WorldWideScience

Sample records for cells inhibits migration

  1. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  2. Time-lapse cinematography of the capillary tube cell migration inhibition test.

    Science.gov (United States)

    Bray, M A

    1980-01-01

    The kinetics of human and guinea pig cell migration inhibition have been studied using time-lapse cinematography of cells migrating from capillary tubes. Guinea pig and human cells exhibit markedly different kinetics in the absence of inhibitors. Specific antigen causes a dose-related inhibition of migration for up to 60 h using guinea pig cells and a peak of inhibition after 18 h using the human leucocyte system. The timing of measurement of maximum activity more critical for the latter test. The kinetics of lymphokine generation have been examined and the migration inhibitory activity of the plant mitogen (PHA), a Kurloff cell product and a continuous cell line supernatant have been compared with the inhibitory profiles of lymphokine preparations and specific antigen.

  3. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  4. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase

    International Nuclear Information System (INIS)

    Poppleton, Helen M.; Edwin, Francis; Jaggar, Laura; Ray, Ramesh; Johnson, Leonard R.; Patel, Tarun B.

    2004-01-01

    Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation

  5. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  7. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    Science.gov (United States)

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  8. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2009-06-01

    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  9. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Science.gov (United States)

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  10. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  11. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  12. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  13. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  14. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  15. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  16. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    Science.gov (United States)

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (pspices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  18. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  20. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  1. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    Science.gov (United States)

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  2. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  3. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  4. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  5. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  6. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Yoo, Sun-Mi; Choi, Kyung-Il; Song, Ji-Hong; Jang, Jeong-Hoon; Oh, Sei-Ryang; Ryu, Hyung-Won; Lee, Hye-Suk; Surh, Young-Joon; Cho, Yong-Yeon

    2015-01-01

    Magnolin is a natural compound abundantly found in Magnolia flos, which has been traditionally used in oriental medicine to treat headaches, nasal congestion and anti-inflammatory reactions. Our recent results have demonstrated that magnolin targets the active pockets of ERK1 and ERK2, which are important signaling molecules in cancer cell metastasis. The aim of this study is to evaluate the effects of magnolin on cell migration and to further explore the molecular mechanisms involved. Magnolin-mediated signaling inhibition was confirmed by Western blotting using RSK2 +/+ and RSK2 −/− MEFs, A549 and NCI-H1975 lung cancer cells, and by NF-κB and Cox-2 promoter luciferase reporter assays. Inhibition of cell migration by magnolin was examined by wound healing and/or Boyden Chamber assays using JB6 Cl41 and A549 human lung cancer cells. The molecular mechanisms involved in cell migration and epithelial-to-mesenchymal transition were determined by zymography, Western blotting, real-time PCR and immunocytofluorescence. Magnolin inhibited NF-κB transactivation activity by suppressing the ERKs/RSK2 signaling pathway. Moreover, magnolin abrogated the increase in EGF-induced COX-2 protein levels and wound healing. In human lung cancer cells such as A549 and NCI-H1975, which harbor constitutive active Ras and EGFR mutants, respectively, magnolin suppressed wound healing and cell invasion as seen by a Boyden chamber assay. In addition, it was observed that magnolin inhibited MMP-2 and −9 gene expression and activity. The knockdown or knockout of RSK2 in A549 lung cancer cells or MEFs revealed that magnolin targeting ERKs/RSK2 signaling suppressed epithelial-to-mesenchymal transition by modulating EMT marker proteins such as N-cadherin, E-cadherin, Snail, Vimentin and MMPs. These results demonstrate that magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. The online version of this article (doi:10.1186/s12885-015-1580-7) contains

  7. Migration inhibition of immune mouse spleen cells by serum from x-irradiated tumor-bearing mice

    International Nuclear Information System (INIS)

    Moroson, H.

    1978-01-01

    Tumor-specific antigens of the chemically induced MC 429 mouse fibrosarcoma were detected in a 3 M KCl extract of tumor by the inhibition of migration of specifically immune spleen cells. Using this assay with serum from tumor-bearing mice no tumor antigen was detected in serum of mice bearing small tumors, unless the tumor was exposed to local x irradiation (3000 R) 1 day prior to collection of serum. It was concluded that local x irradiation of tumor caused increased concentration of tumor antigen in the serum. When the tumor was allowed to grow extremely large, with necrosis, then host serum did cause migration inhibition of both nonimmune and immune spleen cells. This migration-inhibition effect was not associated with tumor antigen, but with a nonspecific serum factor

  8. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    Science.gov (United States)

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  9. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    International Nuclear Information System (INIS)

    Hou, Y.; Chu, M.; Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X.; Jin, J.

    2013-01-01

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G 2 /S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G 2 /S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment

  10. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Chu, M. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Medicine, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Jin, J., E-mail: jinjian31@126.com [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)

    2013-06-14

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G{sub 2}/S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G{sub 2}/S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment.

  11. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways

    International Nuclear Information System (INIS)

    Pickhard, Anja C; Schlegel, Jürgen; Arnold, Wolfgang; Reiter, Rudolf; Margraf, Johanna; Knopf, Andreas; Stark, Thomas; Piontek, Guido; Beck, Carolin; Boulesteix, Anne-Laure; Scherer, Elias Q; Pigorsch, Steffi

    2011-01-01

    Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro. Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis. In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis. Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy

  12. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Qingfu

    2008-05-01

    Full Text Available Abstract Background Suppressor of cytokine signaling 3 (SOCS3 is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2 and the kinase inhibitory region (KIR domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a

  13. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    Science.gov (United States)

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  14. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  15. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling; Lin, Chwan-Fwu; Wu, Wen-Bin

    2011-01-01

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: → Several resveratrol oligomers from grape plants are examined on VSMC behaviors. → Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. → It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. → The anti-migratory effect results from anti

  16. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  17. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  18. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  19. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  20. Estrogen receptor β inhibits estradiol-induced proliferation and migration of MCF-7 cells through regulation of mitofusin 2.

    Science.gov (United States)

    Ma, Li; Liu, Yueping; Geng, Cuizhi; Qi, Xiaowei; Jiang, Jun

    2013-06-01

    In the present study, we investigated whether estrogen receptor (ER) β affected the proliferation and migration of the human breast cancer cell line MCF-7 through regulation of mitofusin 2 (mfn2). A previous study reported that mfn2 may be regulated by ER through a non-classical pathway; in this pathway, the ER modulates the activities of other transcription factors by stabilizing their binding to DNA and/or recruiting coactivators to the complex. However, the previous study, unlike the study presented here, did not directly explore the interactions between ER and mfn2. Here, RT-PCR and western blot analysis were used to test the expression of mfn2 in MCF-7 cells after exposure to different doses of estradiol (E2). The ability of cells to proliferate and migrate was determined by MTT assay and a monolayer-wounding protocol, respectively. Finally, changes in MCF-7 cell biology after transfection with ERβ or mfn2 expression vectors were investigated, and the role of ERβ in mfn2 expression was also explored. Our results showed that E2 attenuated mfn2 expression in a dose-dependent manner, concomitant with the activation of proliferation and migration of MCF-7 cells. The mfn2 expression vector effectively suppressed E2-induced upregulation of PCNA and migration in MCF-7 cells. ERβ inhibited the E2-induced mfn2 downregulation that accompanied the inhibition of proliferation and migration in MCF-7 cells. Briefly, ERβ may inhibit E2-induced proliferation and migration of MCF-7 cells through regulation of mfn2.

  1. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ming [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Department of Ophthalmology, Cardinal Tien Hospital, Taipei Hsien, Taiwan, ROC (China); Fang, Jia-You [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan, ROC (China); Lin, Hsin-Huang [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Yang, Chi-Yea [Department of Biotechnology, Vanung University, Taoyuan, Taiwan, ROC (China); Hung, Chi-Feng, E-mail: 054317@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China)

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  2. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    International Nuclear Information System (INIS)

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-01-01

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  3. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  4. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Nakamura, Seikou [Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto (Japan); Chisaki, Yugo [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takada, Tetsuya [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Toda, Yuki [Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Murata, Hiroaki [Department of Orthopedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopedic Surgery, Matsushita Memorial Hospital, Osaka (Japan); Itoh, Kazuyuki [Department of Biology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka (Japan); Yano, Yoshitaka [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takata, Kazuyuki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Ashihara, Eishi, E-mail: ash@mb.kyoto-phu.ac.jp [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan)

    2016-02-26

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  5. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    International Nuclear Information System (INIS)

    Fukuda, Hiroki; Nakamura, Seikou; Chisaki, Yugo; Takada, Tetsuya; Toda, Yuki; Murata, Hiroaki; Itoh, Kazuyuki; Yano, Yoshitaka; Takata, Kazuyuki; Ashihara, Eishi

    2016-01-01

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  6. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    International Nuclear Information System (INIS)

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-01-01

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  7. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  8. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  9. [AntiEGFRnano inhibites proliferation and migration of estrogen-dependent Ishikawa cells of human endometrial cancer cell line].

    Science.gov (United States)

    Diao, Zhen-yu; Lu, Wu-guang; Cao, Peng; Hu, Yun-long; Zhou, Xing; Xue, Ping-ping; Shen, Li; Sun, Hai-xiang

    2012-10-01

    Nanobody is a kind of antibody from camel, which misses light chain. Nanobody has the same antigen binding specificity and affinity as mAb. Moreover, because of its small molecular weight, high stability and easy preparation, nanobody has great value of biomedical applications. In this study, we successfully prepared highly pure antiEGFR nanobody in E.coli using genetic engineering techniques. Cell proliferation assay (CCK-8 assay) and migration experiments (cell scratch test and Transwell assay) indicated that the recombinant antiEGFRnano can significantly inhibit the proliferation and migration of endometrial cancer cells. These results provide a new way of thinking and methods for EGFR-targeted therapy of endometrial cancer.

  10. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  11. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    Science.gov (United States)

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  12. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  13. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei

    2017-12-01

    Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.

  14. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-02-01

    Full Text Available Xiaowen Zhang,1 Nan Wu2 1Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; 2The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells were observed. The influences on apoptotic protease activity factor-1 (APAF-1-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9 were measured by Western blotting and gelatin zymography assay. Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53–4.66×103 µM. Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma

  15. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  16. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  17. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells.

    Science.gov (United States)

    Cho, Sun-Mi; Lee, Eun-Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong

    2014-07-30

    The essential oil of Pinus koraiensis (EOPK) is biologically active compound obtained from the leaves of P. koraiensis. The goal of this study was to investigate the anti-cancer mechanism of EOPK in HCT116 colorectal cancer cells. HCT116 cell proliferation was assessed by conducting crystal violet and BrdU assays. To assess the effects of EOPK on cell migration, we performed a wound-healing assay. Further, the contribution of PAK1 to EOPK-induced AKT and extracellular signal-regulated kinase (ERK) suppression was assessed by siRNA-mediated PAK1 knockdown. Changes to the expression and phosphorylation of PAK1 and its effectors were determined by western blotting, and changes to the actin cytoskeleton were determined by performing an immunofluorescence assay. EOPK significantly decreased HCT116 cell proliferation and migration, and induced G1 arrest without affecting normal cells. Additionally, EOPK suppressed the expression of PAK1, and decreased ERK and AKT phosphorylation in HCT116 cells. Finally, EOPK suppressed β-catenin, cyclin D1, and CDK4/6 expression. Our studies indicate that EOPK significantly reduced proliferation and migration of colorectal cancer cells. Furthermore, EOPK suppressed PAK1 expression in a dose-dependent manner, and this suppression of PAK1 led to inhibition of ERK, AKT, and β-catenin activities. Our findings suggest that EOPK exerts its anticancer activity via the inhibition of PAK1 expression, suggesting it may be a potent chemotherapeutic agent for colorectal cancer.

  18. MicroRNA-214-5p Inhibits the Invasion and Migration of Hepatocellular Carcinoma Cells by Targeting Wiskott-Aldrich Syndrome Like.

    Science.gov (United States)

    Li, Hongdan; Wang, Haoqi; Ren, Zhen

    2018-01-01

    This study aims to explore the effects of microRNA-214-5p (miR-214-5p) on the invasion and migration of Hepatocellular Carcinoma cells (HCC). Hepatocellular Carcinoma tissues and adjacent normal tissues from 44 hepatocellular carcinoma patients were prepared for this study. The HepG2 and BEL-7402 cells were transfected with miR-214-5p mimic and inhibitor. qRT-PCR was performed to detect the expressions of miR-214-5p. Transwell assays were used to detect the invasion and migration assays in HepG2 and BEL-7402 cells. A dual-luciferase reporter assay was conducted to examine the effect of miR-214-5p on Wiskott-Aldrich Syndrome Like (WASL/ N-WASP). Western blot and qRT-PCR were used to measure the expressions of the E-cadherin, N-cadherin and Vimentin proteins. Transwell chamber assays were performed to detect cell invasion and migration. Compared with normal tissues, HCC tissues demonstrated significantly lower expression of miR-214-5p. Overexpression of miR-214-5p significantly inhibited the migration and invasion of HCC cells and inhibition of miR-214-5p promoted the migration and invasion. Additionally, miR-214-5p suppressed the epithelial-mesenchymal transition (EMT). Further study showed WASL was a putative target gene of miR-214-5p. Up-regulating the expression of WASL could reverse the inhibition effect of miR-214-5p on invasion and migration. Our data suggested that miR-214-5p inhibited the invasion and migration of HepG2 and BEL-7402 by targeting WASL in Hepatocellular carcinoma. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  20. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines

    Directory of Open Access Journals (Sweden)

    Renato José Silva-Oliveira

    2016-11-01

    Full Text Available Cancer of the head and neck is a group of upper aerodigestive tract neoplasms in which aggressive treatments may cause harmful side effects to the patient. In the last decade, investigations on natural compounds have been particularly successful in the field of anticancer drug research. Our aim is to evaluate the antitumor effect of Tapirira guianensis Aubl. extracts on a panel of head and neck squamous cell carcinoma (HNSCC cell lines. Analysis of secondary metabolites classes in fractions of T. guianensis was performed using Nuclear Magnetic Resonance (NMR. Mutagenicity effect was evaluated by Ames mutagenicity assay. The cytotoxic effect, and migration and invasion inhibition were measured. Additionally, the expression level of apoptosis-related molecules (PARP, Caspases 3, and Fas and MMP-2 was detected using Western blot. Heterogeneous cytotoxicity response was observed for all fractions, which showed migration inhibition, reduced matrix degradation, and decreased cell invasion ability. Expression levels of MMP-2 decreased in all fractions, and particularly in the hexane fraction. Furthermore, overexpression of FAS and caspase-3, and increase of cleaved PARP indicates possible apoptosis extrinsic pathway activation. Antiproliferative activity of T. guianensis extract in HNSCC cells lines suggests the possibility of developing an anticancer agent or an additive with synergic activities associated with conventional anticancer therapy.

  1. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  2. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    Science.gov (United States)

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  3. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  4. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    International Nuclear Information System (INIS)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-01-01

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy

  5. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  6. Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro

    Directory of Open Access Journals (Sweden)

    K. M. Santos

    2018-01-01

    Full Text Available Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM, cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3 from Bauhinia variegata candida (Bvc stem on human cervical tumor cells (HeLa and human peripheral blood mononuclear cells (PBMCs. FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs.

  7. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway.

    Science.gov (United States)

    Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling

    2018-05-15

    The present study aimed to investigate the ability of hesperidin to suppress the migration and invasion of A549 cells, and to investigate the role of the SDF-1/CXCR-4 cascade in this suppression. We performed a Transwell migration assay to measure the migratory capability of A549 cells treated with 0.5% DMSO, SDF-1α, AMD3100 or hesperidin. The SDF-1 level in the culture medium was determined by an enzyme-linked immunosorbent assay (ELISA) to detect whether different concentrations of hesperidin affected SDF-1 secretion. A wound-healing assay was performed to determine the effects of different concentrations of hesperidin on the migration inhibition of A549, H460 and H1975 cells. Additionally, the effect of various hesperidin concentrations on the rate of A549 cell invasion and migration was examined with and without Matrigel in Transwell assays, respectively. Western blot analysis was used to evaluate the protein levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, p-p65, p-IκB, IκB, p-Akt and Akt. RT-qPCR was used to detect the mRNA levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, IκB, SDF-1 and Akt. The Transwell migration assay indicated that SDF-1α promoted A549 cell migration, while AMD3100 and hesperidin significantly inhibited the migratory capability. The wound-healing assay demonstrated that hesperidin treatment significantly reduced the rate of wound closure compared with the control group in a dose-dependent manner. Similarly, the migration and invasive abilities of A549 cells, H460 and H1975 cells treated with hesperidin were significantly decreased compared with the control group. The ELISA data suggested that hesperidin attenuated the secretion of SDF-1 from A549 cells in a dose-dependent manner. Furthermore, western blot analysis indicated that SDF-1α treatment significantly increased the levels of CXCR-4, p-p65, p-IκB and p-Akt in A549 cells. In contrast, AMD3100 or hesperidin reversed the effect induced by SDF-1α through decreasing the expression

  8. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells.

    Science.gov (United States)

    Xiao, Hui; Bid, Hemant Kumar; Jou, David; Wu, Xiaojuan; Yu, Wenying; Li, Chenglong; Houghton, Peter J; Lin, Jiayuh

    2015-02-06

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. [Mifepristone inhibites the migration of endometrial cancer cells through regulating H19 methylation].

    Science.gov (United States)

    Lu, Z Z; Yan, L; Zhang, H; Li, M J; Zhang, X H; Zhao, X X

    2016-06-23

    To investigate the effect and mechanism of mifepristone on the migration of human endometrial carcinoma cells. A human endometrial carcinoma cell line, Ishikawa cells, was cultured in vitro and treated with mifepristone at different concentrations. Wound healing assay was applied to detect the migration of Ishikawa cells. RT-PCR and methylation-specific PCR (MSP) were used to detect the levels of H19 mRNA and its DNA methylation. Western-blot was used to detect the expressions of HMGA2 and epithelial to mesenchymal transition (EMT) related proteins. When treated with different concentrations of mifepristone for 48 hours, the width of scratch of the the control group, the 5 mg/L and the 10 mg/L mifepristone treatment groups were (4.18±0.07)mm, (4.68±0.07)mm, and(4.99±0.07)mm, respectively (Pendometrial carcinoma cells partially through methylation-induced of transcriptional inhibition of H19, which results in the down-regulation of HMGA2 and vimentin and upregulation of E-cadherin.

  10. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  11. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    International Nuclear Information System (INIS)

    McCready, Jessica; Wong, Daniel S.; Burlison, Joseph A.; Ying, Weiwen; Jay, Daniel G.

    2014-01-01

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion

  12. Aqueous Extract of Paeonia suffruticosa Inhibits Migration and Metastasis of Renal Cell Carcinoma Cells via Suppressing VEGFR-3 Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Chin Wang

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC cells are characterized by strong drug resistance and high metastatic incidence. In this study, the effects of ten kinds of Chinese herbs on RCC cell migration and proliferation were examined. Aqueous extract of Paeonia suffruticosa (PS-A exerted strong inhibitory effects on cancer cell migration, mobility, and invasion. The results of mouse xenograft experiments showed that the treatment of PS-A significantly suppressed tumor growth and pulmonary metastasis. We further found that PS-A markedly decreased expression of VEGF receptor-3 (VEGFR-3 and phosphorylation of FAK in RCC cells. Moreover, the activation of Rac-1, a modulator of cytoskeletal dynamics, was remarkably reduced by PS-A. Additionally, PS-A suppressed polymerization of actin filament as demonstrated by confocal microscopy analysis and decreased the ratio of F-actin to G-actin in RCC cells, suggesting that PS-A inhibits RCC cell migration through modulating VEGFR-3/FAK/Rac-1 pathway to disrupt actin filament polymerization. In conclusion, this research elucidates the effects and molecular mechanism for antimigration of PS-A on RCC cells and suggests PS-A to be a therapeutic or adjuvant strategy for the patients with aggressive RCC.

  13. Estradiol agonists inhibit human LoVo colorectal-cancer cell proliferation and migration through p53.

    Science.gov (United States)

    Hsu, Hsi-Hsien; Kuo, Wei-Wen; Ju, Da-Tong; Yeh, Yu-Lan; Tu, Chuan-Chou; Tsai, Ying-Lan; Shen, Chia-Yao; Chang, Sheng-Huang; Chung, Li-Chin; Huang, Chih-Yang

    2014-11-28

    To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Student's t-test. The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10(-8) mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a potential alternative

  14. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration.

    Science.gov (United States)

    Zhou, Hejiang; Zhang, Bo; Zheng, Jiajia; Yu, Meifang; Zhou, Teng; Zhao, Kai; Jia, Yanxia; Gao, Xingfa; Chen, Chunying; Wei, Taotao

    2014-02-01

    Graphene and its derivatives have become important nanomaterials worldwide and have potential medical applications including in vivo diagnosis, drug delivery, and photothermal therapy of cancer. However, little is known about their effect on the metastasis of cancer cells, which is the cause of over 90% of patient deaths. In the present investigation, we provide direct evidence that low concentrations of pristine graphene and graphene oxide show no apparent influence on the viability of MDA-MB-231 human breast cancer cells, PC3 human prostate cancer cells, as well as B16F10 mouse melanoma cells. However, both pristine graphene and graphene oxide can effectively inhibit the migration and invasion of these cancer cells. Further studies indicate that exposure of cells to graphene led to the direct inhibition of the electron transfer chain complexes I, II, III and IV, most likely by disrupting electron transfer between iron-sulfur centers, which is due to its stronger ability to accept electrons compared to iron-sulfur clusters through theoretical calculations. The decreased electron transfer chain activity caused a reduction in the production of ATP and subsequent impairment of F-actin cytoskeleton assembly, which is crucial for the migration and invasion of metastatic cancer cells. The inhibition of cancer cell metastasis by graphene and graphene oxide might provide new insights into specific cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    Science.gov (United States)

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (Precurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  16. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  17. Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Ae-Rang Hwang

    Full Text Available Advanced glycation endproduct (AGE-induced vascular smooth muscle cell (VSMC proliferation and reactive oxygen species (ROS production are emerging as important mechanisms of diabetic vasculopathy, but little is known about the molecular mechanism responsible for the antioxidative effects of statins on AGEs. It has been reported that statins exert pleiotropic effects on the cardiovascular system due to decreases in AGE-induced cell proliferation, migration, and vascular inflammation. Thus, in the present study, the authors investigated the molecular mechanism by which statins decrease AGE-induced cell proliferation and VSMC migration. In cultured VSMCs, statins upregulated Nrf2-related antioxidant gene, NQO1 and HO-1, via an ERK5-dependent Nrf2 pathway. Inhibition of ERK5 by siRNA or BIX02189 (a specific ERK5 inhibitor reduced the statin-induced upregulations of Nrf2, NQO1, and HO-1. Furthermore, fluvastatin was found to significantly increase ARE promoter activity through ERK5 signaling, and to inhibit AGE-induced VSMC proliferation and migration as determined by MTT assay, cell counting, FACS analysis, a wound scratch assay, and a migration chamber assay. In addition, AGE-induced proliferation was diminished in the presence of Ad-CA-MEK5α encoding a constitutively active mutant form of MEK5α (an upstream kinase of ERK5, whereas depletion of Nrf2 restored statin-mediated reduction of AGE-induced cell proliferation. Moreover, fluvastatin suppressed the protein expressions of cyclin D1 and Cdk4, but induced p27, and blocked VSMC proliferation by regulating cell cycle. These results suggest statin-induced activation of an ERK5-dependent Nrf2 pathway reduces VSMC proliferation and migration induced by AGEs, and that the ERK5-Nrf2 signal module be viewed as a potential therapeutic target of vasculopathy in patients with diabetes and complications of the disease.

