma dataset, from which we reveal several biologically relevant relationships that have been validated in the literature as well as new genes that could potentially be novel biomarkers for cancer progression.

  16. Integrated Routing Protocol for Opportunistic Networks

    CERN Document Server

    Verma, Anshul

    2012-01-01

    In opportunistic networks the existence of a simultaneous path is not assumed to transmit a message between a sender and a receiver. Information about the context in which the users communicate is a key piece of knowledge to design efficient routing protocols in opportunistic networks. But this kind of information is not always available. When users are very isolated, context information cannot be distributed, and cannot be used for taking efficient routing decisions. In such cases, context oblivious based schemes are only way to enable communication between users. As soon as users become more social, context data spreads in the network, and context based routing becomes an efficient solution. In this paper we design an integrated routing protocol that is able to use context data as soon as it becomes available and falls back to dissemination based routing when context information is not available. Then, we provide a comparison between Epidemic and PROPHET, these are representative of context oblivious and co...

  17. Integrated Job Scheduling and Network Routing

    DEFF Research Database (Denmark)

    Gamst, Mette; Pisinger, David

    2013-01-01

    We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number...... of resources which must be sent to the executing machine through a network with limited capacity. A job cannot start before all of its resources have arrived at the machine. The scheduling problem is formulated as a Mixed Integer Program (MIP) and proved to be NP-hard. An exact solution approach using Dantzig...... instances with 1,000 jobs and 1,000 machines covering 24 hours of scheduling activity on a Grid network. The algorithm is also compared to simulations of a real-life Grid, and results show that the solution quality significantly increases when solving the problem to optimality. The promising results...

  18. The Integrated Control-Mechanism in ATM-Based Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Survivability is one of the important issues in ATM-based networks since even a single network element failure may cause a serious data loss. This paper introduces a new restoration mechanism based on multi-layer ATM survivable network management architecture. This mechanism integrates the general control and restoration control by establishing the Working VPs logical network, Backup VPs logical network and spare logical network in order to optimally utilize the network resources while maintaining the restoration requirements.

  19. Towards Integrated Marmara Strong Motion Network

    Science.gov (United States)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy

  20. Integrated condition monitoring of space information network

    Science.gov (United States)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  1. Discovering cancer genes by integrating network and functional properties

    Directory of Open Access Journals (Sweden)

    Davis David P

    2009-09-01

    Full Text Available Abstract Background Identification of novel cancer-causing genes is one of the main goals in cancer research. The rapid accumulation of genome-wide protein-protein interaction (PPI data in humans has provided a new basis for studying the topological features of cancer genes in cellular networks. It is important to integrate multiple genomic data sources, including PPI networks, protein domains and Gene Ontology (GO annotations, to facilitate the identification of cancer genes. Methods Topological features of the PPI network, as well as protein domain compositions, enrichment of gene ontology categories, sequence and evolutionary conservation features were extracted and compared between cancer genes and other genes. The predictive power of various classifiers for identification of cancer genes was evaluated by cross validation. Experimental validation of a subset of the prediction results was conducted using siRNA knockdown and viability assays in human colon cancer cell line DLD-1. Results Cross validation demonstrated advantageous performance of classifiers based on support vector machines (SVMs with the inclusion of the topological features from the PPI network, protein domain compositions and GO annotations. We then applied the trained SVM classifier to human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1. Conclusion Topological features of PPI networks, protein domain compositions and GO annotations are good predictors of cancer genes. The SVM classifier integrates multiple features and as such is useful for prioritizing candidate cancer genes for experimental validations.

  2. Brain networks for integrative rhythm formation.

    Directory of Open Access Journals (Sweden)

    Michael H Thaut

    Full Text Available BACKGROUND: Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms. METHODOLOGY/PRINCIPAL FINDINGS: Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1:1 on-the-beat or with a 3:2 or a 2:3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3:2 or 2:3 rhythmic movements automatically. Both the isorhythmic 1:1 and the polyrhythmic 3:2 or 2:3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3:2 or 2:3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum. CONCLUSIONS/SIGNIFICANCE: The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities.

  3. Approaches in integrative bioinformatics towards the virtual cell

    CERN Document Server

    Chen, Ming

    2014-01-01

    Approaches in Integrative Bioinformatics provides a basic introduction to biological information systems, as well as guidance for the computational analysis of systems biology. This book also covers a range of issues and methods that reveal the multitude of omics data integration types and the relevance that integrative bioinformatics has today. Topics include biological data integration and manipulation, modeling and simulation of metabolic networks, transcriptomics and phenomics, and virtual cell approaches, as well as a number of applications of network biology. It helps to illustrat

  4. The NASA Science Internet: An integrated approach to networking

    Science.gov (United States)

    Rounds, Fred

    1991-01-01

    An integrated approach to building a networking infrastructure is an absolute necessity for meeting the multidisciplinary science networking requirements of the Office of Space Science and Applications (OSSA) science community. These networking requirements include communication connectivity between computational resources, databases, and library systems, as well as to other scientists and researchers around the world. A consolidated networking approach allows strategic use of the existing science networking within the Federal government, and it provides networking capability that takes into consideration national and international trends towards multivendor and multiprotocol service. It also offers a practical vehicle for optimizing costs and maximizing performance. Finally, and perhaps most important to the development of high speed computing is that an integrated network constitutes a focus for phasing to the National Research and Education Network (NREN). The NASA Science Internet (NSI) program, established in mid 1988, is structured to provide just such an integrated network. A description of the NSI is presented.

  5. ISINA: INTEGRAL Source Identification Network Algorithm

    CERN Document Server

    Scaringi, S; Clark, D J; Dean, A J; Hill, A B; McBride, V A; Shaw, S E

    2008-01-01

    We give an overview of ISINA: INTEGRAL Source Identification Network Algorithm. This machine learning algorithm, using Random Forests, is applied to the IBIS/ISGRI dataset in order to ease the production of unbiased future soft gamma-ray source catalogues. First we introduce the dataset and the problems encountered when dealing with images obtained using the coded mask technique. The initial step of source candidate searching is introduced and an initial candidate list is created. A description of the feature extraction on the initial candidate list is then performed together with feature merging for these candidates. Three training and testing sets are created in order to deal with the diverse timescales encountered when dealing with the gamma-ray sky. Three independent Random Forest are built: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described...

  6. Network evolution and QOS provisioning for integrated femtocell/macrocell networks

    CERN Document Server

    Chowdhury, Mostafa Zaman; Haas, Zygmunt J

    2010-01-01

    Integrated femtocell/macrocell networks, comprising a conventional cellular network overlaid with femtocells, offer an economically appealing way to improve coverage, quality of service, and access network capacity. The key element to successful femtocells/macrocell integration lies in its self-organizing capability. Provisioning of quality of service is the main technical challenge of the femtocell/macrocell integrated networks, while the main administrative challenge is the choice of the proper evolutionary path from the existing macrocellular networks to the integrated network. In this article, we introduce three integrated network architectures which, while increasing the access capacity, they also reduce the deployment and operational costs. Then, we discuss a number of technical issues, which are key to making such integration a reality, and we offer possible approaches to their solution. These issues include efficient frequency and interference management, quality of service provisioning of the xDSL-ba...

  7. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs

    Directory of Open Access Journals (Sweden)

    Shoemaker Jason E

    2012-08-01

    Full Text Available Abstract Background Annually, influenza A viruses circulate the world causing wide-spread sickness, economic loss, and death. One way to better defend against influenza virus-induced disease may be to develop novel host-based therapies, targeted at mitigating viral pathogenesis through the management of virus-dysregulated host functions. However, mechanisms that govern aberrant host responses to influenza virus infection remain incompletely understood. We previously showed that the pandemic H1N1 virus influenza A/California/04/2009 (H1N1; CA04 has enhanced pathogenicity in the lungs of cynomolgus macaques relative to a seasonal influenza virus isolate (A/Kawasaki/UTK-4/2009 (H1N1; KUTK4. Results Here, we used microarrays to identify host gene sequences that were highly differentially expressed (DE in CA04-infected macaque lungs, and we employed a novel strategy – combining functional and pathway enrichment analyses, transcription factor binding site enrichment analysis and protein-protein interaction data – to create a CA04 differentially regulated host response network. This network describes enhanced viral RNA sensing, immune cell signaling and cell cycle arrest in CA04-infected lungs, and highlights a novel, putative role for the MYC-associated zinc finger (MAZ transcription factor in regulating these processes. Conclusions Our findings suggest that the enhanced pathology is the result of a prolonged immune response, despite successful virus clearance. Most interesting, we identify a mechanism which normally suppresses immune cell signaling and inflammation is ineffective in the pH1N1 virus infection; a dyregulatory event also associated with arthritis. This dysregulation offers several opportunities for developing strain-independent, immunomodulatory therapies to protect against future pandemics.

  8. Integrated cellular network of transcription regulations and protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2010-03-01

    Full Text Available Abstract Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.

  9. Origin of cells and network information

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe

    2015-01-01

    All cells are derived from one cell, and the origin ofdifferent cell types is a subject of curiosity. Cells constructlife through appropriately timed networks at each stageof development. Communication among cells andintracellular signaling are essential for cell differentiationand for life processes. Cellular molecular networksestablish cell diversity and life. The investigation ofthe regulation of each gene in the genome within thecellular network is therefore of interest. Stem cellsproduce various cells that are suitable for specificpurposes. The dynamics of the information in thecellular network changes as the status of cells isaltered. The components of each cell are subject toinvestigation.

  10. Boolean integration. [applied to switching network synthesis

    Science.gov (United States)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1976-01-01

    This paper presents the necessary and sufficient conditions for a given differential expression to be compatibly integrable and it presents the necessary and sufficient conditions for a given expression to be exactly integrable. Methods are given for integrating a differential expression when it is exactly integrable and when it is compatibly integrable. The physical interpretation is given of the integral of order k, of a differential expression, and it is shown that any differential expression of the proper form is integrable by parts.

  11. Neural and Cognitive Modeling with Networks of Leaky Integrator Units

    Science.gov (United States)

    Graben, Peter beim; Liebscher, Thomas; Kurths, Jürgen

    After reviewing several physiological findings on oscillations in the electroencephalogram (EEG) and their possible explanations by dynamical modeling, we present neural networks consisting of leaky integrator units as a universal paradigm for neural and cognitive modeling. In contrast to standard recurrent neural networks, leaky integrator units are described by ordinary differential equations living in continuous time. We present an algorithm to train the temporal behavior of leaky integrator networks by generalized back-propagation and discuss their physiological relevance. Eventually, we show how leaky integrator units can be used to build oscillators that may serve as models of brain oscillations and cognitive processes.

  12. Conceptualization and measurement of integrated human service networks for evaluation

    Directory of Open Access Journals (Sweden)

    Gina Browne

    2007-12-01

    Full Text Available Introduction: Integration has been advanced as a strategy for the delivery of a number of human services that have traditionally been delivered by autonomous agencies with independent processes and funding sources. However, measurement of the dimensions of integration has been hampered by numerous factors, including a lack of definitional and conceptual clarity of integration, and the use of measurement tools with atheoretical foundations and limited psychometric testing. Theory/methods: Based on a review of integration measurement approaches, a comprehensive approach to the measure of multiple dimensions of integrated human service networks was conceptualized. The combination of concepts was derived from existing theoretical, policy, and measurement approaches in order to establish the content validity and comprehensiveness of the proposed measure. Results: The dimensions of human service integration measures are: (1 Observed (current and expected structural inputs, or the mix of agencies that comprise the network (e.g. extent, scope, depth, congruence within an agency, and reciprocity between agencies. (2 Functioning of the network both in terms of the quality of the network or partnership functioning and ingredients of the integration of the networks' working arrangements and range of human services provided. (3 Network outputs in terms of network capacity (e.g. what is accomplished, for how many and how quickly given the local demand measured from dual perspectives of the agency and the family. Conclusion: This newly developed measure unites multiple perspectives in a comprehensive approach to the measurement of integration of human service networks. Content validity has been established. Future work should focus on further refinement of this instrument through psychometric evaluation (e.g. construct validity in diverse networks and relating these measures of network integration to client and system outcomes.

  13. Small Cell Network Topology Comparison

    Directory of Open Access Journals (Sweden)

    Jan Oppolzer

    2013-01-01

    Full Text Available One of the essential problems in a mobile network with small cells is that there is only a limited number of (PCIs available. Due to this fact, operators face the inevitable need for reusing (PCIs. In our contribution, we are dealing with a (PCI assignment to FAPs in three different topologies. The first model places FAPs randomly within the network while respecting overlapping defined. The second model places FAPs in a grid without other restrictions. The third model forms a grid as well, although buildings and roads are taken into account and (FAPs are always inside buildings. The proposed models are compared and a conclusion is made based on simulation results.

  14. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    control platform design. To achieve an integrated and unified control platform, enhanced signalling protocol plays an important role in gluing the two different technologies. Consequently, an integrated resource management system is developed. Furthermore, and admission control scheme for connections......The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  15. AN OVERVIEW OF UMTS AND WIMAX NETWORKS INTEGRATION

    Directory of Open Access Journals (Sweden)

    Dewi Wirastuti

    2010-12-01

    Full Text Available This paper gives an overview of the network integration of UMTS (Universal Mobile TelecommunicationSystem with WiMAX (Wordwide Interoperability of Microwave Access. A few proposed interworking solutionsand seamless integration of both networks are explained. The best architecture and key procedures that will enablethe integration both networks and handover mechanism for the seamless mobility are presented. Considering thetrend of the current network evolution, which is the convergence between the telecommunications and broadcastworlds, an integration of mobile WiMAX with present 2G, 2.5G or 3G accesses into a homogeneous architecturegoes a long way to achieve the reality of mobile broadband networks. With the advent of mobile WiMAX, a mobilebroadband wireless access solution and based on all-IP (Internet Protocol based OFDMA (Orthogonal FrequencyDivision Multiple Access technology, an UMTS-WiMAX

  16. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  17. An Integrated Framework to Model Cellular Phenotype as a Component of Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Michael Gormley

    2011-01-01

    Full Text Available Identification of regulatory molecules in signaling pathways is critical for understanding cellular behavior. Given the complexity of the transcriptional gene network, the relationship between molecular expression and phenotype is difficult to determine using reductionist experimental methods. Computational models provide the means to characterize regulatory mechanisms and predict phenotype in the context of gene networks. Integrating gene expression data with phenotypic data in transcriptional network models enables systematic identification of critical molecules in a biological network. We developed an approach based on fuzzy logic to model cell budding in Saccharomyces cerevisiae using time series expression microarray data of the cell cycle. Cell budding is a phenotype of viable cells undergoing division. Predicted interactions between gene expression and phenotype reflected known biological relationships. Dynamic simulation analysis reproduced the behavior of the yeast cell cycle and accurately identified genes and interactions which are essential for cell viability.

  18. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks.

    Science.gov (United States)

    Newman, Robert H; Zhang, Jin

    2017-01-01

    In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.

  19. Normalized RBF networks: application to a system of integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Golbabai, A; Seifollahi, S; Javidi, M [Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844 (Iran, Islamic Republic of)], E-mail: golbabai@iust.ac.ir, E-mail: seif@iust.ac.ir, E-mail: mojavidi@yahoo.com

    2008-07-15

    Linear integral and integro-differential equations of Fredholm and Volterra types have been successfully treated using radial basis function (RBF) networks in previous works. This paper deals with the case of a system of integral equations of Fredholm and Volterra types with a normalized radial basis function (NRBF) network. A novel learning algorithm is developed for the training of NRBF networks in which the BFGS backpropagation (BFGS-BP) least-squares optimization method as a recursive model is used. In the approach presented here, a trial solution is given by an NRBF network of incremental architecture with a set of unknown parameters. Detailed learning algorithms and concrete examples are also included.

  20. Analysis of adaptive algorithms for an integrated communication network

    Science.gov (United States)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  1. Integrated Differentiated Survivability in IP over WDM Networks

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Qing-Ji Zeng

    2004-01-01

    The problem of differentiated Multi-Layer Integrated Survivability (MLIS) in IP over WDM networks is studied, which is decomposed into three sub-problems: survivable strategies design (SSD), spare capacity dimensioning (SCD), and dynamic survivable routing (DSR). A related work of network survivability in IP over WDM networks is firstly provided, and adaptive survivable strategies are also designed. A new Integrated Shared Pool (ISP) approach for SCD is then proposed, which is formulated by using integer-programming theory. Moreover, a novel survivable routing scheme called Differentiated Integrated Survivability Algorithm (DISA) for DSR is developed. Simulation results show that the proposed integrated survivability scheme performs much better than other solutions (e.g., "highest layer recovery" and "lowest layer recovery" schemes) in terms of traffic blocking ratio, spare resource requirement, and average traffic recovery ratio in IP over WDM networks.

  2. Characterizing regulatory path motifs in integrated networks using perturbational data

    OpenAIRE

    Joshi, Anagha Madhusudan; Van Parys, Thomas; de Peer, Yves Van; Michoel, Tom

    2010-01-01

    We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in...

  3. Emerging Communities: Integrating Networked Information into Library Services (Book Review).

    Science.gov (United States)

    Afifi, Marianne

    1995-01-01

    Reviews this collection of papers, edited by Ann P. Bishop, which present the current state of networking as it relates to libraries and the community. Recommends the book as a compendium of lessons, learned and to be learned, as networked information becomes an integral and necessary part of the library world. (JMV)

  4. FUZZY NEURAL NETWORK FOR OBJECT IDENTIFICATION ON INTEGRATED CIRCUIT LAYOUTS

    Directory of Open Access Journals (Sweden)

    A. A. Doudkin

    2015-01-01

    Full Text Available Fuzzy neural network model based on neocognitron is proposed to identify layout objects on images of topological layers of integrated circuits. Testing of the model on images of real chip layouts was showed a highеr degree of identification of the proposed neural network in comparison to base neocognitron.

  5. Analysis of Basic Transmission Networks for Integrated Ship Control Systems

    DEFF Research Database (Denmark)

    Hansen, T.N.; Granum-Jensen, M.

    1993-01-01

    Description of a computer network for Integrated Ship Control Systems which is going to be developed as part of an EC-project. Today equipment of different make are not able to communicate with each other because most often each supplier of ISC systems has got their own proprietary network.....

  6. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly i

  7. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly i

  8. J2EE-based integrated telecom network management

    Science.gov (United States)

    Xia, Zhongwu; Wei, Guo

    2004-04-01

    The paper will present a J2EE-based architecture of integrated telecom network management system, and also will introduce the MVC(Model, View and Control) design pattern in the architecture. Using J2EE and MVC design pattern, we can easily build multiple user interfaces (included Web-based), flexible, manageable, and extensible network management system.

  9. Integrating Decision Support and Social Networks

    Directory of Open Access Journals (Sweden)

    Francisco Antunes

    2012-01-01

    Full Text Available We elaborate on the shifting of decision support systems towards social networking, which is based on the concepts of Web 2.0 and Semantic Web technology. As the characteristics of the relevant components are different from traditional decision support systems, we present necessary adaptations when adopting social networks for decision support within an organization. We also present organizational obstacles when adopting/using such systems and clues to overcome them.

  10. Integrating Network Management for Cloud Computing Services

    Science.gov (United States)

    2015-06-01

    Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cloud computing is known to lower costs of corporate IT. Thus...to high capital costs . A more attractive approach is to better utilize network resources with proper network management. However, there are two...nal contribution consists of bridging enterprises and Internet service providers (ISPs) for ne-grained control of inbound tra c from cloud

  11. Integrated Adversarial Network Theory (iANT)

    Science.gov (United States)

    2011-07-01

    it is increasingly applied to everything from a trade association to a listserv to a social media website such as Facebook. Our objective in this...alter represents the people in their social environment - the people they have ties with and are receiving information from. Ego Alter ( Socia l... markets as "networks". In this literature, a network refers to a group of organizations working closely together, almost as if they were one super

  12. WLAN Integrated with GPRS Network Securely

    Directory of Open Access Journals (Sweden)

    Mohammed A. Abdalla

    2012-01-01

    Full Text Available In this paper a WLAN network that accesses the Internet through a GPRS network was implemented and tested. The proposed network is managed by the Linux based server. Because of the limited facilities of GPRS such as dynamic IP addressing besides to its limited bandwidth a number of techniques are implemented to overcome these limitations.Dynamic Host Configuration Protocol (DHCP server was added to provide a single central control for all TCP/IP resources. Squid Proxy was added to provide caching of the redundant accessed Web content to reduce the Internet bandwidth usage and speeding up the client’s download time. Network Address Translation (NAT service was configured to share one IP address among several different systems. In order to accomplish a secure channel to exchange data between two network devices, the Secure Shell (SSH protocol was added. The first test shows that the data transfer rate at different time intervals of the day found to be an average of 10.95 Kbps for uploading and 13.7 Kbps for downloading and the second test shows that the network performance improved when squid proxy cache was used. The data rate found to be 143.3 Kbps average for uploading rate and 376.6 Kbps average for downloading rate.

  13. Reliable Integrated Architecture for Heterogeneous Mobile and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Christian Makaya

    2007-12-01

    Full Text Available The major trend in next-generation or 4G wireless networks (NGWN/4G is the coexistence of diverse but complementary architectures and wireless access technologies. In this context, an appropriate integration and interworking of existing wireless networks are crucial to allow seamless roaming across those networks. Several integrated architectures have been proposed for 3G cellular networks and wireless local area networks (WLANs by both third generation wireless initiatives, 3GPP and 3GPP2. However, the proposed architectures have several drawbacks, the most significant being the absence of quality of service (QoS guarantees, seamless roaming and service continuity. This paper proposes a novel architecture, called Integrated InterSystem Architecture (IISA, which enables the integration and interworking of various wireless networks and hide their heterogeneities from one another. The IISA architecture aims provisioning of guaranteed seamless roaming and service continuity across different access networks. Performance evaluation shows that IISA together with the proposed handoff management scheme provide significant gains than existing interworking architectures and mobility management protocols.

  14. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  15. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  16. Performance Analysis of a NASA Integrated Network Array

    Science.gov (United States)

    Nessel, James A.

    2012-01-01

    The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.

  17. Delay related issues in integrated voice and data networks

    Science.gov (United States)

    Gruber, J. G.

    1981-06-01

    The described investigation is concerned with the problem of transmitting voice with data in a computer communications network. The motivations for considering mixed voice and data traffic in such a shared network environment include the advent of new voice related applications with the technology now existing to economically support them, and the desire to plan for and design future integrated networks for reasons of economy and flexibility. Attention is given to the problem of variable delays in a shared network environment handling voice traffic. Previous work in packetized voice, as well as various approaches to integrated voice and data transmission, are reviewed. These approaches may be regarded as enhanced versions of circuit, packet, and hybrid switching. The impact of network interfacing and delay considerations for voice traffic is discussed.

  18. Social network diversity and white matter microstructural integrity in humans.

    Science.gov (United States)

    Molesworth, Tara; Sheu, Lei K; Cohen, Sheldon; Gianaros, Peter J; Verstynen, Timothy D

    2015-09-01

    Diverse aspects of physical, affective and cognitive health relate to social integration, reflecting engagement in social activities and identification with diverse roles within a social network. However, the mechanisms by which social integration interacts with the brain are unclear. In healthy adults (N = 155), we tested the links between social integration and measures of white matter microstructure using diffusion tensor imaging. Across the brain, there was a predominantly positive association between a measure of white matter integrity, fractional anisotropy (FA), and social network diversity. This association was particularly strong in a region near the anterior corpus callosum and driven by a negative association with the radial component of the diffusion signal. This callosal region contained projections between bilateral prefrontal cortices, as well as cingulum and corticostriatal pathways. FA within this region was weakly associated with circulating levels of the inflammatory cytokine interleukin-6 (IL-6), but IL-6 did not mediate the social network and FA relationship. Finally, variation in FA indirectly mediated the relationship between social network diversity and intrinsic functional connectivity of medial corticostriatal pathways. These findings suggest that social integration relates to myelin integrity in humans, which may help explain the diverse aspects of health affected by social networks.

  19. Study on Service Level Management in Integrated Satellite Information Network

    Institute of Scientific and Technical Information of China (English)

    SHANG Rui-qiang; ZHAO Jian-li; WANG Guang-xing

    2005-01-01

    Integrated Satellite Information Network (ISIN) includes those nodes in space and those on ground. It is the way to realize the fusion of satellite communication and traditional network technology. A satellite network management system based on Multiplex Network Management Protocol (MNMP) has accomplished traditional management, such as configuration, performance and fault management. An architecture of Service Level Management (SLM) in ISIN is proposed, and a service topology management and Service Level Agreement (SLA) are deeply researched. At last, service security and fault management are briefly discussed, and a simulation system is accomplished.