  18. Insulin promotes cell migration by regulating PSA-NCAM

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Hector J.; Coppieters, Natacha [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Park, Thomas I.H. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dieriks, Birger V.; Faull, Richard L.M. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dragunow, Mike [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Curtis, Maurice A., E-mail: m.curtis@auckland.ac.nz [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand)

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  19. Insulin promotes cell migration by regulating PSA-NCAM

    International Nuclear Information System (INIS)

    Monzo, Hector J.; Coppieters, Natacha; Park, Thomas I.H.; Dieriks, Birger V.; Faull, Richard L.M.; Dragunow, Mike; Curtis, Maurice A.

    2017-01-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  20. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    Science.gov (United States)

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  1. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  2. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  3. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Ye, Shuangmei; Chen, Yin; You, Lanying; Zhang, Yiqun; Xu, Gang; Zhou, Jianfeng; Ma, Ding; Wang, Shixuan; Hao, Xing; Zhou, Ting; Wu, Mingfu; Wei, Juncheng; Wang, Yongjun; Zhou, Li; Jiang, Xuefeng; Ji, Li

    2010-01-01

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKT Ser473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not

  4. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    Science.gov (United States)

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  5. WNT5A inhibits human dental papilla cell proliferation and migration

    International Nuclear Information System (INIS)

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-01-01

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  6. Nonlethal Levels of Zeaxanthin Inhibit Cell Migration, Invasion, and Secretion of MMP-2 via NF-κB Pathway in Cultured Human Uveal Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Ming-Chao Bi

    2016-01-01

    Full Text Available Zeaxanthin at nonlethal dosages (3–10 μM significantly inhibited the cell migration of cultured uveal melanoma cells (C918 cell line as determined by wound healing assay and Boyden chamber assay. Matrigel invasion assay showed that cell invasion of uveal melanoma cells could be significantly inhibited by zeaxanthin. Secretion of MMP-2 by melanoma cells was significantly inhibited by zeaxanthin in a dose-dependent manner as measured by ELISA kit. Zeaxanthin also significantly inhibited the NF-κB levels in nuclear extracts of the UM cells, which is the upstream of the MMP-2 secretion. These results suggest that zeaxanthin might be a potentially therapeutic approach in the prevention of metastasis in uveal melanoma.

  7. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  8. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  9. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation.

    Science.gov (United States)

    Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-05

    Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.

    Science.gov (United States)

    Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li

    2018-01-01

    Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might

  11. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  12. Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid–stimulated migration of murine osteosarcoma LM8 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kubohara, Yuzuru, E-mail: ykuboha@juntendo.ac.jp [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Health Science, Juntendo University Graduate School of Health and Sports Science, Inzai 270-1695 (Japan); Komachi, Mayumi [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Homma, Yoshimi [Department of Biomolecular Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295 (Japan); Kikuchi, Haruhisa; Oshima, Yoshiteru [Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai 980-8578 (Japan)

    2015-08-07

    Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), −2, and −3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5–20 μM) dose-dependently suppressed LPA-induced cell migration with associated IC{sub 50} values of 5.5, 4.6, and 4.2 μM, respectively. On the other hand, the IC{sub 50} values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 μM, respectively, in LM8 cells, and >20, 14.8, and 4.3 μM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis. - Highlights: • LPA induces cell migration (invasion) in murine osteosarcoma LM8 cells. • DIFs are novel lead anti-tumor agents found in Dictyostelium discoideum. • We examined the effects of DIF derivatives on LPA-induced LM8 cell migration in vitro. • Some of the DIF derivatives inhibited LPA-induced LM8 cell migration.

  13. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  14. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    Science.gov (United States)

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    MiR-1254 inhibits proliferation, migration and invasion of human brain tumour cell lines. ... The transcripts were analysed by real-time polymerase chain reaction (RT-PCR) ... Over-expression of miR- 1254 also led to significant decrease in cell ...

  16. Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration.

    Science.gov (United States)

    Al-Khayal, Khayal; Alafeefy, Ahmed; Vaali-Mohammed, Mansoor-Ali; Mahmood, Amer; Zubaidi, Ahmed; Al-Obeed, Omar; Khan, Zahid; Abdulla, Maha; Ahmad, Rehan

    2017-01-03

    Colorectal cancer (CRC) is the 3 rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c

  17. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-01-01

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1 −/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1 −/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1 −/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1 −/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory

  18. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  19. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells

    Directory of Open Access Journals (Sweden)

    Taro Mikami

    2015-01-01

    Full Text Available BACKGROUND: The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. RESULTS: Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. CONCLUSIONS: The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

  20. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28.

    Science.gov (United States)

    Carey, Clayton M; Bueno, Raymund; Gutierrez, Daniel A; Petro, Christopher; Lucena, Sara E; Sanchez, Elda E; Soto, Julio G

    2012-02-01

    Disintegrins are low molecular weight peptides isolated from viper venom. These peptides bind to integrin receptors using a conserved binding motif sequence containing an RGD or similar motif. As a consequence, disintegrins can inhibit platelet aggregation and inhibit cell migration, proliferation, and initiate apoptosis in cancer cell lines. Rubistatin is a MVD disintegrin cloned from a Crotalus ruber ruber venom gland. The biological activity of MVD disintegrins is poorly understood. Recombinant rubistatin (r-Rub) was cloned into a pET32b plasmid and expressed in reductase-deficient Escherichia coli. Expression was induced with IPTG and the resulting fusion peptide was affinity purified, followed by thrombin cleavage, and removal of vector coded sequences. r-Rub peptide inhibited ADP-induced platelet aggregation by 54% ± 6.38 in whole blood. We assessed the ability of r-Rub to initiate apoptosis in three human cancer cell lines. Cultures of SK-Mel-28, HeLA, and T24 cells were grown for 24 h with 2.5 μM r-Rub followed by Hoechst staining. Chromatin fragmentation was observed in treated SK-Mel-28, but not in T24 or HeLA cells. A TUNEL assay revealed that 51.55% ± 5.28 of SK-Mel-28 cells were apoptotic after 18 h of treatment with 3.5 μM of r-Rub. Cell migration and proliferation assays were performed in order to further characterize the biological effects of r-Rub on SK-Mel-28 cells. At 3 μM, r-Rub inhibited cell migration by 44.4% ± 0.5, while at 3.5 μM it was able to inhibit cell proliferation by 83% ± 6.0. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  2. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.

    Science.gov (United States)

    Duan, Jianhui; Xiaokaiti, Yilixiati; Fan, Shengjun; Pan, Yan; Li, Xin; Li, Xuejun

    2017-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors of the digestive system, but the mechanisms of its development and progression are unclear. Inflammation is thought to be fundamental to pancreatic cancer development and caffeic acid phenethyl ester (CAPE) is an active component of honey bee resin or propolis with anti-inflammatory and anticancer activities. We investigated the inhibitory effects of CAPE on cell growth and migration induced by human neutrophil elastase (HNE) and report that HNE induced cancer cell migration at low doses and growth at higher doses. In contrast, lower CAPE doses inhibited migration and higher doses of CAPE inhibited the growth induced by HNE. HNE activity was significantly inhibited by CAPE (7.5-120 µM). Using quantitative real-time PCR and western blotting, we observed that CAPE (18-60 µM) did not affect transcription and translation of α1-antitrypsin (α1-AT), an endogenous HNE inhibitor. However, in an in silico drug target docking model, we found that CAPE directly bound to the binding pocket of HNE (25.66 kcal/mol) according to CDOCKER, and the residue of the catalytic site stabilized the interaction between CAPE and HNE as evidenced by molecular dynamic simulation. Response unit (RU) values of surface plasmon resonance (SPR) significantly increased with incremental CAPE doses (7.5-120 µM), indicating that CAPE could directly bind to HNE in a concentration-dependent manner. Thus, CAPE is an effective inhibitor of HNE via direct interaction whereby it inhibits the migration and growth of PANC-1 cells in a dose-dependent manner.

  3. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    Science.gov (United States)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  4. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Jong Bin; Bae, Ji-Yeon; Jee, Hyeon-Gun; Noh, Dong-Young; Ko, Eunyoung; Han, Wonshik; Lee, Jeong Eon; Lee, Kyung-Min; Shin, Incheol; Kim, Sangmin; Lee, Jong Won; Cho, Jihyoung

    2008-01-01

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  5. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  6. PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shi, Guo-Zhen; Yuan, Yang; Jiang, Guo-Jun; Ge, Zhi-Jun; Zhou, Jian; Gong, De-Jun; Tao, Jing; Tan, Yong-Fei; Huang, Sheng-Dong

    2012-01-01

    Prenylated Rab acceptor 1 domain family member 3 (PRAF3) is involved in the regulation of many cellular processes including apoptosis, migration and invasion. This study was conducted to investigate the effect of PRAF3 on apoptosis, migration and invasion in human esophageal squamous cell carcinoma (ESCC). The expression of PRAF3 mRNA and protein in primary ESCC and the matched normal tissues (57cases) was determined by quantitative RT-PCR and Western blot. Immunohistochemical analysis of PRAF3 expression was carried out in paraffin-embedded sections of ESCC and correlated with clinical features. The role of PRAF3 in apoptosis, migration and invasion was studied in ESCC cell lines of Eca109 and TE-1 through the adenovirus mediated PRAF3 gene transfer. The effect of PRAF3 on apoptosis was analyzed by annexin V-FITC assay. The regulation of PRAF3 on migration was determined by transwell and wounding healing assay, while the cellular invasion was analyzed by matrigel-coated transwell assay. We found that the expression of PRAF3 was significantly down-regulated in ESCC tissue compared with the matched normal tissue and was correlated with the clinical features of pathological grade, tumor stage and lymph node metastasis. Moreover, overexpression of PRAF3 induced cell apoptosis through both caspase-8 and caspase-9 dependent pathways, and inhibited cell migration and invasion by suppressing the activity of both MMP-2 and MMP-9 in human ESCC cell lines. Our data suggest that PRAF3 plays an important role in the regulation of tumor progression and metastasis and serves as a tumor suppressor in human ESCC. We propose that PRAF3 might be used as a potential therapeutic agent for human ESCC

  7. Luteolin inhibits the colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition: an experimental study

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2017-11-01

    Full Text Available Objective: To study the regulating effect of luteolin on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition. Methods: Colon cancer HT-29 cells were cultured and randomly divided into two groups, control group were treated with serum-free medium without drugs and LUT group were treated with serum-free medium containing luteolin. After 24 h of treatment, cells were collected to extract RNA, and then fluorescent quantitative PCR method was used to determine the mRNA expression of proliferation genes, migration genes and epithelial-mesenchymal transition genes. Results: After 24 h of luteolin treatment, Lrig1, TSPYL5, Bim, SOX15 and DLC1 mRNA expression in LUT group were significantly higher than those in control group while RPS15a, Bad, TRPV5, TRPV6, PLD2, IBP, SphK1, FAK, Vimentin and N-cadherin mRNA expression were significantly lower than those in control group. Conclusion: Luteolin has inhibiting effect on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition.

  8. MicroRNA-200b Suppresses Arsenic-transformed Cell Migration by Targeting Protein Kinase Cα and Wnt5b-Protein Kinase Cα Positive Feedback Loop and Inhibiting Rac1 Activation*

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-01-01

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. PMID:24841200

  9. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation.

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-06-27

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3'-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. © 2014 by The American Society for Biochemistry and Molecular

  10. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells.

    Science.gov (United States)

    Janjusevic, Milijana; Greco, Stefania; Islam, Md Soriful; Castellucci, Clara; Ciavattini, Andrea; Toti, Paolo; Petraglia, Felice; Ciarmela, Pasquapina

    2016-11-01

    To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. Laboratory study. Human myometrium and leiomyoma. Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. Our results indicate that RKIP may be involved in leiomyoma pathophysiology. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  12. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  13. Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; McKey, Susan E; Drummond, Heather A

    2008-05-01

    Recent studies suggest members of the degenerin (DEG)/epithelial Na(+) channel (ENaC)/acid-sensing ion channel (ASIC) protein family play an important role in vascular smooth muscle cell (VSMC) migration. In a previous investigation, we found suppression of a certain DEG/ENaC/ASIC member, ASIC2, increased VSMC chemotactic migration, raising the possibility that ASIC2 may play an inhibitory role. Because ASIC2 protein was retained in the cytoplasm, we reasoned increasing surface expression of ASIC2 might unmask the inhibitory role of ASIC2 in VSMC migration so we could test the hypothesis that ASIC2 inhibits VSMC migration. Therefore, we used the chemical chaperone glycerol to enhance ASIC2 expression. Glycerol 1) increased cytoplasm ASIC2 expression, 2) permitted detection of ASIC2 at the cell surface, and 3) inhibited platelet-derived growth factor (PDGF)-bb mediated VSMC migration. Furthermore, ASIC2 silencing completely abolished the inhibitory effect of glycerol on migration, suggesting upregulation of ASIC2 is responsible for glycerol-induced inhibition of VSMC migration. Because other investigators have shown that glycerol regulates ENaC/ASIC via interactions with a certain heat shock protein, heat shock protein 70 (Hsc70), we wanted to determine the importance of Hsc70 on ASIC2 expression in VSMCs. We found that Hsc70 silencing increases ASIC2 cell surface expression and inhibits VSMC migration, which is abolished by cosilencing ASIC2. These data demonstrate that Hsc70 inhibits ASIC2 expression, and, when the inhibitory effect of Hsc70 is removed, ASIC2 expression increases, resulting in reduced VSMC migration. Because VSMC migration contributes to vasculogenesis and remodeling following vascular injury, our findings raise the possibility that ASIC2-Hsc70 interactions may play a role in these processes.

  14. Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lv-Cui Zhao

    2015-11-01

    Full Text Available Evodiamine (EVO exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8. Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53, Bcl-2 Associated X protein (Bax, B cell CLL/lymphoma-2 (Bcl-2, phosphoglucose isomerase (PGI, phosphorylated signal transducers and activators of transcription 3 (p-STAT3 and matrix metalloproteinase 3 (MMP3 were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.

  15. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  16. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu X

    2016-06-01

    Full Text Available Xiao Fu,1 Hui Li,1 Chunxiao Liu,2 Bin Hu,1 Tong Li,1 Yang Wang1 1Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 2Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China Background: Recent studies indicate that long noncoding RNAs (lncRNAs play a key role in the control of cellular processes such as proliferation, metastasis, and differentiation. The lncRNA dysregulation has been identified in all types of cancer. We previously found that lncRNA AK126698 suppresses cisplatin resistance in A549 cells through the Wnt/β-catenin signaling pathway. However, the clinical significance of lncRNA AK126698 and the molecular mechanisms through which it regulates cancer cell proliferation and migration are largely unknown. Methods: We examined the expression of lncRNA AK126698 in 56 non-small cell lung cancer (NSCLC tissue samples and three NSCLC cell lines using quantitative real-time polymerase chain reaction. Gain and loss of function approaches were used to evaluate the biological function of AK126698 in NSCLC cells. The effects of lncRNA AK126698 on cell proliferation were investigated using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and apoptosis was measured by flow cytometry. Protein levels of AK126698 targets were evaluated by Western blotting. Results: Our results showed that lncRNA AK126698 was significantly downregulated in NSCLC tissues, compared with paired adjacent nontumor tissue samples. Furthermore, lower AK126698 expression was associated with larger tumor size and advanced tumor stage. Ectopic AK126698 expression inhibited cell proliferation and migration and induced apoptosis. Conversely, decreased AK126698 expression promoted cell proliferation and migration and inhibited cell apoptosis. Importantly, we demonstrated that Frizzled-8, a receptor of Wnt/β-catenin pathway, was a target of AK126698. Furthermore

  17. Scutellarin suppresses migration and invasion of human hepatocellular carcinoma by inhibiting the STAT3/Girdin/Akt activity.

    Science.gov (United States)

    Ke, Yang; Bao, Tianhao; Wu, Xuesong; Tang, Haoran; Wang, Yan; Ge, Jiayun; Fu, Bimang; Meng, Xu; Chen, Li; Zhang, Cheng; Tan, Yuqi; Chen, Haotian; Guo, Zhitang; Ni, Fan; Lei, Xuefen; Shi, Zhitian; Wei, Dong; Wang, Lin

    2017-01-29

    Scutellarin is an active flavone from Erigeron breviscapine (vant) Hand Mass. This study aimed to investigate the potential role of scutellarin in migration and invasion of human hepatocellular carcinoma (HCC) cells and its possible mechanism. In comparison with the vehicle-treated controls, treatment with scutellarin (50 mg/kg/day) for 35 days significantly mitigated the lung and intrahepatic metastasis of HCC tumors in vivo. Scutellarin treatment significantly reduced HepG2 cell viability in a dose-dependent manner, and inhibited migration and invasion of HCC cells in vitro. Scutellarin treatment significantly reduced STAT3 and Girders of actin filaments (Girdin) expression, STAT3 and Akt phosphorylation in HCC cells. Introduction of STAT3 overexpression restored the scutellarin-downregulated Girdin expression, Akt activation, migration and invasion of HCC cells. Furthermore, induction of Girdin overexpression completely abrogated the inhibition of scutellarin on the Akt phosphorylation, migration and invasion of HCC cells. Scutellarin can inhibit HCC cell metastasis in vivo, and migration and invasion in vitro by down-regulating the STAT3/Girdin/Akt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞

    Science.gov (United States)

    Huang, Jing; Bridges, Lance C.; White, Judith M.

    2005-01-01

    A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176

  19. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  20. [Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].

    Science.gov (United States)

    Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan

    2018-02-01

    Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.

  1. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    Science.gov (United States)

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  2. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    International Nuclear Information System (INIS)

    Wu, Bin; Li, Ji; Huang, Damao; Wang, Weiwei; Chen, Yu; Liao, Youxiang; Tang, Xiaowei; Xie, Hongfu; Tang, Faqing

    2011-01-01

    migration and invasiveness of A431 cells through the inhibition of Ezrin expression, which leads to the suppression of tumor metastasis

  3. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.

    Science.gov (United States)

    Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Retnakumari, Archana Payickattu; Ramachandran, Ranjith; Gupta, Neha; Nair, Shantikumar; Koyakutty, Manzoor

    2014-04-01

    A multifunctional core-shell nanomedicine capable of inhibiting the migratory capacity of metastatic cancer cells followed by imparting cytotoxic stress by photodynamic action is reported. Based on in silico design, we have developed a core-shell nanomedicine comprising of ~80nm size poly(lactic-co-glycolic acid) (PLGA) nano-core encapsulating photosensitizer, m-tetra(hydroxyphenyl)chlorin (mTHPC), and ~20nm size albumin nano-shell encapsulating tyrosine kinase inhibitor, Dasatinib, which impair cancer migration. This system was prepared by a sequential process involving electrospray of polymer core and coacervation of protein shell. Cell studies using metastatic breast cancer cells demonstrated disruption of Src kinase involved in the cancer migration by albumin-dasatinib nano-shell and generation of photoactivated oxidative stress by mTHPC-PLGA nano-core. This unique combinatorial photo-chemo nanotherapy resulted synergistic cytotoxicity in ~99% of the motility-impaired metastatic cells. This approach of blocking cancer migration followed by photodynamic killing using rationally designed nanomedicine is a promising new strategy against cancer metastasis. A multifunctional core-shell nanomedicine capable of inhibiting metastatic cancer cell migration, in addition to inducing photodynamic effects, is described in this paper. The authors document cytotoxicity in approximately 99% of the studied metastatic breast cancer cells. Similar approaches would be a very welcome addition to the treatment protocols of advanced metastatic breast cancer and other types of neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2).

    Science.gov (United States)

    Wang, Beilei; Liu, Jinghui; Huang, Pu; Xu, Kailun; Wang, Hanying; Wang, Xiaofeng; Guo, Zonglou; Xu, Lihong

    2017-03-01

    The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017. © 2016 Wiley Periodicals, Inc.

  5. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells].

    Science.gov (United States)

    Sun, Licui; Lu, Jiaxi; Wang, Qin; Liu, Yiqun; Han, Feng; Yang, Yanhua; Zhang, Hongkun; Huang, Zhenwu

    2015-03-01

    To explore the effects of methylseleninic acid (MeSeA), selenomethionine (SeMet) and methylselenocysteine (MeSeCys) on proliferation, migration and adhesion of HeLa cells. HeLa cells were cultured and treated with MeSeA, SeMet and MeSeCys for 12 - 72 h respectively. MTT assay, healing assay and in vitro cell Matrigel adhesion assay were used to detect the proliferation, migration and adhesion of HeLa cells. Compared to the control group, the proliferation of HeLa cells was remarkably inhibited by MeSeA (P HeLa cells in MeSeA group was inhibited by 34% (P HeLa cells with inhibitions of 18% and 13% was in SeMet group in 4 h and 8 h. The inhibitions of HeLa cell migration in MeSeCys group was 28% (P HeLa cells in the MeSeA group, the SeMet group as well as the MeSeCys group were inhibited by 36% (P HeLa cell were effectively inhibited by MeSeA, while the adhesive function of HeLa cell was remarkably inhibited by MeSeCys.

  6. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  7. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  8. Inhibition of proliferation and migration of stricture fibroblasts by epithelial cell-conditioned media

    Directory of Open Access Journals (Sweden)

    Nilima Nath

    2015-01-01

    Conclusion: These results demonstrate the ability of ECCM to inhibit the proliferation and migration of stricture fibroblasts and present it as an effective adjunct in urethroplasty, which may influence stricture wound healing and inhibit the recurrence of stricture.