  20. Integrating job scheduling and constrained network routing

    DEFF Research Database (Denmark)

    Gamst, Mette

    2010-01-01

    This paper examines the NP-hard problem of scheduling jobs on resources such that the overall profit of executed jobs is maximized. Job demand must be sent through a constrained network to the resource before execution can begin. The problem has application in grid computing, where a number...... of geographically distributed resources connected through an optical network work together for solving large problems. A number of heuristics are proposed along with an exact solution approach based on Dantzig-Wolfe decomposition. The latter has some performance difficulties while the heuristics solve all instances...

  1. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  2. A service integration platform for collaborative networks

    NARCIS (Netherlands)

    Osorio, A. L.; Afsarmanesh, H.; Camarinha-Matos, L.M.

    2011-01-01

    Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to i

  3. Value Creation Through Integrated Networks and Convergence

    Energy Technology Data Exchange (ETDEWEB)

    De Martini, Paul; Taft, Jeffrey D.

    2015-04-01

    Customer adoption of distributed energy resources and public policies are driving changes in the uses of the distribution system. A system originally designed and built for one-way energy flows from central generating facilities to end-use customers is now experiencing injections of energy from customers anywhere on the grid and frequent reversals in the direction of energy flow. In response, regulators and utilities are re-thinking the design and operations of the grid to create more open and transactive electric networks. This evolution has the opportunity to unlock significant value for customers and utilities. Alternatively, failure to seize this potential may instead lead to an erosion of value if customers seek to defect and disconnect from the system. This paper will discuss how current grid modernization investments may be leveraged to create open networks that increase value through the interaction of intelligent devices on the grid and prosumerization of customers. Moreover, even greater value can be realized through the synergistic effects of convergence of multiple networks. This paper will highlight examples of the emerging nexus of non-electric networks with electricity.

  4. Message Integrity Model for Wireless Sensor Networks

    Science.gov (United States)

    Qleibo, Haider W.

    2009-01-01

    WSNs are susceptible to a variety of attacks. These attacks vary in the way they are performed and executed; they include but not limited to node capture, physical tampering, denial of service, and message alteration. It is of paramount importance to protect gathered data by WSNs and defend the network against illegal access and malicious…

  5. Integration of Unascertained Method with Neural Networks and Its Application

    Directory of Open Access Journals (Sweden)

    Huawang Shi

    2011-11-01

    Full Text Available This paper presents the adoption of artificial neural network (ANN model and Unascertained system to assist decision-makers in forecasting the early warning of financial in China. Artificial neural network (ANN has outstanding characteristics in machine learning, fault, tolerant, parallel reasoning and processing nonlinear problem abilities. Unascertained system that imitates the human brain's thinking logical is a kind of mathematical tools used to deal with imprecise and uncertain knowledge. Integrating unascertained method with neural network technology, the reasoning process of network coding can be tracked, and the output of the network can be given a physical explanation. Application case shows that combines unascertained systems with feedforward artificial neural networks can obtain more reasonable and more advantage of nonlinear mapping that can handle more complete type of data.

  6. Networks as integrated in research methodologies in PER

    DEFF Research Database (Denmark)

    Bruun, Jesper

    2016-01-01

    In recent years a number of researchers within the PER community have started using network analysis as a new methodology to extend our understanding of teaching and learning physics by viewing these as complex systems. In this paper, I give examples of social, cognitive, and action mapping...... networks and how they can be analyzed. In so doing I show how a network can be methodologically described as a set of relations between a set of entities, and how a network can be characterized and analyzed as a mathematical object. Then, as an illustrative example, I discuss a relatively new example...... of using networks to create insightful maps of learning discussions. To conclude, I argue that conceptual blending is a powerful framework for constructing "mixed methods" methodologies that may integrate diverse theories and other methodologies with network methodologies....

  7. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  8. Nano-guided cell networks as conveyors of molecular communication.

    Science.gov (United States)

    Terrell, Jessica L; Wu, Hsuan-Chen; Tsao, Chen-Yu; Barber, Nathan B; Servinsky, Matthew D; Payne, Gregory F; Bentley, William E

    2015-01-01

    Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.

  9. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  10. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  11. Differential Protein Network Analysis of the Immune Cell Lineage

    Directory of Open Access Journals (Sweden)

    Trevor Clancy

    2014-01-01

    Full Text Available Recently, the Immunological Genome Project (ImmGen completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks.

  12. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  13. Cooperative integration and representation underlying bilateral network of fly motion-sensitive neurons.

    Directory of Open Access Journals (Sweden)

    Yoshinori Suzuki

    Full Text Available How is binocular motion information integrated in the bilateral network of wide-field motion-sensitive neurons, called lobula plate tangential cells (LPTCs, in the visual system of flies? It is possible to construct an accurate model of this network because a complete picture of synaptic interactions has been experimentally identified. We investigated the cooperative behavior of the network of horizontal LPTCs underlying the integration of binocular motion information and the information representation in the bilateral LPTC network through numerical simulations on the network model. First, we qualitatively reproduced rotational motion-sensitive response of the H2 cell previously reported in vivo experiments and ascertained that it could be accounted for by the cooperative behavior of the bilateral network mainly via interhemispheric electrical coupling. We demonstrated that the response properties of single H1 and Hu cells, unlike H2 cells, are not influenced by motion stimuli in the contralateral visual hemi-field, but that the correlations between these cell activities are enhanced by the rotational motion stimulus. We next examined the whole population activity by performing principal component analysis (PCA on the population activities of simulated LPTCs. We showed that the two orthogonal patterns of correlated population activities given by the first two principal components represent the rotational and translational motions, respectively, and similar to the H2 cell, rotational motion produces a stronger response in the network than does translational motion. Furthermore, we found that these population-coding properties are strongly influenced by the interhemispheric electrical coupling. Finally, to test the generality of our conclusions, we used a more simplified model and verified that the numerical results are not specific to the network model we constructed.

  14. Integrated knowledge management in networks; Integriertes Wissensmanagement in Netzwerken

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, G.; Schlick, C.; Lindemann, U. (eds.)

    2007-07-01

    Knowledge is a success factor for globally acting company networks as a. o. the aim-oriented knowledge transfer between partners is an essential condition for a successful cooperation. Several network specific problems impede however an efficient and effective knowledge management; e.g. the transfer of competition relevant data is a high sensitive theme. The authors describe how a relevant method can be selected, adapted and implemented to the application-specific boundary conditions. They integrate existing attempts processes and methods to establish an effective knowledge development and an efficient knowledge transfer in the network and take into account ''hard'' (IT-technical-oriented solution approaches) as also ''soft'' factors (e.g. cultural and personal aspects). So the authors present unified instruments for an integrated knowledge management in networks. (GL)

  15. Small Producers and Retailers Network Supply Chains Integration

    OpenAIRE

    Milan Davidovic

    2010-01-01

    The retailers network with e-supplying system can be main sales channel for small local and regional producers and their supply chain. Small producers and retailers network supply chains integration based on modern supply chain management systems (SCM) reduce cost of coordination, increase efficiency and effectiveness of logistics and retail, and create long-term mutual benefit relationship between small producers and retailers in logistics and retailing, branding and their impact on sustain ...

  16. Analog VLSI neural network integrated circuits

    Science.gov (United States)

    Kub, F. J.; Moon, K. K.; Just, E. A.

    1991-01-01

    Two analog very large scale integration (VLSI) vector matrix multiplier integrated circuit chips were designed, fabricated, and partially tested. They can perform both vector-matrix and matrix-matrix multiplication operations at high speeds. The 32 by 32 vector-matrix multiplier chip and the 128 by 64 vector-matrix multiplier chip were designed to perform 300 million and 3 billion multiplications per second, respectively. An additional circuit that has been developed is a continuous-time adaptive learning circuit. The performance achieved thus far for this circuit is an adaptivity of 28 dB at 300 KHz and 11 dB at 15 MHz. This circuit has demonstrated greater than two orders of magnitude higher frequency of operation than any previous adaptive learning circuit.

  17. Advanced Wireless Integrated Navy Network (AWINN)

    Science.gov (United States)

    2005-12-31

    was developed, with components to model sensor and air defense cannon control systems, a tracking service, and a command-and-control (C2) capability...and respond to failed control services. From time to time, a cannon control service will fail, modeling an enemy strike, hardware/software fault, or...The expression in (4.1-24) can be easily evaluated using numerical integration using Gauss -Chebyshev quadrature method for all the known fading

  18. Implementing an Integrated Network Defense Construct

    Science.gov (United States)

    2013-06-01

    to create an easily defendable avenue for ingress and egress. In medieval times, castles leveraged this principle. If an attacker was brazen enough...defense mirrors that of the physical world, its application has some significant drawbacks. Whereas the medieval castle defenders had the high ground...defenses. Logically an INDS can and should follow the same premise. 3. Integrated Air Defense To model an INDS after an IADS, it is necessary

  19. Integration of neuroblasts into a two-dimensional small world neuronal network

    Science.gov (United States)

    Schneider-Mizell, Casey; Zochowski, Michal; Sander, Leonard

    2009-03-01

    Neurogenesis in the adult brain has been suggested to be important for learning and functional robustness to the neuronal death. New neurons integrate themselves into existing neuronal networks by moving into a target destination, extending axonal and dendritic processes, and inducing synaptogenesis to connect to active neurons. We hypothesize that increased plasticity of the network to novel stimuli can arise from activity-dependent cell and process motility rules. In complement to a similar in vitro model, we investigate a computational model of a two-dimensional small world network of integrate and fire neurons. After steady-state activity is reached in the extant network, we introduce new neurons which move, stop, and connect themselves through rules governed by position and firing rate.

  20. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi

    2016-01-01

    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  1. Integrated Environment for Ubiquitous Healthcare and Mobile IPv6 Networks

    Science.gov (United States)

    Cagalaban, Giovanni; Kim, Seoksoo

    The development of Internet technologies based on the IPv6 protocol will allow real-time monitoring of people with health deficiencies and improve the independence of elderly people. This paper proposed a ubiquitous healthcare system for the personalized healthcare services with the support of mobile IPv6 networks. Specifically, this paper discusses the integration of ubiquitous healthcare and wireless networks and its functional requirements. This allow an integrated environment where heterogeneous devices such a mobile devices and body sensors can continuously monitor patient status and communicate remotely with healthcare servers, physicians, and family members to effectively deliver healthcare services.

  2. Explicit Integration with GPU Acceleration for Large Kinetic Networks

    CERN Document Server

    Brock, Benjamin; Billings, Jay Jay; Guidry, Mike

    2014-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in compute time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractible, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  3. A network analysis of leadership theory : the infancy of integration.

    OpenAIRE

    Meuser, J. D.; Gardner, W L; Dinh, J. E.; Hu, J; Liden, R. C.; Lord, R.G.

    2016-01-01

    We investigated the status of leadership theory integration by reviewing 14 years of published research (2000 through 2013) in 10 top journals (864 articles). The authors of these articles examined 49 leadership approaches/theories, and in 293 articles, 3 or more of these leadership approaches were included in their investigations. Focusing on these articles that reflected relatively extensive integration, we applied an inductive approach and used graphic network analysis as a guide for drawi...

  4. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Naresh Doni Jayavelu

    Full Text Available Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs and target genes (TGs. The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA. Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE, mid-early (ME, mid-late (ML and very late (VL. Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

  5. Full feature data model for spatial information network integration

    Institute of Scientific and Technical Information of China (English)

    DENG Ji-qiu; BAO Guang-shu

    2006-01-01

    In allusion to the difficulty of integrating data with different models in integrating spatial information,the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vectorraster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid,were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.

  6. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  7. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  8. Throughput Improvement In Wireless Mesh Networks By Integrating With Optical Network

    Directory of Open Access Journals (Sweden)

    Chakrapani gadde

    2012-06-01

    Full Text Available In the last decade wireless mesh networks (WMNs have emerged as a key technology for next generation wireless networking. Because of their advantages over other wireless networks, WMNs are undergoing rapid progress and inspiring numerous applications. One such application is to provide peer-to-peer communication for all the users who are distributed over some area. Since the users are connected in awireless multi-hop passion complete ubiquity is provided. But as the number of users accessing the network is increasing there could be a chance of experiencing more interference by each user due to the communication link of every other user. So in a wireless mesh network as the load increases the throughput of network is going to be decreased due to wireless interference by other users. To sustain this problem we are going to integrate the WMN with passive optical network (PON. The resulting hybrid network (Optical-wireless network could reduce the wireless hops of each user, so that we can reduce the total wireless interference experienced by each user resulting in improved network throughput. This paper aims to study the network throughput gain in Optical-wireless network subject to peer-to-peer communications.

  9. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    Science.gov (United States)

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  10. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.

  11. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen;

    2006-01-01

    Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...

  12. The Integrated Distributed Virtual Research Network: An Introduction

    Science.gov (United States)

    2014-06-01

    Integrated Distributed Virtual Research Network (IDVRN) would not have become the valued resource it is for ARL. Thanks to Mr. Charlie Nietubicz, former...Jeanne Angelini, Dr. Loretta Moore, Dr. Adrienne Raglin, Dr. Alan Wetmore, and Leelinda Parker , deserves special recognition for its groundbreaking

  13. Network biology methods integrating biological data for translational science.

    Science.gov (United States)

    Bebek, Gurkan; Koyutürk, Mehmet; Price, Nathan D; Chance, Mark R

    2012-07-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to understand and predict disease phenotypes. In this review, recent advances in network biology approaches and results are identified. A common theme is the potential for network analysis to provide multiplexed and functionally connected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing and modeling genome- and proteome-wide data.

  14. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis, or differ...

  15. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  16. SDN architecture for optical packet and circuit integrated networks

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  17. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  18. Maximizing Information Diffusion in the Cyber-physical Integrated Network.

    Science.gov (United States)

    Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan

    2015-11-11

    Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks.

  19. Moral learning in an integrated social and healthcare service network.

    Science.gov (United States)

    Visse, Merel; Widdershoven, Guy A M; Abma, Tineke A

    2012-09-01

    The traditional organizational boundaries between healthcare, social work, police and other non-profit organizations are fading and being replaced by new relational patterns among a variety of disciplines. Professionals work from their own history, role, values and relationships. It is often unclear who is responsible for what because this new network structure requires rules and procedures to be re-interpreted and re-negotiated. A new moral climate needs to be developed, particularly in the early stages of integrated services. Who should do what, with whom and why? Departing from a relational and hermeneutic perspective, this article shows that professionals in integrated service networks embark upon a moral learning process when starting to work together for the client's benefit. In this context, instrumental ways of thinking about responsibilities are actually counterproductive. Instead, professionals need to find out who they are in relation to other professionals, what core values they share and what responsibilities derive from these aspects. This article demonstrates moral learning by examining the case of an integrated social service network. The network's development and implementation were supported by responsive evaluation, enriched by insights of care ethics and hermeneutic ethics.

  20. Maximizing Information Diffusion in the Cyber-physical Integrated Network

    Directory of Open Access Journals (Sweden)

    Hongliang Lu

    2015-11-01

    Full Text Available Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks.

  1. A Service Portal for the Integrated SCaN Network

    Science.gov (United States)

    Marx, Sarah R.

    2012-01-01

    The Space Communication and Navigation (SCaN) program office owns the assets and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and Space Network (SN). At present, these individual networks are operated by different NASA centers--JPL for DSN--and Goddard Space Flight Center (GSFC) for NEN and SN--with separate commitments offices for each center. In the near future, SCaN's program office would like to deploy an integrated service portal which would merge the two commitments offices with the goal of easing the task of user planning for space missions requiring services of two or more of these networks. Following interviews with subject matter experts in this field, use cases were created to include the services and functionality mission users would like to see in this new integrated service portal. These use cases provide a guideline for a mock-up of the design of the user interface for the portal. The benefit of this work will ease the time required and streamline/standardize the process for planning and scheduling SCAN's services for future space missions.

  2. Integrated healthcare networks' performance: a growth curve modeling approach.

    Science.gov (United States)

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  3. Integration of macromolecular diffraction data using radial basis function networks.

    Science.gov (United States)

    Pokrić, B; Allinson, N M; Helliwell, J R

    2000-11-01

    This paper presents a novel approach for intensity calculation of X-ray diffraction spots based on a two-stage radial basis function (RBF) network. The first stage uses pre-determined reference profiles from a database as basis functions in order to locate the diffraction spots and identify any overlapping regions. The second-stage RBF network employs narrow basis functions capable of local modifications of the reference profiles leading to a more accurate observed diffraction spot approximation and therefore accurate determination of spot positions and integrated intensities.

  4. Human-Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3: Mitigating Cognitive Load in Network-Enabled Mission Command

    Science.gov (United States)

    2016-06-01

    ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human- Systems Integration (HSI) and the Network Integration Evaluations...ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human- Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) April 2015–March 2016 4. TITLE AND SUBTITLE Human- Systems Integration (HSI) and the

  5. Social networking in nursing education: integrative literature review

    Directory of Open Access Journals (Sweden)

    Luciana Emi Kakushi

    Full Text Available Abstract Objective: to identify the use of social networking in nursing education. Method: integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. Results: of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%, originating from the United States and United Kingdom (77.8%. It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%, Ning (28.5%, Twitter (21.4% and MySpace (7.1%, by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. Conclusion: few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process.

  6. Social networking in nursing education: integrative literature review

    Science.gov (United States)

    Kakushi, Luciana Emi; Évora, Yolanda Dora Martinez

    2016-01-01

    Abstract Objective: to identify the use of social networking in nursing education. Method: integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. Results: of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%), originating from the United States and United Kingdom (77.8%). It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning) and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%), Ning (28.5%), Twitter (21.4%) and MySpace (7.1%), by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. Conclusion: few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process. PMID:27384465

  7. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  8. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  9. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  10. Integrating - VPN and IDS - An approach to Networks Security

    Directory of Open Access Journals (Sweden)

    Prabha Rani

    2007-10-01

    Full Text Available The Internet and recent global cyber terrorism have fundamentally changed the way organizations approach security. Recent worm and virus incidents such as Code Red, Nimda, and the Slammer worm have heightened security awareness. Also, numerous other threats have emerged recently that are particularly troublesome. Hence some solution must be provided to encounter the new generation of complex threats. Building up this solution requires the Integration of different security devices. Also system administrators, under the burden of rapidly increasing network activity, need the ability to rapidly understand what is happening on their networks. Hence Correlation of security events provide Security Engineers a better understanding of what is happening for enhanced security situational awareness. Visualization leverages human cognitive abilities and promotes quick mental connections between events that otherwise may be obscured in the volume of IDS alert messages. Keeping all these points in mind we have chosen to integrate VPN and IDS to provide an efficient solution for security engineers.

  11. Computing the threshold of the influence of intercellular nanotubes on cell-to-cell communication integrity

    Science.gov (United States)

    Mihailović, Dragutin T.; Kostić, Vladimir R.; Balaž, Igor; Kapor, Darko

    2016-10-01

    We examine the threshold of the influence of the tunneling nanotubes (TNTs) on the cell-to-cell communication integrity. A deterministic model is introduced with the Michaelis-Menten dynamics and the intercellular exchange of substance. The influence of TNTs are considered as a functional perturbation of the main communication and treated as the matrix nearness problems. We analyze communication integrity in terms of the \\emph{pseudospectra} of the exchange, to find the \\emph{distance to instability}. The threshold of TNTs influence is computed for Newman-Gastner and Erd\\H{o}s-R\\'enyi gap junction (GJ) networks.

  12. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    Science.gov (United States)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  13. Integrating Mobile Ad Hoc Network to the Internet

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-ning

    2005-01-01

    A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the Internet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the Internet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.

  14. Brain-on-a-chip integrated neuronal networks

    NARCIS (Netherlands)

    Xie, Sijia

    2016-01-01

    The brain-on-a-chip technology aims to provide an efficient and economic in vitro platform for brain disease study. In the well-known literature on brain-on-a-chip systems, nonstructured surfaces were conventionally used for the cell attachment in a culture chamber, therefore the neuronal networks g

  15. An integrated text mining framework for metabolic interaction network reconstruction.

    Science.gov (United States)

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  16. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  17. Integration and the performance of healthcare networks: do integration strategies enhance efficiency, profitability, and image?

    Directory of Open Access Journals (Sweden)

    Thomas T.H. Wan

    2001-06-01

    Full Text Available Purpose: This study examines the integration effects on efficiency and financial viability of the top 100 integrated healthcare networks (IHNs in the United States. Theory: A contingency- strategic theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. Methods: The lists of the top 100 IHNs ranked in two years, 1998 and 1999, by the SMG Marketing Group were merged to create a database for the study. Multiple indicators were used to examine the relationship between IHNs' characteristics and their performance in efficiency and financial viability. A path analytical model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' images, represented by attaining ranking among the top 100 in two consecutive years, were analysed. Results and conclusion: No positive associations were found between integration and network performance in efficiency or profits. Longitudinal data are needed to investigate the effect of integration on healthcare networks' financial performance.

  18. Ontology integration to identify protein complex in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Zhihao

    2011-10-01

    Full Text Available Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.

  19. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  20. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties.

    Directory of Open Access Journals (Sweden)

    Julie Nikolaisen

    that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.

  1. Drive to miniaturization: integrated optical networks on mobile platforms

    Science.gov (United States)

    Salour, Michael M.; Batayneh, Marwan; Figueroa, Luis

    2011-11-01

    With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet's capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore's law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain

  2. Modeling and Simulation of Handover Scheme in Integrated EPON-WiMAX Networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    by enhancing the traditional MPCP signaling protocol, which cooperatively collects mobility information from the front-end wireless network and makes centralized bandwidth allocation decisions in the backhaul optical network. The integrated network architecture and the joint handover scheme are simulated using......In this paper, we tackle the seamless handover problem in integrated optical wireless networks. Our model applies for the convergence network of EPON and WiMAX and a mobilityaware signaling protocol is proposed. The proposed handover scheme, Integrated Mobility Management Scheme (IMMS), is assisted...... OPNET modeler. Results show validation of the protocol, i.e., integrated handover scheme gains better network performances....

  3. VitisNet: "Omics" integration through grapevine molecular networks.

    Directory of Open Access Journals (Sweden)

    Jérôme Grimplet

    Full Text Available BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet. METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024 genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome

  4. Multiagent and Particle Swarm Optimization for Ship Integrated Power System Network Reconfiguration

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2014-01-01

    Full Text Available Ship integrated power system adopts electric power propulsion. Power network and electric power network are integrated into complicated one. Network reconfiguration of ship integrated power system is a typical nonlinear optimization that is multitarget and multiconstraint. According to the characteristics of ship integrated power system, simplified network model and reconfiguration mathematical model are established. A multiagent and particle swarm optimization is presented to solve network reconfiguration problem. The results of simulation show that multiagent and particle swarm optimization can reconfigure ship integrated power system efficiently.

  5. Integrated regenerative fuel cell experimental evaluation

    Science.gov (United States)

    Martin, Ronald E.

    1990-01-01

    An experimental test program was conducted to investigate the performance characteristics of an integrated regenerative fuel cell (IRFC) concept. The IRFC consists of a separate fuel cell unit and electrolysis cell unit in the same structure, with internal storage of fuel cell product water and external storage of electrolysis cell produced hydrogen and oxygen. The fuel cell unit incorporates an enhanced Orbiter-type cell capable of improved performance at reduced weight. The electrolysis cell features a NiCo2O4 catalyst oxygen evolution eletrode with a porous Teflon cover to retard electrolyte loss. Six complete IRFC assemblies were assembled and performance tested at an operating temperature of 200 F (93.3 C) and reactant pressures up to 170 psia (117.2 n/cu cm) on IRFC No. 4. Anomalous pressure charge/discharge characteristics were encountered during performance evaluation. A reversible fuel cell incorporating a proprietary bi-functional oxygen electrode operated satisfactory at 200 F (93.3 C) at reactant pressures up to 50 psia (41.4 n/cu cm) as a regenerative fuel cell for one cycle, before developing an electrical short in the fuel cell mode. Electrolysis cell 300-hour endurance tests demonstrated the electrolyte retention capability of the electrode Teflon cover and the performance stability of the bi-functional oxygen electrode at high potential.

  6. Students' network integration vs. persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  7. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  8. Probabilistic Inference of Biological Networks via Data Integration

    Directory of Open Access Journals (Sweden)

    Mark F. Rogers

    2015-01-01

    Full Text Available There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are most informative and compare individual kernel accuracies with accuracies for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel appears to work best, different kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast reveal that a weighted combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

  9. A swarm-assisted integrated communication and sensing network

    Science.gov (United States)

    Vincent, Patrick J.; Rubin, Izhak

    2004-07-01

    We present a design concept for an integrated communication and sensor network that employs swarms of Unmanned Aerial Vehicles (UAVs). UAVs are deployed in two types of swarms: sensor swarms or communication swarms. Sensor swarms are motivated by the belief that adversaries will force future confrontations into urban settings, where advantages in surveillance and weapons are diminished. A sensor system is needed which can provide high-resolution imagery and an unobstructed view of a hazardous environment fraught with obstructions. These requirements can be satisfied by a swarm of inexpensive UAVs which "work together" by arranging themselves into a flight configuration that optimizes their integrated sensing capability. If a UAV is shot down, the swarm reconfigures its topology to continue the mission with the surviving assets. We present a methodology that integrates the agents into a formation that enhances the sensing operations while minimizing the transmission of control information for topology adaptation. We demonstrate the performance tradeoff between search time and number of UAVs employed, and present an algorithm that determines the minimum swarm size necessary to meet a targeted search completion time within probabilistic guarantees. A communication swarm provides an infrastructure to distribute information provided by the sensor swarms, and enables communication between dispersed ground locations. UAVs are "guided" to locations that provide the best support for an underlying ground-based communication network and for dissemination of data collected by sensor swarms.

  10. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  11. INTEGRATING FACEBOOK AND ALUMNI INTO THE SOCIAL NETWORK MOBILE PLATFORM

    Directory of Open Access Journals (Sweden)

    Tzuo-Ming Chen

    2014-06-01

    Full Text Available Social network systems have become one of the most popular Internet applications in recent years. Mobile devices such as smartphones and tablets make Internet access easier than ever before. They have also brought new opportunities for the social platforms of universities and their alumni. This paper proposes a mobile platform integrating the public social network site, facebook (FB, and universities' alumni. Before the users in this platform can contact the alumni, they must know their latest status from FB. Users can also gain alumni’s personal information with their authorization from the universities’ database. In addition, the mobile platform utilizes the Google Sync feature, which provides users of the system with ubiquitous information retrieval in any location and from any device.

  12. Integrated Control Plane for IP Enabled Optical Networks

    Institute of Scientific and Technical Information of China (English)

    LIZhengbin; YINHongxi; YUDeming; XUAnshi

    2003-01-01

    With the exponential growth of the Internet traffle for the intense demand for broadband services,providing bandwidth and connectivity on demand has risen to be a hot topic involving establishing connections from client ent systems to another through the optical backbone.So that,control plane and signaling in the optical network seems to be a critical component.This paper proposes and integrated control plane(ICP)and signaling related in IP enabled optical networks.Signaling processing for ensuring dynamic end-to-end lightpath setup has also been presented.Path provisioning comprises a string of operations like service & neighbor discovery,route computation,signaling requests,and path setup.

  13. Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Morteza Abbasi

    2013-01-01

    Full Text Available This paper integrates production, distribution and logistics activities at the strategic decision making level, where the objective is to design a multiechelon supply chain network considering agility as a key design criterion. A network with five echelons of supply chains including suppliers, plants, distribution centers, cross-docks, and customer zones is addressed in this paper. The problem has been mathematically formulated as a biobjective optimization model that aims to minimize the cost (fixed and variable and maximize the plant flexibility and volume flexibility. A novel multiobjective parallel simulating annealing algorithm (MOPSA is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known metaheuristics, namely, nondominated sorting genetic algorithm (NSGA-II and Pareto archive evolution strategy (PAES. Computational results show that MOPSA outperforms the other metaheuristics.

  14. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  15. Dissecting Germ Cell Metabolism through Network Modeling.

    Directory of Open Access Journals (Sweden)

    Leanne S Whitmore

    Full Text Available Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA. Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  16. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop...... a suitable learning algorithm -- a continuous-time version of a temporal differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses -- as well as circuits for the electronic implementation. Measurements from an experimental CMOS chip are presented. Finally, we use our test...

  17. Photonic network-on-chip architecture using 3D integration

    Science.gov (United States)

    Biberman, Aleksandr; Sherwood-Droz, Nicolás; Zhu, Xiaoliang; Preston, Kyle; Hendry, Gilbert; Levy, Jacob S.; Chan, Johnnie; Wang, Howard; Lipson, Michal; Bergman, Keren

    2011-01-01

    We introduce a multi-layer silicon photonic microring resonator filter, fabricated using deposited materials, and transmit up to 12.5-Gb/s error-free data, establishing a novel class of high-performance silicon photonics for advanced photonic NoCs. Furthermore, by leveraging deposited materials, we propose a novel fully-integrated scalable photonic switch architecture for data center networks, sustaining nonblocking 256×256 port size with nanosecond-scale switching times, interconnecting 2,560 server racks with 51.2-Tb/s bisection bandwidth.

  18. Ubiquitous Integrity via Network Integration and Parallelism—Sustaining Pedestrian/Bike Urbanism

    Directory of Open Access Journals (Sweden)

    Li-Yen Hsu

    2013-08-01

    Full Text Available Nowadays, due to the concern regarding environmental issues, establishing pedestrian/bike friendly urbanism is widely encouraged. To promote safety-assured, mobile communication environments, efficient, reliable maintenance, and information integrity need to be designed, especially in highly possibly interfered places. For busy traffic areas, regular degree-3 dedicated short range communication (DSRC networks are safety and information featured with availability, reliability, and maintainability in paths of multi-lanes. For sparsely populated areas, probes of wireless sensors are rational, especially if sensor nodes can be organized to enhance security, reliability, and flexibility. Applying alternative network topologies, such as spider-webs, generalized honeycomb tori, and cube-connected cycles, for comparing and analyzing is proposed in DSRC and cellular communications to enhance integrity in communications.

  19. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  20. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    Science.gov (United States)

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  1. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    Directory of Open Access Journals (Sweden)

    Shozo Okasaka

    2016-08-01

    Full Text Available The fifth-generation mobile networks (5G will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP and user plane (UP will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  2. Control strategies for power distribution networks with electric vehicles integration

    DEFF Research Database (Denmark)

    Hu, Junjie

    of electrical energy. A smart grid can also be dened as an electricity network that can intelligently integrate the actions of all users connected to it - generators, consumers and those that do both - in order to eciently deliver sustainable, economic and secure electricity supplies. This thesis focuses......Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar...... strategies supported by an increased use of information and communication technology. This is the idea of the smart grid. The smart grid is a next-generation electrical power system that is typied by the increased use of communications and information technology in the generation, delivery and consumption...

  3. Lists2Networks: Integrated analysis of gene/protein lists

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2010-02-01

    Full Text Available Abstract Background Systems biologists are faced with the difficultly of analyzing results from large-scale studies that profile the activity of many genes, RNAs and proteins, applied in different experiments, under different conditions, and reported in different publications. To address this challenge it is desirable to compare the results from different related studies such as mRNA expression microarrays, genome-wide ChIP-X, RNAi screens, proteomics and phosphoproteomics experiments in a coherent global framework. In addition, linking high-content multilayered experimental results with prior biological knowledge can be useful for identifying functional themes and form novel hypotheses. Results We present Lists2Networks, a web-based system that allows users to upload lists of mammalian genes/proteins onto a server-based program for integrated analysis. The system includes web-based tools to manipulate lists with different set operations, to expand lists using existing mammalian networks of protein-protein interactions, co-expression correlation, or background knowledge co-annotation correlation, as well as to apply gene-list enrichment analyses against many gene-list libraries of prior biological knowledge such as pathways, gene ontology terms, kinase-substrate, microRNA-mRAN, and protein-protein interactions, metabolites, and protein domains. Such analyses can be applied to several lists at once against many prior knowledge libraries of gene-lists associated with specific annotations. The system also contains features that allow users to export networks and share lists with other users of the system. Conclusions Lists2Networks is a user friendly web-based software system expected to significantly ease the computational analysis process for experimental systems biologists employing high-throughput experiments at multiple layers of regulation. The system is freely available at http://www.lists2networks.org.

  4. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    Science.gov (United States)

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  5. Functional integration of human neural precursor cells in mouse cortex.

    Directory of Open Access Journals (Sweden)

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  6. Genetic Networks in Mouse Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Felix L Struebing

    2016-09-01

    Full Text Available Retinal ganglion cells (RGCs are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

  7. Multiple Metrics Gateway Selection Scheme in Mobile Ad Hoc Network (MANET) and Infrastructure Network Integration

    Science.gov (United States)

    Setiawan, Fudhiyanto Pranata; Bouk, Safdar H.; Sasase, Iwao

    This paper proposes a scheme to select an appropriate gateway based on multiple metrics such as remaining energy, mobility or speed, and number of hops in Mobile Ad Hoc Network (MANET) and the infrastructure network integration. The Multiple Criteria Decision Making (MCDM) method called Simple Additive Weighting (SAW) is used to rank and to select the gateway node. SAW method calculates the weights of gateway node candidates by considering these three metrics. The node with the highest weight will be selected as the gateway. Simulation results show that our scheme can reduce the average energy consumption of MANET nodes, and improve throughput performance, gateway lifetime, Packet Delivery Ratio (PDR) of the MANET and the infrastructure network.

  8. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    Science.gov (United States)

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  9. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  10. Integrating Android Devices into Network Management Systems based on SNMP

    Directory of Open Access Journals (Sweden)

    Fernando Hidalgo

    2014-06-01

    Full Text Available Mobile devices are becoming essential for today life. In developed countries, about half of the people have a smartphone, resulting in millions of these electronic devices. Android is the most popular operating system for smartphones and other electronic devices such as tablets. Hence, for network administrators, it is essential to start managing all the Android based devices. SNMP is the de facto standard for network administration, where agents that are running in managed devices are polled by management stations. Some primitive tools have already been developed to transform an Android device as a basic management station. However, so far, there is no SNMP agent for this operating system. In this paper, we develop the first SNMP agent for Android. We also propose an SNMP benchmark to study the SNMP traffic that can be supported by our SNMP agent over some real and actual Android devices. The results obtained show that it is realistic to integrate mobile Android devices in network management systems since they can handle a high number of SNMP requests in a reasonable period of time.

  11. Integrative biology identifies shared transcriptional networks in CKD.

    Science.gov (United States)

    Martini, Sebastian; Nair, Viji; Keller, Benjamin J; Eichinger, Felix; Hawkins, Jennifer J; Randolph, Ann; Böger, Carsten A; Gadegbeku, Crystal A; Fox, Caroline S; Cohen, Clemens D; Kretzler, Matthias

    2014-11-01

    A previous meta-analysis of genome-wide association data by the Cohorts for Heart and Aging Research in Genomic Epidemiology and CKDGen consortia identified 16 loci associated with eGFR. To define how each of these single-nucleotide polymorphisms (SNPs) could affect renal function, we integrated GFR-associated loci with regulatory pathways, producing a molecular map of CKD. In kidney biopsy specimens from 157 European subjects representing nine different CKDs, renal transcript levels for 18 genes in proximity to the SNPs significantly correlated with GFR. These 18 genes were mapped into their biologic context by testing coregulated transcripts for enriched pathways. A network of 97 pathways linked by shared genes was constructed and characterized. Of these pathways, 56 pathways were reported previously to be associated with CKD; 41 pathways without prior association with CKD were ranked on the basis of the number of candidate genes connected to the respective pathways. All pathways aggregated into a network of two main clusters comprising inflammation- and metabolism-related pathways, with the NRF2-mediated oxidative stress response pathway serving as the hub between the two clusters. In all, 78 pathways and 95% of the connections among those pathways were verified in an independent North American biopsy cohort. Disease-specific analyses showed that most pathways are shared between sets of three diseases, with closest interconnection between lupus nephritis, IgA nephritis, and diabetic nephropathy. Taken together, the network integrates candidate genes from genome-wide association studies into their functional context, revealing interactions and defining established and novel biologic mechanisms of renal impairment in renal diseases.

  12. From molecular networks to qualitative cell behavior.

    Science.gov (United States)

    Gagneur, Julien; Casari, Georg

    2005-03-21

    Adaptation and behavior are characteristics of life which are fundamentally dynamic. If we want to model the living cell we have to describe it as a dynamic system. Typical dynamic models are based on quantitative differential equations requiring very detailed kinetic knowledge. Alternative modeling techniques for less fine-grained information are better suited to available functional genomics data. As such, constraint-based techniques and qualitative modeling have proven themselves to be valid approaches in cell biology. These approaches offer formal support to check the consistency of molecular networks against phenotypic observations in the light of dynamic systems.

  13. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    Science.gov (United States)

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  14. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  15. Integrable modification of the critical Chalker-Coddington network model

    Science.gov (United States)

    Ikhlef, Yacine; Fendley, Paul; Cardy, John

    2011-10-01

    We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other two branches (3,4) couple the two loop flavors, and relate to an SU(2)r×SU(2)r/SU(2)2r Wess-Zumino-Witten (WZW) coset model for the particular values n=-2cos[π/(r+2)], where r is a positive integer. The truncated Chalker-Coddington model is the n=0 point of branch 4. By numerical diagonalization, we find that its universality class is neither an analytic continuation of the WZW coset nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.

  16. The Reticular Cell Network : A Robust Backbone for Immune Responses

    NARCIS (Netherlands)

    Textor, Johannes; Mandl, Judith N; de Boer, Rob J

    2016-01-01

    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During inf

  17. A Method to Design Synthetic Cell-Cycle Networks

    Institute of Scientific and Technical Information of China (English)

    MIAO Ke-Ke

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of ce11-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network.

  18. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    Directory of Open Access Journals (Sweden)

    Mario Novkovic

    2016-07-01

    Full Text Available Fibroblastic reticular cells (FRCs form the cellular scaffold of lymph nodes (LNs and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.

  19. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality

    Science.gov (United States)

    Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard

    2016-01-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  20. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    Science.gov (United States)

    Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard

    2016-07-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.

  1. Information technology - Telecommunications and information exchange between systems - Private integrated services network - Specification, functional model and information flows - Call interception additional network feature

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Information technology - Telecommunications and information exchange between systems - Private integrated services network - Specification, functional model and information flows - Call interception additional network feature

  2. Information technology - Telecommunications and information exchange between systems - Private integrated services network - Inter-exchange signalling protocol - Path replacement additional network feature

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Information technology - Telecommunications and information exchange between systems - Private integrated services network - Inter-exchange signalling protocol - Path replacement additional network feature

  3. Information technology - Telecommunications and information exchange between systems - Private Integrated Services Network - Inter-exchange signalling protocol - Call interception additional network feature

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Information technology - Telecommunications and information exchange between systems - Private Integrated Services Network - Inter-exchange signalling protocol - Call interception additional network feature

  4. Establishing and maintaining the Langerhans cell network.

    Science.gov (United States)

    Chopin, Michaël; Nutt, Stephen L

    2015-05-01

    Langerhans cells (LCs) are the unique antigen-presenting cell of the epidermis. LCs have long been depicted in textbooks as the archetypical dendritic cell that alerts the immune system upon pathogen induced skin barrier breakage, however recent findings argue instead for a more tolerogenic function. While the LCs that populate the epidermis in steady-state arise from progenitors that seed the skin during embryogenesis, it is now apparent that a second pathway generating LCs from a bone marrow derived progenitor is active in inflammatory settings. This review emphasizes the determinants underpinning the establishment of the LC network in steady-state and under inflammatory conditions, as well as the transcriptional machinery governing their differentiation. The dual origin of LCs raises important questions about the functional differences between these subsets in balancing the epidermal immune response between immunity and tolerance.

  5. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  6. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

    Directory of Open Access Journals (Sweden)

    Yuji Zhang

    Full Text Available BACKGROUND: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells. RESULTS AND PRINCIPAL FINDINGS: We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results. CONCLUSIONS: We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved

  7. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  8. Signal integration by chloroplast phosphorylation networks: An update

    Directory of Open Access Journals (Sweden)

    Anna eSchoenberg

    2012-11-01

    Full Text Available Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.

  9. Integrated Survivability Strategies of IP/GMPLS/Optical Multi-layer Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ji-jun; JI Yue-feng; XU Da-xiong

    2003-01-01

    In last decade,due to that the popularity of the internet, data-central traffic kept growing,some emerging networking requirements have been posed on the today's telecommunication networks,especially in the area of network survivability.Obviously,as a key networking problem,network reliability will be more and more important.The integration of different technologies such as ATM,SDH,and WDM in multilayer transport networks raises many questions regarding the coordination of the individual network layers.This problem is referred as multilayer network survivability.The integrated multilayer network survivability is investingated as well as the representation of an interworking strategy between different single layer survivability schemes in IP via generalized multi-protocol label switching over optical network.

  10. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.

    Science.gov (United States)

    Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek

    2016-06-20

    A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field.

  11. Use of Baysian belief networks for dealing with ambiquity in integrated groundwater management

    NARCIS (Netherlands)

    Henriksen, H.J.; Zorilla Miras, E.; De la Hera, A.; Brugnach, M.F.

    2012-01-01

    In integrated groundwater management, different knowledge frames and uncertainties need to be communicated and handled explicitly. This is necessary in order to select efficient adaptive groundwater management strategies. In this connection, Bayesian belief networks allow for integration of knowledg

  12. Monterey Bay National Marine Sanctuary: Sanctuary Integrated Monitoring Network (SIMoN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sanctuary Integrated Monitoring Network (SIMoN) is an integrated, long-term program that takes an ecosystem approach to identify and understand changes to the...

  13. Integration of the transcriptional networks regulating limb morphogenesis.

    Science.gov (United States)

    Rabinowitz, Adam H; Vokes, Steven A

    2012-08-15

    The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.

  14. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2014-06-01

    Full Text Available In this paper, we will propose the neural networks integrated circuit (NNIC which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.

  15. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-24

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  16. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  17. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  18. Integrated optical buffers for packet-switched networks

    Science.gov (United States)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  19. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  20. Research priorities for administrative challenges of integrated networks of care.

    Science.gov (United States)

    Pilgrim, Randy; Hilton, Joshua A; Carrier, Emily; Pines, Jesse M; Hufstetler, Greg; Thorby, Suzette; Milling, T J; Cesta, Beth; Hsia, Renee Y

    2010-12-01

    In 2006, the Institute of Medicine (IOM) advanced the concept of "coordinated, regionalized, and accountable emergency care systems" to address significant problems with the delivery of emergency medical care in the United States. Achieving this vision requires the thoughtful implementation of well-aligned, system-level structures and processes that enhance access to emergency care and improve patient outcomes at a sustainable cost. Currently, the delivery of emergency medical care is supported by numerous administrative systems, including economic; reimbursement; legal and regulatory structures; licensure, credentialing, and accreditation processes; medicolegal systems; and quality reporting mechanisms. In addition, many regionalized systems may not optimize patient outcomes because of current administrative barriers that make it difficult for providers to deliver the best care. However, certain administrative barriers may also threaten the sustainability of integration efforts or prevent them altogether. This article identifies significant administrative challenges to integrating networks of emergency care in four specific areas: reimbursement, medical-legal, quality reporting mechanisms, and regulatory aspects. The authors propose a research agenda for indentifying optimal approaches that support consistent access to quality emergency care with improved outcomes for patients, at a sustainable cost. Researching administrative challenges will involve careful examination of the numerous natural experiments in the recent past and will be crucial to understand the impact as we embark on a new era of health reform.

  1. FixO3 Network Project: Integration, harmonization and innovation

    Science.gov (United States)

    Lampitt, Richard; Cristini, Luisa

    2016-04-01

    The Fixed point Open Ocean Observatory network (FixO3, http://www.fixo3.eu/) seeks to integrate 23 European open ocean fixed point observatories in the Atlantic Ocean and Mediterranean Sea and to improve access to these infrastructures for the broader community. These provide multidisciplinary observations from the air-sea interface to the deep seafloor. Started in September 2013 with a budget of 7 Million Euros over 4 years, the project has 29 partners drawn from academia, research institutions and SME's coordinated by the National Oceanography Centre, UK. The project is structured in 12 Work Packages aimed to: • integrate and harmonise the current infrastructures and processes • offer free access to observatory infrastructures to those who do not have such access, and free and open data services and products • innovate and enhance the current capability for multidisciplinary in situ ocean observation Here we present the programme's key achievements mid-way, the current activities and expected results. Emphasis will be on FixO3-generated tools and products and their applications for the wider oceanographic community for the benefit of science, industry and policy.

  2. Microscopy and supporting data for osteoblast integration within an electrospun fibrous network

    Directory of Open Access Journals (Sweden)

    Urszula Stachewicz

    2015-12-01

    Full Text Available This data article contains data related to the research article entitled “3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration” by Stachewicz et al. [1]. In this paper we include additional data showing degradation analysis of poly(d,l-lactide-co-glycolide acid (PLGA electrospun fibers in medium and air using fiber diameter distribution histograms. We also describe the steps used in “slice and view” tomography techniques with focused ion beam (FIB microscopy and scanning electron microscopy (SEM and detail the image analysis to obtain 3D reconstruction of osteoblast cell integration with electrospun network of fibers. Further supporting data and detailed information on the quantification of cell growth within the electrospun nanofiber membranes is provided.

  3. Integrative activity of neural networks may code virtual spaces with internal representations.

    Science.gov (United States)

    Strelnikov, Kuzma

    2014-10-01

    It was shown recently in neuroimaging that spatial differentiation of brain activity provides novel information about brain function. This confirms the integrative organisation of brain activity, but given present technical limitations of neuroimaging approaches, the exact role of integrative activity remains unclear. We trained a neural network to integrate information using random numbers so as to imitate the "centre-periphery" pattern of brain activity in neuroimaging. Only the hierarchical organisation of the network permitted the learning of fast and reliable integration. We presented images to the trained network and, by spatial differentiation of the network activity, obtained virtual spaces with the presented images. Thus, our study established the necessity of the hierarchical organisation of neural networks for integration and demonstrated that the role of neural integration in the brain may be to create virtual spaces with internal representations of the objects.

  4. Manpower and Personnel Integration (MANPRINT) and Network Integration Evaluation 13.2: Observations on Cognitive Load in Mission Command

    Science.gov (United States)

    2014-03-01

    JCR [Joint Capability Release] from the point of view of the FSO [Fire Support Officer...IN Infantry JBC-P Joint Battle Command – Platform JCR Joint Capability Release MANPRINT Manpower and Personnel Integration NCW network-centric

  5. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor.

    Science.gov (United States)

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures.

  6. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    Directory of Open Access Journals (Sweden)

    Suhwan Kim

    2012-02-01

    Full Text Available We have implemented a tin-oxide-decorated carbon nanotube (CNT network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 µm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures.

  7. Leader neurons in leaky integrate and fire neural network simulations.

    Science.gov (United States)

    Zbinden, Cyrille

    2011-10-01

    In this paper, we highlight the topological properties of leader neurons whose existence is an experimental fact. Several experimental studies show the existence of leader neurons in population bursts of activity in 2D living neural networks (Eytan and Marom, J Neurosci 26(33):8465-8476, 2006; Eckmann et al., New J Phys 10(015011), 2008). A leader neuron is defined as a neuron which fires at the beginning of a burst (respectively network spike) more often than we expect by chance considering its mean firing rate. This means that leader neurons have some burst triggering power beyond a chance-level statistical effect. In this study, we characterize these leader neuron properties. This naturally leads us to simulate neural 2D networks. To build our simulations, we choose the leaky integrate and fire (lIF) neuron model (Gerstner and Kistler 2002; Cessac, J Math Biol 56(3):311-345, 2008), which allows fast simulations (Izhikevich, IEEE Trans Neural Netw 15(5):1063-1070, 2004; Gerstner and Naud, Science 326:379-380, 2009). The dynamics of our lIF model has got stable leader neurons in the burst population that we simulate. These leader neurons are excitatory neurons and have a low membrane potential firing threshold. Except for these two first properties, the conditions required for a neuron to be a leader neuron are difficult to identify and seem to depend on several parameters involved in the simulations themselves. However, a detailed linear analysis shows a trend of the properties required for a neuron to be a leader neuron. Our main finding is: A leader neuron sends signals to many excitatory neurons as well as to few inhibitory neurons and a leader neuron receives only signals from few other excitatory neurons. Our linear analysis exhibits five essential properties of leader neurons each with different relative importance. This means that considering a given neural network with a fixed mean number of connections per neuron, our analysis gives us a way of

  8. Cell outage compensation in LTE networks: Algorithms and performance assessment

    NARCIS (Netherlands)

    Amirijoo, M.; Jorguseski, L.; Litjens, R.; Schmelz, L.C.