  9. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL (United States); Yusuf, Nabiha, E-mail: nabiha@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL (United States); Veteran Affairs Medical Center, Birmingham, University of Alabama at Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, AL (United States)

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  10. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  11. Wogonin suppresses melanoma cell B16-F10 invasion and migration by inhibiting Ras-medicated pathways.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available The patients diagnosed with melanoma have a bad prognosis for early regional invasion and distant metastases. Wogonin (5,7-dihydroxy-8-methoxyflavone is one of the active components of flavonoids that extracts from Scutellariae radix. Several previous studies reported that wogonin possesses antitumor effect against leukemia, gastrointestinal cancer and breast cancer. In this study, we used melanoma cell B16-F10 to further investigate the anti-invasive and anti-migratory activity of wogonin. Our date showed that wogonin caused suppression of cell migration, adhesion, invasion and actin remodeling by inhibiting the expression of matrix metalloproteinase-2 and Rac1 in vitro. Wogonin also reduced the number of the tumor nodules on the whole surface of the lung in vivo. Furthermore, the examination of mechanism revealed that wogonin inhibited Extracellular Regulated protein Kinases and Protein Kinase B pathways, which are both medicated by Ras. Insulin-like growth factor-1-induced or tumor necrosis factor-α-induced invasion was also inhibited by wogonin. Therefore, the inhibitory mechanism of melanoma cell invasion by wogonin might be elucidated.

  12. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan, E-mail: wangpengyuan2014@126.com

    2015-12-04

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF-β1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased expression of F-actin in SW-480 cells.

  13. Cytoglobin inhibits migration through PI3K/AKT/mTOR pathway in fibroblast cells.

    Science.gov (United States)

    Demirci, Selami; Doğan, Ayşegül; Apdik, Hüseyin; Tuysuz, Emre Can; Gulluoglu, Sukru; Bayrak, Omer Faruk; Şahin, Fikrettin

    2018-01-01

    Cell proliferation and migration are crucial in many physiological processes including development, cancer, tissue repair, and wound healing. Cell migration is regulated by several signaling molecules. Identification of genes related to cell migration is required to understand molecular mechanism of non-healing chronic wounds which is a major concern in clinics. In the current study, the role of cytoglobin (CYGB) gene in fıbroblast cell migration and proliferation was described. L929 mouse fibroblast cells were transduced with lentiviral particles for CYGB and GFP, and analyzed for cell proliferation and migration ability. Fibroblast cells overexpressing CYGB displayed decreased cell proliferation, colony formation capacity, and cell migration. Phosphorylation levels of mTOR and two downstream effectors S6 and 4E-BP1 which take part in PI3K/AKT/mTOR signaling declined in CYGB-overexpressing cells. Microarray analysis indicated that CYGB overexpression leads to downregulation of cell proliferation, migration, and tumor growth associated genes in L929 cell line. This study demonstrated the role of CYGB in fibroblast cell motility and proliferation. CYGB could be a promising candidate for further studies as a potential target for diseases related to cell migration such as cancer and chronic wound treatment.

  14. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    Science.gov (United States)

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  15. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Felipe, K.B., E-mail: kakabettega@yahoo.com.br [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Farias, M.S., E-mail: mirellesfarias@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Glorieux, C., E-mail: christophe.glorieux@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Valenzuela, M., E-mail: mavalenzuela@med.uchile.cl [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Sid, B., E-mail: brice.sid@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); and others

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.

  16. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pourgholami, Mohammad H., E-mail: mh.pourgholami@unsw.edu.au [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia); Khachigian, Levon M.; Fahmy, Roger G. [Centre for Vascular Research, The University of New South Wales, Department of Haematology, The Prince of Wales Hospital, Sydney (Australia); Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia)

    2010-07-09

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  17. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H.; Khachigian, Levon M.; Fahmy, Roger G.; Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson

    2010-01-01

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  18. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    Science.gov (United States)

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  19. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  20. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

    Science.gov (United States)

    Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V

    2018-04-01

    G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways.

    Science.gov (United States)

    Hung, Tung-Wei; Chen, Pei-Ni; Wu, Hsu-Chen; Wu, Sheng-Wen; Tsai, Pao-Yu; Hsieh, Yih-Shou; Chang, Horng-Rong

    2017-01-01

    Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.

  2. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Panshi Zhang

    Full Text Available Treatments for triple-negative breast cancer (TNBC are limited; intermediate-conductance calcium-activated potassium (SK4 channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC and western blotting (WB, increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05. Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (p<0.05. Further investigation revealed that treatment with epidermal growth factor (EGF/basic fibroblast growth factor (bFGF caused MDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  3. PDGFBB promotes PDGFRα-positive cell migration into artificial bone in vivo

    International Nuclear Information System (INIS)

    Yoshida, Shigeyuki; Iwasaki, Ryotaro; Kawana, Hiromasa; Miyauchi, Yoshiteru; Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu

    2012-01-01

    Highlights: ► We examined effects of PDGFBB in PDGFRα positive cell migration in artificial bones. ► PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. ► PDGFBB promoted PDGFRα positive cell migration into artificial bones but not osteoblast proliferation. ► PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFβ) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  4. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro.

    Science.gov (United States)

    García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-03-01

    Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.

  5. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Wu

    Full Text Available Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA, dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.

  6. Differential migration and proliferation of geometrical ensembles of cell clusters

    International Nuclear Information System (INIS)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-01-01

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  7. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  8. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  9. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  10. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    Science.gov (United States)

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  11. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    Science.gov (United States)

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions. © 2013 Wiley Publishing Asia Pty Ltd.

  12. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  13. Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Science.gov (United States)

    Wu, Weibin; Sun, Zhichao; Wu, Jingwen; Peng, Xiaomin; Gan, Huacheng; Zhang, Chunyi; Ji, Lingling; Xie, Jianhui; Zhu, Haiyan; Ren, Shifang

    2012-01-01

    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src. PMID:22238675

  14. [Over-expression of miR-151a-3p inhibits proliferation and migration of PC-3 prostate cancer cells].

    Science.gov (United States)

    Zhang, Yi; Hao, Tongtong; Zhang, Han; Wei, Pengtao; Li, Xiaohui

    2018-03-01

    Objective To observe the effect of microRNA-151a-3p (miR-151a-3p) up-regulation on the proliferation and migration of prostate cancer cells and explore the possible molecular mechanism. Methods The expression of miR-151a-3p in PC-3M, C4-2B, 22RV1, DU-145, PC-3, LNCap human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time fluorescence quantitative PCR. PC-3 cells with the lowest expression of miR-151a-3p were used for subsequent experiments. Bioinformatics and dual-luciferase reporter assay were performed to predict and test potential target genes of miR-151a-3p. The miR-151a-3p mimics or negative control microRNAs (miR-NCs) were transfected into PC-3 cells. Real-time fluorescence quantitative PCR was used to detect the expression of miR-151a-3p and potential target gene mRNA. The protein expressions of target genes and downstream signaling pathway proteins were analyzed by Western blotting. The proliferation of PC-3 cells was examined by MTT assay, and the migration of PC-3 cells was detected by Transwell TM assay. Results The expression level of miR-151a-3p in the prostate cancer cells was significantly lower than that in RWPE-1 normal human prostate epithelial cells. PC-3 cells had the lowest expression level of miR-151a-3p. The bioinformatics and dual-luciferase reporter assay showed that NEK2 was the potential target gene for miR-151a-3p. After transfection with miR-151a-3p mimics, the expression of miR-151a-3p in PC-3 cells significantly increased and the expression of NEK2 mRNA significantly decreased. The protein expressions of PI3K-AKT-mTOR signaling pathway were also reduced. Up-regulation of miR-151a-3p significantly inhibited the proliferation and migration of PC-3 cells. Conclusion The expression of miR-151a-3p is reduced in prostate cancer cells. Up-regulation of miR-151a-3p can inhibit the proliferation and migration of P-3 in prostate cancer by decreasing the expression of NEK2 and PI3K

  15. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    Science.gov (United States)

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  17. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeyuki [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro; Kawana, Hiromasa [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyauchi, Yoshiteru [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Katsuyama, Eri; Fujie, Atsuhiro [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hao, Wu [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  18. Basics elements for modelling the dynamics of cell migration in cell culture

    International Nuclear Information System (INIS)

    FarIas, Ro; Vidal, Cs; Rapacioli, M; Flores, V

    2007-01-01

    This paper introduces some basic elements for modelling the dynamics of cell migration activity over a bi-dimensional substratum. A square matrix, representing the substratum, is implemented in order to generate virtual cells with an initial random uniform distribution, with the ability to freely move within the matrix and to interact with each others by mean of adhesive forces. Two different conditions were examined: A) cells can freely move and after contacting with another cell they both completely inhibit their migration; B) cells that come into contact have the ability to rotate respect to each other without losing their contacts and retaining the ability to move together but at a slower rate, being the decrease in the rate of movement proportional to the number of contacting cells. The dynamics of the migration process in these two conditions was evaluated by recording the evolution of several parameters as a function of time. Minor modifications in some parameters (mobility, intensity of cell-cell and cell-substratum adhesiveness) significantly change the dynamics and the final result of the virtual migrating cells

  19. MiR-137 inhibited cell proliferation and migration of vascular smooth muscle cells via targeting IGFBP-5 and modulating the mTOR/STAT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jin Pan

    Full Text Available Abnormal proliferation of vascular smooth muscle cells (VSMCs contributes to the development of cardiovascular diseases. Studies have shown the great impact of microRNAs (miRNAs on the cell proliferation of VSMCs. This study examined the effects of miR-137 on the cell proliferation and migration of VSMCs and also explored the underlying molecular mechanisms. The mRNA and protein expression levels were determined by qRT-PCR and western blot assays, respectively. The CCK-8 assay, wound healing assay and transwell migration assay were performed to measure cell proliferation and migration of VSMCs. The miR-137-targeted 3'untranslated region of insulin-like growth factor-binding protein-5 (IGFBP-5 was confirmed by luciferase reporter assay. Platelet-derived growth factor-bb (PDGF-bb treatment enhanced cell proliferation and suppressed the expression of miR-137 in VSMCs. The gain-of-function and loss-of-function assays showed that overexpression of miR-137 suppressed the cell proliferation and migration, and also inhibited the expression of matrix genes of VSMCs; down-regulation of miR-137 had the opposite effects on VSMCs. Bioinformatics analysis and luciferase report assay results showed that IGFBP-5 was a direct target of miR-137, and miR-137 overexpression suppressed the IGFBP-5 expression and down-regulation of miR-137 increased the IGFBP-5 expression in VSMCs. PDGF-bb treatment also increased the IGFBP-5 mRNA expression. In addition, enforced expression of IGFBP-5 reversed the inhibitory effects of miR-137 on cell proliferation and migration of VSMCs. More importantly, overexpression of miR-137 also suppressed the activity of mTOR/STAT3 signaling in VSMCs. Taken together, the results suggest that miR-137 may suppress cell proliferation and migration of VSMCs via targeting IGFBP-5 and modulating mTOR/STAT3 signaling pathway.

  20. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan

    2013-01-01

    B1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U...... processing. RESULTS: The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration....... Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation. CONCLUSIONS: Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma...

  1. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  2. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D.

    Science.gov (United States)

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-02-17

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  3. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  4. Lung cells support osteosarcoma cell migration and survival.

    Science.gov (United States)

    Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard

    2017-01-25

    Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline

  5. Rapid and dynamic arginylation of the leading edge β-actin is required for cell migration.

    Science.gov (United States)

    Pavlyk, Iuliia; Leu, Nicolae A; Vedula, Pavan; Kurosaka, Satoshi; Kashina, Anna

    2018-04-01

    β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration. We found that arginylated β-actin is concentrated at the leading edge of lamellipodia and that this enrichment is abolished after serum starvation as well as in contact-inhibited cells in confluent cultures, suggesting that arginylated β-actin at the cell leading edge is coupled to active migration. Arginylated actin levels exhibit dynamic changes in response to cell stimuli, lowered after serum starvation and dramatically elevating within minutes after cell stimulation by readdition of serum or lysophosphatidic acid. These dynamic changes require active translation and are not seen in confluent contact-inhibited cell cultures. Microinjection of arginylated actin antibodies into cells severely and specifically inhibits their migration rates. Together, these data strongly suggest that arginylation of β-actin is a tightly regulated dynamic process that occurs at the leading edge of locomoting cells in response to stimuli and is integral to the signaling network that regulates cell migration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  7. Proteolytic Enzymes Clustered in Specialized Plasma-Membrane Domains Drive Endothelial Cells' Migration.

    Directory of Open Access Journals (Sweden)

    Monica Salamone

    Full Text Available In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a "resting" phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4 and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs or Serine Integral Membrane Peptidases (SIMPs caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process.

  8. Proteolytic Enzymes Clustered in Specialized Plasma-Membrane Domains Drive Endothelial Cells' Migration.

    Science.gov (United States)

    Salamone, Monica; Carfì Pavia, Francesco; Ghersi, Giulio

    2016-01-01

    In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a "resting" phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process.

  9. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration.

    Science.gov (United States)

    Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed

    2007-01-15

    Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.

  10. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Directory of Open Access Journals (Sweden)

    Mian M K Shahzad

    Full Text Available The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA. MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  11. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Science.gov (United States)

    Shahzad, Mian M K; Felder, Mildred; Ludwig, Kai; Van Galder, Hannah R; Anderson, Matthew L; Kim, Jong; Cook, Mark E; Kapur, Arvinder K; Patankar, Manish S

    2018-01-01

    The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  12. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  13. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells.

    Science.gov (United States)

    Zhang, Bo; Li, Angdi; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2016-06-10

    Proteinaceous bioactive substances and pharmaceuticals are most conveniently administered orally. However, the facing problems are the side effects of proteolytic degradation and denaturation in the gastrointestinal tract. In recent years, lactic acid bacteria (LAB) have been verified to be a promising delivery vector for susceptible functional proteins and drugs. KiSS-1 peptide, a cancer suppressor, plays a critical role in inhibiting cancer metastasis and its activity has been confirmed by direct administration. However, whether this peptide can be functionally expressed in LAB and exert activity on cancer cells, thus providing a potential alternative administration manner in the future, has not been demonstrated. A recombinant Lactococcus lactis strain NZ9000-401-kiss1 harboring a plasmid containing the gene of the tumor metastasis-inhibiting peptide KiSS1 was constructed. After optimization of the nisin induction conditions, the recombinant strain efficiently secreted KiSS1 with a maximum detectable amount of 27.9 μg/ml in Dulbecco's Modified Eagle medium. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide and would healing assays, respectively, indicated that the secreted KiSS1 peptide remarkably inhibited HT-29 cell proliferation and migration. Furthermore, the expressed KiSS1 was shown to induce HT-29 cell morphological changes, apoptosis and reduce the expression of matrix metalloproteinase 9 (MMP-9) at both mRNA and protein levels. A recombinant L. lactis NZ9000-401-kiss1 successfully expressing the human kiss1 was constructed. The secreted KiSS1 peptide inhibited human HT-29 cells' proliferation and migration probably by invoking, or mediating the cell-apoptosis pathway and by down regulating MMP-9 expression, respectively. Our results suggest that L. lactis is an ideal cell factory for secretory expression of tumor metastasis-inhibiting peptide KiSS1, and the KiSS1-producing L. lactis strain may serve as a new tool for cancer therapy in

  14. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  15. Bleb Expansion in Migrating Cells Depends on Supply of Membrane from Cell Surface Invaginations.

    Science.gov (United States)

    Goudarzi, Mohammad; Tarbashevich, Katsiaryna; Mildner, Karina; Begemann, Isabell; Garcia, Jamie; Paksa, Azadeh; Reichman-Fried, Michal; Mahabaleshwar, Harsha; Blaser, Heiko; Hartwig, Johannes; Zeuschner, Dagmar; Galic, Milos; Bagnat, Michel; Betz, Timo; Raz, Erez

    2017-12-04

    Cell migration is essential for morphogenesis, organ formation, and homeostasis, with relevance for clinical conditions. The migration of primordial germ cells (PGCs) is a useful model for studying this process in the context of the developing embryo. Zebrafish PGC migration depends on the formation of cellular protrusions in form of blebs, a type of protrusion found in various cell types. Here we report on the mechanisms allowing the inflation of the membrane during bleb formation. We show that the rapid expansion of the protrusion depends on membrane invaginations that are localized preferentially at the cell front. The formation of these invaginations requires the function of Cdc42, and their unfolding allows bleb inflation and dynamic cell-shape changes performed by migrating cells. Inhibiting the formation and release of the invaginations strongly interfered with bleb formation, cell motility, and the ability of the cells to reach their target. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. ERK-dependent and -independent pathways trigger human neural progenitor cell migration

    International Nuclear Information System (INIS)

    Moors, Michaela; Cline, Jason E.; Abel, Josef; Fritsche, Ellen

    2007-01-01

    Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways

  17. Osteopontin Promotes Cell Migration and Invasion, and Inhibits Apoptosis and Autophagy in Colorectal Cancer by activating the p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ren-hong Huang

    2017-04-01

    Full Text Available Background: Osteopontin (OPN is highly expressed in colorectal cancer (CRC and is associated with disease progression in vivo. High levels of OPN have been demonstrated to predict low survival rates in CRC. Autophagy is a process of self-digestion, which is thought to play a significant role in carcinogenesis. However, the mechanisms of OPN's effects on CRC cell autophagy have not been elucidated. Therefore, we aimed to investigate possible mechanisms of OPN's effects on CRC autophagy. Methods: HCT116 cell proliferation, apoptosis, and migration and invasion ability were identified by cell counting k¡t-8 assay, flow cytometry, wound healing assay, and transwell chamber invasion assay, respectively. The ratios of proteins LC3-II/LC3-I, P62, and Atg7 were analyzed by Western-blot. Expressions of Beclin-1, Atg4b, Bnip3, and Vps34, both in transcriptional and translational levels, were analyzed and compared by RT-PCR and Western blot. Immunofluorescence and co-focusing experiments were used to investigate the formation of autophagosomes. Results: The results showed that OPN can promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis. It was also demonstrated that OPN could inhibit cell autophagy. Further experiments revealed that the inhibitory effect of OPN on autophagy could be reversed by blocking the p38 MAPK pathway in HCT116 cells. Conclusion: OPN is involved in HCT116 cell progression and is capable of inhibiting cell autophagy possibly by activating the p38 MAPK signaling pathway, implying that OPN could be a potential novel molecular therapeutic biomarker in patients with CRC.

  18. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse

    Science.gov (United States)

    Schill, Ellen Merrick; Lake, Jonathan I.; Tusheva, Olga A.; Nagy, Nandor; Bery, Saya K.; Foster, Lynne; Avetisyan, Marina; Johnson, Stephen L.; Stenson, William F.; Goldstein, Allan M.; Heuckeroth, Robert O.

    2016-01-01

    Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/− mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children. PMID:26586201

  19. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  20. Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells.

    Science.gov (United States)

    Li, Ran; Dong, Juan; Bu, Xiu-Qin; Huang, Yong; Yang, Jing-Yu; Dong, Xuan; Liu, Jie

    2018-02-01

    Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence, and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15, and 20 ng/mL, respectively). Transwell assay was performed in order to measure the migration abilities, positive β-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/mL group, in the 5, 10, 15, and 20 ng/mL groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of β-galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/mL groups in comparison to the 5 and 10 ng/mL groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence. © 2017 Wiley Periodicals, Inc.

  1. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2.

    Science.gov (United States)

    Du, Ying; Wang, Lingfei; Wu, Honghai; Zhang, Yiyin; Wang, Kan; Wu, Dingting

    2015-09-01

    Human microRNA (miR)-141 is a member of the miR‑200 family, which has been reported to be downregulated in gastric cancer, and involved in the proliferation of gastric cancer cells. However, little is currently known regarding its role in the migration of gastric cancer. The present study investigated the function of miR‑141 in gastric cancer cell migration, and evaluated the contribution of zinc finger E‑box‑binding homeobox 1 and 2 (ZEB1/2) in miR‑141 mediated migration of gastric cancer cells. The expression levels of miR‑141 and its potential ZEB1/2 targets were examined by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. The migration of SGC‑7901 and HGC‑27 gastric cancer cells, which had been transfected with an miRNA precursor, was examined by cell migration and wound healing assays. A luciferase activity assay was used to validate whether ZEB1/2 was a direct target of miR‑141. The results demonstrated that overexpression of miR‑141 markedly inhibited the migration of gastric cancer cells in vitro. Forced overexpression of miR‑141 significantly reduced the luciferase activity of the 3'‑untranslated region of ZEB2 in gastric cancer cells. Furthermore, the mRNA and protein expression levels of ZEB2 were reduced in cells overexpressing miR‑141, whereas the protein expression levels of E‑cadherin were increased. In gastric tumor samples the expression levels of ZEB2 were inversely correlated with the expression of miR‑141. These results suggest that miR‑141 may be involved in the inhibition of gastric cancer cell migration, and that ZEB2 is a target gene of miR-141.

  2. Caryophyllene oxide exhibits anti-cancer effects in MG-63 human osteosarcoma cells via the inhibition of cell migration, generation of reactive oxygen species and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Zheng Pan

    2016-12-01

    Full Text Available The main objective of the present study was to evaluate the antitumor and apoptotic effects of caryophyllene oxide in MG-63 human osteosarcoma cells. Cell viability of these cells was evaluated by MTT assay while as in vitro wound healing assay was used to study the effect of caryophyllene oxide on cell migration. Fluorescence microscopy and transmission electron microscopy were used to study the changes in cell morphology once the cells undergo apoptosis. Caryophyllene oxide significantly led to cytotoxicity in MG-63 cells showing dose-dependent as well as time-dependent effects. Caryophyllene oxide led to an inhibition of wound closure significantly. At caryophyllene oxide doses of 20, 80 and 120 µM, the percentage of cell migration was shown to be 94.2, 67.1 and 14.8% respectively. With an increase in the caryophyllene oxide dose, the extent of apoptosis also increased characterized by cellular shrinkage, membrane blebbing, chromatin condensation and apoptotic body formation.

  3. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  4. Matrine inhibits the adhesion and migration of BCG823 gastric cancer cells by affecting the structure and function of the vasodilator-stimulated phosphoprotein (VASP).

    Science.gov (United States)

    Zhang, Jing-wei; Su, Ke; Shi, Wen-tao; Wang, Ying; Hu, Peng-chao; Wang, Yang; Wei, Lei; Xiang, Jin; Yang, Fang

    2013-08-01

    Vasodilator-stimulated phosphoprotein (VASP) expression is upregulated in human cancers and correlates with more invasive advanced tumor stages. The aim of this study was to elucidate the mechanisms by which matrine, an alkaloid derived from Sophora species plants, acted on the VASP protein in human gastric cancer cells in vitro. VASP was expressed and purified. Intrinsic fluorescence spectroscopy was used to study the binding of matrine to VASP. CD spectroscopy was used to examine the changes in the VASP protein secondary structure. Human gastric carcinoma cell line BGC823 was tested. Scratch wound and cell adhesion assays were used to detect the cell migration and adhesion, respectively. Real-time PCR and Western blotting assays were used to measure mRNA and protein expression of VASP. In the fluorescence assay, the dissociation constant for binding of matrine to VASP protein was 0.86 mmol/L, thus the direct binding between the two molecules was weak. However, matrine (50 μg/mL) caused obvious change in the secondary structure of VASP protein shown in CD spectrum. Treatments of BGC823 cells with matrine (50 μg/mL) significantly inhibited the cell migration and adhesion. The alkaloid changed the subcellular distribution of VASP and formation of actin stress fibers in BGC823 cells. The alkaloid caused small but statistically significant decreases in VASP protein expression and phosphorylation, but had no significant effect on VASP mRNA expression. Matrine modulates the structure, subcellular distribution, expression and phosphorylation of VASP in human gastric cancer cells, thus inhibiting the cancer cell adhesion and migration.

  5. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  6. Allosuppressor T lymphocytes abolish migration inhibition factor production in autoimmune thyroid disease: evidence from radiosensitivity experiments

    International Nuclear Information System (INIS)

    Topliss, D.J.; Okita, N.; Lewis, M.; Row, V.V.; Volpe, R.

    1981-01-01

    The ability of normal T lymphocytes to abolish the production of migration inhibition factor by antigen-sensitized T lymphocytes of Graves' disease (GD) and Hashimoto's thyroiditis (HT) in response to thyroid antigen has been studied by a modified migration inhibition factor test using isolated T lymphocytes alone. The production of migration inhibition factor was consistently abolished when normal T lymphocytes were mixed with GD or HT T lymphocytes in various ratios (1:9, 2:8, 5:5) as reported previously (Okita et al., 1980b). However, prior in-vitro irradiation (1000 rad) of the normal T lymphocytes resulted in loss of their ability to abolish migration inhibition factor production by the antigen-sensitized T lymphocytes of GD and HT. The effect is consistent with the radiosensitivity of suppressor T lymphocytes and indicates that the effect of normal T lymphocytes on GD and HT T lymphocytes is one of allosuppression. The results support the view that there is a defect in suppressor T cell function in GD and HT. (author)

  7. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    Science.gov (United States)

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  8. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1

    Directory of Open Access Journals (Sweden)

    Zih-Yun Wu

    2016-03-01

    Full Text Available Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9 activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  10. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang; He, Zehong; Wang, Xiuei; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn

    2017-04-01

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.

  11. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  12. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  13. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  14. Multiple modes of proepicardial cell migration require heartbeat.

    Science.gov (United States)

    Plavicki, Jessica S; Hofsteen, Peter; Yue, Monica S; Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2014-05-15

    The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with "donor" hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO

  15. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  16. [Pt(O,O’-acac)(γ-acac)(DMS)] Alters SH-SY5Y Cell Migration and Invasion by the Inhibition of Na+/H+ Exchanger Isoform 1 Occurring through a PKC-ε/ERK/mTOR Pathway

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Calabriso, Nadia; Cossa, Luca Giulio; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2014-01-01

    We previously showed that [Pt(O,O’-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibites cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation. PMID:25372487

  17. [Pt(O,O'-acac)(γ-acac)(DMS)] alters SH-SY5Y cell migration and invasion by the inhibition of Na+/H+ exchanger isoform 1 occurring through a PKC-ε/ERK/mTOR Pathway.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Calabriso, Nadia; Cossa, Luca Giulio; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2014-01-01

    We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.

  18. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    Science.gov (United States)

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion.

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    Full Text Available Gremlin-1, a bone morphogenetic protein (BMP antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2 expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

  20. Migration of acute lymphoblastic leukemia cells into human bone marrow stroma.

    Science.gov (United States)

    Makrynikola, V; Bianchi, A; Bradstock, K; Gottlieb, D; Hewson, J

    1994-10-01

    Most cases of acute lymphoblastic leukemia (ALL) arise from malignant transformation of B-cell precursors in the bone marrow. Recent studies have shown that normal and leukemic B-cell precursors bind to bone marrow stromal cells through the beta-1 integrins VLA-4 and VLA-5, thereby exposing early lymphoid cells to regulatory cytokines. It has been recently reported that the pre-B cell line NALM-6 is capable of migrating under layers of murine stromal cells in vitro (Miyake et al. J Cell Biol 1992;119:653-662). We have further analyzed leukemic cell motility using human bone marrow fibroblasts (BMF) as a stromal layer. The precursor-B ALL cell line NALM-6 rapidly adhered to BMF, and underwent migration or tunneling into BMF layers within 5 h, as demonstrated by light and electron microscopy, and confirmed by a chromium-labeling assay. Migration was also observed with the precursor-B ALL lines Reh and KM-3, with a T leukemia line RPMI-8402, the monocytic line U937, and the mature B line Daudi. In contrast, mature B (Raji), myeloid (K562, HL-60), and T lines (CCRF-CEM, MOLT-4) did not migrate. When cases of leukemia were analyzed, BMF migration was largely confined to precursor-B ALL, occurring in eight of 13 cases tested. Of other types of leukemia, migration was observed in one of four cases of T-ALL, but no evidence was seen in six acute myeloid leukemias and two patients with chronic lymphocytic leukemia. Only minimal migration into BMF was observed with purified sorted CD10+ CD19+ early B cells from normal adult marrow, while normal mature B lymphocytes from peripheral blood did not migrate. ALL migration was inhibited by monoclonal antibodies to the beta sub-unit of the VLA integrin family, and by a combination of antibodies to VLA-4 and VLA-5. Partial inhibition was also observed when leukemic cells were incubated with antibodies to VLA-4, VLA-5, or VLA-6 alone. In contrast, treatment of stromal cells with antibodies to vascular cell adhesion molecule or

  1. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  2. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells

    International Nuclear Information System (INIS)

    Jin, Feng-zhen; Yu, Chao; Zhao, De-zhang; Wu, Ming-jun; Yang, Zhu

    2013-01-01

    O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins. In recent years, the roles of O-GlcNAcylation in several human malignant tumors have been investigated, and O-GlcNAcylation was found to be linked to cellular features relevant to metastasis. In this study, we modeled four diverse ovarian cancer cells and investigated the effects of O-GlcNAcylation on ovarian cancer cell migration. We found that total O-GlcNAcylation level was elevated in HO-8910PM cells compared to OVCAR3 cells. Additionally, through altering the total O-GlcNAcylation level by OGT silencing or OGA inhibition, we found that the migration of OVCAR3 cells was dramatically enhanced by PUGNAc and Thiamet G treatment, and the migration ability of HO-8910PM cells was significantly inhibited by OGT silencing. Furthermore, we also found that the expression of E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM cells. These results indicate that O-GlcNAcylation could enhance ovarian cancer cell migration and decrease the expression of E-cadherin. Our studies also suggest that O-GlcNAcylation might become another potential target for the therapy of ovarian cancer. -- Highlights: • We examine the migration potential of diverse ovarian cancer cells. • We examine the total O-GlcNAcylation level of diverse ovarian cancer cells. • Increasing O-GlcNAcylation level will enhance the migration of ovarian cancer cells. • Reducing O-GlcNAcylation level will inhibit the migration of ovarian cancer cells. • The mechanism explains O-GlcNAcylation enhance ovarian cancer cell migration

  3. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration.

  4. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    International Nuclear Information System (INIS)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk

    2016-01-01

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration

  5. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  6. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels.

    Science.gov (United States)

    Hwang, Soojin; Lee, Dong-Hoon; Lee, In-Kyu; Park, Young Mi; Jo, Inho

    2014-04-28

    Far-infrared (FIR) radiation is known to lessen the risk of angiogenesis-related diseases including cancer. Because deficiency of secretory clusterin (sCLU) has been reported to inhibit angiogenesis of endothelial cells (EC), we investigated using human umbilical vein EC (HUVEC) whether sCLU mediates the inhibitory effects of FIR radiation. Although FIR radiation ranging 3-25μm wavelength at room temperature for 60min did not alter EC viability, further incubation in the culture incubator (at 37°C under 5% CO2) after radiation significantly inhibited EC proliferation, in vitro migration, and tube formation in a time-dependent manner. Under these conditions, we found decreased sCLU mRNA and protein expression in HUVEC and decreased sCLU protein secreted in culture medium. Expectedly, the replacement of control culture medium with the FIR-irradiated conditioned medium significantly decreased wound closure and tube formation of HUVEC, and vice versa. Furthermore, neutralization of sCLU with anti-sCLU antibody also mimicked all observed inhibitory effects of FIR radiation. Moreover, treatment with recombinant human sCLU protein completely reversed the inhibitory effects of FIR radiation on EC migration and angiogenesis. Lastly, vascular endothelial growth factor also increased sCLU secretion in the culture medium, and wound closure and tube formation of HUVEC, which were significantly reduced by FIR radiation. Our results demonstrate a novel mechanism by which FIR radiation inhibits the proliferation, migration, and angiogenesis of HUVEC, via decreasing sCLU. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1

    NARCIS (Netherlands)

    H. Hammad (Hamida); H.J. de Heer; T. Soullié (Thomas); H.C. Hoogsteden (Henk); F. Trottein; B.N.M. Lambrecht (Bart)

    2003-01-01

    textabstractPGD(2) is the major mediator released by mast cells during allergic responses, and it acts through two different receptors, the D prostanoid receptor 1 (DP1) and DP2, also known as CRTH2. Recently, it has been shown that PGD(2) inhibits the migration of epidermal

  8. MiR-200a enhances the migrations of A549 and SK-MES-1 cells by ...

    Indian Academy of Sciences (India)

    By a series of gain-of-function and loss-offunction studies, over-expression of miR-200a was indicated to enhance cells migration, and its knock-down inhibited migration of cells in NSCLC cell lines. Furthermore, miR-200a was identified to induce TSPAN1 expression which was related to migration. TSPAN1 was proved to ...

  9. Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2013-01-01

    Full Text Available Cardiotoxin III (CTXIII, isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways.

  10. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  11. Astragaloside IV Downregulates β-Catenin in Rat Keratinocytes to Counter LiCl-Induced Inhibition of Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Fu-Lun Li

    2012-01-01

    Full Text Available Re-epithelialization is a crucial step towards wound healing. The traditional Chinese medicine, Astragalus membranaceus (Fisch Bge, has been used for hundreds of years for many kinds of ulcerated wounds. Recent research has identified the active compound in this drug as astragaloside IV (AS-IV, but the underlying molecular mechanisms of its therapeutic action on keratinocytes remain poorly understood. In this study, we used an in vitro model of ulcer-like wound processes, lithium chloride (LiCl-induced cultured mouse keratinocytes, to investigate the effects of AS-IV treatment. The effects on cell proliferation were evaluated by the MTS/PMS colorimetric assay, effects on cell migration were determined by a wound-healing scratch experiment, effects on the cell cycle were analyzed by flow cytometry, and effects on protein expression were analyzed by immunoblotting and immunofluorescence. LiCl strongly inhibited cell proliferation and migration, up-regulated β-catenin expression, and down-regulated proliferating cell nuclear antigen (PCNA expression. AS-IV treatment attenuat the inhibition of proliferation and migration, significantly reducing the enhanced β-catenin expression, and recovering PCNA and β-tubulin expression. Thus, AS-IV mediates mouse keratinocyte proliferation and migration via regulation of the Wnt signaling pathway. Down-regulating β-catenin to increase keratinocyte migration and proliferation is one mechanism by which AS-IV can promote ulcerated wound healing.

  12. Vitamin D attenuates sphingosine-1-phosphate (S1P)-mediated inhibition of extravillous trophoblast migration.

    Science.gov (United States)

    Westwood, Melissa; Al-Saghir, Khiria; Finn-Sell, Sarah; Tan, Cherlyn; Cowley, Elizabeth; Berneau, Stéphane; Adlam, Daman; Johnstone, Edward D

    2017-12-01

    Failure of trophoblast invasion and remodelling of maternal blood vessels leads to the pregnancy complication pre-eclampsia (PE). In other systems, the sphingolipid, sphingosine-1-phosphate (S1P), controls cell migration therefore this study determined its effect on extravillous trophoblast (EVT) function. A transwell migration system was used to assess the behaviour of three trophoblast cell lines, Swan-71, SGHPL-4, and JEG3, and primary human trophoblasts in the presence or absence of S1P, S1P pathway inhibitors and 1,25(OH) 2 D 3 . QPCR and immunolocalisation were used to demonstrate EVT S1P receptor expression. EVTs express S1P receptors 1, 2 and 3. S1P inhibited EVT migration. This effect was abolished in the presence of the specific S1PR2 inhibitor, JTE-013 (p S1P alone) whereas treatment with the S1R1/3 inhibitor, FTY720, had no effect. In other cell types S1PR2 is regulated by vitamin D; here we found that treatment with 1,25(OH) 2 D 3 for 48 or 72 h reduces S1PR2 (4-fold; S1P did not inhibit the migration of cells exposed to 1,25(OH) 2 D 3 (p S1P receptor isoforms, S1P predominantly signals through S1PR2/Gα 12/13 to activate Rho and thereby acts as potent inhibitor of EVT migration. Importantly, expression of S1PR2, and therefore S1P function, can be down-regulated by vitamin D. Our data suggest that vitamin D deficiency, which is known to be associated with PE, may contribute to the impaired trophoblast migration that underlies this condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of shear stress on the migration of hepatic stellate cells.

    Science.gov (United States)

    Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu

    2018-01-01

    When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.

  14. A comparative assessment of e-cigarette aerosols and cigarette smoke on in vitro endothelial cell migration.

    Science.gov (United States)

    Taylor, Mark; Jaunky, Tomasz; Hewitt, Katherine; Breheny, Damien; Lowe, Frazer; Fearon, Ian M; Gaca, Marianna

    2017-08-05

    Cigarette smoking is a risk factor for several diseases. There has been a steep increase in the use of e-cigarettes that may offer a safer alternative to cigarette smoking. In vitro models of smoking-related diseases may provide valuable insights into disease mechanisms associated with tobacco use and could be used to assess e-cigarettes. We previously reported the application of a 'scratch wound' assay, measuring endothelial cell migration rate following artificial wounding, in the presence or absence of cigarette smoke extracts. This study reports the comparative effects of two commercial e-cigarette products (Vype ePen and Vype eStick) and a scientific reference cigarette (3R4F) on endothelial migration in vitro. Puff-matched extracts were generated using the Health Canada Intense (HCI) regime for cigarettes and a modified HCI for e-cigarettes. Exposure to 3R4F extract (20h) induced concentration-dependent inhibition of endothelial cell migration, with complete inhibition at concentrations >20%. E-cigarette extracts did not inhibit migration, even at double the 3R4F extract nicotine concentration, allowing cells to migrate into the wounded area. Our data demonstrate that e-cigarettes do not induce the inhibition of endothelial cell migration in vitro when compared to 3R4F. The scratch wound assay enables the comparative assessment between tobacco and nicotine products in vitro. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1.

    Science.gov (United States)

    Komaravolu, Ravi K; Adam, Christian; Moonen, Jan-Renier A J; Harmsen, Martin C; Goebeler, Matthias; Schmidt, Marc

    2015-01-01

    The MEK5/Erk5 pathway mediates beneficial effects of laminar flow, a major physiological factor preventing vascular dysfunction. Forced Erk5 activation induces a protective phenotype in endothelial cell (EC) that is associated with a dramatically decreased migration capacity of those cells. Transcriptional profiling identified the Krüppel-like transcription factors KLF2 and KLF4 as central mediators of Erk5-dependent gene expression. However, their downstream role regarding migration is unclear and relevant secondary effectors remain elusive. Here, we further investigated the mechanism underlying Erk5-dependent migration arrest in ECs. Our experiments reveal KLF2-dependent loss of the pro-migratory Rac/Cdc42 mediator, p21-activated kinase 1 (PAK1), as an important mechanism of Erk5-induced migration inhibition. We show that endothelial Erk5 activation by expression of a constitutively active MEK5 mutant, by statin treatment, or by application of laminar shear stress strongly decreased PAK1 mRNA and protein expression. Knockdown of KLF2 but not of KLF4 prevented Erk5-mediated PAK1 mRNA inhibition, revealing KLF2 as a novel PAK1 repressor in ECs. Importantly, both PAK1 re-expression and KLF2 knockdown restored the migration capacity of Erk5-activated ECs underscoring their functional relevance downstream of Erk5. Our data provide first evidence for existence of a previously unknown Erk5/KLF2/PAK1 axis, which may limit undesired cell migration in unperturbed endothelium and lower its sensitivity for migratory cues that promote vascular diseases including atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  16. High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis.

    Science.gov (United States)

    Ding, Cheng-Zhi; Guo, Xu-Feng; Wang, Guo-Lei; Wang, Hong-Tao; Xu, Guang-Hui; Liu, Yuan-Yuan; Wu, Zhen-Jiang; Chen, Yu-Hang; Wang, Jiao; Wang, Wen-Guang

    2018-01-24

    Despite the growing number of studies exhibited an association of diabetes mellitus (DM) and lung cancer progression, the concrete mechanism of DM aggravating lung cancer has not been elucidated. This study was to investigate whether and how high glucose (HG) contribute to the proliferation and migration of non-small cell lung cancer (NSCLC) cells in vitro. In the present study, we confirmed that HG promoted the proliferation and migration of NSCLC cells, and also induced an anti-apoptosis effect on NSCLC cells. Moreover, HG inhibited the expression of GAS5 in NSCLC cells but elevated the protein level of TRIB3. GAS5 overexpression promoted the degradation of TRIB3 protein by ubiquitination and inhibited the HG induced-proliferation, anti-apoptosis and migration of NSCLC cells. Importantly, TRIB3 overexpression reversed the effects of GAS5 on the HG-treated NSCLC cells. Taken together, down-regulated GAS5 by HG significantly enhanced the proliferation, anti-apoptosis and migration in NSCLC cells through TRIB3, thus promoting the carcinogenesis of NSCLC. ©2018 The Author(s).

  17. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  18. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration.

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-10-03

    BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.

  19. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  20. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  1. Luteolin Inhibits Angiotensin II-Stimulated VSMC Proliferation and Migration through Downregulation of Akt Phosphorylation

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    2015-01-01

    Full Text Available Luteolin is a naturally occurring flavonoid found in many plants that possesses cardioprotective properties. The purpose of this study was to elucidate the effect of luteolin on vascular smooth muscle cells (VSMCs proliferation and migration induced by Angiotensin II (Ang II and to investigate the mechanism(s of action of this compound. Rat VSMCs were cultured in vitro, and the proliferation and migration of these cells following Ang II stimulation were monitored. Different doses of luteolin were added to VSMC cultures, and the proliferation and migration rate were observed by MTT and Transwell chamber assays, respectively. In addition, the expressions of p-Akt (308, p-Akt (473, and proliferative cell nuclear antigen (PCNA in VSMCs were monitored by Western blotting. This study demonstrated that luteolin has an inhibitory effect on Ang II-induced VSMC proliferation and migration. Further, the levels of p-Akt (308, p-Akt (473, and PCNA were reduced in VSMCs treated with both Ang II and luteolin compared to VSMCs treated with only Ang II. These findings strongly suggest that luteolin inhibits Ang II-stimulated proliferation and migration of VSMCs, which is partially due to downregulation of the Akt signaling pathway.

  2. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  3. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  4. Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration

    International Nuclear Information System (INIS)

    Tang, Shihao; Wang, Xubu; Shen, Qiang; Yang, Xinyi; Yu, Changhui; Cai, Chunqing; Cai, Guoshuai; Meng, Xiaojing; Zou, Fei

    2015-01-01

    Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca 2+ uniporter (MCU), a regulator of mitochondrial Ca 2+ uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-induced store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE. - Highlights: • MCU is correlated to metastasis and invasive breast cancer. • MCU inhibition abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or TG-induced SOCE. • Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. • MCU plays a critical role in MDA-MB-231 cell migration by regulating SOCE

  5. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  6. Impacts of berberine on the growth, migration and radiosensitivity of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Chaoqian; Xu Jiaying; Jiao Yang; Hu Xudong; Che Jun; Fan Saijun

    2012-01-01

    Objective: To study the impacts of berberine on the growth, migration and radiosensitivity in human breast cancer cells. Methods: MTT assay was used to evaluate cell growth.In vitro scratch migration assay was used to determine cell migration. Annexin V assay was used to detect cell apoptosis. The distribution of cell cycle was evaluated by flow cytometry assay. Colony formation assay was used to detect the influence of berberine on cell radiosensitivity. Western blot assay was employed to measure protein expression. Results: Berberine inhibited cell growth and migration in two human breast cancer cell lines, MCF-7 and MDA-MB-231, in a dose-and time-dependent manner. Furthermore, berberine resulted in a cell cycle G 0 /G 1 arrest. Compared with control, the early apoptosis in MDA-MB-231 and MCF-7 cells treated with 40 pμmol/L of berberine was as high as 86.6% and 66.6% (t=8.79, 10.32, P<0.01), respectively. Berberine caused a dose-dependent increase in Bax and Caspase-3 protein expressions, but did not change Cyclin D1 protein expression, while suppressed the expressions of Cyclin B1 and Bcl-2 protein. As analyzed with multi-target click model fitting curves, the SER D0 of berberine-treated cells were 1.12 and 1.22 for MDA-MB-231 and MCF-7 cells respectively at the dose D 0 of X-rays. Conclusions: The berberine inhibited the growth and migration of breast cancer cells via apoptosis induction and cell cycle arrest. Moreover, berberine increases cell sensitivity to X-ray irradiation. (authors)

  7. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Bruno Christian Koehler

    Full Text Available Despite the fact that new treatment regimes have improved overall survival of patients challenged by colorectal cancer (CRC, prognosis in the metastatic situation is still restricted. The Bcl-2 family of proteins has been identified as promising anti cancer drug target. Even though small molecules targeting Bcl-2 proteins are in clinical trials, little is known regarding their effects on CRC. The aim of this study was to preclinically investigate the value of ABT-737 and Obatoclax as anticancer drugs for CRC treatment. The effects of the BH3-mimetics ABT-737 and Obatoclax on CRC cells were assessed using viability and apoptosis assays. Wound healing migration and boyden chamber invasion assays were applied. 3-dimensional cell cultures were used for long term assessment of invasion and proliferation. Clinically relevant concentrations of pan-Bcl-2 inhibitor Obatoclax did not induce cell death. In contrast, the BH3-mimetic ABT-737 induced apoptosis in a dose dependent manner. Obatoclax caused a cell line specific slowdown of CRC cell growth. Furthermore, Obatoclax, but not ABT-737, recovered E-Cadherin expression and led to impaired migration and invasion of CRC cells. The proliferative capacity and invasiveness of CRC cells was strikingly inhibited by low dose Obatoclax in long term 3-dimensional cell cultures. Obatoclax, but not ABT-737, caused a G1-phase arrest accompanied by a downregulation of Cyclin D1 and upregulation of p27 and p21. Overexpression of Mcl-1, Bcl-xL or Bcl-2 reversed the inhibitory effect of Obatoclax on migration but failed to restore the proliferative capacity of Obatoclax-treated CRC cells. The data presented indicate broad and multifaceted antitumor effects of the pan-Bcl-2 inhibitor Obatoclax on CRC cells. In contrast to ABT-737, Obatoclax inhibited migration, invasion and proliferation in sublethal doses. In summary, this study recommends pan-Bcl-2 inhibition as a promising approach for clinical trials in CRC.