    2011-01-01

    Cell outage compensation is a self-healing function and as such part of the Self-Organising Networks concept for mobile wireless networks. It aims at mitigating the degradation of coverage, capacity and service quality caused by a cell or site level outage. Upon detection of such an outage, cell out

  9. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  10. Integrated Strategic Planning and Analysis Network Increment 4 (ISPAN Inc 4)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Integrated Strategic Planning and Analysis Network Increment 4 (ISPAN Inc 4) Defense...Baseline BY - Base Year CAE - Component Acquisition Executive CDD - Capability Development Document CPD - Capability Production Document DAE...Assigned: April 29, 2009 Program Information Program Name Integrated Strategic Planning and Analysis Network Increment 4 (ISPAN Inc 4) DoD

  11. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Malleshaiah, Mohan; Padi, Megha; Rué, Pau; Quackenbush, John; Martinez-Arias, Alfonso; Gunawardena, Jeremy

    2016-02-01

    Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  12. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Mohan Malleshaiah

    2016-02-01

    Full Text Available Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  13. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  14. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network...... energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... and the access networks), and enable energy efficiency networking over a wider area. In the case presented, the integrated control plane collects the network energy related information and the QoS requirements of different types of traffic. This information is used to define the specific group of traffic's (flow...

  15. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    Science.gov (United States)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  16. Too Many Friends: Social Integration, Network Cohesion and Adolescent Depressive Symptoms

    Science.gov (United States)

    Falci, Christina; McNeely, Clea

    2009-01-01

    Using a nationally representative sample of adolescents, we examine associations among social integration (network size), network cohesion (alter-density), perceptions of social relationships (e.g., social support) and adolescent depressive symptoms. We find that adolescents with either too large or too small a network have higher levels of…

  17. A Distributed Intranet/Web Solution to Integrated Management of Access Networks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this article, we describe the present situation of access network management, enumerate a few problems during the development of network management systems, then put forward a distributed Intranet/Web solution named iMAN to the integrated management of access networks, present its architecture and protocol stack, and describe its application in practice.

  18. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  19. Integrating fuel cells into science education

    Energy Technology Data Exchange (ETDEWEB)

    Smolensky, J. [Heliocentris Energy Systems, Vancouver, BC (Canada); Colell, H. [heliocentris Energiesysteme GmbH, Berlin (Germany)

    2001-06-01

    The development of quick-to-market commercial products designed primarily for the science and engineering education markets is the niche market of a small, private company based in Germany, called Heliocentris Energiesysteme GmbH. A complete solar hydrogen system, consisting of solar panel module, electrolyser module and fuel cell was the first product marketed by the company in 1997 for the middle school and high school market. For the primary and middle school market, the only product available is the Hyco{sup TM} Hydrogen Model Fuel Cell Car, which demonstrates the potential for a sustainable pollution-free vehicle. Other products designed for secondary school and the vocational and university market are also available and were briefly described. It is believed that the overall growth of the hydrogen market relies in large part on the integration of fuel cell products into education. Partnerships with industry in the promotion of hydrogen technology awareness to the general population has been undertaken by the company. 6 figs.

  20. Integrated dynamic shared protection algorithm for GMPLS networks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The path protection approach is widely investigated as a survivability solution for GMPLS networks, which has the advantage of efficient capacity utilization. However, there is a problem of the path protection approach that searching a disjoint backup path for a primary path is often unsuccessful. In order to resolve this problem, an integrated dynamic shared protection (IDSP) algorithm is proposed. The main idea of the proposed algorithm is that the path protection approach is first used to establish a backup path for the primary path; if the establishment is unsuccessful, then the primary path is dynamically divided into segments whose hop count are not fixed but not more than the limitation calculated by the equations introduced. In this proposal, backup bandwidth sharing is allowed to improve the capacity utilization ratio, which makes the link cost function quite different from previous ones. Simulation experiments are presented to demonstrate the efficiency of the proposed method compared with previous methods. Numerical results show that IDSP can not only achieve low protection failure probability but can also gain a better tradeoff between the protection overbuild and the average recovery time.

  1. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    these networks. In view of the integrative nature of living systems, it is not surprising that stress-induced genes, generally believed to primarily function in cell survival pathways, inhibit or even promote cell death pathways at multiple levels to ensure homeostasis at cell and/or organism level. The heat shock genes obviously do much more than merely help cells survive stress.

  2. Transition Towards An Integrated Network Organisation: Process And Drivers

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Wæhrens, Brian Vejrum

    2016-01-01

    Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures, with particu......Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures...

  3. Ubiquitous virtual private network: a solution for WSN seamless integration.

    Science.gov (United States)

    Villa, David; Moya, Francisco; Villanueva, Félix Jesús; Aceña, Óscar; López, Juan Carlos

    2014-01-06

    Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications) will be able to communicate as if all of them were in a single and uniform network.

  4. Ubiquitous Virtual Private Network: A Solution for WSN Seamless Integration

    Directory of Open Access Journals (Sweden)

    David Villa

    2014-01-01

    Full Text Available Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications will be able to communicate as if all of them were in a single and uniform network.

  5. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  6. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  7. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    Science.gov (United States)

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  8. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    Directory of Open Access Journals (Sweden)

    Angelica Reyes-Muñoz

    2016-01-01

    Full Text Available The emergence of Body Sensor Networks (BSNs constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1 an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving that may cause traffic accidents is presented; (2 A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3 as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  9. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  10. SURVEYING BEST SUITABLE SCHEDULING ALGORITHM FOR WIMAX- WI-FI INTEGRATED HETEROGENEOUS NETWORK

    Directory of Open Access Journals (Sweden)

    Poulomi Das

    2013-02-01

    Full Text Available To provide uninterrupted service to all subscribers in a wireless network, we need to incorporate a low cost, flexible Heterogeneous network which will be able to link with any kind of network for efficient spectrum utilization, hence improved system capacity. In this connection, Wi-Fi/ Wi MAX integrated network seems to be an ideal solution as it is able to provide easy deployment, high speed data rate and wide range coverage with high throughput, low end to end delay, flat and low jitter. Wi-Fi/ WiMAX integrated network provides Quality of Service (QoS that can support all kinds of real-time application in wireless networks that includes priority scheduling and queuing for bandwidth allocation that is based on traffic scheduling algorithms within wireless networks. In this paper, we have designed a Wi-Fi/ WiMAX integrated network and analyze the performance of different scheduling algorithms for that integrated network and highlight our findings on the scheduling algorithm which will give the best performance for a heterogeneous network.

  11. Transcriptional networks in developing and mature B cells.

    Science.gov (United States)

    Matthias, Patrick; Rolink, Antonius G

    2005-06-01

    The development of B cells from haematopoietic stem cells proceeds along a highly ordered, yet flexible, pathway. At multiple steps along this pathway, cells are instructed by transcription factors on how to further differentiate, and several check-points have been identified. These check-points are initial commitment to lymphocytic progenitors, specification of pre-B cells, entry to the peripheral B-cell pool, maturation of B cells and differentiation into plasma cells. At each of these regulatory nodes, there are transcriptional networks that control the outcome, and much progress has recently been made in dissecting these networks. This article reviews our current understanding of this exciting field.

  12. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    Science.gov (United States)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  13. A new framework to integrate wireless sensor networks with cloud computing

    Science.gov (United States)

    Shah, Sajjad Hussain; Khan, Fazle Kabeer; Ali, Wajid; Khan, Jamshed

    Wireless sensors networks have several applications of their own. These applications can further enhanced by integrating a local wireless sensor network to internet, which can be used in real time applications where the results of sensors are stored on the cloud. We propose an architecture that integrates a wireless sensor network to the internet using cloud technology. The resultant system is proved to be reliable, available and extensible. In this paper a new framework is proposed for WSN integration with Cloud computing model, existing WSN will be connected to the proposed framework. Three deployment layer are used to serve user request (IaaS, PaaS, SaaS) either from the library which is made from data collected from data centric DC by WSN periodically. The integration controller unit of the proposed framework integrates the sensor network and cloud computing technology which offers reliability, availability and extensibility.

  14. Process and data fragmentation-oriented enterprise network integration with collaboration modelling and collaboration agents

    Science.gov (United States)

    Li, Qing; Wang, Ze-yuan; Cao, Zhi-chao; Du, Rui-yang; Luo, Hao

    2015-08-01

    With the process of globalisation and the development of management models and information technology, enterprise cooperation and collaboration has developed from intra-enterprise integration, outsourcing and inter-enterprise integration, and supply chain management, to virtual enterprises and enterprise networks. Some midfielder enterprises begin to serve for different supply chains. Therefore, they combine related supply chains into a complex enterprise network. The main challenges for enterprise network's integration and collaboration are business process and data fragmentation beyond organisational boundaries. This paper reviews the requirements of enterprise network's integration and collaboration, as well as the development of new information technologies. Based on service-oriented architecture (SOA), collaboration modelling and collaboration agents are introduced to solve problems of collaborative management for service convergence under the condition of process and data fragmentation. A model-driven methodology is developed to design and deploy the integrating framework. An industrial experiment is designed and implemented to illustrate the usage of developed technologies in this paper.

  15. Multi-attribute integrated measurement of node importance in complex networks

    Science.gov (United States)

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  16. Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment.

    Science.gov (United States)

    Walker, Emily; Ohishi, Minako; Davey, Ryan E; Zhang, Wen; Cassar, Paul A; Tanaka, Tetsuya S; Der, Sandy D; Morris, Quaid; Hughes, Timothy R; Zandstra, Peter W; Stanford, William L

    2007-06-07

    Stem cell fate is governed by the integration of intrinsic and extrinsic positive and negative signals upon inherent transcriptional networks. To identify novel embryonic stem cell (ESC) regulators and assemble transcriptional networks controlling ESC fate, we performed temporal expression microarray analyses of ESCs after the initiation of commitment and integrated these data with known genome-wide transcription factor binding. Effects of forced under- or overexpression of predicted novel regulators, defined as differentially expressed genes with potential binding sites for known regulators of pluripotency, demonstrated greater than 90% correspondence with predicted function, as assessed by functional and high-content assays of self-renewal. We next assembled 43 theoretical transcriptional networks in ESCs, 82% (23 out of 28 tested) of which were supported by analysis of genome-wide expression in Oct4 knockdown cells. By using this integrative approach, we have formulated novel networks describing gene repression of key developmental regulators in undifferentiated ESCs and successfully predicted the outcomes of genetic manipulation of these networks.

  17. An Optical / Wireless Integrated Approach to provide Multiple Gateways in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Raheel

    2012-03-01

    Full Text Available Wireless Mesh Network is an application technology different from the traditional peer-to-peer wireless bridge; it provides the multi-hop and multi-path connection to form a wireless environment of MESH framework so that the occurrence of single point failure can be prevented.WMNs are to provide high bandwidth broadband service to a large community of users through the use Internet Gateways which acts as a central point of internet attachment for the mesh routers, it is likely to be a potential bottleneck because of its limited wireless link capacity and security considerations of the Internet Gateways .By integrating Optical fiber network technologies with wireless mesh network we can achieve the Security and increase the capacity of the network, in this paper we define integration models with multiple gateways in the access network, which increases the capacity of wireless networks, increase security in network gateways, and decreases access point complexity through centralized management.

  18. Integrative neural networks models for stream assessment in restoration projects

    Science.gov (United States)

    Gazendam, Ed; Gharabaghi, Bahram; Ackerman, Josef D.; Whiteley, Hugh

    2016-05-01

    Stream-habitat assessment for evaluation of restoration projects requires the examination of many parameters, both watershed-scale and reach-scale, to incorporate the complex non-linear effects of geomorphic, riparian, watershed and hydrologic factors on aquatic ecosystems. Rapid geomorphic assessment tools used by many jurisdictions to assess natural channel design projects seldom include watershed-level parameters, which have been shown to have a significant effect on benthic habitat in stream systems. In this study, Artificial Neural Network (ANN) models were developed to integrate complex non-linear relationships between the aquatic ecosystem health indices and key watershed-scale and reach-scale parameters. Physical stream parameters, based on QHEI parameters, and watershed characteristics data were collected at 112 sites on 62 stream systems located in Southern Ontario. Benthic data were collected separately and benthic invertebrate summary indices, specifically Hilsenhoff's Biotic Index (HBI) and Richness, were determined. The ANN models were trained on the randomly selected 3/4 of the dataset of 112 streams in Ontario, Canada and validated on the remaining 1/4. The R2 values for the developed ANN model predictions were 0.86 for HBI and 0.92 for Richness. Sensitivity analysis of the trained ANN models revealed that Richness was directly proportional to Erosion and Riparian Width and inversely proportional to Floodplain Quality and Substrate parameters. HBI was directly proportional to Velocity Types and Erosion and inversely proportional to Substrate, % Treed and 1:2 Year Flood Flow parameters. The ANN models can be useful tools for watershed managers in stream assessment and restoration projects by allowing consideration of watershed properties in the stream assessment.

  19. Data integration for identification of important transcription factors of STAT6-mediated cell fate decisions.

    Science.gov (United States)

    Jargosch, M; Kröger, S; Gralinska, E; Klotz, U; Fang, Z; Chen, W; Leser, U; Selbig, J; Groth, D; Baumgrass, R

    2016-06-24

    Data integration has become a useful strategy for uncovering new insights into complex biological networks. We studied whether this approach can help to delineate the signal transducer and activator of transcription 6 (STAT6)-mediated transcriptional network driving T helper (Th) 2 cell fate decisions. To this end, we performed an integrative analysis of publicly available RNA-seq data of Stat6-knockout mouse studies together with STAT6 ChIP-seq data and our own gene expression time series data during Th2 cell differentiation. We focused on transcription factors (TFs), cytokines, and cytokine receptors and delineated 59 positively and 41 negatively STAT6-regulated genes, which were used to construct a transcriptional network around STAT6. The network illustrates that important and well-known TFs for Th2 cell differentiation are positively regulated by STAT6 and act either as activators for Th2 cells (e.g., Gata3, Atf3, Satb1, Nfil3, Maf, and Pparg) or as suppressors for other Th cell subpopulations such as Th1 (e.g., Ar), Th17 (e.g., Etv6), or iTreg (e.g., Stat3 and Hif1a) cells. Moreover, our approach reveals 11 TFs (e.g., Atf5, Creb3l2, and Asb2) with unknown functions in Th cell differentiation. This fact together with the observed enrichment of asthma risk genes among those regulated by STAT6 underlines the potential value of the data integration strategy used here. Thus, our results clearly support the opinion that data integration is a useful tool to delineate complex physiological processes.

  20. Adaptive Recurrent Network Network Uncertainty Observer Based Integral Backstepping Control for a PMSM Drive System

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2012-03-01

    Full Text Available The permanent magnet synchronous motor (PMSM is suitable for high-performance servo applications and has been used widely for the industrial robots, computer-numerically-controlled (CNC machine tools and elevators. The control performance of the actual PMSM drive system depends on many parameters, such as parameter variations, external load disturbance, and friction force. Their relationships are complex and the actual PMSM drive system has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate model for the nonlinear uncertainty and time-varying characteristics of the actual PMSM drive system Therefore, an adaptive recurrent neural network uncertainty observer (ARNNUO based integral backstepping control system is developed to overcome this problem in this paper. The proposed control strategy is based on integral backstepping control combined with RNN uncertainty observer to estimate the required lumped uncertainty. An adaptive rule of the RNN uncertainty observer is employed to on-line adjust the weights of sigmoidal functions by using the gradient descent method and the backpropagation algorithm in according to Lyapunov function. This ARNNUO has the on-line learning ability to respond to the system’s nonlinear and time-varying behaviors. Experimental results are executed to show the control performance of the proposed control scheme.

  1. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

    DEFF Research Database (Denmark)

    Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage;

    2007-01-01

    identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.......We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...

  2. Protein signaling networks from single cell fluctuations and information theory profiling.

    Science.gov (United States)

    Shin, Young Shik; Remacle, F; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R D; Heath, James R

    2011-05-18

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network.

  3. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    Science.gov (United States)

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  4. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network

    Directory of Open Access Journals (Sweden)

    Andrews Brenda

    2005-06-01

    Full Text Available Abstract Background Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. Results To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' – classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions – the 'compensatory complexes' theme. Thematic maps – networks rendered in terms of such themes – can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. Conclusion Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.

  5. Studying Dynamic Features in Myocardial Infarction Progression by Integrating miRNA-Transcription Factor Co-Regulatory Networks and Time-Series RNA Expression Data from Peripheral Blood Mononuclear Cells.

    Directory of Open Access Journals (Sweden)

    Hongbo Shi

    Full Text Available Myocardial infarction (MI is a serious heart disease and a leading cause of mortality and morbidity worldwide. Although some molecules (genes, miRNAs and transcription factors (TFs associated with MI have been studied in a specific pathological context, their dynamic characteristics in gene expressions, biological functions and regulatory interactions in MI progression have not been fully elucidated to date. In the current study, we analyzed time-series RNA expression data from peripheral blood mononuclear cells. We observed that significantly differentially expressed genes were sharply up- or down-regulated in the acute phase of MI, and then changed slowly until the chronic phase. Biological functions involved at each stage of MI were identified. Additionally, dynamic miRNA-TF co-regulatory networks were constructed based on the significantly differentially expressed genes and miRNA-TF co-regulatory motifs, and the dynamic interplay of miRNAs, TFs and target genes were investigated. Finally, a new panel of candidate diagnostic biomarkers (STAT3 and ICAM1 was identified to have discriminatory capability for patients with or without MI, especially the patients with or without recurrent events. The results of the present study not only shed new light on the understanding underlying regulatory mechanisms involved in MI progression, but also contribute to the discovery of true diagnostic biomarkers for MI.

  6. Effectiveness of cell outage compensation in LTE networks

    NARCIS (Netherlands)

    Amirijoo, M.; Jorguseski, L.; Litjens, R.; Nascimento, R.

    2011-01-01

    Cell outage management is a self-healing functionality in future mobile cellular networks, aiming to automatically detect cell or site level outages (cell outage detection) as well as to mitigate as much as possible the caused degradation of coverage, capacity and/or service quality (cell outage com

  7. Synthesis and Design of Integrated Process and Water Networks

    DEFF Research Database (Denmark)

    2015-01-01

    possible options with respect to the topology of the process and water networks, leading to Mixed Integer Non Linear Programming (MINLP) problem. A solution strategy to solve the multi-network problem accounts explicitly the interactions between the networks by selecting suitable technologies in order...... to transform raw materials into products and produce clean water to be reused in the process at the early stage of design. Since the connection between the process network and the wastewater treatment network is not a straight forward connection, a new converter interval is introduced in order to convert...... the values of contaminants in the wastewater stream into wastewater characterizations. The systematic approach is used to manage the complexity of the problem by solving simultaneously process synthesis and water synthesis network problems with respect to environment, economics and sustainability...

  8. Network payload integration for the Scan-Eagle UAV

    OpenAIRE

    Lim, Han Leong.

    2007-01-01

    With the increasing maturity of Mesh network technology, it is inevitable that we exploit the synergistic capabilities in networking of autonomous vehicles [1]. The interconnectivity enables the sharing or dissemination of information between various nodes and has the capability to enhance communication range between a Ground Control Station (GCS) and autonomous aircraft which can then be expanded to several GCSs, or in a networked combination of Unmanned Aerial Vehicle (UAV), Unmanned G...

  9. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    KAUST Repository

    Shakir, Muhammad

    2012-06-01

    Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users. © 2012 IEEE.

  10. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders.

    Science.gov (United States)

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-12-30

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.

  11. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2014-01-01

    Full Text Available Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  12. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  13. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties

    NARCIS (Netherlands)

    Nikolaisen, J.; Nilsson, L.I.; Pettersen, I.K.; Willems, P.H.G.M.; Lorens, J.B.; Koopman, W.J.H.; Tronstad, K.J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understandi

  14. Future integrated broadband fiber, wireless, and satellite networks

    Science.gov (United States)

    Chan, Vincent W. S.

    2006-10-01

    With the increasing technical maturity in fiber, wireless and satellite communication technologies, new horizons are becoming feasible for future broadband networks, providing economical data rates well in excess of Gbps for stationary and mobile users as well as novel applications these advanced network services will permit. This talk explores the future architecture possibilities of such a network using new and radical technology building blocks such as: free space laser communications, multiple access multi-beam data satellite communications, novel all-optical network transport/switching and analog transmission and processing over optical carriers that support coherent distributed platform sensing and communications. We will articulate why we have to design this new network across layers from the Physical Layer to the Network and Transport Layers (even the Application Layer). Not only can future network performance and cost undergo quantum-leap improvements; such a network can have profound transforming effects on space and terrestrial system architectures for sensing, healthcare, early warning systems, disaster relief, research collaborations and other new commercial applications.

  15. The Integration of Personal Learning Environments & Open Network Learning Environments

    Science.gov (United States)

    Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael

    2012-01-01

    Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…

  16. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.

    Directory of Open Access Journals (Sweden)

    Matthew Ruffalo

    2015-12-01

    Full Text Available Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these "silent players". For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.

  17. Integrating Network Awareness in ATLAS Distributed Computing Using the ANSE Project

    CERN Document Server

    Klimentov, Alexei; The ATLAS collaboration; Petrosyan, Artem; Batista, Jorge Horacio; Mc Kee, Shawn Patrick

    2015-01-01

    A crucial contributor to the success of the massively scaled global computing system that delivers the analysis needs of the LHC experiments is the networking infrastructure upon which the system is built. The experiments have been able to exploit excellent high-bandwidth networking in adapting their computing models for the most efficient utilization of resources. New advanced networking technologies now becoming available such as software defined networking hold the potential of further leveraging the network to optimize workflows and dataflows, through proactive control of the network fabric on the part of high level applications such as experiment workload management and data management systems. End to end monitoring of networks using perfSONAR combined with data flow performance metrics further allows applications to adapt based on real time conditions. We will describe efforts underway in ATLAS on integrating network awareness at the application level, particularly in workload management, building upon ...

  18. INTEGRATED ENVIRONMENTAL ASSESSMENT OF THE MID-ATLANTIC REGION WITH ANALYTICAL NETWORK PROCESS

    Science.gov (United States)

    A decision analysis method for integrating environmental indicators was developed. This was a combination of Principal Component Analysis (PCA) and the Analytic Network Process (ANP). Being able to take into account interdependency among variables, the method was capable of ran...

  19. Simplified CBA Concept and Express Choice Method for Integrated Network Management System

    Directory of Open Access Journals (Sweden)

    Mohammad Al Rawajbeh

    2016-05-01

    Full Text Available The process of choosing and integrating a network management system (NMS to an existing computer network became a big question due to the complexity of used technologies and the variety of NMS options. Most of computer networks are being developed according to their internal rules in cloud environments. The use of NMS requires not only infrastructural changes, consequently increasing the cost of integration and maintenance, but also increases the risk of potential failures. In this paper, conception and method of express choice to implement and integrate a network management system are presented. Review of basic methods of cost analysis for IT systems is presented. The simplified conception of cost benefits analysis (CBA is utilized as a basis of the offered method. A final estimation is based on three groups of parameters: parameters of expected integration risk evaluation, expected effect and level of completed management tasks. The explanation of the method is provided via example.

  20. An integrated architecture of adaptive neural network control for dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  1. Integration and Usage of an Industrial Network Management System in an Accelerator Controls Environment

    CERN Document Server

    Crouzet, M

    1999-01-01

    In the last years the CERN accelerator networks infrastructure has been upgraded to contemporary industrial standards. A commercially available network management tool has been selected to monitor and optimise the usage of the infrastructure. HPOpenview Network Node Manager (NNM) provides concise and indepth views of network and devices connected with their operational status. It provides instant failure detection, can supply alarm information and gathers statistics to allow proactive maintenance thus reducing network congestion and downtime. The heterogeneous community of equipment as installed around CERN's PS, SPS and LEP accelerator complex can be monitored in a uniform manner from a single entry point. The integration of a network specialist tool into the accelerator operations environment required additional developments in information reduction and presentation to create intuitive graphical displays related to the accelerators geographical and functional situation. This report describes the integration...

  2. Freight integration in liner shipping: a strategy serving global production networks

    OpenAIRE

    Notteboom, T.; Merckx, F.

    2006-01-01

    Container shipping lines are well aware of the growing importance of global production networks. While continuing to focus on improving the fundamentals, many shipping lines have developed a keen interest in other segments of the logistics and transportation market to offer integrated and worldwide services to global production networks. This paper aims to assess the overall level of freight integration in thirty-four shipping lines, and provides an insight into the extent to which freight in...

  3. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  4. A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration.