  8. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    International Nuclear Information System (INIS)

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration

  9. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX and Sirtuin1 (SIRT1

    Directory of Open Access Journals (Sweden)

    Ming-Hung Lin

    2016-06-01

    Full Text Available Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1 in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.

  10. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Goyal

    Full Text Available BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs, and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1 to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a leading to G(1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear

  11. Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Deng L

    2016-01-01

    Full Text Available Liang Deng,1,* Jihong Yang,2,* Hongwu Chen,3 Bo Ma,4 Kangming Pan,1 Caikun Su,1 Fengfeng Xu,1 Jihong Zhang1 1Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 2Department of General Surgery, The Affiliated Hospital of Hebei University, Baoding, 3Department of Emergency, 4Department of Gastroenterology, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: TMEM16A plays an important role in cell proliferation in various cancers. However, less was known about the expression and role of TMEM16A in hepatocellular carcinoma. We screened the expression of TMEM16A in patients’ hepatocellular carcinoma tissues, and also analyzed the biological function of hepatocellular carcinoma cells by knockdown of TMEM16A, as well as the expression of MAPK signaling proteins, including p38, p-p38, ERK1/2, p-ERK1/2, JNK, and p-JNK, and cell cycle regulatory protein cyclin D1 in TMEM16A siRNA-transfected SMMC-7721 cells by Western blot. Our results showed that TMEM16A was overexpressed in hepatocellular carcinoma tissues. Inhibition of TMEM16A suppressed the cell proliferation, migration, and invasion, and cell cycle progression but did not influence the cell apoptosis. TMEM16A siRNA-suppressed cancer cell proliferation and tumor growth were accompanied by a reduction of p38 and ERK1/2 activation and cyclin D1 induction, and were not influenced by other tested MAPK signaling proteins. In addition, inhibition of TMEM16A suppressed tumorigenicity in vivo. TMEM16A is overexpressed in hepatocellular carcinoma, and that inhibition of TMEM16A suppressed MAPK and growth of hepatocellular carcinoma. TMEM16A could be a potentially novel therapeutic target for human cancers, including hepatocellular carcinoma.Keywords: TMEM16A, cell cycle, proliferation, apoptosis

  12. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis

    Directory of Open Access Journals (Sweden)

    Wang B

    2018-02-01

    epithelial-to-mesenchymal transition (EMT biomarker levels.Results: The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O-6-methylguanine-DNA methyltransferase, and glutathione S-transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process.Conclusion: Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process. Keywords: Forkhead box K2, FOXK2, glioma, oncology

  13. Demethoxycurcumin Suppresses Migration and Invasion of Human Cervical Cancer HeLa Cells via Inhibition of NF-κB Pathways.

    Science.gov (United States)

    Lin, Chin-Chung; Kuo, Chao-Lin; Huang, Yi-Ping; Chen, Cheng-Yen; Hsu, Ming-Jie; Chu, Yung Lin; Chueh, Fu-Shin; Chung, Jing-Gung

    2018-05-01

    Demethoxycurcumin (DMC), one of the curcuminoids present in turmeric, has been shown to induce cell death in many human cancer cell lines, however, there has not been any investigation on whether DMC inhibits metastatic activity in human cervical cancer cells in vitro. In the present study, DMC at 2.5-15 μM decreased cell number, thus, we used IC 20 (7.5 μM) for further investigation of its anti-metastatic activity in human cervical cancer HeLa cells. The wound healing, migration, invasion, zymography, and western blotting assays were used to investigate the effects of DMC on HeLa cells. The wound healing assay was used to show that DMC suppressed cell movement of HeLa cells. Furthermore, the trans-well chamber assay was used to show that DMC suppressed HeLa cell migration and invasion. Gelatin zymography assay did not show any significant effects of DMC on the gelatinolytic activity (MMP-2 and -9) in conditioned media of HeLa cells treated by DMC. Western blotting showed that DMC significantly reduced protein levels of GRB2, MMP-2, ERK1/2, N-cadherin and Ras but increased the levels of E-cadherin and NF-κB in HeLa cells. Confocal laser microscopy indicated that DMC increased NF-κB in HeLa cells confirming the results from Western blotting. DMC may be used as a novel anti-metastatic agent for the treatment of human cervical cancer in the future. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Inhibition of Colon Carcinoma Cell Migration Following Treatment with Purified Venom from Lesser Weever Fish (Trachinus Vipera

    Directory of Open Access Journals (Sweden)

    Myriam Fezai

    2017-04-01

    Full Text Available Background: Injury by the sting of Lesser weever fish (Trachinus vipera may lead to severe pain, edema or tissue necrosis. Cellular effects of the venom are still incompletely understood. Previous observations revealed that purified Lesser weever fish venom (LWFV induces suicidal death of erythrocytes and HCT116 human colon carcinoma cells. The present study addressed the effect of the venom on colon carcinoma cell toxicity, shape and migration both in p53+/+ and/or p53-/- conditions. Methods: Cells were exposed to medium without or with 500 µg/ ml LWFV. Cell shape, cell area and circularity were visualized and quantified by fluorescence microscopy. Cell volume, granularity and cells toxicity were assessed via the apoptotic parameters dissipation of mitochondrial inner transmembrane potential, phosphatidylserine surface exposure and cell membrane permeabilization were measured utilizing flow cytometry. Cell migration was evaluated using wound healing assay and two-dimensional migration assay. Results: LWFV treatment was followed by a marked change of cell shape and size, significant decrease of cell area and circularity, significant impairment of cell migration, as well as induction of apoptosis after long exposition. Conclusions: LWFV exposure leads to cell shrinkage, increased granularity, apoptosis and impairment of cell migration, effects presumably contributing to LWFV-induced tissue injury.

  15. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  16. The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary.

    Science.gov (United States)

    Lin, Tzu-Huai; Yeh, Tsung-Han; Wang, Tsu-Wei; Yu, Jenn-Yah

    2014-11-01

    The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration. Copyright © 2014 by the Genetics Society of America.

  17. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    International Nuclear Information System (INIS)

    Zhang, Zi-wei; Guo, Rui-wei; Lv, Jin-lin; Wang, Xian-mei; Ye, Jin-shan; Lu, Ni-hong; Liang, Xing; Yang, Li-xia

    2017-01-01

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.

  18. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway.

    Science.gov (United States)

    Wang, Junjian; Huang, Shaoxiang

    2018-03-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.

  20. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    Science.gov (United States)

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  1. Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.

    Science.gov (United States)

    Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi

    2018-02-01

    N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1.

    Directory of Open Access Journals (Sweden)

    Fengrong Jiang

    Full Text Available Vascular smooth muscle cell (VSMC proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1, a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.

  3. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

    Directory of Open Access Journals (Sweden)

    Prabhat S Kunwar

    2003-12-01

    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  4. [Overexpression of N-myc downstream regulated gene 2 (NDRG2) inhibits proliferation, migration and promotes apoptosis in SW480 rectal cancer cells].

    Science.gov (United States)

    Li, Zhiqiang; Sun, Yang; Wan, Hongxing; Chai, Fang

    2017-01-01

    Objective To investigate the role of N-myc downstream regulated gene 2 (NDRG2) gene in the proliferation, migration and apoptosis of rectal cancer cells. Methods Human rectal cancer SW480 cells were cultured and transfected with pCDNA3.1-NDRG2 and empty vector (SW480-Ve). SW480 cells were set as a control group. Cell proliferation was detected in SW480 cells, SW480-Ve cells and SW480-NDRG2 cells by MTT assay; cell migration distance in the three groups at 24, 48, 72 hours was tested by wound healing assay; apoptosis rate was determined in the three groups at 48 hours by flow cytometry; the expressions of Bax, caspase-3, Bcl-2 proteins in the three groups were examined by Western blotting. Results After the cells were cultured for 7 days, cell survival rate in SW480-NDRG2 group was significantly lower than that in SW480 cells and SW480-Ve cells; the cell survival rate decreased gradually with the prolongation of the culture time; and it had no significant difference between SW480-Ve group and SW480 group. Cell migration distance in SW480-NDRG2 group was significantly lower than that in SW480-Ve cells and SW480 cells, and it had also no significant difference between SW480-Ve cells and SW480 cells. The apoptosis rate in SW480-NDRG2 group was significantly higher than that in SW480 group and SW480-Ve group, and SW480 cells and SW480-Ve cells had no significant difference in the rate. The expressions of Bax and caspase-3 proteins in SW480-NDRG2 group were significantly higher than those in SW480 cells and SW480-Ve cells; Bcl-2 protein expression was significantly lower in SW480-NDRG2 group than in SW480 cells and SW480-Ve cells; and the expressions of Bax, caspase-3 and Bcl-2 proteins were not significantly different between SW480 cells and SW480-Ve cells. Conclusion Overexpression of NDRG2 can inhibit the proliferation, reduce cell migration, and promote cell apoptosis by regulating the expressions of Bcl-2, Bax and caspase-3 proteins in SW480 cells.

  5. Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    2018-05-01

    Full Text Available Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR positively correlates with TNM (tumor-node-metastasis stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.

  6. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  7. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2014-01-01

    Full Text Available Fanconi anemia complementation group F protein (FANCF is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  8. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F.; Zheng, Z.H.; Wang, E.H.; Wei, M.J.

    2013-01-01

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer

  9. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Zheng, Z.H.; Wang, E.H. [Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Wei, M.J. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China)

    2013-12-12

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  10. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  11. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  12. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  13. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  14. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  15. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    International Nuclear Information System (INIS)

    Li, Xiting; Shu, Rong; Liu, Dali; Jiang, Shaoyun

    2010-01-01

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.

  16. Upregulation of long non-coding RNA TUG1 promotes bladder cancer cell 5 proliferation, migration and invasion by inhibiting miR-29c.

    Science.gov (United States)

    Guo, Peng; Zhang, Guohui; Meng, Jialin; He, Qian; Li, Zhihui; Guan, Yawei

    2018-01-10

    Bladder cancer (BC) is one of the leading causes of cancer-related death in the word. Long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) plays an important role in the development and progression of numerous cancers, including BC. However, the exact role of TUG1 in modulating BC progression is still poorly known. In this study, we found that TUG1 was upregulated and microRNA-29c (miR-29c) was downregulated in BC tissues and cell lines. Overexpression of TUG1 promoted the cell proliferation of T24 and EJ cells, whereas TUG1 knockdown had the opposite effect. Upregulation of TUG1 obviously facilitated the migration and invasion of T24 and EJ cells. In contrast, TUG1 silencing repressed the migration and invasion of T24 and EJ cells. Furthermore, TUG1 knockdown markedly increased the expression of miR-29c in vitro. On the contrary, overexpression of TUG1 remarkably decreased the expression of miR-29c. Transfection with plasmids containing mutant TUG1 has no effect on the expression of miR-29c. There were direct interactions between miR-29c and the binding sites of TUG1. In addition, the inhibitory effects of small interfering RNA specific for TUG1 on BC cell proliferation, migration and invasion were reversed by downregulation of miR-29c. Collectively, our study strongly demonstrates that TUG1 promotes BC cell proliferation, migration and invasion by inhibiting miR-29c, suggesting that lncRNATUG1 may be a promising target for BC gene therapy.

  17. MicroRNA-22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells

    Science.gov (United States)

    Zhou, Xiang; Natino, Dimple; Zhai, Xu; Gao, Zhongyang; He, Xijing

    2018-01-01

    Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising

  18. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  19. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    International Nuclear Information System (INIS)

    Nakayama, Hironao; Huang, Lan; Kelly, Ryan P.; Oudenaarden, Clara R.L.; Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A.; Bischoff, Joyce; Klagsbrun, Michael

    2015-01-01

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1 + ) endothelial cells (designated as GLUT1 sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1 sel -to-EC differentiation

  20. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  1. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  2. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    International Nuclear Information System (INIS)

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-01-01

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  3. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  4. Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells.

    Science.gov (United States)

    Zhao, Huzi; Zhang, Lina; Zhang, Yongchen; Zhao, Lei; Wan, Qing; Wang, Bei; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu

    2017-05-30

    The hominoid oncoprotein TBC1D3 enhances growth factor (GF) signaling and GF signaling, conversely, induces the ubiquitination and subsequent degradation of TBC1D3. However, little is known regarding the regulation of this degradation, and the role of TBC1D3 in the progression of tumors has also not been defined. In the present study, we demonstrated that calmodulin (CaM), a ubiquitous cellular calcium sensor, specifically interacted with TBC1D3 in a Ca2+-dependent manner and inhibited GF signaling-induced ubiquitination and degradation of the oncoprotein in both cytoplasm and nucleus of human breast cancer cells. The CaM-interacting site of TBC1D3 was mapped to amino acids 157~171, which comprises two 1-14 hydrophobic motifs and one lysine residue (K166). Deletion of these motifs was shown to abolish interaction between TBC1D3 and CaM. Surprisingly, this deletion mutation caused inability of GF signaling to induce the ubiquitination and subsequent degradation of TBC1D3. In agreement with this, we identified lysine residue 166 within the CaM-interacting motifs of TBC1D3 as the actual site for the GF signaling-induced ubiquitination using mutational analysis. Point mutation of this lysine residue exhibited the same effect on TBC1D3 as the deletion mutant, suggesting that CaM inhibits GF signaling-induced degradation of TBC1D3 by occluding its ubiquitination at K166. Notably, we found that TBC1D3 promoted the expression and activation of MMP-9 and the migration of MCF-7 cells. Furthermore, interaction with CaM considerably enhanced such effect of TBC1D3. Taken together, our work reveals a novel model by which CaM promotes cell migration through inhibiting the ubiquitination and degradation of TBC1D3.

  5. Inactivation of Src-to-Ezrin Pathway: A Possible Mechanism in the Ouabain-Mediated Inhibition of A549 Cell Migration

    Directory of Open Access Journals (Sweden)

    Hye Kyoung Shin

    2015-01-01

    Full Text Available Ouabain, a cardiac glycoside found in plants, is primarily used in the treatment of congestive heart failure and arrhythmia because of its ability to inhibit Na+/K+-ATPase pump. Recently ouabain has been shown to exert anticancer effects but the underlying mechanism is not clear. Here, we explored the molecular mechanism by which ouabain exerts anticancer effects in human lung adenocarcinoma. Employing proteomic techniques, we found 7 proteins downregulated by ouabain in A549 including p-ezrin, a protein associated with pulmonary cancer metastasis in a dose-dependent manner. In addition, when the relative phosphorylation levels of 39 intracellular proteins were compared between control and ouabain-treated A549 cells, p-Src (Y416 was also found to be downregulated by ouabain. Furthermore, western blot revealed the ouabain-mediated downregulation of p-FAK (Y925, p-paxillin (Y118, p130CAS, and Na+/K+-ATPase subunits that have been shown to be involved in the migration of cancer cells. The inhibitory effect of ouabain and Src inhibitor PP2 on the migration of A549 cells was confirmed by Boyden chamber assay. Anticancer effects of ouabain in A549 cells appear to be related to its ability to regulate and inactivate Src-to-ezrin signaling, and proteins involved in focal adhesion such as Src, FAK, and p130CAS axis are proposed here.

  6. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  7. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  8. Mitochondrial Ca{sup 2+} uniporter is critical for store-operated Ca{sup 2+} entry-dependent breast cancer cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shihao [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Guangzhou No.12 Hospital, Guangzhou (China); Wang, Xubu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Shen, Qiang [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yang, Xinyi; Yu, Changhui; Cai, Chunqing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Cai, Guoshuai [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Meng, Xiaojing, E-mail: xiaojingmeng@smu.edu.cn [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China)

    2015-02-27

    Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca{sup 2+} uniporter (MCU), a regulator of mitochondrial Ca{sup 2+} uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-induced store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE. - Highlights: • MCU is correlated to metastasis and invasive breast cancer. • MCU inhibition abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or TG-induced SOCE. • Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. • MCU plays a critical role in MDA-MB-231 cell migration by regulating SOCE.

  9. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    Science.gov (United States)

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  10. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Directory of Open Access Journals (Sweden)

    Surya B. Karki

    2017-01-01

    Full Text Available Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  11. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    International Nuclear Information System (INIS)

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-01-01

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension

  13. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  14. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  15. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  16. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  17. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration

    International Nuclear Information System (INIS)

    Russ, Misty; Martinez, Raquel; Ali, Hind; Steimle, Paul A.

    2006-01-01

    Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC 5 ∼ 20 μM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells

  18. Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.

    Science.gov (United States)

    Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun

    2012-11-01

    The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.

  19. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Habermehl, Daniel; Mohr, Angela; Wuerth, Lena; Lindel, Katja; Weber, Klaus; Debus, Jürgen; Combs, Stephanie E

    2011-01-01

    Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT), serum stimulation and addition of monoclonal antibodies directed to human integrins α ν β 3 and α ν β 5 . Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either α ν β 3 or α ν β 5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB). Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation

  20. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  1. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  2. MiR-223 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Yang, Wanyong; Lan, Xi; Li, Dongmin; Li, Tao; Lu, Shemin

    2015-01-01

    Mounting evidence suggests that miRNAs have major functions in tumor pathogenesis, and this study aimed to identify the candidate miRNA and investigate its role in nasopharyngeal carcinoma (NPC). MiRNA and mRNA expressions were screened by microarray assays. The cell proliferation, colony formation and migration ability were measured by MTT, soft agar and wound healing assays, respectively. The tumor growth suppression was evaluated by xenografting in nude mice. The plasma miR-223 levels in NPC patients were detected by TaqMan analysis. Real-time quantitative PCR and Western blotting were used to confirm miR-223 and MAFB expression levels. The targeting relationship between miR-223 and MAFB was verified using dual luciferase reporter assay. The miR-223 expression was decreased in CNE-1, CNE-2 cells as compared with NP69 cells, an immortalized human nasopharyngeal epithelial cell line, and its level also reduced in NPC patients’ plasma as compared with healthy controls. Exogenous expression of miR-223 in CNE-2 cells could inhibit cell proliferation both in vitro and in vivo. Extrogenous miR-223 in CNE-2 cells would decrease the ability of colony formation and migration. MAFB, a transcription factor of Maf family members, was identified as a target gene of miR-223. We found that migration and invasion abilities were inhibited by MAFB silencing. MiR-223 negatively regulates the growth and migration of NPC cells via reducing MAFB expression, and this finding provides a novel insight into understanding miR-223 regulation mechanism in nasopharyngeal carcinoma tumorigenesis

  3. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  4. Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2018-05-01

    Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 + dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103 + DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2015-01-01

    Full Text Available Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7. Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO production, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2 expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9 expression, focal adhesion kinase (FAK activation, and Rho-family of small GTPases (Cdc42 and RhoA expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.

  6. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cunjin; Shi, Aiming; Cao, Guowen [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Tao, Tao [Department of Urology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Duanmin, E-mail: hudmsdfey@sina.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China)

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  7. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration

    Science.gov (United States)

    Dias, Sergio; Hattori, Koichi; Zhu, Zhenping; Heissig, Beate; Choy, Margaret; Lane, William; Wu, Yan; Chadburn, Amy; Hyjek, Elizabeth; Gill, Muhammad; Hicklin, Daniel J.; Witte, Larry; Moore, M.A.S.; Rafii, Shahin

    2000-01-01

    Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation. PMID:10953026

  8. The effects of single-walled carbon nanotubes on cancer cell migration using a pancreatic tumor model

    Science.gov (United States)

    Layton, Elivia; McNamar, Rachel; Hasanjee, Aamr M.; McNair, Cayman; Stevens, Brianna; Vaughan, Melville; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Non-invasive laser immunotherapy (NLIT) is a viable alternative to traditional cancer treatment because it combines the photothermal and immunological effects of non-invasive laser irradiation and single-walled carbon nanotubes (SWNT) with an immunoadjuvant, glycated chitosan (GC). This combination forms SWNT-GC, a photosensitive immunoadjuvant, which creates a tumor-specific immunity that targets both the primary tumor and any metastasis. It is known that NLIT induces anti-tumor as well as anti-metastatic immune responses, but its immunological mechanism is not clear. The objective of this study is to clarify the role of SWNT-GC in cancer cell migration. Panc02 (non-metastatic) and Panc02-H7 (metastatic) pancreatic cancer cells were used in two-dimensional elastomer plug assays to observe the restriction of cell migration induced by SWNT, GC, and SWNT-GC individually. To replicate a three-dimensional in vivo study, a similar assay was repeated using embedded collagen lattices. Both the 2D and the 3D studies confirmed previous results indicating that GC inhibits cancer cell motility. The 2D and 3D studies also showed that SWNT-GC inhibited the migration of cancer cells, but a discrepancy was observed regarding the effect of SWNT alone. The 2D model concluded that SWNT inhibited migration while the 3D model determined that SWNT promoted migration. The results of this study will guide future work to determine the mechanism behind NLIT, including how metastases are eradicated and how the tumor specific immunity is created.

  9. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells

    Science.gov (United States)

    van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G

    2013-01-01

    Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104

  10. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  11. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    Science.gov (United States)

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  12. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  13. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  14. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  15. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway.