    Science.gov (United States)

    Jantvik, Tamas; Gustafsson, Lennart; Papliński, Andrew P

    2011-08-01

    The multimodal self-organizing network (MMSON), an artificial neural network architecture carrying out sensory integration, is presented here. The architecture is designed using neurophysiological findings and imaging studies that pertain to sensory integration and consists of interconnected lattices of artificial neurons. In this artificial neural architecture, the degree of recognition of stimuli, that is, the perceived reliability of stimuli in the various subnetworks, is included in the computation. The MMSON's behavior is compared to aspects of brain function that deal with sensory integration. According to human behavioral studies, integration of signals from sensory receptors of different modalities enhances perception of objects and events and also reduces time to detection. In neocortex, integration takes place in bimodal and multimodal association areas and result, not only in feedback-mediated enhanced unimodal perception and shortened reaction time, but also in robust bimodal or multimodal percepts. Simulation data from the presented artificial neural network architecture show that it replicates these important psychological and neuroscientific characteristics of sensory integration.

  5. Network-based drug discovery by integrating systems biology and computational technologies.

    Science.gov (United States)

    Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang

    2013-07-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.

  6. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia;

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  7. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    of interaction, which have not been sufficiently studied so far. It is therefore important to understand how choosing operational parameters can influence reactor performances. The current study highlights the interaction offermentative bacteria and exoelectrogens in the integrated system....... in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... investigated the interaction of fermentation communities and electrode respiring communities in an integrated system of WAS fermentation and MEC for hydrogen recovery. A high energy recovery was achieved in the MECs feeding WAS fermentation liquid through alkaline pretreatment. Some anaerobes belonging...

  8. Analysis of a generic model for a bottleneck link in an integrated services communications network

    NARCIS (Netherlands)

    Al-Begain, K.; Heindl, A.; Telek, M.; Litjens, R.; Boucherie, R.J.

    2007-01-01

    We develop and analyse a generic model for performance evaluation, parameter optimisation and dimensioning of a bottleneck link in an integrated services communications network. Possible application areas include ip, atm and gsm/gprs networks. The model enables analytical evaluation for a scenario o

  9. Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products

    DEFF Research Database (Denmark)

    Fattahi, Mohammad; Govindan, Kannan

    2017-01-01

    This paper addresses design and planning of an integrated forward/reverse logistics network over a planning horizon with multiple tactical periods. In the network, demand for new products and potential return of used products are stochastic. Furthermore, collection amounts of used products...

  10. Teaching Students How to Integrate and Assess Social Networking Tools in Marketing Communications

    Science.gov (United States)

    Schlee, Regina Pefanis; Harich, Katrin R.

    2013-01-01

    This research is based on two studies that focus on teaching students how to integrate and assess social networking tools in marketing communications. Study 1 examines how students in marketing classes utilize social networking tools and explores their attitudes regarding the use of such tools for marketing communications. Study 2 focuses on an…

  11. An Integrated Control and Scheduling Optimization Method of Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    HE Jian-qiang; ZHANG Huan-chun; JING Ya-zhi

    2004-01-01

    Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCSs). The limitation of communication bandwidth results in transport delay, affects the property of real-time system, and degrades the performance of NCSs. An integrated control and scheduling optimization method using genetic algorithm is proposed in this paper.This method can synchronously optimize network scheduling and improve the performance of NCSs. To illustrate its effectiveness, an example is provided.

  12. Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach.

    Science.gov (United States)

    Tewarie, Prejaas; Hillebrand, Arjan; van Dijk, Bob W; Stam, Cornelis J; O'Neill, George C; Van Mieghem, Piet; Meier, Jil M; Woolrich, Mark W; Morris, Peter G; Brookes, Matthew J

    2016-11-15

    Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.

  13. Direction selectivity is computed by active dendritic integration in retinal ganglion cells.

    Science.gov (United States)

    Sivyer, Benjamin; Williams, Stephen R

    2013-12-01

    Active dendritic integration is thought to enrich the computational power of central neurons. However, a direct role of active dendritic processing in the execution of defined neuronal computations in intact neural networks has not been established. Here we used multi-site electrophysiological recording techniques to demonstrate that active dendritic integration underlies the computation of direction selectivity in rabbit retinal ganglion cells. Direction-selective retinal ganglion cells fire action potentials in response to visual image movement in a preferred direction. Dendritic recordings revealed that preferred-direction moving-light stimuli led to dendritic spike generation in terminal dendrites, which were further integrated and amplified as they spread through the dendritic arbor to the axon to drive action potential output. In contrast, when light bars moved in a null direction, synaptic inhibition vetoed neuronal output by directly inhibiting terminal dendritic spike initiation. Active dendritic integration therefore underlies a physiologically engaged circuit-based computation in the retina.

  14. The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity

    OpenAIRE

    Vic Norris; Robert Root-Bernstein

    2009-01-01

    In the “ecosystems-first” approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entaili...

  15. Integrated Fault Diagnostics of Networks and IT Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The lecture of the Stanford-IVHM lecture series will give an overview of the approaches in building diagnostic solutions for networks and complex systems. The...

  16. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    , with genomic modifications giving rise to differential protein dynamics, ultimately resulting in disease. The exact molecular signaling networks underlying specific disease phenotypes remain elusive, as the definition thereof requires extensive analysis of not only the genomic and proteomic landscapes within...

  17. Integration of Neural Networks and Cellular Automata for Urban Planning

    Institute of Scientific and Technical Information of China (English)

    Anthony Gar-on Yeh; LI Xia

    2004-01-01

    This paper presents a new type of cellular automata (CA) model for the simulation of alternative land development using neural networks for urban planning. CA models can be regarded as a planning tool because they can generate alternative urban growth. Alternative development patterns can be formed by using different sets of parameter values in CA simulation. A critical issue is how to define parameter values for realistic and idealized simulation. This paper demonstrates that neural networks can simplify CA models but generate more plausible results. The simulation is based on a simple three-layer network with an output neuron to generate conversion probability. No transition rules are required for the simulation. Parameter values are automatically obtained from the training of network by using satellite remote sensing data. Original training data can be assessed and modified according to planning objectives. Alternative urban patterns can be easily formulated by using the modified training data sets rather than changing the model.

  18. Technical Issues in Evolving to Integrated Services Digital Network (ISDN)

    Science.gov (United States)

    1991-06-01

    Special Problem.5 User side Network side User side SMAP SAP SNIAP 7 SMAE SSAE SMAE M 4-6 Relay 1-3 D-channel D-ch. SS7 SS7LDi D-channel User access and...management before User Network User SMAP SMAP S MAP I _ SMAE SMAE SMAE SS7 SS7 SS7 User access and management with SS7 Figure 6 : difference in

  19. Leader neurons in leaky integrate and fire neural network simulations

    OpenAIRE

    Zbinden, Cyrille

    2010-01-01

    Several experimental studies show the existence of leader neurons in population bursts of 2D living neural networks. A leader neuron is, basically, a neuron which fires at the beginning of a burst (respectively network spike) more often that we expect by looking at its whole mean neural activity. This means that leader neurons have some burst triggering power beyond a simple statistical effect. In this study, we characterize these leader neuron properties. This naturally leads us to simulate ...

  20. An Integrated Architecture to Support Hastily Formed Network (HFN)

    Science.gov (United States)

    2007-12-01

    Figure 8. EU 1000I, EU 2000I and EU 3000IS...............................................................52 Figure 9. Inmarsat BGAN Satellite Coverage...Hughes 9201 Broadband Satellite IP Terminal with Wireless LAN Access Point, which interfaces over the Inmarsat BGAN satellite network, has many...advantages that make it an attractive solution. (1) Global Coverage BGAN delivers seamless network coverage across most of the world’s land mass

  1. Reliability Evaluation and Routing Integration in Shuffle Exchange Omega Network

    Directory of Open Access Journals (Sweden)

    Nur Arzilawati Md Yunus

    2014-07-01

    Full Text Available Multistage Interconnection Networks (MINs are design to provide an effective communication in switching. Shuffle-exchange networks (SENs have been widely considered as practical interconnection systems due to their size of it switching elements (SEs and uncomplicated configuration. In this paper, the relationship between reliability performance and number of network size are compared in shuffle exchange network (SEN and SEN with minus one stages (SEN-. There are three parameters used to measure the reliability performance on these networks which is terminal reliability, broadcast reliability and network reliability. An addition this paper also focused on comparing the algorithm based on SEN- to achieve the optimal routing time and the number of passes. The algorithms consist of six algorithms namely ZeroX, ZeroY, ZeroXbit, ZeroYbit, Sequential Increasing and Sequential Decreasing algorithm. This paper also shows the details of the illustrative examples used to explain each parameter measures. At the end of this chapter, the comparative analysis shows the performance of each parameters measures. 

  2. Airborne Tactical Data Network Gateways: Evaluating EPLRS’ Ability to Integrate With Wireless Meshed Networks

    Science.gov (United States)

    2005-09-01

    Multi-Point Relay MSL Mean Sea Level MSLP Mean Sea Level Pressure NCW Network Centric Warfare NIC Network Interface Card NIST National Institute...of Standards and Technology NLOS Non-Line-of-Sight NOC Network Operations Center NPS Naval Postgraduate School OFDM Orthogonal Frequency Division...ould no longer be supported by the MEA network interface adaptor ( NIC ). At each increment, the collection console checked the data throughput

  3. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems

    CERN Document Server

    Rosvall, M

    2010-01-01

    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation that reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network, the optimal number of levels and modular partition at each level, with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines:...

  4. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    DEFF Research Database (Denmark)

    Mazzoni, Alberto; Linden, Henrik; Cuntz, Hermann

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local...... point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected...... into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP...

  5. Magnets and Seekers: A Network Perspective on Academic Integration inside Two Residential Communities

    Science.gov (United States)

    Smith, Rachel A.

    2015-01-01

    Residential learning communities aim to foster increased academic and social integration, ideally leading to greater student success. However, the concept of academic integration is often conceptualized and measured at the individual level, rather than the theoretically more consistent community level. Network analysis provides a paradigm and…

  6. QUADRATIC PROGRAMMING NEURAL NETWORK BASED INTEGRATED SPACE-TIME INTERFERENCE SUPPRESSION IN CDMA SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Song Rongfang; Bi Guangguo

    2001-01-01

    Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser access interference (MAI) and interchip interference (ICI),and combine multipath components. The zero-forcing conditions are derived. Neural network implementation of the models is also studied.

  7. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  8. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity.

    Science.gov (United States)

    Norris, Vic; Root-Bernstein, Robert

    2009-06-04

    In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  9. JOINT RESOURCE ALLOCATION FOR WLAN&WCDMA INTEGRATED NETWORKS BASED ON SPECTRAL BANDWIDTH MAPPING

    Institute of Scientific and Technical Information of China (English)

    Pan Su; Ye Qiang; Liu Shengmei; Zhou Dawei

    2011-01-01

    Next wireless network aims to integrate heterogeneous wireless access networks by sharing wireless resource.The spectral bandwidth mapping concept is proposed to uniformly describe the resource in heterogeneous wireless networks.The resources of codes and power levels in WCDMA system as well as statistical time slots in WLAN are mapped into equivalent bandwidth which can be allocated in different networks and layers.The equivalent bandwidth is jointly distributed in call admission and vertical handoff control process in an integrated WLAN/WCDMA system to optimize the network utility and guarantee the heterogeneous QoS required by calls.Numerical results show that,when the incoming traffic is moderate,the proposed scheme could receive 5%-10% increase of system revenue compared to the MDP based algorithms.

  10. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  11. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-11-01

    Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  12. Implementing Key Strategies for Successful Network Integration in the Quebec Substance-Use Disorders Programme

    Directory of Open Access Journals (Sweden)

    Marie-Josée Fleury

    2016-04-01

    Full Text Available Background: Fragmentation and lack of coordination often occur among organisations offering treatment for individuals with substance-use disorders. Better integration from a system perspective within a network of organisations offering substance-use disorder services can be developed using various integration strategies at the administrative and clinical levels. This study aims to identify integration strategies implemented in Quebec substance-use disorder networks and to assess their strengths and limitations. Methods: A total of 105 stakeholders representing two regions and four local substance-use disorder networks participated in focus groups or individual interviews. Thematic qualitative and descriptive quantitative analyses were conducted. Results: Six types of service integration strategies have been implemented to varying degrees in substance-use disorder networks. They are: 1 coordination activities-governance, 2 primary-care consolidation models, 3 information and monitoring management tools, 4 service coordination strategies, 5 clinical evaluation tools and 6 training activities. Conclusion: Important investments have been made in Quebec for the training and assessment of individuals with substance-use disorders, particularly in terms of support for emergency room liaison teams and the introduction of standardised clinical evaluation tools. However, the development of integration strategies was insufficient to ensure the implementation of successful networks. Planning, consolidation of primary care for substance-use disorders and systematic implementation of various clinical and administrative integration strategies are needed in order to ensure a better continuum of care for individuals with substance-use disorders.

  13. A community integration strategy based on an improved modularity density increment for large-scale networks

    Science.gov (United States)

    Shang, Ronghua; Zhang, Weitong; Jiao, Licheng; Stolkin, Rustam; Xue, Yu

    2017-03-01

    This paper presents a community integration strategy for large-scale networks, based on pre-partitioning, followed by optimization of an improved modularity density increment Δ D. Our proposed method initially searches for local core nodes in the network, i.e. potential community centers, and expands these communities to include neighbor nodes which have sufficiently high similarity with the core node. In this way, we can effectively exploit the information of the node and structure of the network, to accurately pre-partition the network into communities. Next, we arrange these pre-partitioned communities according to their external connections in descending order. In this way, we can ensure that communities with greater influence are prioritized during the process of community integration. At the same time, this paper proposes an improved modularity density increment Δ D, and shows how to use this as an objective function during the community integration optimization process. During the process of community consolidation, those neighbor communities with few external connections are prioritized for merging, thereby avoiding the fusion errors. Finally, we incorporate global reasoning into the process of local integration. We calculate and compare the improved modularity density increment of each pair of communities, to determine whether or not they should be integrated, effectively improve the accuracy of community integration. Experimental results show that our proposed algorithm can obtain superior community classification results on 5 large-scale networks, as compared with 8 other well known algorithms from the literature.

  14. VOLTTRON Lite: Integration Platform for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Jereme N.; Katipamula, Srinivas; Akyol, Bora A.; Lutes, Robert G.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform. The platform is intended to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop units (RTUs) and the electric grid using applications or “agents” that reside on the platform, on the equipment, on local building controller or in the Cloud. This document describes the core of the transactional network platform, the Volttron Lite™ software and associated services hosted on the platform. Future enhancements are also discussed. The appendix of the document provides examples of how to use the various services hosted on the platform.

  15. Design of Experimentation, Artificial Neural Network Simulation and Optimization for Integrated Bamboo Processing Machine

    OpenAIRE

    P. G. Mehar; Dr.A.V.Vanalkar

    2015-01-01

    In this research work experimentation on integrated bamboo processing machine for splitting and slicing of bamboo has been carried out. This paper presents the experimental investigation of some parameters of integrated bamboo processing machine. In this research paper simulation of experimental data using artificial neural network is carried out. An attempt of minimum-maximum principle has been made to optimize by range bound process for maximizing production rate of integrated b...

  16. Design of Experimentation, Artificial Neural Network Simulation and Optimization for Integrated Bamboo Processing Machine

    Directory of Open Access Journals (Sweden)

    P. G. Mehar

    2015-11-01

    Full Text Available In this research work experimentation on integrated bamboo processing machine for splitting and slicing of bamboo has been carried out. This paper presents the experimental investigation of some parameters of integrated bamboo processing machine. In this research paper simulation of experimental data using artificial neural network is carried out. An attempt of minimum-maximum principle has been made to optimize by range bound process for maximizing production rate of integrated bamboo processing machine.

  17. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  18. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    Science.gov (United States)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  19. Network Centric Transponders for Airspace Integration of UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method and device for situational awareness for unmanned air vehicles is presented. This enables integration of UAVs into the national airspace in a safe manner,...

  20. Sensor Area Network for Integrated Systems Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The term Integrated Systems Health Management (ISHM) is used to describe a capability that focuses on determining the condition of every element in a complex System...

  1. Network Centric Transponders for Airspace Integration of UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for a small, lightweight, remotely-operable transponder for UAVs is identified. This would allow integration of UAVs into the national airspace while...

  2. Sensor Area Network for Integrated Systems Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The term Integrated Systems Health Management (ISHM) is used to describe a capability that focuses on determining the condition (health) of every element in a...

  3. Network Integration of Distributed Optical Fiber Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    Gui-Yan Li; Hong-Lin Liu; Zai-Xuan Zhang

    2008-01-01

    The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.

  4. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  5. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  6. Networks as integrated in research methodologies in PER

    DEFF Research Database (Denmark)

    Bruun, Jesper

    2016-01-01

    In recent years a number of researchers within the PER community have started using network analysis as a new methodology to extend our understanding of teaching and learning physics by viewing these as complex systems. In this paper, I give examples of social, cognitive, and action mapping netwo...

  7. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...

  8. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation...

  9. Integrating botnet simulations with network centric warfare simulations

    Science.gov (United States)

    Stytz, Martin R.; Banks, Sheila B.

    2010-04-01

    "Botnets," or "bot armies," are large groups of remotely controlled malicious software designed and operated in order to conduct attacks against government and civilian targets. Bot armies are one of the most serious security threats to networks and computer systems in operation today. Botnets are remotely operated by botmasters who can launch large-scale malicious network activity. While bot army activity has, to date, been largely limited to fraud, blackmail, and other criminal activity, their potential for causing large-scale damage to the entire internet and launching large-scale, coordinated attacks on government computers, networks, and data gathering operations has been underestimated. This paper will not discuss how to build bots but instead discuss ways to use simulation to address the threats they pose. This paper suggests means for addressing the need to provide botnet defense training based upon existing simulation environments and discusses the capabilities needed for training systems for botnet activities. In this paper we discuss botnet technologies and review the capabilities that underlie this threat to network, information, and computer security. The second section of the paper contains background information about bot armies and their foundational technologies. The third section contains a discussion of the techniques we developed for estimating botnet bandwidth consumption and our approach for simulating botnet activities. The fourth section contains a summary and suggestions for additional research.

  10. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  11. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Science.gov (United States)

    Chasman, Deborah; Walters, Kevin B; Lopes, Tiago J S; Eisfeld, Amie J; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-07-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  12. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models.

    Science.gov (United States)

    Barberis, Matteo; Todd, Robert G; van der Zee, Lucas

    2017-01-01

    The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network.

  13. Microtubule networks for plant cell division

    NARCIS (Netherlands)

    Keijzer, de Jeroen; Mulder, B.M.; Janson, M.E.

    2014-01-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called

  14. Transcriptional networks that regulate muscle stem cell function.

    Science.gov (United States)

    Punch, Vincent G; Jones, Andrew E; Rudnicki, Michael A

    2009-01-01

    Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.

  15. Toward of a highly integrated probe for improving wireless network quality

    Science.gov (United States)

    Ding, Fei; Song, Aiguo; Wu, Zhenyang; Pan, Zhiwen; You, Xiaohu

    2016-10-01

    Quality of service and customer perception is the focus of the telecommunications industry. This paper proposes a low-cost approach to the acquisition of terminal data, collected from LTE networks with the application of a soft probe, based on the Java language. The soft probe includes support for fast call in the form of a referenced library, and can be integrated into various Android-based applications to automatically monitor any exception event in the network. Soft probe-based acquisition of terminal data has the advantages of low cost and can be applied on large scale. Experiment shows that a soft probe can efficiently obtain terminal network data. With this method, the quality of service of LTE networks can be determined from acquired wireless data. This work contributes to efficient network optimization, and the analysis of abnormal network events.

  16. Towards the integration of social network analysis in an inter-organizational networks perspective

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Waldstrøm, Christian

    This conceptual paper deals with the issue of studying inter-organizational networks while applying social network analysis (SNA). SNA is a widely recognized technique in network research, particularly within intra-organizational settings, while there seems to be a significant gap in the inter......-organizational setting. Based on a literature review of both SNA as a methodology and/or theory and the field of inter-organizational networks, the aim is to gain an overview in order to provide a clear setting for SNA in inter-organizational research....

  17. Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Directory of Open Access Journals (Sweden)

    Gungor eBudak

    2015-07-01

    Full Text Available Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF approach and the Integer Linear Programming (ILP based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the

  18. Intelligent Networks Data Fusion Web-based Services for Ad-hoc Integrated WSNs-RFID

    Directory of Open Access Journals (Sweden)

    Falah Alshahrany

    2016-01-01

    Full Text Available The use of variety of data fusion tools and techniques for big data processing poses the problem of the data and information integration called data fusion having objectives which can differ from one application to another. The design of network data fusion systems aimed at meeting these objectives, need to take into account of the necessary synergy that can result from distributed data processing within the data networks and data centres, involving increased computation and communication. This papers reports on how this processing distribution is functionally structured as configurable integrated web-based support services, in the context of an ad-hoc wireless sensor network used for sensing and tracking, in the context of distributed detection based on complete observations to support real rime decision making. The interrelated functional and hardware RFID-WSN integration is an essential aspect of the data fusion framework that focuses on multi-sensor collaboration as an innovative approach to extend the heterogeneity of the devices and sensor nodes of ad-hoc networks generating a huge amount of heterogeneous soft and hard raw data. The deployment and configuration of these networks require data fusion processing that includes network and service management and enhances the performance and reliability of networks data fusion support systems providing intelligent capabilities for real-time control access and fire detection.

  19. atBioNet– an integrated network analysis tool for genomics and biomarker discovery

    Directory of Open Access Journals (Sweden)

    Ding Yijun

    2012-07-01

    Full Text Available Abstract Background Large amounts of mammalian protein-protein interaction (PPI data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. Results atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks. The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. Conclusion atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http

  20. Integral edge seals for phosphoric acid fuel cells

    Science.gov (United States)

    Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  1. Improving GPS/INS Integration through Neural Networks

    CERN Document Server

    Nguyen-H, M

    2010-01-01

    The Global Positioning Systems (GPS) and Inertial Navigation System (INS) technology have attracted a considerable importance recently because of its large number of solutions serving both military as well as civilian applications. This paper aims to develop a more efficient and especially a faster method for processing the GPS signal in case of INS signal loss without losing the accuracy of the data. The conventional or usual method consists of processing data through a neural network and obtaining accurate positioning output data. The new or improved method adds selective filtering at the low-band frequency, the mid-band frequency and the high band frquency, before processing the GPS data through the neural network, so that the processing time is decreased significantly while the accuracy remains the same.

  2. Integration of Education: Using Social Media Networks to Engage Students

    Directory of Open Access Journals (Sweden)

    Risa Blair

    2014-10-01

    Full Text Available Any educator today will tell you that the strategies used in the classroom have evolved and changed with the access everyone has to technology. In a world with constant changes and shifts because of immediate access to information, the way course content is delivered must evolve and adjust to the new ways students learn. Engagement of students in course content and reaching learning objectives are the key elements educators strive for in every course. Enter social media networks and the ability to leverage the user activity with these applications in education. Now, educators can provide content which engages students and meets learning objectives the way students want to learn. By reviewing social media networks: Facebook, Pinterest, Instagram, Blogs, Twitter, and Evernote, educators can position themselves to be as technology-savvy as today's students.

  3. Implementation of Integrated Service Networks under the Quebec Mental Health Reform: Facilitators and Barriers associated with Different Territorial Profiles

    Directory of Open Access Journals (Sweden)

    Marie-Josée Fleury

    2017-03-01

    Full Text Available Introduction: This study evaluates implementation of the Quebec Mental Health Reform (2005–2015, which promoted the development of integrated service networks, in 11 local service networks organized into four territorial groups according to socio-demographic characteristics and mental health services offered. Methods: Data were collected from documents concerning networks; structured questionnaires completed by 90 managers and by 16 respondent-psychiatrists; and semi-structured interviews with 102 network stakeholders. Factors associated with implementation and integration were organized according to: 1 reform characteristics; 2 implementation context; 3 organizational characteristics; and 4 integration strategies. Results: While local networks were in a process of development and expansion, none were fully integrated at the time of the study. Facilitators and barriers to implementation and integration were primarily associated with organizational characteristics. Integration was best achieved in larger networks including a general hospital with a psychiatric department, followed by networks with a psychiatric hospital. Formalized integration strategies such as service agreements, liaison officers, and joint training reduced some barriers to implementation in networks experiencing less favourable conditions. Conclusion: Strategies for the implementation of healthcare reform and integrated service networks should include sustained support and training in best-practices, adequate performance indicators and resources, formalized integration strategies to improve network coordination and suitable initiatives to promote staff retention.

  4. Integration of Radio Frequency Identification and Wireless Sensor Networks

    OpenAIRE

    2013-01-01

    ABSTRACT: Radio frequency identification (RFID) system is used for detecting and identifying the tagged objects by electromagnetic signals. The main components of RFID are tag (transponder), reader (transceiver) and a host computer. RFID can be implemented in wide applications such as supply chain, car access, animal tracking and smart cards. Wireless sensor network (WSN), which consists of a huge numbers of nodes, can monitor the condition of the environment including pressure, humidity, and...

  5. Fast packet switch architectures for broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  6. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  7. Workshop: Theory an Applications of Coupled Cell Networks

    Science.gov (United States)

    2006-03-22

    Economia and Centro de Matematica, Universidade do Porto) Application of coupled cell systems have been made to a wide range of problems in the physical and...the propagation of perturbations across the optical spectrum. Minimal coupled cell networks M. Aguiar (Faculdade de Economia do Porto), A.P.S. Dias

  8. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  9. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  10. An Artificial Neural Network-Based Decision-Support System for Integrated Network Security

    Science.gov (United States)

    2014-09-01

    networking. This modeling and simulations tool has the additional capability of being extended across a local area network using the GitHUB capability...established Hub, GitHub technology and develop secure communications platforms that are customizable for global teams. NetLogo support GitHub . 105

  11. Integrated Analysis of Environment-driven Operational Effects in Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Alfred J [ORNL; Perumalla, Kalyan S [ORNL

    2007-07-01

    There is a rapidly growing need to evaluate sensor network functionality and performance in the context of the larger environment of infrastructure and applications in which the sensor network is organically embedded. This need, which is motivated by complex applications related to national security operations, leads to a paradigm fundamentally different from that of traditional data networks. In the sensor networks of interest to us, the network dynamics depend strongly on sensor activity, which in turn is triggered by events in the environment. Because the behavior of sensor networks is sensitive to these driving phenomena, the integrity of the sensed observations, measurements and resource usage by the network can widely vary. It is therefore imperative to accurately capture the environmental phenomena, and drive the simulation of the sensor network operation by accounting fully for the environment effects. In this paper, we illustrate the strong, intimate coupling between the sensor network operation and the driving phenomena in their applications with an example sensor network designed to detect and track gaseous plumes.

  12. A theoretical molecular network for dyslexia: integrating available genetic findings

    NARCIS (Netherlands)

    Poelmans, G.J.V.; Buitelaar, J.K.; Pauls, D.L.; Franke, B.

    2011-01-01

    Developmental dyslexia is a common specific childhood learning disorder with a strong heritable component. Previous studies using different genetic approaches have identified several genetic loci and candidate genes for dyslexia. In this article, we have integrated the current knowledge on 14 dyslex

  13. Integrating power and reserve trade in electricity networks

    NARCIS (Netherlands)

    Höning, N.F.; Noot, H.; La Poutré, J.A.

    2011-01-01

    In power markets, the trade of reserve energy will become more important as more intermittent generation is traded. In this work, we propose a novel bidding mechanism for the integration of power and reserve markets. It adds expressivity to reserve bids and facilitates planning.

  14. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    Science.gov (United States)

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  15. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2016-01-01

    Full Text Available The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI and the standardized precipitation evaporation index (SPEI and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  16. Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience

    Directory of Open Access Journals (Sweden)

    Diankun Gong

    2016-01-01

    Full Text Available Action video games (AVGs have attracted increasing research attention as they offer a unique perspective into the relation between active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network (SN and Central Executive Network (CEN, which are responsible for attention and working memory, respectively, two cognitive functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts’ and amateurs’ resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation between AVG experience and the neural network plasticity.

  17. Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience.

    Science.gov (United States)

    Gong, Diankun; He, Hui; Ma, Weiyi; Liu, Dongbo; Huang, Mengting; Dong, Li; Gong, Jinnan; Li, Jianfu; Luo, Cheng; Yao, Dezhong

    2016-01-01

    Action video games (AVGs) have attracted increasing research attention as they offer a unique perspective into the relation between active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network (SN) and Central Executive Network (CEN), which are responsible for attention and working memory, respectively, two cognitive functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts' and amateurs' resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation between AVG experience and the neural network plasticity.

  18. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  19. INTEGRATED LAYOUT DESIGN OF CELLS AND FLOW PATHS

    Institute of Scientific and Technical Information of China (English)

    Li Zhihua; Zhong Yifang; Zhou Ji

    2003-01-01

    The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.

  20. Prioritization of Integrated Bicycle Network Clusters in Istanbul Using Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Dilek Çol Yılmaz

    2014-06-01

    Full Text Available In this study, the impact of the integration of nonmotorized transport and public transport on hypermobility was evaluated. The role of bicycle in non-motorized transportation, and its contribution to sustainable travel goals were examined. A decision support model was established in order to plan the phases of a bicycle network integrated with the public transport sytem in Istanbul Metropolitan Area. Data such as public transport routes planned for the target year 2023, locations of transfer centers, number of passengers at transfer centers, and a revised bicycle network were used as layers for the Geographic Information Systems (GIS map produced. Based on the survey data collected from the experts, Analytic Hierarchy Process (AHP which is a multi-criteria decision-making procedure that contains both qualitative and quantitative factors was used to prioritize the bicycle network clusters integrated with public transport system in Istanbul.

  1. Flowrate targeting for threshold problems and plant-wide integration for water network synthesis.

    Science.gov (United States)

    Foo, Dominic Chwan Yee

    2008-07-01

    Water reuse/recycle has gained much attention in recent years for environmental sustainability reasons, as well as the rising costs of fresh water and effluent treatment. Process integration techniques for the synthesis of water network have been widely accepted as a promising tool to reduce fresh water and wastewater flowrates via in-plant water reuse/recycle. To date, the focus in this area has been on water network synthesis problems, with little attention dedicated to the rare but realistic cases of so-called threshold problems. In this work, targeting for threshold problems in a water network is addressed using the recently developed numerical tool of water cascade analysis (WCA). Targeting for plant-wide integration is then addressed. By sending water sources across different geographical zones in plant-wide integration, the overall fresh water and wastewater flowrates are reduced simultaneously.

  2. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  3. Neural networks for structural design - An integrated system implementation

    Science.gov (United States)

    Berke, Laszlo; Hafez, Wassim; Pao, Yoh-Han

    1992-01-01

    The development of powerful automated procedures to aid the creative designer is becoming increasingly critical for complex design tasks. In the work described here Artificial Neural Nets are applied to acquire structural analysis and optimization domain expertise. Based on initial instructions from the user an automated procedure generates random instances of structural analysis and/or optimization 'experiences' that cover a desired domain. It extracts training patterns from the created instances, constructs and trains an appropriate network architecture and checks the accuracy of net predictions. The final product is a trained neural net that can estimate analysis and/or optimization results instantaneously.

  4. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    OpenAIRE

    Xuemei Sun; Bo Yan; Xinzhong Zhang; Chuitian Rong

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Si...

  5. Minimum Load-curtailment in Transmission Network Planning Considering Integrated Wind Farms

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; WEN Jinyu; CHENG Shijie

    2011-01-01

    With the enlarging scale of integrated wind power, the transmission network expansion planning (TNEP) problem considering wind farms is more important than before. TNEP problem usually can be divided into two sub-problems. The first sub-problem is to determine the new planning scheme in some way, and the second sub-problem is to assess the security and reliability of the transmission network planning scheme using the minimum load-shedding index.

  6. Related pituitary cell lineages develop into interdigitated 3D cell networks.

    Science.gov (United States)

    Budry, Lionel; Lafont, Chrystel; El Yandouzi, Taoufik; Chauvet, Norbert; Conéjero, Geneviève; Drouin, Jacques; Mollard, Patrice

    2011-07-26

    The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.

  7. Fuel cell and hydrogen network North Rhine-Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    Ziolek, A.; Koch, F. [Energy Agency NRW, Dusseldorf (Germany). Fuel Cell and Hydrogen Network

    2007-07-01

    The Fuel Cell and Hydrogen Network North-Rhine-Westphalia (FCHN NRW) is a non-profit regional technology platform whose mandate is to commercialize fuel cell technologies and establish a sustainable hydrogen economy. The FCHN NRW aims to position the North Rhine-Westphalia region as international centre for fuel cell and hydrogen technology. The network consists of more 300 members from research institutes, government agencies, and private businesses who are encouraged to adapt their products to the special needs of fuel cell systems. The FCHN NRW also aids in the procurement of project partners and provides advice on funding. The region currently has a 240 km hydrogen pipeline connecting several chemical plants and producers and consumers of hydrogen. Approximately 1250 GWh of hydrogen are produced in the region, the majority of which is consumed. The network is also involved in a European-wide project to deploy fuel cell vehicles and create a hydrogen infrastructure. Other projects in the past have included the development of 10 kW fuel cell midi buses; fuel cell cargo-bikes; mobile filling stations; and outdoor terminals. The network is now involved in a national 10 year program in Germany which aims to prepare the country for a hydrogen economy. 7 figs.

  8. Research on network integration technology of observation stations

    Institute of Scientific and Technical Information of China (English)

    ZHAN; Yanjun; MA; Shangchang; ZHUANG; Ting; ZHANG; Sujuan

    2015-01-01

    According to the phenomenon of "four more"and"four low "problems in the observation stations,the surface-based meteorological observing system can’t adapt to the change of the adaptive observation equipment and reduce of business intensification. A station integrated system is proposed,w hich can be configured,connected and extended to all kinds of observation equipment. And the integrated processor is designed,supporting a variety of communication interface standards. Flexible configuration,connection and expansion betw een conventional and new type of meteorological observation equipment are supported. It is capable for online calibration and maintenance of observation equipment. The effectiveness of automatic observation equipment is totally achieved to provide basic information support for disaster prevention and mitigation and national economic development.

  9. Cell mechanics: integrating cell responses to mechanical stimuli.

    Science.gov (United States)

    Janmey, Paul A; McCulloch, Christopher A

    2007-01-01

    Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.

  10. Integrated Short Range, Low Bandwidth, Wearable Communications Networking Technologies

    Science.gov (United States)

    2012-04-30

    savings of 30mA of 7.2V battery current in the MSP430 audio circuit was harvested by activating a DAC on the MSP430 code. The Blackfin serial...investigative work, testing and collaboration with digital-to-analog ( DAC ) experts at Analog Devices, resolution to a distortion issue was achieved...This issue was resolved by adding small capacitors between the input pin of the DAC and ground. This modification restored the signal integrity of

  11. Deferred Item and Vehicle Routing within Integrated Networks

    OpenAIRE

    2002-01-01

    This paper studies the possible integration of long-haul operations by transportation mode and service level (defined by guaranteed delivery time) for package delivery carriers. Specifically, we consider the allocation of deferred items to excess capacity on alternative modes in ways that allow all transportation modes to be utilized better. Model formulation and solution techniques are discussed. The solution techniques presented produce efficient solutions for large-scale problem instances....

  12. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  13. Data integration aids understanding of butterfly–host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  14. Bifurcations of large networks of two-dimensional integrate and fire neurons.

    Science.gov (United States)

    Nicola, Wilten; Campbell, Sue Ann

    2013-08-01

    Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.

  15. Analysis of an Integrated Security System using Real time Network Packets Scrutiny

    Directory of Open Access Journals (Sweden)

    K. Umamageswari

    2015-11-01

    Full Text Available With the tremendous growth of internet services, websites are becoming indispensable and common source through which they are made accessible to all. Intrusion by worms or viruses through the network is continuously increasing and evolving. Firewall and intrusion detection and prevention subsystem, and its functionality is becoming more advanced for the security system against external attacks that use various security vulnerabilities. As such, enterprises are investing in various measures for an integrated security system to identify the threats of network security-based security vulnerabilities and cope with theme effectively. In sum, the network visibility plane should facilitate the following changes in network monitoring for the purposes of promoting disaggregation of analytics tool functions for long term monitoring sustainability and flexibility. In this work, the network packet in-depth test-based, integrated security system that analyzes the threat factors through an overall study of network packets dispersed in real-time and applies various protection functions to manage with integrated security threats in the future.

  16. Integration of Quantum Cryptography through Satellite Networks Transmission

    Directory of Open Access Journals (Sweden)

    Skander Aris

    2011-01-01

    Full Text Available Problem statement: The security of the telecommunications satellite has become a crucial issue. The telecommunications can be set using the classical cryptography. But this so-called classical cryptography provides cryptographic security. This means that security is based on the difficulty of some mathematics problems. On the other hand, quantum cryptography provides security without conditions based on the law of quantum physics. This method, called the theoretic information security is evidenced using the theory of information. Approach: In this study, we study whether quantum cryptography can be applied in the frame of the satellite telecommunications network. To do this in our project, we present theories regarding the following issues: Telecommunications Station and Satellite Communication Networks, Quantum Key Distribution, Open Space and Satellites, Analyses in different Scenarios between the Satellite and Earth station. Results: Quantum communications offers many advantages for secure data transmission, in our implementation study, we presented different scenarios of quantum key exchange between satellites and ground stations for possible approach to subsystem with quantum communication in space, capable of generating and detecting entangled photons as well as faint laser pulses. Conclusion: The use of satellites to distribute quantum photon provides a unique solution for long-distance. Moreover, quantum cryptography is a satisfactory solution to improve the safety problem. So, the quantum transmissions are the future of telecommunications.

  17. FOREST HARVEST SCHEDULING PLAN INTEGRATED TO THE ROAD NETWORK

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Belavenutti Martins da Silva

    2016-03-01

    Full Text Available In industrial forest plantations, the spatial distribution of management units for harvest scheduling influences the timber production cost and the non-renewable resources consumption, due to issues related to transport logistic. In this context, this research aimed to formulate Integer Linear Programming (ILP by means of the application of Floyd-Warshall network optimization algorithm to generate timber production routes, minimizing the production costs resulting from harvest activities and forest road maintenance. Then, scenarios were simulated considering different minimal harvest ages for Pinus spp. and Eucalyptus spp. stands. The planning horizon was five years with annual periodicity. The study area was 23,330 hectares of forests, located in Paraná state (southern Brazil. We compared the simulated scenarios according to the following parameter indicators: harvest income, building road network and the production unit cost. The decreasing of the minimal harvest age reduces the mean production of management units scheduled to be harvested, in other hand, it requires fewer roads to be built, and consequently increases the production unit cost. The solutions obtained by using ILP models presented an optimality gap lower than 0.1%.

  18. Optimal Design of Water Utilization Network with Energy Integration in Process Industries

    Institute of Scientific and Technical Information of China (English)

    都健; 孟小琼; 杜红彬; 俞红梅; 樊希山; 姚平经

    2004-01-01

    Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.

  19. Energy Harvesting Small Cell Networks: Feasibility, Deployment and Operation

    OpenAIRE

    Mao, Yuyi; Luo, Yaming; Zhang, Jun; Letaief, Khaled B.

    2015-01-01

    Small cell networks (SCNs) have attracted great attention in recent years due to their potential to meet the exponential growth of mobile data traffic and the increasing demand for better quality of service and user experience in mobile applications. Nevertheless, a wide deployment of SCNs has not happened yet because of the complexity in the network planning and optimization, as well as the high expenditure involved in deployment and operation. In particular, it is difficult to provide grid ...

  20. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps.

    Science.gov (United States)

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  1. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    Science.gov (United States)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  2. Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network.

    Science.gov (United States)

    Kuo, R J.; Cohen, P H.

    1999-03-01

    On-line tool wear estimation plays a very critical role in industry automation for higher productivity and product quality. In addition, appropriate and timely decision for tool change is significantly required in the machining systems. Thus, this paper is dedicated to develop an estimation system through integration of two promising technologies, artificial neural networks (ANN) and fuzzy logic. An on-line estimation system consisting of five components: (1) data collection; (2) feature extraction; (3) pattern recognition; (4) multi-sensor integration; and (5) tool/work distance compensation for tool flank wear, is proposed herein. For each sensor, a radial basis function (RBF) network is employed to recognize the extracted features. Thereafter, the decisions from multiple sensors are integrated through a proposed fuzzy neural network (FNN) model. Such a model is self-organizing and self-adjusting, and is able to learn from the experience. Physical experiments for the metal cutting process are implemented to evaluate the proposed system. The results show that the proposed system can significantly increase the accuracy of the product profile.

  3. Research on Network-based Integrated Condition Monitoring Unit for Rotating Machinery

    Institute of Scientific and Technical Information of China (English)

    XI Xiao-peng; ZHANG Wen-rui; XI Shuan-min; JING Min-qing; YU Lie

    2004-01-01

    In this paper, a network-based monitoring unit for condition monitoring and fault diagnosis of rotating machinery is designed and implemented. With the technology of DSP( Digital signal processing), TCP/IP, and simultaneous acquisition, a mechanism of multi-process and inter-process communication, the integrating problem of signal acquisition, the data dynamic management and network-based configuration in the embedded condition monitoring system is solved. It offers the input function of monitoring information for network-based condition monitoring and a fault diagnosis system.

  4. Integration and visualization of non-coding RNA and protein interaction networks

    DEFF Research Database (Denmark)

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian;

    Association and Interaction Networks) - a database that combines ncRNA-ncRNA, ncRNA-mRNA and ncRNA-protein interactions with large-scale protein association networks available in the STRING database. By integrating ncRNA and protein networks, RAIN provides a more complete picture of the cell’s complex......) co-occurrences found by text mining Medline abstracts. Each resource was assigned a reliability score by assessing its agreement with a gold standard set of microRNA-target interactions. RAIN is available at: http://rth.dk/resources/rain...

  5. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction.

    Science.gov (United States)

    Laubichler, Manfred D; Renn, Jürgen

    2015-11-01

    This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems.

  6. The known unknowns of the human dendritic cell network

    Directory of Open Access Journals (Sweden)

    Mélanie eDurand

    2015-03-01

    Full Text Available Dendritic cells (DC initiate and orient immune responses and comprise several subsets that display distinct phenotypes and properties. Most of our knowledge of DC subsets biology is based on mouse studies. In the past few years, the alignment of the human DC network with the mouse DC network has been the focus of much attention. Although comparative phenotypic and transcriptomic analysis have shown a high level of homology between mouse and human DC subsets, significant differences in phenotype and function have also been evidenced. Here we review recent advances in our understanding of the human DC network and discuss some remaining gaps and future challenges of the human DC field.

  7. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  8. A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion

    Institute of Scientific and Technical Information of China (English)

    ANG Xue-ye

    2007-01-01

    The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given . It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.

  9. Integrated Feedback Scheduling and Control Codesign for Motion Coordination of Networked Induction Motor Systems

    Directory of Open Access Journals (Sweden)

    Dezong Zhao

    2014-01-01

    of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS, while satisfying the constraints of stability and schedulability. A speed synchronization method is incorporated into the scheduling algorithm to improve the speed synchronization performance of multiple induction motors. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and tuned online by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay which occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results support the effectiveness of the proposed control-and-scheduling codesign approach.

  10. A mathematical model for optimization of an integrated network logistic design

    Directory of Open Access Journals (Sweden)

    Lida Tafaghodi

    2011-10-01

    Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.

  11. Integration of Wireless Sensor Networks into a Commercial Off-the-Shelf (COTS) Multimedia Network

    Science.gov (United States)

    2008-12-01

    similarity resulted in decreased performance. The performance of three key routing protocols were also examined – AODV , DSDV and OLSR. The effects o...proper network architecture and routing protocols is a critical aspect of network development. The chain topology used on Volcán Reventador allowed...significantly longer. At the lowest degree of self-similarity, the delay was double that of the highest degree [6]. Routing protocol is another

  12. Distribution of Cell in Mobile Network

    Directory of Open Access Journals (Sweden)

    Robert Bestak

    2015-01-01

    Full Text Available Femtocell concept has emerged as a cost-effective solution to manage indoor environment coverage and increasing capacity requirements. Compare to the conventional control macrocell deployment, femtocells are spread in the uncontrolled manner as they are deployed in network by customers themselves. This paper discusses multi-distance spatial analysis, Ripley's K function, to describe distribution of femtocells in a macrocell. In our study, we investigate various femtocell distributions and various numbers of femtocells in the macrocell.

  13. Microbuckling in fibrin networks enables long-range cell mechanosensing

    CERN Document Server

    Notbohm, Jacob; Rosakis, Phoebus; Tirrell, David A; Ravichandran, Guruswami

    2014-01-01

    We show that cells in a fibrous matrix induce deformation fields that propagate over a longer range than predicted by linear elasticity. Synthetic, linear elastic hydrogels used in many mechanotrans- duction studies fail to capture this effect. We develop a nonlinear microstructural finite element model for a fiber network to simulate localized deformations induced by cells. The model captures measured cell-induced matrix displacements from experiments and identifies an important mech- anism for long range cell mechanosensing: loss of compression stiffness due to microbuckling of individual fibers. We show evidence that cells sense each other through the formation of localized intercellular bands of tensile deformations caused by this mechanism.

  14. Scalable Optimization Methods for Distribution Networks with High PV Integration

    Energy Technology Data Exchange (ETDEWEB)

    Guggilam, Swaroop S.; Dall' Anese, Emiliano; Chen, Yu Christine; Dhople, Sairaj V.; Giannakis, Georgios B.

    2016-07-01

    This paper proposes a suite of algorithms to determine the active- and reactive-power setpoints for photovoltaic (PV) inverters in distribution networks. The objective is to optimize the operation of the distribution feeder according to a variety of performance objectives and ensure voltage regulation. In general, these algorithms take a form of the widely studied ac optimal power flow (OPF) problem. For the envisioned application domain, nonlinear power-flow constraints render pertinent OPF problems nonconvex and computationally intensive for large systems. To address these concerns, we formulate a quadratic constrained quadratic program (QCQP) by leveraging a linear approximation of the algebraic power-flow equations. Furthermore, simplification from QCQP to a linearly constrained quadratic program is provided under certain conditions. The merits of the proposed approach are demonstrated with simulation results that utilize realistic PV-generation and load-profile data for illustrative distribution-system test feeders.

  15. The Endoplasmic Reticulum: A Social Network in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Caitlin Doyle; Xingyun Qi; Huanquan Zheng

    2012-01-01

    The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules.The ER plays crucial roles in the biosynthesis and transport of proteins and lipids,and in calcium (Ca2+) regulation in compartmentalized eukaryotic cells including plant cells.To support its well-segregated functions,the shape of the ER undergoes notable changes in response to both developmental cues and outside influences.In this review,we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER,and the importance of the interconnected ER network in cell polarity.In animal and yeast cells,two family proteins,the reticulons and DP1/Yop1,are required for shaping high-curvature ER tubules,while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network.In plant cells,recent data also indicate that the reticulons are involved in shaping ER tubules,while RHD3,a plant member of the atlastin GTPases,is required for the generation of an interconnected ER network.We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles,with a focus on how the ER and Golgi interplay in plant cells.

  16. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    Science.gov (United States)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  17. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Liu, Wei; Kovalgin, Alexey Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  18. Comparing patient and provider perceptions of home- and community-based services: social network analysis as a service integration metric.

    Science.gov (United States)

    Ryan, David P; Puri, Manveen; Liu, Barbara A

    2013-01-01

    Integrated home- and community-based services (HCBS) for frail seniors require a unique style of teamwork and collaboration. In four case studies, patient perceptions of teamwork and collaboration among their HCBS care providers are compared with those of the providers themselves using network analysis. The degree of coherence between these perceived networks are examined using network analytics, and network visualizations are discussed. The value of network analysis in research on HCBS is considered.

  19. A review of integration strategies to support gene regulatory network construction.

    Science.gov (United States)

    Chen, Hailin; VanBuren, Vincent

    2012-01-01

    Gene regulatory network (GRN) construction is a central task of systems biology. Integration of different data sources to infer and construct GRNs is an important consideration for the success of this effort. In this paper, we will discuss distinctive strategies of data integration for GRN construction. Basically, the process of integration of different data sources is divided into two phases: the first phase is collection of the required data and the second phase is data processing with advanced algorithms to infer the GRNs. In this paper these two phases are called "structural integration" and "analytic integration," respectively. Compared with the nonintegration strategies, the integration strategies perform quite well and have better agreement with the experimental evidence.

  20. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  1. Review Strategies and Analysis of Mobile Ad Hoc Network- Internet Integration Solutions

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2010-07-01

    Full Text Available The desire to be connected anytime and anywhere has led to the development of wireless networks, opening new vista of research in pervasive and ubiquitous computing. Mobile Ad Hoc Networks (MANETs use portable devices such as mobile phones, laptops or personal digital assistants (PDAs for spontaneous establishment of communication. Most existing research in the area of mobile Ad Hoc Networks is limited to stand-alone isolated networks. But connectivity of a mobile Ad Hoc network to the Internet is also desirable as more and more applications and services in our society now depend on fixed infrastructure networks. It is therefore important that dynamically deployed wireless Ad Hoc networks should also gain access to these fixed networks and their services. The integration of MANETs into Internet increases the networking flexibility and coverage of existing infrastructure networks. Although researchers have proposed many solutions, but it is still unclear which one offer the best performance compared to the others. When an Ad Hoc network is connected to Internet, it is important for the mobile nodes to detect efficiently available Internet gateways providing access to the Internet. Internet gateway discovery time and handover delay have strong influence on packet delay and throughput. The key challenge in providing connectivity is to minimize the overhead of mobile IP and Ad Hoc routing protocol between Internet and Ad Hoc networks. There, this paper focuses on proposed technical solutions on Internet gateway discovery and also we briefly describe different ways to provide global Internet access for MANETs. Finally, some challenges are also mentioned which need in depth investigation.