    Science.gov (United States)

    Yang, Jia; Xiao, Peng; Sun, Jiaming; Guo, Liang

    2018-01-01

    Melanoma is an aggressive form of human cancer with limited treatment options currently available. The present study was aimed to evaluate the anticancer activity of kaempferol (KAM) against the human malignant melanoma A375 cell line along with evaluation of its effects on apoptosis, cell cycle, cell migration and m-TOR/PI3K/AKT pathway. Effects on cell viability were assessed by MTT assay while clonogenic assay measured the effects of KAM on colony formation. Annexin V assay evaluated the apoptotic effects of KAM in these cells using flow cytometry. Effects on cell cycle were determined by using flow cytometry with propidium iodide (PI) as probe. The effects of KAM on m-TOR/ PI3K/AKT signalling pathway were evaluated by western blot assay. MTT assay indicated that KAM exhibits a significant anticancer activity against A375 cells with an IC50 of 20 μM. These antiproliferative effects of KAM were also supported by the colony formation assay wherein KAM reduced the colony formation in a dose-dependent manner. The anticancer effect of KAM was found to be due to the initiation of apoptosis in human malignant melanoma A375 cells. Additionally, KAM also exhibited the capacity to trigger G2/M cell cycle arrest and to inhibit the cell migratory potential of A375 cells. KAM caused significant downregulation of m-TOR, phosphorylated (p) m-TOR, PI3K, p-PI3K and Akt protein levels in A375 malignantmelanoma cells. KAM exerts potent anticancer effects via induction of apoptosis, G2/M cell cycle arrest, cell migration inhibition and downregulation of m-TOR, pm-TOR, PI3K, p-PI3K and Akt protein levels.

  16. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  17. Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Cheng, Hongjing; Sun, Xun; Li, Ji; He, Ping; Liu, Wanqi; Meng, Xiangwei

    2018-05-10

    Colorectal cancer is a serious threat to human health, and has a high mortality rate. There is currently no effective therapy for end-stage colorectal cancer. In recent years, molecular targeted therapy has received increasing attention for cancer treatment. In particular, the role of Uba2, a vital component of SUMO-activating enzyme, has been highlighted, which plays important roles in the progression of certain cancers; however, its role in colorectal cancer remains unclear. Accordingly, the aim of this study was to evaluate the relationship between Uba2 and colorectal cancer. Uba2 expression was knocked down in two colorectal cancer cell lines, and gene microarray analysis was conducted, followed by proliferation, migration, and invasion assays. Uba2 knockdown influenced the expression of several genes, and significantly inhibited the proliferation, migration, and invasion of cancer cells. To determine the underlying mechanism, the expression of related signaling pathways and molecules was evaluated in the knockdown cell lines. Overall, the results suggest that Uba2 participates in the progression, invasion, and metastasis of colorectal cancer, and the possible mechanism is via regulating the Wnt signaling pathway and enhancing epithelial-mesenchymal transition behaviors of colorectal cancer cells. Therefore, Uba2 is expected to be an important oncoprotein and potential therapeutic target in colorectal cancer. © 2018 Wiley Periodicals, Inc.

  18. Differential effects of insulin-like growth factor binding protein-6 (IGFBP-6 on migration of two ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zhiyong eYang

    2015-01-01

    Full Text Available IGFBP-6 inhibits angiogenesis as well as proliferation and survival of rhabdomyosarcoma cells. However, it promotes migration of these cells in an IGF-independent manner. The IGF system is implicated in ovarian cancer, so we studied the effects of IGFBP-6 in ovarian cancer cells.Methods: The effects of wild type (wt and a non-IGF-binding mutant (m of IGFBP-6 on migration of HEY and SKOV-3 ovarian cancer cells, which respectively represent aggressive and transitional cancers, were studied. ERK and JNK phosphorylation were measured by Western blotting.Results: IGF-II, wt- and mIGFBP-6 each promoted SKOV3 cell migration by 77-98% (p<0.01. In contrast, IGF-II also increased HEY cell migration to 155 ± 13% of control (p<0.001, but wtIGFBP-6 and mIGFBP-6 decreased migration to 62 ± 5% and 66 ± 3% respectively (p<0.001. In these cells, coincubation of IGF-II with wt but not mIGFBP-6 increased migration. MAP kinase pathways are involved in IGFBP-6-induced rhabdomyosarcoma cell migration, so activation of these pathways in HEY and SKOV3 cells was studied. wt and mIGFBP-6 increased ERK phosphorylation by 62-99% in both cell lines (p<0.05. wtIGFBP-6 also increased JNK phosphorylation by 139-153% in both cell lines (p<0.05, but the effect of mIGFBP-6 was less clear. ERK and JNK inhibitors partially inhibited the migratory effects of wt and mIGFBP-6 in SKOV3 cells, whereas the ERK inhibitor partially restored wt and mIGFBP-6-induced inhibition of HEY cell migration. The JNK inhibitor had a lesser effect on the actions of wtIGFBP-6 and no effect on the actions of mIGFBP-6 in HEY cells.Conclusions: IGFBP-6 has opposing effects on migration of HEY and SKOV3 ovarian cancer cells, but activates MAP kinase pathways in both. Delineating the pathways underlying the differential effects on migration will increase our understanding of ovarian cancer metastasis and shed new light on the IGF-independent effects of IGFBP-6.

  19. Upregulation of MiR-212 Inhibits Migration and Tumorigenicity and Inactivates Wnt/β-Catenin Signaling in Human Hepatocellular Carcinoma.

    Science.gov (United States)

    Jia, Pengbo; Wei, Guangbing; Zhou, Cancan; Gao, Qi; Wu, Yunhua; Sun, Xuejun; Li, Xuqi

    2018-01-01

    MicroRNAs are involved in hepatocellular carcinoma metastasis, a principal cause of hepatocellular carcinoma-related death in patients worldwide. MiR-212 is a microRNA that has been identified in several types of cancers and is postulated to influence cell signaling and subsequent malignant pathogenesis. Despite emerging reports suggesting that miR-212 plays a significant role in the onset, progression, and migration of these types of malignant tumors, its involvement in the development of hepatocellular carcinoma has not been fully elucidated. Quantitative reverse transcription polymerase chain reaction, wound healing, transwell migration and invasion assays, Western blotting, and xenograft tumor growth models were performed to test the expression levels and functions of miR-212 in hepatocellular carcinoma. Luciferase reporter assay, quantitative reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry were used to identify and verify the target of miR-212. In this study, we identify significant repression of miR-212 in hepatocellular carcinoma and demonstrate that overexpression of miR-212 inhibits the migration of hepatocellular carcinoma cells in vitro and in vivo. Furthermore, we identify forkhead box M1, whose expression is inversely related to that of miR-212, as a direct target of miR-212. Additionally, reexpression of forkhead box M1 rescues the miR-212-mediated inhibition of cell migration. We observed that inhibition of miR-212 activates forkhead box M1 but inhibits the Wnt/β-catenin pathway by suppressing Wnt, LEF-1, c-Myc, and nuclear β-catenin. Finally, in vivo studies confirmed the inhibitory effect of miR-212 on hepatocellular carcinoma growth. Our present findings indicate that miR-212 is a potential prognostic biomarker of hepatocellular carcinoma and that the miR-212/forkhead box M1 regulatory axis may represent a new therapeutic objective for hepatocellular carcinoma treatment.

  20. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  1. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  2. Migration of allosensitized helper but not cytolytic T-lymphocyte clones is inhibited by prostaglandin E2

    International Nuclear Information System (INIS)

    Jordan, M.L.; Hoffman, R.A.; Simmons, R.L.

    1986-01-01

    The authors have previously reported that random migration of one clone of C57BL/6 anti DBA/2 helper lymphocytes is significantly inhibited by physiologic concentrations of prostaglandin E 2 (PGE 2 ). The present studies were designed to determine if lymphocyte locomotor responses to PGE 2 are dictated by (1) clone effector function and/or (2) the presence of specific cell surface binding sites for PGE 2 . Random locomotion of eight different lymphocyte clones (all C57BL/6 anti DBA/2) was studied in a modified Boyden chamber assay. Clone function was characterized as helper (H, n = 3), cytolytic (C, n = 4) or cytolytic only in the presence of lectin (L, n = 1). Random migration of all H clones was consistently inhibited by PGE 2 . However, none of the clones possessing a lytic mechanism (C or L) were inhibited by even the highest (1000 ng/ml) concentration of PGE 2 tested. Incubation of clones with 3 H-PGE 2 in the presence of excess unlabelled PGE 2 did not demonstrate specific binding of PGE 2 to either H or C clones. The authors conclude that (1) the effects of PGE 2 on lymphocyte random migration are effector function specific and (2) these responses do not appear to be mediated by specialized cell surface receptors for PGE 2 . Subset specific locomotor responses to PGE 2 may constitute a mechanism whereby lymphocytes with distinct effector functions may differentially accumulate at sites of inflammation

  3. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    International Nuclear Information System (INIS)

    Zhou, Yan; Ming, Jia; Xu, Yan; Zhang, Yi; Jiang, Jun

    2015-01-01

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis

  5. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616

  6. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Directory of Open Access Journals (Sweden)

    Jolanta Sroka

    Full Text Available The endogenous electric field (EF may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC and lamellipodia forming (LC WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm. The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes than LC cells (30 minutes. We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  7. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    Abstract Introduction The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. Methods MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. Results JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6

  8. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    ABSTRACT: INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF

  9. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2012-02-01

    INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and beta1-integrin, we examined activation of the beta1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and beta1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the beta1-integrin substrate fibronectin. This was accompanied by reduced protein expression of beta1-integrin and its binding partners alphaV- and alpha5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and beta1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between

  10. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  11. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells

    International Nuclear Information System (INIS)

    Glynn, Sharon A; O'Sullivan, Dermot; Eustace, Alex J; Clynes, Martin; O'Donovan, Norma

    2008-01-01

    A number of recent studies have suggested that cancer incidence rates may be lower in patients receiving statin treatment for hypercholesterolemia. We examined the effects of statin drugs on in vitro proliferation, migration and invasion of melanoma cells. The ability of lovastatin, mevastatin and simvastatin to inhibit the melanoma cell proliferation was examined using cytotoxicity and apoptosis assays. Effects on cell migration and invasion were assessed using transwell invasion and migration chambers. Hypothesis testing was performed using 1-way ANOVA, and Student's t-test. Lovastatin, mevastatin and simvastatin inhibited the growth, cell migration and invasion of HT144, M14 and SK-MEL-28 melanoma cells. The concentrations required to inhibit proliferation of melanoma cells (0.8–2.1 μM) have previously been achieved in a phase I clinical trial of lovastatin in patients with solid tumours, (45 mg/kg/day resulted in peak plasma concentrations of approximately 3.9 μM). Our results suggest that statin treatment is unlikely to prevent melanoma development at standard doses. However, higher doses of statins may have a role to play in adjuvant therapy by inhibiting growth and invasion of melanoma cells

  12. SERCA directs cell migration and branching across species and germ layers

    Directory of Open Access Journals (Sweden)

    Danielle V. Bower

    2017-10-01

    Full Text Available Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis and ectoderm (Drosophila nervous system behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding.

  13. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  14. Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2015-02-01

    Full Text Available Bis (2,3-dibromo-4,5-dihydroxy-phenyl-methane (BDDPM is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL. Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM. Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9 is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents.

  15. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    International Nuclear Information System (INIS)

    Chen, Chao; Wu, Chao-Qun; Zhang, Zong-Qi; Yao, Ding-Kang; Zhu, Liang

    2011-01-01

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  16. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China); Wu, Chao-Qun [Genetics Institute, Fudan University, No. 220 Handan Road, Shanghai 200433 (China); Zhang, Zong-Qi [Department of Cardiology, No. 3 Hospital, Shanghai Jiao Tong University Medical school, No.280 Mohe Road, Shanghai 201900 (China); Yao, Ding-Kang; Zhu, Liang, E-mail: 15900611429@163.com [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China)

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  17. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  20. The effect of γ-tocopherol on proliferation, integrin expression, adhesion, and migration of human glioma cells

    International Nuclear Information System (INIS)

    Samandari, Elika; Visarius, Theresa; Zingg, Jean-Marc; Azzi, Angelo

    2006-01-01

    The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. γ-tocopherol at 50 μM concentration exerted more inhibitory effect than α-tocopherol at the same concentration on glioma cell proliferation. Integrin α5 and β1 protein levels were increased upon both α- and γ-tocopherol treatments. In parallel, an increase in the α5β1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where γ-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin α5 and β1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the α5β1 heterodimer. Cell migration is stimulated by γ-tocopherol. It is concluded that α5 and β1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events

  1. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    Science.gov (United States)

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  2. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruey-Hwang Chou

    Full Text Available Fisetin (3,3',4',7-tetrahydroxyflavone, a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion.

  3. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    Science.gov (United States)

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  4. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    ZhenZhen Hu

    Full Text Available BACKGROUND: Epidermal growth factor (EGF signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-â–³PH, a pleckstrin homology (PH domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-â–³PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.

  5. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  6. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  7. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling.

    Science.gov (United States)

    Chen, Yi-Ching; Tien, Yin-Jing; Chen, Chun-Houh; Beltran, Francesca N; Amor, Evangeline C; Wang, Ran-Juh; Wu, Den-Jen; Mettling, Clément; Lin, Yea-Lih; Yang, Wen-Chin

    2013-02-23

    Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells.

  8. Selective Inhibitory Effect of Epigallocatechin-3-gallate on Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jong-Chul Park

    2010-11-01

    Full Text Available In order to prevent restenosis after angioplasty or stenting, one of the most popular targets is suppression of the abnormal growth and excess migration of vascular smooth muscle cells (VSMCs with drugs. However, the drugs also adversely affect vascular endothelial cells (VECs, leading to the induction of late thrombosis. We have investigated the effect of epigallocatechin-3-gallate (EGCG on the proliferation and migration of VECs and VSMCs. Both cells showed dose-dependent decrease of viability in response to EGCG while they have different IC50 values of EGCG (VECs, 150 mM and VSMCs, 1050 mM. Incubating both cells with EGCG resulted in significant reduction in cell proliferation irrespective of cell type. The proliferation of VECs were greater affected than that of VSMCs at the same concentrations of EGCG. EGCG exerted differential migration-inhibitory activity in VECs vs. VSMCs. The migration of VECs was not attenuated by 200 mM EGCG, but that of VSMCs was significantly inhibited at the same concentration of EGCG. It is suggested that that EGCG can be effectively used as an efficient drug for vascular diseases or stents due to its selective activity, completely suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs migration in blood vessels.

  9. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  10. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  11. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  12. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    International Nuclear Information System (INIS)

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-01-01

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  13. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  14. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  15. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Erika Costa de Alvarenga

    Full Text Available The angiotensin-I converting enzyme (ACE plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II. More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet.Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration.We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC, and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5 showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein.ACE activation regulates melanoma cell proliferation and migration.

  16. Collective cell migration during inflammatory response

    Science.gov (United States)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  17. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  18. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  19. Arachidonic acid-induced Ca2+ entry and migration in a neuroendocrine cancer cell line.

    Science.gov (United States)

    Goswamee, Priyodarshan; Pounardjian, Tamar; Giovannucci, David R

    2018-01-01

    Store-operated Ca 2+ entry (SOCE) has been implicated in the migration of some cancer cell lines. The canonical SOCE is defined as the Ca 2+ entry that occurs in response to near-maximal depletion of Ca 2+ within the endoplasmic reticulum. Alternatively, arachidonic acid (AA) has been shown to induce Ca 2+ entry in a store-independent manner through Orai1/Orai3 hetero-multimeric channels. However, the role of this AA-induced Ca 2+ entry pathway in cancer cell migration has not been adequately assessed. The present study investigated the involvement of AA-induced Ca 2+ entry in migration in BON cells, a model gastro-enteropancreatic neuroendocrine tumor (GEPNET) cell line using pharmacological and gene knockdown methods in combination with live cell fluorescence imaging and standard migration assays. We showed that both the store-dependent and AA-induced Ca 2+ entry modes could be selectively activated and that exogenous administration of AA resulted in Ca 2+ entry that was pharmacologically distinct from SOCE. Also, whereas homomeric Orai1-containing channels appeared to largely underlie SOCE, the AA-induced Ca 2+ entry channel required the expression of Orai3 as well as Orai1. Moreover, we showed that AA treatment enhanced the migration of BON cells and that this migration could be abrogated by selective inhibition of the AA-induced Ca 2+ entry. Taken together, these data revealed that an alternative Orai3-dependent Ca 2+ entry pathway is an important signal for GEPNET cell migration.

  20. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  1. Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Hongmin LI

    2016-09-01

    Full Text Available Background and objective The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. Methods NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. Results After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. Conclusion miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.

  2. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells.

    Science.gov (United States)

    Gao, Zhan; Wang, Hua; Xiao, Feng-Jun; Shi, Xue-Feng; Zhang, Yi-Kun; Xu, Qin Qin; Zhang, Xiao-Yan; Ha, Xiao-Qin; Wang, Li-Sheng

    2016-05-01

    Angiogenesis is one of the most important components of embryonic organ formation and vessel growth after birth. Sphingosine kinase 1 (Sphk1) and S1P has been confirmed to participate in various cell signaling pathways and physiological processes including neovascularisation. However, the mechanisms that Sphk1/S1P regulates neovascularisation remain unclear. In this study, we elucidated that Sphk1/S1P upregulates sirtuin 1 (SIRT1), a NAD+ dependent deacetylases protease which exerts multiple cellular functions, to regulate the proliferation and migration of endothelial cells. By using CCK8 and Transwell assays, we demonstrated that Sphk1 and SIRT1 knockdown could significantly decrease proliferation and migration of HUVEC cells. Sphk1 inhibition results in SIRT1 downregulation which could be reversed by exogenous S1P in HUVEC cells. Treatment of HUVECs with S1P reverses the impaired proliferation and migration caused by SIRT1 knockdown. Furthermore, Sphk1 knockdown inhibits the phosphorylation of P38 MAPK, ERK and AKT. Treatment of HUVECs with PD98059, SB203580 and Wortmannin, which are the inhibitors of ERK, P38 MAPK and AKT respectively, resulted in decreased SIRT1 expression and reduced migration of HUVEC cells. Thus, we conclude that Sphk1/S1P induces SIRT1 upregulation through multiple pathways including P38 MAPK, ERK and AKT signals. This is the first report to disclose the existence and roles of Sphk1/S1P/SIRT1 axis in regulation of endothelial cell proliferation and migration, which may provide a theoretical basis for angiogenesis. Copyright © 2016. Published by Elsevier Ltd.

  3. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  4. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  5. Migration of polypotent hemopoietic stem cells from mouse bone marrow shielded during irradiation after hemorrhage and transfusion of syngeneic erythrocytes

    International Nuclear Information System (INIS)

    Kozlov, V.A.; Lozovoj, V.P.; Zhuravkin, I.N.

    1977-01-01

    CBA mice have been X-irradiated with a lethal dose of 850 R. The rate of migration of hemopoietic stem cells has been studied at varying times after hemorrhage and administration of syngeneic erythrocytes. Hemorrhage has been shown to enhance markedly the stem cell migration. Administration of syngeneic erythrocytes decreases considerably the rate of stem cell migaration. It is suggested that the erythropoiesis stimulation is responsible for the increased yield of stem cells from the bone marrow, and that the suppression of erythropoiesis inhibits migration of the stem cells

  6. NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin

    Directory of Open Access Journals (Sweden)

    Paula Schiapparelli

    2017-07-01

    Full Text Available Glioblastoma (GBM is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl− co-transporter 1 (NKCC1 is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD. To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.

  7. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

    Science.gov (United States)

    Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min

    2017-02-14

    Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

  8. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  9. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    International Nuclear Information System (INIS)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-01-01

    Highlights: ► TNF-α induces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  10. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  11. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  12. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  13. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration

    Directory of Open Access Journals (Sweden)

    Lena Collenburg

    2017-08-01

    Full Text Available Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

  14. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  15. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  16. Effects of Garlic Oil on the Migration of Neutrophil-Like Cell Studied by Using a Chemotactic Gradient Labchip

    Directory of Open Access Journals (Sweden)

    Po-Chen Shih

    2010-01-01

    Full Text Available We have designed and fabricated a novel chemotactic gradient Labchip for studying cell migration quantitatively. Owing to the great potential of garlic and its preparations in developing antiinflammatory drugs, the aim of the present study is to investigate the effect of garlic oil on the locomotion of a neutrophil-like cell by measuring the dynamic features of cell migration including migration direction, average migration speed, chemotactic index (CI, and motility index (MI with the newly designed Labchip. We found that garlic oil treatment lowered the values of CI and MI and reduced the average speed of cell migration from 13 to 8 μm/min. The results indicate that garlic oil is a potential inhibitor for neutrophil-like cell migration and chemotactic responsiveness. By comparing with the effects of nocodazole and cytochalasin B, we also suggest that the antiinflammatory activity exhibited by garlic oil was mainly through inhibiting the assembly-disassembly processes of the cytoskeleton.

  17. WIN 55,212-2 Inhibits the Epithelial Mesenchymal Transition of Gastric Cancer Cells via COX-2 Signals

    Directory of Open Access Journals (Sweden)

    Xiangshu Xian

    2016-11-01

    Full Text Available Background: Cannabinoids (the active components of Cannabis sativa and their derivatives have received considerable interest due to reports that they can affect the tumor growth, migration, and metastasis. Previous studies showed that the cannabinoid agonist WIN 55,212-2 (WIN was associated with gastric cancer (GC metastasis, but the mechanisms were unknown. Methods: The effects of WIN on GC cell migration and invasion were analyzed by the wound-healing assay and Transwell assay. Quantitative real-time PCR and Western blot were used to evaluate changes in expression of COX-2 and EMT associated markers in SGC7901 and AGS cells. Results: WIN inhibited cell migration, invasion, and epithelial to mesenchymal transition (EMT in GC. WIN treatment resulted in the downregulation of cyclooxygenase-2 (COX-2 expression and decreased the phosphorylation of AKT, and inhibited EMT in SGC7901 cells. Decreased expression of COX-2 and vimentin, and increased expression of E-cadherin, which was induced by WIN, were normalized by overexpression of AKT, suggesting that AKT mediated, at least partially, the WIN suppressed EMT of GC cells. Conclusion: WIN can inhibit the EMT of GC cells through the downregulation of COX-2.

  18. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    Science.gov (United States)

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  19. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  20. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jie; Zheng, Fangxia; Yu, Gang; Yin, Yanhua; Lu, Qingyang

    2013-01-01

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3′-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3′-untranslated region (3′-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the

  1. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    International Nuclear Information System (INIS)

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-01-01

    Research highlights: → Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. → Bm-TFF2 suppresses cell apoptosis. → Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  2. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Guoyu [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Department of Biochemistry, Kunming Medical College, Kunming, Yunnan 650032 (China); Xiang, Yang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jianbo [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Jiang, Ping [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Lee, Wenhui [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang, Yun, E-mail: zhangy@mail.kiz.ac.cn [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  3. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines

    DEFF Research Database (Denmark)

    Nielsen, M; Kaltoft, K; Nordahl, M

    1997-01-01

    . Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues...... specific. Thus, neither the fast migrating isoform of Stat3 (Stat3(fm)) nor other Stats (Stat1, Stat2, and Stat4 through Stat6) were constitutively activated. The Jak kinase inhibitor, tyrphostin AG490, blocked the constitutive activation of Stat3(sm) and inhibited spontaneous as well as interleukin 2...