  2. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays

    Directory of Open Access Journals (Sweden)

    Chunyun Huang

    2014-01-01

    Full Text Available Background: Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified. Methods: Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-correlation differential modules were identified by comparing the network module expression-correlation differential scores under normal and disease conditions using the gene expression datasets. Finally, we obtained DEMs by the Wilcoxon rank test and considered the average gene expression level in these modules as the classification features for diagnosing melanoma. Results: In total, 99 functional DEMs were identified from the signaling network and gene expression profiles. The area under the curve scores for cancer module genes, melanoma module genes, and whole network modules are 92.4%, 90.44%, and 88.45%, respectively. The classification efficiency rates for nonmodule features are 71.04% and 79.38%, which correspond to the features of cancer genes and melanoma cancer genes, respectively. Finally, we acquired six significant molecular biomarkers, namely, module 10 (CALM3, Ca 2+ , PKC, PDGFRA, phospholipase-g, PIB5PA, and phosphatidylinositol-3-kinase, module 14 (SRC, Src homology 2 domain-containing [SHC], SAM68, GIT1, transcription factor-4, CBLB, GRB2, VAV2, LCK, YES, PTCH2, downstream of tyrosine kinase [DOK], and KIT, module 16 (ELK3, p85beta, SHC, ZFYVE9, TGFBR1, TGFBR2, CITED1, SH3KBP1, HCK, DOK, and KIT, module 45 (RB, CCND3, CCNA2, CDK4, and CDK6, module 75 (PCNA, CDK4, and CCND1, and module 114 (PSD93, NMDAR, and FYN. Conclusion: We explored the gene expression profile and signaling network in a global view and identified DEMs that can be used as

  3. System Architecture of HatterHealthConnect: An Integration of Body Sensor Networks and Social Networks to Improve Health Awareness

    Directory of Open Access Journals (Sweden)

    Hala ElAarag

    2013-04-01

    Full Text Available Over the last decade, the demand for efficient healthcare monitoring has increased and forced the healthand wellness industry to embrace modern technological advances. Body Sensor Networks, or BSNs, canremotely collect users data and upload vital statistics to servers over the Internet. Advances in wirelesstechnologies such as cellular devices and Bluetooth increase the mobility users experience while wearing abody sensor network. When connected by the proper framework, BSNs can efficiently monitor and recorddata while minimizing the energy expenditure of nodes in the BSN. Social networking sites play a large rolein the aggregation and sharing of data between many users. Connecting a BSN to a social network createsthe unique ability to share health related data with other users through social interaction. In this research,we present an integration of BSNs and social networks to establish a community promoting well being andgreat social awareness. We present the system architecture; both hardware and software, of a prototypeimplementation using Zephyr HxM heart monitor, Intel-Shimmer EMG senor and a Samsung Captivatesmart phone. We provide implementation details for the design on the base station, the database server andthe Facebook application. We illustrate how the Android application was designed with both functionalityand user perspective in mind that resulted in an easy to use system. This prototype can be used in multiplehealth related applications based on the type of sensors used.

  4. How Primary Care Networks Can Help Integrate Academic and Service Initiatives in Primary Care

    Science.gov (United States)

    Thomas, Paul; Graffy, Jonathan; Wallace, Paul; Kirby, Mike

    2006-01-01

    PURPOSE Theory of effective network operation in primary care is underdeveloped. This study aimed to identify how primary care networks can best integrate academic and service initiatives. METHODS We performed a comparative case study of 4 primary care research networks in North London, England, for the years 1998–2002. Indicators were selected to assess changes in (1) research capacity, (2) multidisciplinary collaboration, and (3) research productivity. We compared the profiles of network outcome with descriptions of their contexts and organizational types from a previous evaluation. RESULTS Together, the networks supported 133 viable projects and 30 others; 399 practitioners, managers, and academics participated in the research teams. How the networks organized themselves was influenced by the circumstances in which they were formed. Different ways of organizing were associated with different outcome profiles. Shared projects and learning spaces helped participants to develop trusted relationships. A top-down, hierarchical approach based on institutional alliances and academic expertise attracted more funding and appeared to be stable. The bottom-up, individualistic network with research practices was good at reflecting on practical primary care concerns. Whole-system methods brought together stakeholder contributions from all parts of the system. CONCLUSIONS Networks can help integrate academic research and service development initiatives by facilitating interorganizational interactions and in shared leadership of projects. Researchers and practitioners stand to gain considerably from an integrated approach in both the short and the long term. Success requires agreement about a set of pathways, learning spaces, and feedback mechanisms to harness the insights and efforts of stakeholders throughout the whole system. PMID:16735525

  5. An Integrated Information Retrieval Support System for Campus Network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a new integrated information retrieval support system (IIRSS) which can help Web search engines retrieve cross-lingual information from heterogeneous resources stored in multi-databases in Intranet. The IIRSS, with a three-layer architecture, can cooperate with other application servers running in Intranet. By using intelligent agents to collect information and to create indexes on-the-fly, using an access control strategy to confine a user to browsing those accessible documents for him/her through a single portal, and using a new cross-lingual translation tool to help the search engine retrieve documents, the new system provides controllable information access with different authorizations, personalized services, and real-time information retrieval.

  6. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    Electric vehicles (EVs) are commonly recognized as smart grid assets in addition to their environmental benefits. However, uncoordinated charging or sole cost minimization based charging of electric vehicles may bring undesirable peak demands and voltage violations in the distribution system....... This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...... actors are considered: distribution system operator (DSO), fleet operators and EV owners. In the lower level of the hierarchy, the fleet operator centrally manages the charging schedule of electric vehicles; in the upper level of the hierarchy, the DSO uses transactive control technique to coordinate...

  7. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  8. Integrating multiple sensory systems to modulate neural networks controlling posture.

    Science.gov (United States)

    Lavrov, I; Gerasimenko, Y; Burdick, J; Zhong, H; Roy, R R; Edgerton, V R

    2015-12-01

    In this study we investigated the ability of sensory input to produce tonic responses in hindlimb muscles to facilitate standing in adult spinal rats and tested two hypotheses: 1) whether the spinal neural networks below a complete spinal cord transection can produce tonic reactions by activating different sensory inputs and 2) whether facilitation of tonic and rhythmic responses via activation of afferents and with spinal cord stimulation could engage similar neuronal mechanisms. We used a dynamically controlled platform to generate vibration during weight bearing, epidural stimulation (at spinal cord level S1), and/or tail pinching to determine the postural control responses that can be generated by the lumbosacral spinal cord. We observed that a combination of platform displacement, epidural stimulation, and tail pinching produces a cumulative effect that progressively enhances tonic responses in the hindlimbs. Tonic responses produced by epidural stimulation alone during standing were represented mainly by monosynaptic responses, whereas the combination of epidural stimulation and tail pinching during standing or epidural stimulation during stepping on a treadmill facilitated bilaterally both monosynaptic and polysynaptic responses. The results demonstrate that tonic muscle activity after complete spinal cord injury can be facilitated by activation of specific combinations of afferent inputs associated with load-bearing proprioception and cutaneous input in the presence of epidural stimulation and indicate that whether activation of tonic or rhythmic responses is generated depends on the specific combinations of sources and types of afferents activated in the hindlimb muscles.

  9. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  10. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Science.gov (United States)

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  11. High efficiency micro solar cells integrated with lens array

    Science.gov (United States)

    Fidaner, Onur; Suarez, Ferran A.; Wiemer, Michael; Sabnis, Vijit A.; Asano, Tetsuya; Itou, Akihiro; Inoue, Daijiro; Hayashi, Nobuhiko; Arase, Hidekazu; Matsushita, Akio; Nakagawa, Tohru

    2014-03-01

    We demonstrate high efficiency triple junction solar cells with submillimeter dimensions in an all-back-contact architecture. 550 × 550 μm2 cells flash at 41.3% efficiency under the air mass 1.5 direct normal spectrum at 50 W/cm2 at 25 °C. Compared to standard size production cells, the micro cells have reduced performance at 1-sun due to perimeter recombination, but the performance gap closes at higher concentrations. Micro cells integrated with lens arrays were tested on-sun with an efficiency of 34.7%. All-back-contact architecture and submillimeter dimensions are advantageous for module integration and heat dissipation, allowing for high-performance, compact, lightweight, and cost-effective concentrated photovoltaic modules.

  12. Illuminating the dynamics of signal integration in Natural Killer cells

    Directory of Open Access Journals (Sweden)

    Sophie Victoria Pageon

    2012-10-01

    Full Text Available Natural Killer (NK cell responses are shaped by the integration of signals transduced from multiple activating and inhibitory receptors at their surface. Biochemical and genetic approaches have identified most of the key proteins involved in signal integration but a major challenge remains in understanding how the spatial and temporal dynamics of their interactions lead to NK cells responding appropriately when encountering ligands on target cells. Well over a decade of research using fluorescence microscopy has revealed much about the architecture of the NK cell immune synapse – the structured interface between NK cells and target cells - and how it varies when inhibition or activation is the outcome of signal integration. However, key questions – such as the proximity of individual activating and inhibitory receptors – have remained unanswered because the resolution of optical microscopy has been insufficient, being limited by diffraction. Recent developments in fluorescence microscopy have broken this limit, seeding new opportunities for studying the nanometre-scale organisation of the NK cell immune synapse. Here, we discuss how these new imaging technologies, including super-resolution imaging and other novel light-based methods, can illuminate our understanding of NK cell biology.

  13. Planning the Networking of ODL Institutions for Establishing Integrated Distance Education System in India

    Science.gov (United States)

    Khanna, Pankaj; Basak, P. C.

    2011-01-01

    It is proposed to establish an Integrated Distance Education System in India by designing modern technology based information communication network, connecting all its ODL (Open and Distance Learning) institutions to the headquarters of the ODL system in India. The principle roles to be performed by such a system have been discussed; according to…

  14. Distributed multisensory integration in a recurrent network model through supervised learning

    Science.gov (United States)

    Wang, He; Wong, K. Y. Michael

    Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.

  15. Lagrangian Modeling and Control of Switching Networks with Integrated Coupled Magnetics

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Jeltsema, Dimitri; Klaassens, J. Ben

    2000-01-01

    In this paper a method is presented to build an Euler-Lagrange model for electrical networks, including switches and integrated (non-ideal) coupled-magnetics, in a structured general way. One of the advantages of emphasizing the physical structure of these systems is its functionality during the con

  16. Identifying functional modules in protein-protein interaction networks: An integrated exact approach

    NARCIS (Netherlands)

    Dittrich, M.; Klau, G.W.; Rosenwald, A.; Dandekar, T.; et al, not CWI

    2008-01-01

    Motivation: With the exponential growth of expression and protein-protein interaction (PPI) data, the frontier of research in system biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sh

  17. Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology.

    Science.gov (United States)

    Lee, Hyekyoung; Kang, Hyejin; Chung, Moo K; Lim, Seonhee; Kim, Bung-Nyun; Lee, Dong Soo

    2017-03-01

    Finding underlying relationships among multiple imaging modalities in a coherent fashion is one of the challenging problems in multimodal analysis. In this study, we propose a novel approach based on multidimensional persistence. In the extension of the previous threshold-free method of persistent homology, we visualize and discriminate the topological change of integrated brain networks by varying not only threshold but also mixing ratio between two different imaging modalities. The multidimensional persistence is implemented by a new bimodal integration method called 1D projection. When the mixing ratio is predefined, it constructs an integrated edge weight matrix by projecting two different connectivity information onto the one dimensional shared space. We applied the proposed methods to PET and MRI data from 23 attention deficit hyperactivity disorder (ADHD) children, 21 autism spectrum disorder (ASD), and 10 pediatric control subjects. From the results, we found that the brain networks of ASD, ADHD children and controls differ, with ASD and ADHD showing asymmetrical changes of connected structures between metabolic and morphological connectivities. The difference of connected structure between ASD and the controls was mainly observed in the metabolic connectivity. However, ADHD showed the maximum difference when two connectivity information were integrated with the ratio 0.6. These results provide a multidimensional homological understanding of disease-related PET and MRI networks that disclose the network association with ASD and ADHD. Hum Brain Mapp 38:1387-1402, 2017. © 2016 Wiley Periodicals, Inc.

  18. Design of a new type of integrated classifier for network intrusion detection systems

    Institute of Scientific and Technical Information of China (English)

    ZHU You-chan; WANG Jian; SHANG Li-biao

    2006-01-01

    Based on the analysis of the network intrusion detection model,a new design scheme for the integrated classifier is proposed.The attribute reduction algorithm of the discernibility matrix is used for the optimization design of reducing nodes of input and hidden layers.The experimental test result shows that this design is valid.

  19. Integrated production-distribution planning optimization models: A review in collaborative networks context

    Directory of Open Access Journals (Sweden)

    Beatriz Andres

    2017-01-01

    Full Text Available Researchers in the area of collaborative networks are more and more aware of proposing collaborative approaches to address planning processes, due to the advantages associated when enterprises perform integrated planning models. Collaborative production-distribution planning, among the supply network actors, is considered a proper mechanism to support enterprises on dealing with uncertainties and dynamicity associated to the current markets. Enterprises, and especially SMEs, should be able to overcome the continuous changes of the market by increasing their agility. Carrying out collaborative planning allows enterprises to enhance their readiness and agility for facing the market turbulences. However, SMEs have limited access when incorporating optimization tools to deal with collaborative planning, reducing their ability to respond to the competition. The problem to solve is to provide SMEs affordable solutions to support collaborative planning. In this regard, new optimisation algorithms are required in order to improve the collaboration within the supply network partners. As part of the H2020 Cloud Collaborative Manufacturing Networks (C2NET research project, this paper presents a study on integrated production and distribution plans. The main objective of the research is to identify gaps in current optimization models, proposed to address integrated planning, taking into account the requirements and needs of the industry. Thus, the needs of the companies belonging to the industrial pilots, defined in the C2NET project, are identified; analysing how these needs are covered by the optimization models proposed in the literature, to deal with the integrated production-distribution planning.

  20. An Integrated Online Library System as a Node in a Local Area Network: The Mitre Experience.

    Science.gov (United States)

    Kidwell, Mary Coyle

    1987-01-01

    Discusses the Mitre Corporation's implementation of OCLC's LS/2000 integrated library system using a local area network (LAN). LAN issues--requirements, equipment, reliability, growth, security, and traffic--are covered in general and as they relate to Mitre. Installation of the LAN/system interface and benefits and drawbacks of using a LAN for…

  1. Integrating Social Networking Tools into ESL Writing Classroom: Strengths and Weaknesses

    Science.gov (United States)

    Yunus, Melor Md; Salehi, Hadi; Chenzi, Chen

    2012-01-01

    With the rapid development of world and technology, English learning has become more important. Teachers frequently use teacher-centered pedagogy that leads to lack of interaction with students. This paper aims to investigate the advantages and disadvantages of integrating social networking tools into ESL writing classroom and discuss the ways to…

  2. Students' Involvement in Social Networking and Attitudes towards Its Integration into Teaching

    Science.gov (United States)

    Umoh, Ukeme Ekpedeme; Etuk, Etuk Nssien

    2016-01-01

    The study examined Students' Involvement in Social Networking and attitudes towards its Integration into Teaching. The study was carried out in the University of Uyo, Akwa Ibom State, Nigeria. The population of the study consisted of 17,618 undergraduate students enrolled into full time degree programmes in the University of Uyo for 2014/2015…

  3. An Integrated Software-based Solution for Modular and Self-independent Networked Robot

    CERN Document Server

    Firmansyah, I; Hermanto, B; Handoko, L T

    2008-01-01

    An integrated software-based solution for a modular and self-independent networked robot is introduced. The wirelessly operatable robot has been developed mainly for autonomous monitoring works with full control over web. The integrated software solution covers three components : a) the digital signal processing unit for data retrieval and monitoring system; b) the externally executable codes for control system; and c) the web programming for interfacing the end-users with the robot. It is argued that this integrated software-based approach is crucial to realize a flexible, modular and low development cost mobile monitoring apparatus.

  4. Tiny Integrated Network Analyzer for Noninvasive Measurements of Electrically Small Antennas

    DEFF Research Database (Denmark)

    Buskgaard, Emil Feldborg; Krøyer, Ben; Tatomirescu, Alexandru

    2016-01-01

    Antenna mismatch and crosstalk are recurring issues in telecommunications. For electrically small antenna systems, these are very hard to measure without affecting the radiation performance of the system and, consequently, the measurement itself. Electrically small antennas are found in many...... applications ranging from consumer electronics to industrial systems. We propose a radically new approach to characterize crosstalk and mismatch based on vector network analysis. By miniaturizing the network analyzer, it can be integrated in the system under test, eliminating the need for cables leaving...... the system. The tiny integrated network analyzer is a stand-alone Arduino-based measurement system that utilizes the transmit signal of the system under test as its reference. It features a power meter with triggering ability, on-board memory, universal serial bus, and easy extendibility with general...

  5. Establishing an Integrated Secure Wireless Sensor Network System: A New Approach

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    2010-09-01

    Full Text Available Wireless sensor networks (WSNs are gaining a lot of popularity these days due to their application in anumber of areas. WSN’s provide an easily implementable and cheaper solution for many real worldproblems like data gathering, surveillance, monitoring and control etc. However they are also used in anumber of applications where security is a prime concern like military operations or other sensitiveprojects, whereby if the network is compromised then the outcomes can be disastrous. A lot of securityschemes have been proposed which address different layers of protocol stack but none of them are fullyintegrated. In this paper a new approach is presented to establish a secure wireless sensor network. Theproposed integrated approach addresses concerns like energy, and various security parameters likeauthenticity, confidentiality, integrity and requires lesser processing power.

  6. Analyzing Web 2.0 Integration with Next Generation Networks for Services Rendering

    CERN Document Server

    Lakhtaria, Kamaljit I

    2010-01-01

    The Next Generation Networks (NGN) aims to integrate for IP-based telecom infrastructures and provide most advance & high speed emerging value added services. NGN capable to provide higher innovative services, these services will able to integrate communication and Web service into a single platform. IP Multimedia Subsystem, a NGN leading technology, enables a variety of NGN-compliant communications services to interoperate while being accessed through different kinds of access networks, preferably broadband. IMS–NGN services essential by both consumer and corporate users are by now used to access services, even communications services through the web and web-based communities and social networks, It is key for success of IMS-based services to be provided with efficient web access, so users can benefit from those new services by using web-based applications and user interfaces, not only NGN-IMS User Equipments and SIP protocol. Many Service are under planning which provided only under convergence of ...

  7. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  8. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-03-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  9. DYVIPAC: an integrated analysis and visualisation framework to probe multi-dimensional biological networks.

    Science.gov (United States)

    Nguyen, Lan K; Degasperi, Andrea; Cotter, Philip; Kholodenko, Boris N

    2015-07-29

    Biochemical networks are dynamic and multi-dimensional systems, consisting of tens or hundreds of molecular components. Diseases such as cancer commonly arise due to changes in the dynamics of signalling and gene regulatory networks caused by genetic alternations. Elucidating the network dynamics in health and disease is crucial to better understand the disease mechanisms and derive effective therapeutic strategies. However, current approaches to analyse and visualise systems dynamics can often provide only low-dimensional projections of the network dynamics, which often does not present the multi-dimensional picture of the system behaviour. More efficient and reliable methods for multi-dimensional systems analysis and visualisation are thus required. To address this issue, we here present an integrated analysis and visualisation framework for high-dimensional network behaviour which exploits the advantages provided by parallel coordinates graphs. We demonstrate the applicability of the framework, named "Dynamics Visualisation based on Parallel Coordinates" (DYVIPAC), to a variety of signalling networks ranging in topological wirings and dynamic properties. The framework was proved useful in acquiring an integrated understanding of systems behaviour.

  10. Intermediate filaments: a dynamic network that controls cell mechanics.

    Science.gov (United States)

    Gruenbaum, Yosef; Aebi, Ueli

    2014-01-01

    In humans the superfamily of intermediate filament (IF) proteins is encoded by more than 70 different genes, which are expressed in a cell- and tissue-specific manner. IFs assemble into approximately 10 nm-wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. They are also required for organizing the microtubule and microfilament networks. In this review, we focus on the dynamics of IFs and how modifications regulate it. We also discuss the role of nuclear IF organization in determining nuclear mechanics as well as that of cytoplasmic IFs organization in maintaining cell stiffness, formation of lamellipodia, regulation of cell migration, and permitting cell adhesion.

  11. Temporal modulation of collective cell behavior controls vascular network topology.

    Science.gov (United States)

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-02-24

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.

  12. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    Science.gov (United States)

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  13. Enhancing debris flow modeling parameters integrating Bayesian networks

    Science.gov (United States)

    Graf, C.; Stoffel, M.; Grêt-Regamey, A.

    2009-04-01

    Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk

  14. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  15. Dissecting the brown adipogenic regulatory network using integrative genomics

    Science.gov (United States)

    Pradhan, Rachana N.; Bues, Johannes J.; Gardeux, Vincent; Schwalie, Petra C.; Alpern, Daniel; Chen, Wanze; Russeil, Julie; Raghav, Sunil K.; Deplancke, Bart

    2017-01-01

    Brown adipocytes regulate energy expenditure via mitochondrial uncoupling, which makes them attractive therapeutic targets to tackle obesity. However, the regulatory mechanisms underlying brown adipogenesis are still poorly understood. To address this, we profiled the transcriptome and chromatin state during mouse brown fat cell differentiation, revealing extensive gene expression changes and chromatin remodeling, especially during the first day post-differentiation. To identify putatively causal regulators, we performed transcription factor binding site overrepresentation analyses in active chromatin regions and prioritized factors based on their expression correlation with the bona-fide brown adipogenic marker Ucp1 across multiple mouse and human datasets. Using loss-of-function assays, we evaluated both the phenotypic effect as well as the transcriptomic impact of several putative regulators on the differentiation process, uncovering ZFP467, HOXA4 and Nuclear Factor I A (NFIA) as novel transcriptional regulators. Of these, NFIA emerged as the regulator yielding the strongest molecular and cellular phenotypes. To examine its regulatory function, we profiled the genomic localization of NFIA, identifying it as a key early regulator of terminal brown fat cell differentiation. PMID:28181539

  16. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten;

    2013-01-01

    spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible......We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...

  17. Bayesian integration of information in hippocampal place cells.

    Science.gov (United States)

    Madl, Tamas; Franklin, Stan; Chen, Ke; Montaldi, Daniela; Trappl, Robert

    2014-01-01

    Accurate spatial localization requires a mechanism that corrects for errors, which might arise from inaccurate sensory information or neuronal noise. In this paper, we propose that Hippocampal place cells might implement such an error correction mechanism by integrating different sources of information in an approximately Bayes-optimal fashion. We compare the predictions of our model with physiological data from rats. Our results suggest that useful predictions regarding the firing fields of place cells can be made based on a single underlying principle, Bayesian cue integration, and that such predictions are possible using a remarkably small number of model parameters.

  18. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  19. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    Science.gov (United States)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  20. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  1. Integration of Networks of Sensors and Electronics for Structural Health Monitoring of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fabrizia Ghezzo

    2010-01-01

    Full Text Available The low-cost, widespread availability and robust nature of current electronic devices suggest the feasibility of creating a composite structure with integrated networked sensors to monitor in real time the life of civil and aerospace structures while in service conditions. For structures that need to survive to high number of life cycles under varying load-environmental conditions, it is of crucial importance that the strength, stiffness, endurance, and general load-bearing capabilities of the composite not to be severely degraded by the integrated networked components. Therefore, design tools must be developed to achieve optimized, safe, and reliable structures. High values of stress concentrations due to the presence of a rigid device within a highly anisotropic material can trigger the initiation of microcracks in the resin matrix. To quantify these effects, the acoustic emission technique is used to characterize the initiation of microfailures within laminated composites with integrated electronics.