  4. Short-lived, transitory cell-cell interactions foster migration-dependent aggregation.

    Directory of Open Access Journals (Sweden)

    Melissa D Pope

    Full Text Available During embryonic development, motile cells aggregate into cohesive groups, which give rise to tissues and organs. The role of cell migration in regulating aggregation is unclear. The current paradigm for aggregation is based on an equilibrium model of differential cell adhesivity to neighboring cells versus the underlying substratum. In many biological contexts, however, dynamics is critical. Here, we provide evidence that multicellular aggregation dynamics involves both local adhesive interactions and transport by cell migration. Using time-lapse video microscopy, we quantified the duration of cell-cell contacts among migrating cells that collided and adhered to another cell. This lifetime of cell-cell interactions exhibited a monotonic decreasing dependence on substratum adhesivity. Parallel quantitative measurements of cell migration speed revealed that across the tested range of adhesive substrata, the mean time needed for cells to migrate and encounter another cell was greater than the mean adhesion lifetime, suggesting that aggregation dynamics may depend on cell motility instead of the local differential adhesivity of cells. Consistent with this hypothesis, aggregate size exhibited a biphasic dependence on substratum adhesivity, matching the trend we observed for cell migration speed. Our findings suggest a new role for cell motility, alongside differential adhesion, in regulating developmental aggregation events and motivate new design principles for tuning aggregation dynamics in tissue engineering applications.

  5. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    International Nuclear Information System (INIS)

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi

    2006-01-01

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G 1 phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma

  6. Entropy measures of collective cell migration

    Science.gov (United States)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  7. Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor

    OpenAIRE

    Xia, Wenzheng; Xie, Congying; Jiang, Miaomiao; Hou, Meng

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with progenitor cell survival and potently inhibits apoptosis. We examined the protective effect of MIF on hypoxia/serum deprivation (SD)-induced apoptosis of mesenchymal stem cells (MSCs), as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by culturing MSCs under hypoxia/SD conditions for up to 24?h and assessed by...

  8. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  9. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  10. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    Science.gov (United States)

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  11. Conformational changes and translocation of tissue-transglutaminase to the plasma membranes: role in cancer cell migration

    International Nuclear Information System (INIS)

    Kumar, Ambrish; Hu, Jianjun; LaVoie, Holly A; Walsh, Kenneth B; DiPette, Donald J; Singh, Ugra S

    2014-01-01

    Tissue-transglutaminase (TG2), a dual function G-protein, plays key roles in cell differentiation and migration. In our previous studies we reported the mechanism of TG2-induced cell differentiation. In present study, we explored the mechanism of how TG2 may be involved in cell migration. To study the mechanism of TG2-mediated cell migration, we used neuroblastoma cells (SH-SY5Y) which do not express TG2, neuroblastoma cells expressing exogenous TG2 (SHY TG2 ), and pancreatic cancer cells which express high levels of endogenous TG2. Resveratrol, a natural compound previously shown to inhibit neuroblastoma and pancreatic cancer in the animal models, was utilized to investigate the role of TG2 in cancer cell migration. Immunofluorescence assays were employed to detect expression and intracellular localization of TG2, and calcium levels in the migrating cells. Native gel electrophoresis was performed to analyze resveratrol-induced cellular distribution and conformational states of TG2 in migrating cells. Data are presented as the mean and standard deviation of at least 3 independent experiments. Comparisons were made among groups using one-way ANOVA followed by Tukey-Kramer ad hoc test. TG2 containing cells (SHY TG2 and pancreatic cancer cells) exhibit increased cell migration and invasion in collagen-coated and matrigel-coated transwell plate assays, respectively. Resveratrol (1 μM-10 μM) prevented migration of TG2-expressing cells. During the course of migration, resveratrol increased the immunoreactivity of TG2 without affecting the total TG2 protein level in migrating cells. In these cells, resveratrol increased calcium levels, and depletion of intracellular calcium by a calcium chelator, BAPTA, attenuated resveratrol-enhanced TG2 immunoreactivity. In native-polyacrylamide gels, we detected an additional TG2 protein band with slower migration in total cell lysates of resveratrol treated cells. This TG2 form is non-phosphorylated, exclusively present in plasma

  12. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  13. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  14. Brazilian Red Propolis Induces Apoptosis-Like Cell Death and Decreases Migration Potential in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karine Rech Begnini

    2014-01-01

    Full Text Available Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL. Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  15. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells.

    Science.gov (United States)

    Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Martins Rodrigues, Fernanda; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Roesch-Ely, Mariana; Moura, Sidnei; Padilha, Francine F; Collares, Tiago; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling

    2014-01-01

    Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  16. Fisetin regulates astrocyte migration and proliferation in vitro

    Science.gov (United States)

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-01-01

    Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro. PMID:28204814

  17. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    Science.gov (United States)

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  18. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  19. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  20. PRL-3 Is Involved in Estrogen- and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium.

    Science.gov (United States)

    Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing

    2016-05-24

    To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.

  1. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  2. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  3. Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration

    Energy Technology Data Exchange (ETDEWEB)

    García-Palmero, Irene; Villalobo, Antonio, E-mail: antonio.villalobo@iib.uam.es

    2013-06-28

    Highlights: •Grb7 is a calmodulin (CaM)-binding protein. •Deleting the CaM-binding site impairs cell attachment and migration. •CaM antagonists inhibit Grb7-mediated cell migration. •We conclude that CaM controls Grb7-mediated cell migration. -- Abstract: The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.

  4. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p.

    Science.gov (United States)

    Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang

    2017-08-31

    The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).

  5. Multiscale Cues Drive Collective Cell Migration

    Science.gov (United States)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  6. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-01-01

    Full Text Available Purpose. Signal transducer and activator of transcription factor 3 (STAT3 is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3 on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.

  7. Effects of low concentrations of Regorafenib and Sorafenib on human HCC cell AFP, migration, invasion and growth in vitro

    Science.gov (United States)

    Carr, Brian Irving; D’Alessandro, Rosalba; Refolo, Maria Grazia; Iacovazzi, Palma Aurelia; Lippolis, Catia; Messa, Caterina; Cavallini, Aldo; Correale, Mario; Di Carlo, Antonio

    2012-01-01

    Sorafenib was shown in clinical trial to enhance survival in hepatocellular carcinoma (HCC) patients, but with minimal tumor shrinkage. To correlate several indices of HCC growth at various drug concentrations, HCC cells were grown in various low concentrations of two multi-kinase inhibitors, Regorafenib (Stivarga) and Sorafenib (Nexavar) and their effects were examined on alpha-fetoprotein (AFP), cell growth, migration and invasion. In two AFP positive human HCC cell lines, AFP was inhibited at 0.1–1µM drug concentrations. Cell migration and invasion were also inhibited at similar low drug concentrations. However, 10-fold higher drug concentrations were required to inhibit cell growth in both AFP positive and negative cells. To investigate this concentration discrepancy of effects, cells were then grown for prolonged times and sub-cultured in low drug concentrations and then their growth was re-tested. The growth in these drug-exposed cells was found to be slower than cells without prior drug exposure and they were also more sensitive to subsequent drug challenge. Evidence was also found for changes in cell signaling pathways in these slow-growth cells. Low multi-kinase inhibitor concentrations thus modulate several aspects of HCC cell biology. PMID:23169148

  8. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    Science.gov (United States)

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  9. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Substrate Curvature Regulates Cell Migration -A Computational Study

    Science.gov (United States)

    He, Xiuxiu; Jiang, Yi

    Cell migration in host microenvironment is essential to cancer etiology, progression and metastasis. Cellular processes of adhesion, cytoskeletal polymerization, contraction, and matrix remodeling act in concert to regulate cell migration, while local extracellular matrix architecture modulate these processes. In this work we study how stromal microenvironment with native and cell-derived curvature at micron-meter scale regulate cell motility pattern. We developed a 3D model of single cell migration on a curved substrate. Mathematical analysis of cell morphological adaption to the cell-substrate interface shows that cell migration on convex surfaces deforms more than on concave surfaces. Both analytical and simulation results show that curved surfaces regulate the cell motile force for cell's protruding front through force balance with focal adhesion and cell contraction. We also found that cell migration on concave substrates is more persistent. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration. NIH 1U01CA143069.

  11. Galectin-4 Reduces Migration and Metastasis Formation of Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ana I Belo

    Full Text Available Galectin-4 (Gal-4 is a member of the galectin family of glycan binding proteins that shows a significantly higher expression in cystic tumors of the human pancreas and in pancreatic adenocarcinomas compared to normal pancreas. However, the putative function of Gal-4 in tumor progression of pancreatic cancer is still incompletely understood. In this study the role of Gal-4 in cancer progression was investigated, using a set of defined pancreatic cancer cell lines, Pa-Tu-8988S (PaTu-S and Pa-Tu-8988T (PaTu-T, as a model. These two cell lines are derived from the same liver metastasis of a human primary pancreatic adenocarcinoma, but differ in their growth characteristics and metastatic capacity. We demonstrated that Gal-4 expression is high in PaTu-S, which shows poor migratory properties, whereas much lower Gal-4 levels are observed in the highly metastatic cell line PaTu-T. In PaTu-S, Gal-4 is found in the cytoplasm, but it is also secreted and accumulates at the membrane at sites of contact with neighboring cells. Moreover, we show that Gal-4 inhibits metastasis formation by delaying migration of pancreatic cancer cells in vitro using a scratch assay, and in vivo using zebrafish (Danio rerio as an experimental model. Our data suggest that Gal-4 may act at the cell-surface of PaTu-S as an adhesion molecule to prevent release of the tumor cells, but has in addition a cytosolic function by inhibiting migration via a yet unknown mechanism.

  12. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  13. Inhibition effect of proteasome inhibitor MG132 combined with X-ray irradiation on cell growth, metastasis and cycle distribution of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Liu Jing; Tang Yiting; Zhou Jundong; Zhang Shuyu; Cao Han; Wu Jinchang; Luo Judong; Chen Guanglie; Cao Jianping

    2014-01-01

    Objective: To study the effects of proteasome inhibitor MG132 on the growth, metastasis, and cell cycle distribution of human lung adenocarcinoma cells A549 irradiated by X-rays. Methods: After treatment of MG132 and irradiation,cell proliferation was detected by MTT assay. Survival was measured by clonogenic assay. Cell migration ability was detected by the Scratch migration assay. Cell invasion ability was detected by transwell migration assay. Cell cycle distribution were analyzed by flow cytometry assay. Protein expression was detected by Western blot assay. Results: MG132 alone inhibited cell growth in a dose-and time-dependent manner. MG132 in combination with radiation significantly suppressed the growth, migration and invasion of A549 cells compared to the control (F =554.78, 954.64, P<0.01). MG132 enhanced radiation-induced G 1 -arrest (t =4.44, 12.41, 3.52, 6.72, P<0.05). The G 1 cell cycle distribution rate of MG132 plus RT group was increased to (71.05 ± 4.17)%. The expressions of MMP-2, MMP-9 and Cyclin D1 were significantly suppressed by MG132 in combination with radiation, while the expression of P53 was up-regulated. Conclusions: MG132 inhibits cell growth, migration and invasion ability, and induces G 1 cell cycle arrest of A549 cells treated with MG132 in combination with radiation, in which the down-regulation of MMPs and Cyclin D1 and up-regulation of P53 may be involved. (authors)

  14. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  15. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  16. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-01-01

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  17. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    Science.gov (United States)

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  19. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    Science.gov (United States)

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  20. A Customizable Chamber for Measuring Cell Migration.

    Science.gov (United States)

    Chowdhury, Aniqa N; Vo, Huu Tri; Olang, Sharon; Mappus, Elliott; Peterson, Brian; Hlavac, Nora; Harvey, Tyler; Dean, Delphine

    2017-03-12

    Cell migration is a vital part of immune responses, growth, and wound healing. Cell migration is a complex process that involves interactions between cells, the extracellular matrix, and soluble and non-soluble chemical factors (e.g., chemoattractants). Standard methods for measuring the migration of cells, such as the Boyden chamber assay, work by counting cells on either side of a divider. These techniques are easy to use; however, they offer little geometric modification for different applications. In contrast, microfluidic devices can be used to observe cell migration with customizable concentration gradients of soluble factors 1 , 2 . However, methods for making microfluidics based assays can be difficult to learn. Here, we describe an easy method for creating cell culture chambers to measure cell migration in response to chemical concentration gradients. Our cell migration chamber method can create different linear concentration gradients in order to study cell migration for a variety of applications. This method is relatively easy to use and is typically performed by undergraduate students. The microchannel chamber was created by placing an acrylic insert in the shape of the final microchannel chamber well into a Petri dish. After this, poly(dimethylsiloxane) (PDMS) was poured on top of the insert. The PDMS was allowed to harden and then the insert was removed. This allowed for the creation of wells in any desired shape or size. Cells may be subsequently added to the microchannel chamber, and soluble agents can be added to one of the wells by soaking an agarose block in the desired agent. The agarose block is added to one of the wells, and time-lapse images can be taken of the microchannel chamber in order to quantify cell migration. Variations to this method can be made for a given application, making this method highly customizable.

  1. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-11

    Science.gov (United States)

    Hyun, Young-Min; Chung, Hung-Li; McGrath, James L.; Waugh, Richard E.; Kim, Minsoo

    2009-01-01

    Lymphocyte migration from blood into lymphoid tissues or to sites of inflammation occurs through interactions between cell surface integrins and their ligands expressed on the vascular endothelium and the extracellular matrix. Very Late Antigen-4 (VLA-4, α4β1) is a key integrin in the effective trafficking of lymphocytes. Although it has been well established that integrins undergo functionally significant conformational changes to mediate cell adhesion, there is no mechanistic information that explains how these are dynamically and spatially regulated during lymphocyte polarization and migration. Using dynamic fluorescence resonance energy transfer (FRET) analysis of a novel VLA-4 FRET sensor under total internal reflection fluorescence (TIRF) microscopy, we show that VLA-4 activation localizes to the lamellipodium in living cells. During T cell migration on VCAM-1, VLA-4 activation concurs with spatial redistribution of chemokine receptor and active Rap1 at the leading edge. Selective inhibition of the activated VLA-4 at leading edge with a small molecule inhibitor is sufficient to block T cell migration. These data suggest that a subpopulation of activated VLA-4 is mainly localized to the leading edge of polarized human T cells, and is critical for T cell migration on VCAM-1. PMID:19542447

  2. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  3. Impact of cell shape on cell migration behavior on elastic substrate

    International Nuclear Information System (INIS)

    Zhong Yuan; Ji Baohua

    2013-01-01

    Cell shape is known to have profound effects on a number of cell behaviors. In this paper we have studied its role in cell migration through modeling the effect of cell shape on the cell traction force distribution, the traction force dependent stability of cell adhesion and the matrix rigidity dependent traction force formation. To quantify the driving force of cell migration, a new parameter called the motility factor, that takes account of the effect of cell shape, matrix rigidity and dynamic stability of cell adhesion, is proposed. We showed that the motility factor depends on the matrix rigidity in a biphasic manner, which is consistent with the experimental observations of the biphasic dependence of cell migration speed on the matrix rigidity. We showed that the cell shape plays a pivotal role in the cell migration behavior by regulating the traction force at the cell front and rear. The larger the cell polarity, the larger the motility factor is. The keratocyte-like shape has a larger motility factor than the fibroblast-like shape, which explains why keratocyte has a much higher migration speed. The motility factor might be an appropriate parameter for a quantitative description of the driving force of cell migration. (paper)

  4. Migration of Cells in a Social Context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring...... cells on the individual remains poorly understood. Previous work on isolated cells has revealed a stereotypical migratory behavior, however many aspects of the migration characteristics of cells in populations remained unknown exactly because of this lack of characterization of neighbour-cell influence....... We quantified1 the migration of thousands of individual cells in their population context using time-lapse microscopy, microfluidic cell culture and automated image analysis, and discovered a much richer dynamics in the social context, with significant variations in directionality, displacement...

  5. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  6. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Akkarawut Kowitdamrong

    2013-01-01

    Full Text Available Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS, in which hydroxyl radical (OH∙ was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397 and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473, whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.

  7. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    Science.gov (United States)

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.

    2013-06-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.

  8. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shang-Jyh [Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Su, Jen-Liang [Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan (China); Department of Biotechnology, Asia University, Taichung, Taiwan (China); Chen, Chi-Kuan [Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua [Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Bien, Mauo-Ying [School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Yang, Shun-Fa [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chien, Ming-Hsien, E-mail: mhchien1976@gmail.com [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  9. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  10. Fisetin regulates astrocyte migration and proliferation in vitro.

    Science.gov (United States)

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-04-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2'-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro.

  11. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  12. 3,3'Diindolylmethane suppresses vascular smooth muscle cell phenotypic modulation and inhibits neointima formation after carotid injury.

    Directory of Open Access Journals (Sweden)

    Hongjing Guan

    Full Text Available 3,3'Diindolylmethane (DIM, a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms.DIM dose-dependently inhibited the platelet-derived growth factor (PDGF-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK 4/6 as well as an increase in p27(Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK3β, extracellular signal-regulated kinase1/2 (ERK1/2, and signal transducers and activators of transcription 3 (STAT3. Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration.These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the

  13. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  14. Andrographolide reduces proliferation and migration of lens epithelial cells by modulating PI3K/Akt pathway.

    Science.gov (United States)

    Kayastha, Forum; Madhu, Hardik; Vasavada, Abhay; Johar, Kaid

    2014-11-01

    Lens epithelial cell proliferation, migration, and transdifferentiation are involved in the development of subcapsular cataracts and postoperative capsular opacification (PCO). PI3K/Akt pathway is involved in the proliferation and migration of lens epithelial cells. Andrographolide is the main bioactive component of Andrographis paniculata and is known to possess anti-proliferative and anti-migratory activities. The purpose of this study is to evaluate the effect of andrographolide on proliferation and migration induced by growth factors (TGF-β and bFGF) in the lens epithelial cell line, FHL 124. We have also evaluated the role of the PI3K/Akt pathway and its alteration by andrographolide during proliferation and migration of lens epithelial cells. The results showed that andrographolide significantly inhibited proliferation in a dose and time dependent manner. The growth factors, TGF-β and bFGF, induced migration of lens epithelial cells, which was lowered by andrographolide. The growth factors also up regulated phosphorylated Akt (Ser473) and Akt (Thr308), which was abolished by simultaneous treatment of andrographolide. Similar changes were also observed with the PI3K inhibitor, LY290042. Our findings suggest that andrographolide reduces proliferation, migration, and phosphorylated Akt levels in lens epithelial cells. Hence andrographolide can be utilized for the prevention of PCO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of homeodomain protein CDX2 expression on the proliferation and migration of lovo colon cancer cells.

    Science.gov (United States)

    Zheng, Jian-bao; Sun, Xue-jun; Qi, Jie; Li, Shou-shuai; Wang, Wei; Ren, Hai-liang; Tian, Yong; Lu, Shao-ying; Du, Jun-kai

    2011-09-01

    The homeobox gene, CDX2, plays a major role in development, especially in the gut, and also functions as a tumor suppressor in the adult colon. In the present study, we investigated the effects of CDX2 expression on the proliferation, migration, and apoptosis of the human colon cancer cell line, Lovo. Lovo cells exogenously expressing CDX2 exhibited no significant differences in the percentage of cells in G1- and S-phase or in apoptosis, as determined by flow cytometry. MTT assay also confirmed that CDX2 expression had no effect on proliferation in these cells. Interestingly, conditioned medium collected from CDX2-overexpressing Lovo cells showed a significant decrease in secretion of MMP-2 and the invasive potential of these cells was significantly inhibited. Collectively, these data suggest that CDX2 may play a critical role in the migration and metastasis of colon carcinoma and over-expression of CDX2 in colon cancer cells markedly inhibits invasion. Based on these results, exogenous expression of CDX2 might be a promising option in the treatment of colon carcinoma.

  16. Modulation of epithelial tissue and cell migration by microgrooves.

    NARCIS (Netherlands)

    Dalton, B.A.; Walboomers, X.F.; Dziegielewski, M.; Evans, M.D.; Taylor, S.; Jansen, J.A.; Steele, J.G.

    2001-01-01

    We used a polystyrene substratum to study the response of migrating epithelium to 1- or 5-microm depth microgrooves with groove/ridge widths of 1, 2, 5, or 10 microm. The migration of a tissue sheet was enhanced along the microgrooves, while migration across the microgrooves was inhibited. Changing

  17. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling.

    Science.gov (United States)

    Su, Meng; Qin, Baoli; Liu, Fang; Chen, Yuze; Zhang, Rui

    2018-07-01

    The aim of the present study was to investigate the role of microRNA (miR)-885-5p in colorectal cancer cell proliferation and migration, and to determine the possible underlying molecular mechanisms. The expression of miR-885-5p in colorectal cancer tissue and cells was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of three suppressor of cytokine signaling (SOCS) factors were detected by RT-qPCR and western blotting. The effects of miR-885-5p on tumor cell proliferation and migration were studied using MTT and Transwell assays, respectively. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, vimentin and Snail) were detected by RT-qPCR and western blot analysis. Furthermore, the target of miR-885-5p was predicted and confirmed using a luciferase reporter assay. miR-885-5p was demonstrated to be upregulated and SOCS was downregulated in colorectal cancer tissue, and cells. miR-885-5p suppression significantly inhibited tumor cell proliferation and migration, promoted E-cadherin expression, and inhibited the expression levels of N-cadherin, vimentin and Snail. Further studies showed that SOCS5, SOCS6 and SOCS7 were direct targets of miR-885-5p. The results suggest that miR-885-5p suppression inhibited cell proliferation and migration, and the EMT process by targeting SOCS5, SOCS6 and SOCS7 genes in colorectal cancer. miR-885-5p and SOCS may be used for the diagnosis and treatment of colorectal cancer.