  2. Organization Networks as Information Integration System: Case study on Environment and Health in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Claire Lajaunie

    2016-04-01

    Full Text Available We present a method for evaluating the capacity of a network of organizations to function as Information Integration System (IIS as required in the performance of complex common objectives such as the design of inter-sectoral policies in "Health and Environment". Inspired by the information integration theory issued from the modeling of consciousness, the method poses that the information integration is limited by the partition of the set of organizations that presents major difficulties to share information. It proceeds in two steps: a the establishment of a network where vertices are organizations and links are induced by the average mutual information between organizations, information assessed on the basis of textual corpora associated with each organization; b the assessment of the ability to function as IIS, defined as the minimum of the average mutual information between components of a partition, minimum found among all partitions of the set of the organizations.

  3. Trade integration and trade imbalances in the European Union: a network perspective

    CERN Document Server

    Krings, Gautier M; Delvenne, Jean-Charles

    2013-01-01

    We study the ever more integrated and ever more unbalanced trade relationships between European countries. To better capture the complexity of economic networks, we propose two global measures that assess the trade integration and the trade imbalances of the European countries. These measures are the network (or indirect) counterparts to traditional (or direct) measures such as the trade-to-GDP (Gross Domestic Product) and trade deficit-to-GDP ratios. Our indirect tools account for the European inter-country trade structure and follow (i) a decomposition of the global trade flow into elementary flows that highlight the long-range dependencies between exporting and importing economies and (ii) the commute-time distance for trade integration,which measures the impact of a perturbation in the economy of a country on another country, possibly through intermediate partners by domino effect. Our application addresses the impact of the launch of the Euro. We find that the indirect imbalance measures better identify ...

  4. A Review of Integration Strategies to Support Gene Regulatory Network Construction

    Directory of Open Access Journals (Sweden)

    Hailin Chen

    2012-01-01

    Full Text Available Gene regulatory network (GRN construction is a central task of systems biology. Integration of different data sources to infer and construct GRNs is an important consideration for the success of this effort. In this paper, we will discuss distinctive strategies of data integration for GRN construction. Basically, the process of integration of different data sources is divided into two phases: the first phase is collection of the required data and the second phase is data processing with advanced algorithms to infer the GRNs. In this paper these two phases are called “structural integration” and “analytic integration,” respectively. Compared with the nonintegration strategies, the integration strategies perform quite well and have better agreement with the experimental evidence.

  5. Discussion on data-security of space-earth integrated network and analysis of space communications protocol standards

    Institute of Scientific and Technical Information of China (English)

    Li Zehui; Liu Yong; Sun Jin

    2005-01-01

    The architecture and protocols of Internet can' t work well in space environments. To form a reliable and safe space network, characteristics of space communication network one discusse, brief synthesis is performed for consultative committee for space data system (CCSDS) space communications protocol standards (SCPS), and a model accounting for data security problem of space-earth integrated network is provided.

  6. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    Science.gov (United States)

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence.

  7. Performance Analysis of Prioritized Call Admission Control Schemes for Integrated Traffic in Wireless Network

    Directory of Open Access Journals (Sweden)

    Madhu Jain

    2013-01-01

    Full Text Available Wireless/mobile communication systems are becoming increasingly popular in recent years. As the wireless resources are scarce, it is important to allocate resources efficiently and carefully, in order to achieve maximum output. The call admission control schemes play a significant role in providing the desired quality of service (QoS by judiciously assigning the radio channels that are available in a micro cell. In this paper, we present two call admission control (CAC schemes for wireless mobile network, (i Prioritized call admission control (PCAC scheme (S1 and (ii Prioritized call admission control scheme with releasing function (S2. Both schemes support integrated traffic i.e. data and voice for both new and handoff attempts. Guard channel concept is used to give the priority to the handoff attempts. To admit more handoff attempts in the cellular system, buffering process is used for the handoff attempts. The concept of balking and reneging is also incorporated for both the schemes. The calls arrive in poisson fashion whereas channel holding time and cell residence times are exponentially distributed. The arrival rate of handoff attempts is computed by using iterative algorithm. Various performance metrics such as blocking probability of new call, blocking probability of handoff data/voice attempts, time out probability of handoff data/voice attempts, force termination probability of handoff data/voice attempts, waiting time of handoff data/voice attempts, carried load, etc. are determined. The sensitivity analysis has also been carried out to facilitate the insights of controllable parameters for real time systems

  8. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    Science.gov (United States)

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.

  9. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration.

    Science.gov (United States)

    Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo

    2015-05-01

    The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.

  10. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    Science.gov (United States)

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; Garcia, Joe G N 'Skip'; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large

  11. Medical Devices, Supporting Networks, and their Vulnerabilities: A Case Study Of the Integration of Medical Networks into the Air Force Information Network

    Science.gov (United States)

    2005-03-01

    security, and information classification. New technologies such as WIFI , cell phones, and Blackberries introduce new vulnerabilities not seen before...means of evading armed security guards. For a cyber terrorist, the same devastating result could be achieved by hacking into the control network

  12. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    Directory of Open Access Journals (Sweden)

    Luca Fagnocchi

    2016-01-01

    Full Text Available Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.

  13. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  14. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Science.gov (United States)

    Benitez, Cecil M; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H Efsun; Zhang, Jiajing; Dekker, Joseph D; Tucker, Haley O; Chang, Howard Y; Kim, Seung K

    2014-10-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  15. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  16. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    Science.gov (United States)

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy.

  17. PLANNING THE NETWORKING OF ODL INSTITUTIONS FOR ESTABLISHING INTEGRATED DISTANCE EDUCATION SYSTEM IN INDIA

    Directory of Open Access Journals (Sweden)

    Pankaj KHANNA

    2011-07-01

    Full Text Available It is proposed to establish an Integrated Distance Education System in India by designing modern technology based information communication network, connecting all its ODL (Open and Distance Learning institutions to the headquarters of the ODL system in India. The principle roles to be performed by such a system have been discussed; according to which it would enable, educate and empower every member of the academic community including distance learners so as to provide them quality distance education. The connectivity between the ODL institutions would be achieved through the use of VPN (Virtual Private Network involving wireless networking and optical networking. Various benefits of providing VPN connectivity to the ODL institutions in India, such as cost effectiveness, security, and shared applications/services have also been discussed. Thus, the networking of all the ODL institutions in India would provide a national framework so as to build an excellent Integrated Distance Education System necessary for providing equity and quality distance education at national level.

  18. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Directory of Open Access Journals (Sweden)

    Shan Yang

    2016-01-01

    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  19. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  20. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  1. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    Science.gov (United States)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  2. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  3. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of co

  4. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  5. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  6. Trade integration and trade imbalances in the European Union: a network perspective.

    Science.gov (United States)

    Krings, Gautier M; Carpantier, Jean-François; Delvenne, Jean-Charles

    2014-01-01

    We study the ever more integrated and ever more unbalanced trade relationships between European countries. To better capture the complexity of economic networks, we propose two global measures that assess the trade integration and the trade imbalances of the European countries. These measures are the network (or indirect) counterparts to traditional (or direct) measures such as the trade-to-GDP (Gross Domestic Product) and trade deficit-to-GDP ratios. Our indirect tools account for the European inter-country trade structure and follow (i) a decomposition of the global trade flow into elementary flows that highlight the long-range dependencies between exporting and importing economies and (ii) the commute-time distance for trade integration, which measures the impact of a perturbation in the economy of a country on another country, possibly through intermediate partners by domino effect. Our application addresses the impact of the launch of the Euro. We find that the indirect imbalance measures better identify the countries ultimately bearing deficits and surpluses, by neutralizing the impact of trade transit countries, such as the Netherlands. Among others, we find that ultimate surpluses of Germany are quite concentrated in only three partners. We also show that for some countries, the direct and indirect measures of trade integration diverge, thereby revealing that these countries (e.g. Greece and Portugal) trade to a smaller extent with countries considered as central in the European Union network.

  7. Trade integration and trade imbalances in the European Union: a network perspective.

    Directory of Open Access Journals (Sweden)

    Gautier M Krings

    Full Text Available We study the ever more integrated and ever more unbalanced trade relationships between European countries. To better capture the complexity of economic networks, we propose two global measures that assess the trade integration and the trade imbalances of the European countries. These measures are the network (or indirect counterparts to traditional (or direct measures such as the trade-to-GDP (Gross Domestic Product and trade deficit-to-GDP ratios. Our indirect tools account for the European inter-country trade structure and follow (i a decomposition of the global trade flow into elementary flows that highlight the long-range dependencies between exporting and importing economies and (ii the commute-time distance for trade integration, which measures the impact of a perturbation in the economy of a country on another country, possibly through intermediate partners by domino effect. Our application addresses the impact of the launch of the Euro. We find that the indirect imbalance measures better identify the countries ultimately bearing deficits and surpluses, by neutralizing the impact of trade transit countries, such as the Netherlands. Among others, we find that ultimate surpluses of Germany are quite concentrated in only three partners. We also show that for some countries, the direct and indirect measures of trade integration diverge, thereby revealing that these countries (e.g. Greece and Portugal trade to a smaller extent with countries considered as central in the European Union network.

  8. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    Science.gov (United States)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  9. On the Virtual Cell Transmission in Ultra Dense Networks

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhu

    2016-10-01

    Full Text Available Ultra dense networks (UDN are identified as one of the key enablers for 5G, since they can provide an ultra high spectral reuse factor exploiting proximal transmissions. By densifying the network infrastructure equipment, it is highly possible that each user will have one or more dedicated serving base station antennas, introducing the user-centric virtual cell paradigm. However, due to irregular deployment of a large amount of base station antennas, the interference environment becomes rather complex, thus introducing severe interferences among different virtual cells. This paper focuses on the downlink transmission scheme in UDN where a large number of users and base station antennas is uniformly spread over a certain area. An interference graph is first created based on the large-scale fadings to give a potential description of the interference relationship among the virtual cells. Then, base station antennas and users in the virtual cells within the same maximally-connected component are grouped together and merged into one new virtual cell cluster, where users are jointly served via zero-forcing (ZF beamforming. A multi-virtual-cell minimum mean square error precoding scheme is further proposed to mitigate the inter-cluster interference. Additionally, the interference alignment framework is proposed based on the low complexity virtual cell merging to eliminate the strong interference between different virtual cells. Simulation results show that the proposed interference graph-based virtual cell merging approach can attain the average user spectral efficiency performance of the grouping scheme based on virtual cell overlapping with a smaller virtual cell size and reduced signal processing complexity. Besides, the proposed user-centric transmission scheme greatly outperforms the BS-centric transmission scheme (maximum ratio transmission (MRT in terms of both the average user spectral efficiency and edge user spectral efficiency. What is more

  10. Carbon nanotube dispersed conductive network for microbial fuel cells

    Science.gov (United States)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  11. Method for fabricating solar cells having integrated collector grids

    Science.gov (United States)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  12. Integrative content-driven concepts for bioinformatics ``beyond the cell"

    Indian Academy of Sciences (India)

    Edgar Wingender; Torsten Crass; Jennifer D Hogan; Alexander E Kel; Olga V Kel-Margoulis; Anatolij P Potapov

    2007-01-01

    Bioinformatics has delivered great contributions to genome and genomics research, without which the world-wide success of this and other global (‘omics’) approaches would not have been possible. More recently, it has developed further towards the analysis of different kinds of networks thus laying the foundation for comprehensive description, analysis and manipulation of whole living systems in modern ``systems biology”. The next step which is necessary for developing a systems biology that deals with systemic phenomena is to expand the existing and develop new methodologies that are appropriate to characterize intercellular processes and interactions without omitting the causal underlying molecular mechanisms. Modelling the processes on the different levels of complexity involved requires a comprehensive integration of information on gene regulatory events, signal transduction pathways, protein interaction and metabolic networks as well as cellular functions in the respective tissues/organs.

  13. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.

    Science.gov (United States)

    Destexhe, Alain

    2009-12-01

    Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

  14. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC...... (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  15. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  16. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

    Science.gov (United States)

    Mazzoni, Alberto; Lindén, Henrik; Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T

    2015-12-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  17. Computing the Local Field Potential (LFP from Integrate-and-Fire Network Models.

    Directory of Open Access Journals (Sweden)

    Alberto Mazzoni

    2015-12-01

    Full Text Available Leaky integrate-and-fire (LIF network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP. Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  18. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Kovalgin, Alexey Y.; Werf, van der Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  19. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  20. Integration of colloids into a semi-flexible network of fibrin.

    Science.gov (United States)

    Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H

    2017-02-15

    Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs

  1. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    Science.gov (United States)

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  2. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  3. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  4. Computational modeling of red blood cells: A symplectic integration algorithm

    Science.gov (United States)

    Schiller, Ulf D.; Ladd, Anthony J. C.

    2010-03-01

    Red blood cells can undergo shape transformations that impact the rheological properties of blood. Computational models have to account for the deformability and red blood cells are often modeled as elastically deformable objects. We present a symplectic integration algorithm for deformable objects. The surface is represented by a set of marker points obtained by surface triangulation, along with a set of fiber vectors that describe the orientation of the material plane. The various elastic energies are formulated in terms of these variables and the equations of motion are obtained by exact differentiation of a discretized Hamiltonian. The integration algorithm preserves the Hamiltonian structure and leads to highly accurate energy conservation, hence he method is expected to be more stable than conventional finite element methods. We apply the algorithm to simulate the shape dynamics of red blood cells.

  5. Development of attention networks in deaf children: support for the integrative hypothesis.

    Science.gov (United States)

    Daza, María Teresa; Phillips-Silver, Jessica

    2013-09-01

    Early auditory deprivation is known to affect visual attention, yet the early effects of auditory deprivation on visual attention cannot be described simply as deficiencies or enhancements, because selected aspects of visual attention could be modified in various ways along the developmental trajectory. However, few studies have explored the development of these various aspects of visual attention in deaf children. In this paper we study the developmental trajectory of three aspects of visual attention (alerting, orienting and executive control attention networks) in a group of deaf children between 6 and 12 years of age. We used the attention network test to explore the development of the three attention networks and a child-friendly version of the cost-benefit paradigm to characterize the development of the basic operations of orienting. Our results showed a pattern of specific but varied outcomes with respect to the effects of auditory deprivation on these attention networks. First, auditory deprivation can impair development of the alerting network. Second, auditory deprivation can enhance two elementary operations of orienting: moving and engaging. Third, the executive control network showed a developmental trajectory that was neither deficient nor enhanced, but rather similar to that observed with hearing children. Taken together, these results are consistent with the integrative hypothesis of the effects of auditory deprivation on visual attention.

  6. Integrated services to the home and small business over a service-independent HFC network

    Science.gov (United States)

    Counterman, Raymond

    1995-11-01

    This paper proposes three different approaches to providing integrated digital services to small businesses and residential customers over modern hybrid fiber and coaxial (HFC) access networks. The target delivery system is one that is flexible and forms a multiservice, service- independent platform capable of providing a wide range of services (voice, video, data, and multimedia). The merits and limitations of the three approaches are explored. In the first approach, the common facilities of an HFC access network may be shared by the frequency partitioning of the coaxial plant's radio frequency spectrum. video, data, and telephony services each use different portions of this spectrum -- a service-dependent network. In the second approach, asynchronous transfer mode (ATM) transmission is used as the information delivery vehicle all the way to the home or small business, creating a more flexible delivery system. The ATM-based architecture is expected to support any service or service mix -- a service-independent network. In the third approach, a common transport protocol composed of both asynchronous and synchronous transfer modes (ATM/STM) is used. Such an approach could (1) provide a common interface between home/small business premises equipment and both the circuit and ATM switching networks; (2) meet a wide range of delay and throughput requirements; and (3) allow for many network migration scenarios.

  7. Critical controllability in proteome-wide protein interaction network integrating transcriptome

    Science.gov (United States)

    Ishitsuka, Masayuki; Akutsu, Tatsuya; Nacher, Jose C.

    2016-04-01

    Recently, the number of essential gene entries has considerably increased. However, little is known about the relationships between essential genes and their functional roles in critical network control at both the structural (protein interaction network) and dynamic (transcriptional) levels, in part because the large size of the network prevents extensive computational analysis. Here, we present an algorithm that identifies the critical control set of nodes by reducing the computational time by 180 times and by expanding the computable network size up to 25 times, from 1,000 to 25,000 nodes. The developed algorithm allows a critical controllability analysis of large integrated systems composed of a transcriptome- and proteome-wide protein interaction network for the first time. The data-driven analysis captures a direct triad association of the structural controllability of genes, lethality and dynamic synchronization of co-expression. We believe that the identified optimized critical network control subsets may be of interest as drug targets; thus, they may be useful for drug design and development.

  8. Critical controllability in proteome-wide protein interaction network integrating transcriptome.

    Science.gov (United States)

    Ishitsuka, Masayuki; Akutsu, Tatsuya; Nacher, Jose C

    2016-04-04

    Recently, the number of essential gene entries has considerably increased. However, little is known about the relationships between essential genes and their functional roles in critical network control at both the structural (protein interaction network) and dynamic (transcriptional) levels, in part because the large size of the network prevents extensive computational analysis. Here, we present an algorithm that identifies the critical control set of nodes by reducing the computational time by 180 times and by expanding the computable network size up to 25 times, from 1,000 to 25,000 nodes. The developed algorithm allows a critical controllability analysis of large integrated systems composed of a transcriptome- and proteome-wide protein interaction network for the first time. The data-driven analysis captures a direct triad association of the structural controllability of genes, lethality and dynamic synchronization of co-expression. We believe that the identified optimized critical network control subsets may be of interest as drug targets; thus, they may be useful for drug design and development.

  9. Neural Network Emulation of the Integral Equation Model with Multiple Scattering

    Directory of Open Access Journals (Sweden)

    Luca Pulvirenti

    2009-10-01

    Full Text Available The Integral Equation Model with multiple scattering (IEMM represents a well-established method that provides a theoretical framework for the scattering of electromagnetic waves from rough surfaces. A critical aspect is the long computational time required to run such a complex model. To deal with this problem, a neural network technique is proposed in this work. In particular, we have adopted neural networks to reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, ASAR on board ENVISAT (C-band, and PALSAR aboard ALOS (L-band. The neural network-based model has been designed for radar observations of both flat and tilted surfaces, in order to make it applicable for hilly terrains too. The assessment of the proposed approach has been carried out by comparing neural network-derived backscattering coefficients with IEMM-derived ones. Different databases with respect to those employed to train the networks have been used for this purpose. The outcomes seem to prove the feasibility of relying on a neural network approach to efficiently and reliably approximate an electromagnetic model of surface scattering.

  10. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data.

    Directory of Open Access Journals (Sweden)

    Kevin Y Yip

    Full Text Available We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles in deletion strains (the 'deletion data' and time series trajectories of gene expression after some initial perturbation (the 'perturbation data'. In the course of developing the prediction method, we observed that the two types of data contained different and complementary information about the underlying network. In particular, deletion data allow for the detection of direct regulatory activities with strong responses upon the deletion of the regulator while perturbation data provide richer information for the identification of weaker and more complex types of regulation. We applied different techniques to learn the regulation from the two types of data. For deletion data, we learned a noise model to distinguish real signals from random fluctuations using an iterative method. For perturbation data, we used differential equations to model the change of expression levels of a gene along the trajectories due to the regulation of other genes. We tried different models, and combined their predictions. The final predictions were obtained by merging the results from the two types of data. A comparison with the actual regulatory networks suggests that our approach is effective for networks with a range of different sizes. The success of the approach demonstrates the importance of integrating heterogeneous data in network reconstruction.

  11. Funneled landscape leads to robustness of cell networks: yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2006-11-01

    Full Text Available We uncovered the underlying energy landscape for a cellular network. We discovered that the energy landscape of the yeast cell-cycle network is funneled towards the global minimum (G0/G1 phase from the experimentally measured or inferred inherent chemical reaction rates. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. The funneled landscape can be seen as a possible realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.

  12. Brain network analysis: separating cost from topology using cost-integration.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.

  13. Dual-Cell HSDPA for Network Energy Saving

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    consumption. This paper proposes an energy saving feature that exploits variations in network traffic. Based on the individual load of each sector, the feature determines if the secondary carrier is detrimental for reaching some pre-set minimum requirements. Each sector is allowed to switch off one......The increasing demand for mobile broadband is pushing existing 3G networks closer to their capacity limit. Additional carriers together with new HSPA features (HSPA+) are expected to provide the next necessary boost in network capacity. One specific feature in HSPA+ is referred to as Dual......-Cell HSDPA (or Dual-Carrier HSDPA). This feature allows for a single user to be simultaneously scheduled over two carriers, effectively doubling its achievable data rate. The addition of a secondary carrier will require additional radio equipment at the base station site, increasing the overall energy...

  14. Integrative genome-wide approaches in embryonic stem cell research.

    Science.gov (United States)

    Zhang, Xinyue; Huang, Jing

    2010-10-01

    Embryonic stem (ES) cells are derived from blastocysts. They can differentiate into the three embryonic germ layers and essentially any type of somatic cells. They therefore hold great potential in tissue regeneration therapy. The ethical issues associated with the use of human embryonic stem cells are resolved by the technical break-through of generating induced pluripotent stem (iPS) cells from various types of somatic cells. However, how ES and iPS cells self-renew and maintain their pluripotency is still largely unknown in spite of the great progress that has been made in the last two decades. Integrative genome-wide approaches, such as the gene expression microarray, chromatin immunoprecipitation based microarray (ChIP-chip) and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) offer unprecedented opportunities to elucidate the mechanism of the pluripotency, reprogramming and DNA damage response of ES and iPS cells. This frontier article summarizes the fundamental biological questions about ES and iPS cells and reviews the recent advances in ES and iPS cell research using genome-wide technologies. To this end, we offer our perspectives on the future of genome-wide studies on stem cells.

  15. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network

    DEFF Research Database (Denmark)

    Liu, Guodong; Marras, Antonio; Nielsen, Jens

    2014-01-01

    regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model......Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional...... transcriptional regulatory interactions to genome-scale metabolic models in a quantitative manner....

  16. Existence of Wave Front Solutions of an Integral Differential Equation in Nonlinear Nonlocal Neuronal Network

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available An integral-differential model equation arising from neuronal networks with very general kernel functions is considered in this paper. The kernel functions we study here include pure excitations, lateral inhibition, lateral excitations, and more general synaptic couplings (e.g., oscillating kernel functions. The main goal of this paper is to prove the existence and uniqueness of the traveling wave front solutions. The main idea we apply here is to reduce the nonlinear integral-differential equation into a solvable differential equation and test whether the solution we get is really a wave front solution of the model equation.

  17. Design and fabrication of an integrated cell processor for single embryo cell manipulation.

    Science.gov (United States)

    Park, Jungyul; Jung, Seng-Hwan; Kim, Young-Ho; Kim, Byungkyu; Lee, Seung-Ki; Park, Jong-Oh

    2005-01-01

    This paper presents an integrated cell processor for the automatic handling of individual embryo cells. The integrated processor can perform various functions such as cell transport, isolation, orientation, and immobilization. These functions are indispensable and frequently used for the manipulation of single cells, but can only be carried out by a skillful operator. The purpose of this study was the integration and automation of these functions for effective cell manipulation, using a MEMS approach. The isolation of a cell was performed using polypyrrole (PPy) valves in a microchannel into which cells were transported. The orientation of cells was controlled by electrorotation (ER), and the target cell was immobilized by suction from a microhole. All of these functions were seamlessly realized on a single chip. Excellent experimental results with mouse (B6CBA) embryo cells showed that this device could substitute for routine and cumbersome manual work. It is expected that the integrated chip will contribute significantly to faster and more reliable manipulation of cells.

  18. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  19. PERFORMANCE EVALUATION OF INTEGRATED MACRO AND MICRO MOBILITY PROTOCOLS FOR WIDE AREA WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    R.Gunasundari

    2010-03-01

    Full Text Available The success of next generation wireless networks will rely much on advanced mechanisms for seamless mobility support among emerging heterogeneous technologies. Currently, Mobile IP is the most promising solution for mobility management in the Internet. Several IP micro mobility approaches have been proposed to enhance the performance of Mobile IP which supports quality of service, minimum packet loss, limited handoff delay and scalability and power conservation but they are not scalable for macro mobility. A practical solution would therefore require integration of Mobile IP and Micro mobility protocols where Mobile IP handles macro mobility and micro mobility protocols handles micro mobility. In this paper an integrated mobility management protocol for IP based wireless networks is proposed and analyzed. Simulation results presented in this paper are based on ns 2.

  20. Students' network integration as a predictor of persistence in introductory physics courses

    CERN Document Server

    Zwolak, Justyna P; Williams, Eric A; Brewe, Eric

    2016-01-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use the network analysis approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course -- a course that strongly emphasizes interactive learning -- impacts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully inferring the persistence ...