  18. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  19. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  20. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    Science.gov (United States)

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  1. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Science.gov (United States)

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  2. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  3. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Lingqin, E-mail: qinlingsongxa@163.com [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China); Liu, Di; Zhao, Yang [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China); He, Jianjun [Department of Surgical Oncology, The First Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710061 (China); Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-08-28

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells. â

  4. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    International Nuclear Information System (INIS)

    Song, Lingqin; Liu, Di; Zhao, Yang; He, Jianjun; Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying

    2015-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells. â

  5. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    Science.gov (United States)

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Tanshinone IIA Inhibits Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3-CCL2 Signaling

    Directory of Open Access Journals (Sweden)

    Sung-Ying Huang

    2017-07-01

    Full Text Available Tanshinone IIA (Tan-IIA is an extract from the widely used traditional Chinese medicine (TCM Danshen (Salvia miltiorrhiza, and has been found to attenuate the proliferation of bladder cancer (BCa cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24, 2.7 μg/mL, respectively.. However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear. This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR and western blotting were performed to detect epithelial-mesenchymal transition (EMT-related gene expression. The enzymatic activity of matrix metalloproteinases (MMP was evaluated by zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells. Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited BCa cell invasion could function via suppressed chemokine (C-C motif ligand 2 (CCL2 expression, which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3 (Tyr705, which cannot be restored by the CCL2 recombinant protein addition. These data implicated that Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can serve as a potential anti-metastatic agent in BCa therapy.

  7. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  8. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  9. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  10. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  11. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells

    DEFF Research Database (Denmark)

    Kong, Su Chii; Nøhr-Nielsen, Asbjørn; Zeeberg, Katrine

    2016-01-01

    , localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. RESULTS: MCT1......, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858...

  12. MiR-200c suppresses the migration of retinoblastoma cells by reversing epithelial mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Shao

    2017-08-01

    Full Text Available AIM: To analyze the relationship between clinical features and epithelial mesenchymal transition (EMT in retinoblastoma (RB, further to investigate whether miR-200c regulates the EMT and migration of RB cells. METHODS: Expression of EMT-related markers and tumor-related factors were detected by immuno-histochemistry analysis in RB tissue from 29 cases. Correlations between their expression and clinical characteristics were analyzed. The regulation effects of miR-200c on EMT-related markers, tumor-related factors were observed in mRNA level and protein level by real-time polymerase chain reaction (PCR and Western blot, respectively, in Y79 and Weri-rb1 cells. Its effects on migration force of these RB cell lines were also detected with Transwell test. RESULTS: Lower expression of E-cadherin was present in the cases with malignant prognosis. MiR-200c promoted the expression of E-cadherin and decreased the expression of Vimentin and N-cadherin in Y79 and Weri-rb1 cells. Migration force of RB cells could be inhibited by miR-200c. CONCLUSION: EMT might be associated with bad prognosis in RB. MiR-200c suppresses the migration of retinoblastomatous cells by reverse EMT.

  13. Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration

    International Nuclear Information System (INIS)

    Odri, Guillaume; Kim, Pui-Pui; Lamoureux, François; Charrier, Céline; Battaglia, Séverine; Amiaud, Jérôme; Heymann, Dominique; Gouin, François; Redini, Françoise

    2014-01-01

    Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 10 6 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs

  14. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-12-28

    To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway.

  15. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  16. Integrin-based meningioma cell migration is promoted by photon but not by carbon-ion irradiation

    International Nuclear Information System (INIS)

    Simon, Florian; Dittmar, Jan-Oliver; Orschiedt, Lena; Weber, Klaus-Josef; Debus, Juergen; Rieken, Stefan; Brons, Stephan; Urbschat, Steffi; Combs, Stephanie E.

    2015-01-01

    Sublethal doses of photon irradiation (IR) are suspected to increase tumor cell migration and support locoregional recurrence of disease, which has already been shown in other cell lines. This manuscript describes the effect of photon and carbon-ion IR on WHO class I meningioma cell migration and provides an approach to the underlying cellular mechanisms. Meningioma cells were gained operatively at the university hospital in Homburg/Saar, Germany. For migration, membranes (8-μm pore sizes) were coated with collagen I, with collagen IV, and with fibronectin. Cells were analyzed in migration experiments with or without serum stimulation, with or without photon and carbon IR 24 h prior to experiments, and with or without integrin antibodies. Fluorescence-activated cell sorting (FACS) analyses of the integrins ανβ 1 , ανβ 3 , and ανβ 5 were performed without IR and 6, 12 and 24 h after IR. Enzyme-linked immunosorbent assay (ELISA) analyses of matrix metalloproteinases (MMP)-2 and MMP-9 were realized with and without IR after cells were cultured on collagen I, collagen IV, or fibronectin for 24 h. Cells and supernatants for FACS and ELISA were stored at - 18 C. The significance level was set at 5 % using both Student's t test and two-way ANOVA. Migration of meningioma cells was serum-inducible (p < 0.001). It could be increased by photon IR (p < 0.02). The integrins ανβ 1 and ανβ 5 showed a 21 and 11 % higher expression after serum stimulation (not significant), respectively, and ανβ 1 expression was raised by 14 % (p = 0.0057) after photon IR. Antibody blockage of the integrins ανβ 1 and ανβ 5 inhibited serum- and photon-induced migration. Expression of MMP-2 and MMP-9 remained unchanged after both IR and fetal bovine serum (FBS). Carbon-ion IR left both integrin expression and meningioma cell migration unaffected. Photon but not carbon-ion IR promotes serum-based meningioma cell migration. Fibronectin receptor integrin ανβ 1 signaling

  17. miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wen-bin; Zhong, Cai-neng; Luo, Xun-peng; Zhang, Ya-yuan; Zhang, Gui-ying [Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China); Zhou, Dong-xian, E-mail: 1072241978@qq.com [Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China); Liu, Li-ping, E-mail: leoliping@aliyun.com [Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China)

    2016-02-19

    Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan–Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300–5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein were induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer. - Highlights: • miR-625 expression was significantly decreased in breast cancer. • Decrease of miR-625 was associated with poor clinical outcomes and unfavorable overall survival. • miR-625 overexpression inhibits cell proliferation and migration in vitro. • miR-625 directly targets and suppresses the expression of HMGA1.

  18. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro.

    Science.gov (United States)

    Dorward, Hilary S; Du, Alice; Bruhn, Maressa A; Wrin, Joseph; Pei, Jinxin V; Evdokiou, Andreas; Price, Timothy J; Yool, Andrea J; Hardingham, Jennifer E

    2016-02-24

    Aquaporins (AQP) are water channel proteins that enable fluid fluxes across cell membranes, important for homeostasis of the tissue environment and for cell migration. AQP1 knockout mouse models of human cancers showed marked inhibition of tumor-induced angiogenesis, and in pre-clinical studies of colon adenocarcinomas, forced over-expression of AQP1 was shown to increase angiogenesis, invasion and metastasis. We have synthesized small molecule antagonists of AQP1. Our hypothesis is that inhibition of AQP1 will reduce migration and invasiveness of colon cancer cells, and the migration and tube-forming capacity of endothelial cells in vitro. Expression of AQP1 in cell lines was assessed by quantitative (q) PCR, western blot and immunofluorescence, while expression of AQP1 in human colon tumour tissue was assessed by immunohistochemistry. The effect of varying concentrations of the AQP1 inhibitor AqB013 was tested on human colon cancer cell lines expressing high versus low levels of AQP1, using wound closure (migration) assays, matrigel invasion assays, and proliferation assays. The effect of AqB013 on angiogenesis was tested using an endothelial cell tube-formation assay. HT29 colon cancer cells with high AQP1 levels showed significant inhibition of migration compared to vehicle control of 27.9% ± 2.6% (p migration of HCT-116 cells with low AQP1 expression. In an invasion assay, HT29 cells treated with 160 μM of AqB013, showed a 60.3% ± 8.5% decrease in invasion at 144 hours (p < 0.0001) and significantly decreased rate of invasion compared with the vehicle control (F-test, p = 0.001). Almost complete inhibition of endothelial tube formation (angiogenesis assay) was achieved at 80 μM AqB013 compared to vehicle control (p < 0.0001). These data provide good evidence for further testing of the inhibitor as a therapeutic agent in colon cancer.

  19. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  20. Ascites promotes cell migration through the repression of miR-125b in ovarian cancer.

    Science.gov (United States)

    Yang, Lan; Zhang, Xiaoli; Ma, Yiming; Zhao, Xinhua; Li, Bin; Wang, Hongying

    2017-08-01

    Interactions between ovarian cancer cells and the surrounding tumor microenvironment are not well characterized. Here, we investigated the molecular mechanisms by which malignant ascites promote the metastasis of ovarian cancer. It was found that ovarian cancer ascites promoted ovarian cancer cell migration which was attenuated by either heat inactivation or antibody blockade of TGF-β. High level (at ng/ml level) of TGF-β was detected in the ascites. In addition, ascites repressed the expression of miRNA-125b in a TGF-β-dependent manner. Mimic of miR-125b blocked ascites-induced cell migration. Furthermore, Gab2 (a target gene of miR-125b) was elevated by ascites in a TGF-β-dependent manner. And forced expression of Gab2 reversed the inhibition of migration induced by miR-125b mimic. Most importantly, the expression of miR-125b and Gab2 mRNA was negatively correlated in ovarian cancer specimens. Taken together, our finding suggested that TGF-β in ascites promoted cancer cell migration through repression of miR-125b in ovarian cancer. This might provide a novel therapeutic target for ovarian cancer in the future.

  1. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Kato, Haruo; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-01-01

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  2. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  3. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells.

    Science.gov (United States)

    Lou, Chenghua; Zhu, Zhihui; Zhao, Yaping; Zhu, Rui; Zhao, Huajun

    2017-01-01

    Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.

  4. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  5. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  6. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  7. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  8. Inhibition of neuronal cell–cell adhesion measured by the microscopic aggregation assay and impedance sensing

    NARCIS (Netherlands)

    Wiertz, Remy; Marani, Enrico; Rutten, Wim

    2010-01-01

    Microscopic aggregation assay and impedance sensing (IS) were used to monitor a change in in vitro neuron–neuron adhesion in response to blocking of cell adhesion molecules. By blocking neuron–neuron adhesion, migration and aggregation of neuronal cells can be inhibited. This leads to better control

  9. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1

    International Nuclear Information System (INIS)

    Chen, Zehong; Han, Siqi; Huang, Wensheng; Wu, Jialin; Liu, Yuyi; Cai, Shirong; He, Yulong; Wu, Suijing; Song, Wu

    2016-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide with rising incidence. MicroRNAs are small non-coding RNAs that implicate in multiple physiological or pathological processes. The aberrant expression of miRNA-215 (miR-215) has been illustrated in various types of cancers. However, the expression of miR-215 in human colon cancer and the biological roles of it remain largely unknown. We conducted this study to explore the expression and the function of miR-215 in human colon cancer. The results showed that miR-215 was remarkably downregulated in colon cancer tissues and cell lines. Overexpression of miR-215 by miR-215 mimic significantly inhibited colon cancer cell proliferation, migration and invasion while knockdown of miR-215 by miR-215 inhibitor exerted reverse effects. Furthermore, we newly identified Yin-Yang 1(YY1) as a direct target of miR-215 which could rescue the effects of miR-215 on colon cancer cells. In summary, our investigation revealed that miR-215 was downregulated in colon cancer and it suppressed colon cancer cell proliferation, migration and invasion by directly targeting YY1. - Highlights: • MiR-215 expression was decreased in colon cancer tissues and cell lines. • Mir-215 inhibited colon cancer cell proliferation, migration and invasion. • MiR-215 targeted YY1 directly. • The effects of miR-215 on colon cancer cells were mediated by YY1.

  10. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  11. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    International Nuclear Information System (INIS)

    Esencay, Mine; Sarfraz, Yasmeen; Zagzag, David

    2013-01-01

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  12. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    Science.gov (United States)

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  13. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    Science.gov (United States)

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  14. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    Science.gov (United States)

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  15. Regorafenib Induces Apoptosis and Inhibits Metastatic Potential of Human Bladder Carcinoma Cells.

    Science.gov (United States)

    Hsu, Fei-Ting; Sun, Cho-Chin; Wu, Chia-Hsing; Lee, Yen-Ju; Chiang, Chih-Hung; Wang, Wei-Shu

    2017-09-01

    The aim of the present study was to verify the effects of regorafenib on apoptosis and metastatic potential in TSGH 8301 human bladder carcinoma cells in vitro. Cells were treated with different concentration of regorafenib for different periods of time. Effects of regorafenib on cell viability, apoptosis pathways, metastatic potential, and expression of metastatic and anti-apoptotic proteins were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, flow cytometry, cell migration and invasion assay, and western blotting. We found regorafenib significantly reduced cell viability, cell migration and invasion, and expression of metastatic and anti-apoptotic proteins. In addition, regorafenib significantly induced accumulation of sub-G 1 phase cells, loss of mitochondrial membrane potential, and expression of active caspase-3 and caspase-8. These results show that regorafenib not only induces apoptosis, but also inhibits metastatic potential in bladder cancer TSGH 8301 cells in vitro. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation

    Science.gov (United States)

    Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  17. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    International Nuclear Information System (INIS)

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-01-01

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug

  18. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  19. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  20. MIIP, a cytoskeleton regulator that blocks cell migration and invasion, delays mitosis, and suppresses tumorogenesis.

    Science.gov (United States)

    Wang, Yingmei; Wen, Jing; Zhang, Wei

    2011-02-01

    The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.

  1. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

    Science.gov (United States)

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-11-22

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.

  2. Interplay Between Long Noncoding RNA ZEB1-AS1 and miR-200s Regulates Osteosarcoma Cell Proliferation and Migration.

    Science.gov (United States)

    Liu, Chibo; Pan, Chunqin; Cai, Yanqun; Wang, Haibao

    2017-08-01

    In our previous study, we found long noncoding RNA ZEB1-AS1 is upregulated and functions as an oncogene in osteosarcoma. MiR-200 family (miR-200s) functions as tumor suppressor via directly targeting ZEB1 in various cancers. In this study, we further investigate the potential interplay between ZEB1-AS1, miR-200s, and ZEB1 in osteosarcoma. Our results showed that ZEB1-AS1 functions as a molecular sponge for miR-200s and relieves the inhibition of ZEB1 caused by miR-200s. ZEB1-AS1 and miR-200s reciprocally negatively regulate each other. MiR-200s are downregulated in osteosarcoma tissues, and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in osteosarcoma. Functional experiments showed that consistent with ZEB1-AS1 depletion, miR-200s overexpression and ZEB1 depletion both inhibit osteosarcoma cell proliferation and migration. Overexpression of miR-200s partially abolished the effects of ZEB1-AS1 on osteosarcoma cell proliferation and migration. Moreover, the combination of ZEB1-AS1 depletion and miR-200s overexpression significantly inhibits osteosarcoma cell proliferation and migration. In conclusion, this study revealed a novel regulatory mechanism between ZEB1-AS1, miR-200s, and ZEB1. The interplay between ZEB1-AS1 and miR-200s contributes to osteosarcoma cell proliferation and migration, and targeting this interplay could be a promising strategy for osteosarcoma treatment. J. Cell. Biochem. 118: 2250-2260, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of stem cells from apical papillae.

    Science.gov (United States)

    Zhou, Meng; Guo, Shuyu; Yuan, Lichan; Zhang, Yuxin; Zhang, Mengnan; Chen, Huimin; Lu, Mengting; Yang, Jianrong; Ma, Junqing

    2017-12-01

    During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.

  4. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    Science.gov (United States)

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  5. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    Science.gov (United States)

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    International Nuclear Information System (INIS)

    Xing, Yu; Qi, Jin; Deng, Shixiong; Wang, Cheng; Zhang, Luyu; Chen, Junxia

    2013-01-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT

  7. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Sweeney, Nicholas von Offenberg; Cummins, Philip M.; Birney, Yvonne A.; Redmond, Eileen M.; Cahill, Paul A.

    2004-01-01

    Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38 ± 6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 μM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration

  8. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia

    2011-01-01

    Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  9. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    International Nuclear Information System (INIS)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi; Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2015-01-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells

  10. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.

  11. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When...... nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely...... in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells...

  12. DHA-Mediated Regulation of Lung Cancer Cell Migration Is Not Directly Associated with Gelsolin or Vimentin Expression

    Science.gov (United States)

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30 μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300 μmol/ml) for 6 or 24 h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biospy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunoflorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. PMID:27157519

  13. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  14. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  15. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  16. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  17. Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA.

    Science.gov (United States)

    Keuling, Angela M; Andrew, Susan E; Tron, Victor A

    2010-06-01

    The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.

  18. The regulatory effect of SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide) on stem cell factor induced migration of mast cells

    International Nuclear Information System (INIS)

    Kim, Su-Jin; Jeong, Hyun-Ja; Park, Rae-Kil; Lee, Kang-Min; Kim, Hyung-Min; Um, Jae-Young; Hong, Seung-Heon

    2007-01-01

    SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-]benzenesulfonamide; C 16 H 11 ClF 3 N 3 O 2 S), is a highly selective cyclooxygenase (COX)-2 inhibitor. Recently, there have been reports that SC-236 protects against cartilage damage in addition to reducing inflammation and pain in osteoarthritis. However, the mechanism involved in the inflammatory allergic reaction has not been examined. Mast cells accumulation can be related to inflammatory conditions, including allergic rhinitis, asthma, and rheumatoid arthritis. The aim of the present study is to investigate the effects of SC-236 on stem cell factor (SCF)-induced migration, morphological alteration, and cytokine production of rat peritoneal mast cells (RPMCs). We observed that SCF significantly induced the migration and morphological alteration. The ability of SCF to enhance migration and morphological alteration was abolished by treatment with SC-236. In addition, production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and vascular endothelial growth factor (VEGF) production induced by SCF was significantly inhibited by treatment with SC-236. Previous work has demonstrated that SCF-induced migration and cytokine production of mast cells require p38 MAPK activation. We also showed that SC-236 suppresses the SCF-induced p38 MAPK activation in RPMCs. These data suggest that SC-236 inhibits migration and cytokine production through suppression of p38 MAPK activation. These results provided new insight into the pharmacological actions of SC-236 and its potential therapeutic role in the treatment of inflammatory allergic diseases

  19. Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    International Nuclear Information System (INIS)

    Lee, Minyoung; Park, Jung-Jin; Ko, Young-Gyu; Lee, Yun-Sil

    2012-01-01

    BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I. Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells

  20. Cdk1 Activates Pre-Mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem cells

    Science.gov (United States)

    Baffet, Alexandre D.; Hu, Daniel J.; Vallee, Richard B.

    2015-01-01

    Summary Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells, and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2, via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell cycle regulated, and identify the trigger mechanism for apical nuclear migration in the brain. PMID:26051540

  1. Gradient biomaterials and their influences on cell migration

    Science.gov (United States)

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  2. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  3. 3D cancer cell migration in a confined matrix

    Science.gov (United States)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  4. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    Science.gov (United States)

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-08-11

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections.

  5. How Do Cells Make Decisions: Engineering Micro- and Nanoenvironments for Cell Migration

    Directory of Open Access Journals (Sweden)

    Siti Hawa Ngalim

    2010-01-01

    Full Text Available Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM, force generation through the cell's cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these decision-making processes.

  6. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    Science.gov (United States)

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2018-01-02

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  7. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  8. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    International Nuclear Information System (INIS)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic; Mariette, Christophe; Van Seuningen, Isabelle

    2011-01-01

    Highlights: → Loss of MUC4 reduces proliferation of esophageal cancer cells. → MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. → Loss of MUC4 significantly reduces in vivo tumor growth. → Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  9. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    Energy Technology Data Exchange (ETDEWEB)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Mariette, Christophe [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, 1 place de Verdun, 59045 Lille Cedex (France); Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France)

    2011-09-23

    Highlights: {yields} Loss of MUC4 reduces proliferation of esophageal cancer cells. {yields} MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. {yields} Loss of MUC4 significantly reduces in vivo tumor growth. {yields} Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  10. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  11. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Zhang, Jun; Hou, Wengen; Chai, Mingxiang; Zhao, Hongxing; Jia, Jinling; Sun, Xiaohui; Zhao, Bin; Wang, Ran

    2016-01-01

    MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS. - Highlights: • MiR-127-3p is decreased in osteosarcoma tissues and cell lines. • MiR-127-3p overexpression suppresses cell migration and invasion in MG63 and U2OS. • SETD8 overexpression abolishes the roles of miR-127-3p in osteosarcoma.

  12. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.

    Science.gov (United States)

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W S; Rauch, Bernhard H

    2016-03-15

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

  13. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation.

    Science.gov (United States)

    Yakovlev, S; Mikhailenko, I; Tsurupa, G; Belkin, A M; Medved, L

    2014-12-01

    Upon conversion of fibrinogen into fibrin, fibrinogen αC-domains containing the RGD recognition motif form ordered αC polymers. Our previous study revealed that polymerisation of these domains promotes integrin-dependent adhesion and spreading of endothelial cells, as well as integrin-mediated activation of the FAK and ERK1/2 signalling pathways. The major goal of this study was to test the impact of αC-domain polymerisation on endothelial cell migration and proliferation during wound healing, and to clarify the mechanism underlying superior activity of αC polymers toward endothelial cells. In an in vitro wound healing assay, confluent endothelial cell monolayers on tissue culture plates coated with the αC monomer or αC polymers were wounded by scratching and wound closure was monitored by time-lapse videomicroscopy. Although the plates were coated with equal amounts of αC species, as confirmed by ELISA, wound closure by the cells occurred much faster on αC polymers, indicating that αC-domain polymerisation promotes cell migration and proliferation. In agreement, endothelial cell proliferation was also more efficient on αC polymers, as revealed by cell proliferation assay. Wound closure on both types of substrates was equally inhibited by the integrin-blocking GRGDSP peptide and a specific antagonist of the ERK1/2 signalling pathway. In contrast, blocking the FAK signaling pathway by a specific antagonist decreased wound closure only on αC polymers. These results indicate that polymerisation of the αC-domains enhances integrin-dependent endothelial cell migration and proliferation mainly through the FAK signalling pathway. Furthermore, clustering of integrin-binding RGD motifs in αC polymers is the major mechanism triggering these events.

  14. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    Science.gov (United States)

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  15. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  16. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  17. [Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells].

    Science.gov (United States)

    Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen

    2011-11-01

    To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.

  18. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration

    International Nuclear Information System (INIS)

    Lipinski, Christopher A.; Tran, Nhan L.; Dooley, Andrea; Pang, Yuan-Ping; Rohl, Carole; Kloss, Jean; Yang, Zhongbo; McDonough, Wendy; Craig, David; Berens, Michael E.; Loftus, Joseph C.

    2006-01-01

    The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma

  19. Wnt5b-associated exosomes promote cancer cell migration and proliferation.

    Science.gov (United States)

    Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira

    2017-01-01

    Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Follow-the-leader cell migration requires biased cell–cell contact and local microenvironmental signals

    International Nuclear Information System (INIS)

    Wynn, Michelle L; Rupp, Paul; Trainor, Paul A; Kulesa, Paul M; Schnell, Santiago

    2013-01-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell–cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns. (paper)